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SUMMARY

A package of computer programs has been developed which
calculates the in-duct acoustic modes excited by a
fan/stator stage operating at subsonic tip speed. The
following three nolse source mechanisms are included:

a) sound generated by the rotor blades interacting
with turbulence ingested into, or generated within,
the 1inlet duct;

b) sound generated by the stator vanes interacting
with the turbulent wakes of the rotor blades; and

c) sound generated by the stator vanes interacting
with the velocity deficits in the mean wakes of the
rotor blades.

The first two interaction mechanisms generate random
noise (although most of the resulting energy may, in some
circumstances, be clustered around multiples of the blade
passage frequency), while the third mechanlsm generates
tonal noise at the blade passage frequency and 1ts
harmonics.

The fan/stator stage 1s modeled as an ensemble of
blades and vanes of zero camber and thickness enclosed
within an infinite hard-walled annular duct. The acoustic
pressure within the duct 1is calculated by distributing
pressure dipoles on the surface of the rotor blades or
stator vanes and calculating the pressure at an arbitrary
point within the duct via the normal mode expansion of the
Green's function for an annular duct. By this procedure one
obtains an infinlte serles for the sound pressure within the
duct. Each term contains a normal mode of the duct
multipllied by the amplitude of that mode. The amplitude (or
the expected value of the amplitude spectral density) of
each propagating mode 1s computed and summed to obtain the
sound power flux (or the expected value of the sound power
spectral density) within the duct. These calculations are
carried through for both upstream and downstream propagating
modes.
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The equations relating the duct acoustic mode
amplitudes to the pressure dipole distribution on the rotor
or stator blades make no assumptions about the ratio of the
wavelength of the sound generated to the blade chord.
However, to simplify the computation of the dipole
distribution generated by a given periodic or random inflow
variation, the so-called strip theory approximation is
used. Specifilcally, the dipole distribution 1s calculated
by deleting, from the convected wave equation, all terms
containing derivatives with respect to radius, but retaining
the radius as a parameter in the boundary conditlons (which
derive from the blade geometry and the incident fluid
flow). At each radius, therefore, the equations to be
solved are those for a linear cascade in subsonic flow.
Although radial derivatives are deleted from the wave
equation in calculating the chordwise pressure distribution
on the blades, radial variations in the amplitude and phase
of the pressure distribution are taken into account in
integrating over the blade/vane surface to obtain the
amplitudes of the propagating duct modes.,

Turbulence drawn into or generated within the inlet
duct 1s modeled as nonhomogeneous and anisotropic random
fluld motion, superimposed upon a uniform axial mean flow,
and convected with that flow. In the computer programs, the
inlet *urbulence veloclty auto-correlation function is
computed by a set of subprograms. It is intended that the
form of the correlation function be chosen to fit turbulence
data collected from a transducer fixed in the inlet duct (as
opposed to rotating with the fan). To allow some flexi-

bility in selecting the functlonal form of the veloclty auto-

correlation function without requiring an excessive amount
of data for 1ts definitlon, the auto-correlatlion function
has been expressed as the product of three functions. Each
function depends upon only a single variable, one of the
three e¢ylindrical polar coordinates of a point within the
duct: r, ¢, x. Rational methods for selecting these three
functions are suggested in a companion report (Ref. 1).

The flow downstream of the rotor 1is also modeled as

anisotropic and nonhomogeneous random fluid motion,
superimposed upon a steady, but in this case spacilally

vi
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nonuniform, mean flow. The mean (time-averaged) component
of the flow 1s assumed to have no radial component, so that
the mean flow streamlines form cylindrical surfaces. It is
further assumed that if one of these cylinders is unwrapjed
to form a plane, the mean flow streamlines will be

parallel. This 1s equivalent to ignoring the effects of
viscous and turbulent diffusion in the rotor wakes, a
Justifiable approximation as regards the calculation of the
forces on the stator vane, provided that the wake thickness
chosen 1s that which 1i1s obtained at the axial station of
the stator vanes themselves. The magnitude of the mean flow
velocity 1s constant on lines parallel to the mean flow
streamlines, but varies periodically in the direction normal
to the mean flow streamlines.

Rotor wake turbulence 1s modeled as anisotropic and
inhomogeneous turbulence carried along with the mean flow
downstream of the rotor. The intensity of the turbulence is
constant on lines parallel to the mean flow streamlines, but
periodically varies in the direction normal to them. The
turbulence velocity auto-correlation function 1is expressed,
in rotor-ixed coordinates, as the produc* of three
functions, 2ach of which is a function of nly one of the
three spatial variables r, ¢, x, Just as for inlet
turbulence.

Equations for the duct mode amplitudes, or expected
values of the amplitudes, are derived in Volume 1, while
documentation for the computer programs is supplied in
Volume 2.

vii
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CHAPTER 1

INTRODUCTION

This is the final report of a project designed to
develop a computer program which calculates the modal
content of the acoustic flelds set up in the inlet and
exhaust ducts of a turbofan by the actions of nonsteady
vortical velocity fluctuations convected past the rotor and
stator blades. Such a program, supplemented by mathematical
models of the impedance of the inlet and exhaust termina-
tions, can be used to calculate the far field noise. The
program can also be used to provide the initial conditions
required for the investigation of duct liners, particularly
liners taillored to suppress a specific mode or set of modes.

The fluctuating flows come from three distinct
sources: 1) turbulence drawn into the inlet duct,
2) the turbulent component of the rotor blade wakes,
and 3) the mean component of the rotor blade wakes.
The first two motions are random, while the third is
periodic (as seen by an observer fixed in the duct).
It is characteristic of all three flows that the pressure
fluctuatlions associated with them are an order of magni-
ude smaller than the velocity fluctuations, and that all
three are embedded 1n, or convected with, the mean flow,.
When the velocity fluctuations are carried past a rigid
surface, such as a fan or stator blade, the requirement
that the flow conform to the shape of the blade sets up
additional (acoustic) disturoances, which propagate both
upstream and downstream in the duct.

The acoustic pressure in the duc¢t can be calculated in
a straightforward manner, using the Green's function for the
duct, provided that the pressure distributions on the
surfaces of the rotor or stator blades are known. If the
Green's function is expressed as an infinite series of the
normal modes of the duct, the modal amplitudes of the
acoustlic pressure are obtained directly. The problem
remaining, therefore, 1s to determline the pressure
distributions on the surfaces of the rotor or stator blades
generated by the convected vortical veloclty disturbances.

« -
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This 1s accomplished by modeling the blades as surfaces cof
zero thickness and camber, which support an unknown but
cortinuous distribution of pressure dipoles. The particle
velocity normal to the blades on the blades themselves ‘s
calculated from the unknown dipole distribution; thirs
velocity 1s then required to nullify the normal comp-wznt .
the vortical disturbance velocity (so that the total fluld
velocity conforms to the shape of the blades). The result
is an integral equation for the dipole distribution, which,
depending upon the approximatlions introduced, may admit oi
analytic solution, or may require numerical treatment.

The approximations required to arrive at an analytic
solution are considerable: essentially they ignore the
annular or circular geometry of the fan (or stator), the
three dimensionality of the disturbance, the interaction
between blades, and the compressibility of the fluid. What
remains 1s incompressible flow around an isolated airfoil
in two dimensions, the solution of which, for a sinusoidal
vortical gust, 1s known as Sear's function. This was the
approach used by Kemp and Sears (Refs. 2 and 3) in their
original investigations of the interactions between blade
rows 1n axial flow turbo-machinery. The incompressible
approximation has since been shown to be unacceptable.

For example, Fleeter (Ref. 4) found that compressibility
can change the pressure on the rotor or stator values by

as much as a factor of two, while Kaji (Ref. 5) calculated
even greater changes (20 dB; a factor of 10) in the sound
pressure level upstream of the blade row due to source non-
compactness,

At the opposite extreme, as regards complexity, are
calculations carried out by Kobayashi (Ref. 6) and Koba-
yashi and Groeneweg (Ref. 7), using equations derived by
Namba (Refs. 8, 9) for an annular blade row in compres-
sible flow. Because of the annular geometry the kernel
function, which relates the dipole dlstribution to the
velocity normal to the blades, is elaborate in form and
time-consuming to compute. The associated integral
equation is two-dimensional (il.e., both the spanwise and
chordwise distributions of pressure dipoles must be
determined). In his numerical work, Kobayashi made
comparisons between his "exact” aerodynamic theory and
various approximate methods of calculating the normal

"o~
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component of the induced veloclty. One of these, which he
called the "quasi~three-dimensional" approximation,
coincides with what most would call a "strip theory"
approximation. 1In calculating the induced velocity,
derivatives with respect to radius are deleted from the
convected wave equation, so that one is left with the kernel
function of a linear cascade in nonsteady compressible

flow. The particular geometry of the cascade, as well as
the vortlical inflow velocity, depends on the radius, and
this parametric dependence 1is retained in calculating the
induced velocity (and hence ultimately the dipole
distribution). The effects of radial or spanwis- variations
in the amplitude and phase of the vortical disturbance
velocity, as well as radjal variations in blade zhord,
ianter-blade gap, and stagger angle, are thereby taken into
account, even if in an approximate manner. Kobayashi found
that this procedure introduced errors no greater than 2 dB
in the computed magnitudes of the acoustic modes set up in
the duct upstream and downstream of the rotor.

The strip theory approximation, as described above, has
practical advantages. It 1s considerably easier than the
"exact" method to implement numerically, and it accommodates
more conveniently a variety of wvortical inflow disturbances
(e.g. random as well as deterministic motions). For these
reasons, it has been selected for use in the computer codes
developed in this project.

The role of atmospheric turbulence in generating either
broadband or tone-like noise, depending upon the extent to
which the turbulernce 1is distorted as it is drawn into the
turbofan inlet, 1s by now widely known and well understood.
Measurements made by Hanson (Ref. 10) and othe»s have shown
that when initially ilsotropic (o, nearly isotropic) turbu-
lence 1s drawn Into a duct mcving at zero or very low for-
ward speed, the streamwise compcnent of the turbulence
velocity 1s reduced as compared Lo the transverse compc-
nents. Elongated turbulence eddies are intercepted by
maryrotor blades as they rass through the fan; because
each blade experiences essentlally the same velocity
fluctuation, the noise generate? 1is tone-like in nature,
containing prominent peaks at multiples of the blade
passage frequency. On the other hand, when the
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forward speed of the turbofan 1is comparable to the velocity
within the duct, the turbulence remains roughly isotropie,
and the spectrum of the sound generated is less peaked.

Modeling inlet turbulence reruires that the velocity
correlation function of the turbulence be anlsotropic. We
have chosen to write the turbulence velocity c-rrelation
function as the product of three functions, each of which
depends only upon the quotlient of one space coordinate and
the corresponding length scale. Thilis model 1is not based
upon or suggested by any physical model of fluid turbulence,
but has the advantage of being easily adjusted to fit
measured turbulence spectra, without requiring an excessive
number of measurements for the purpose. Other models of
inlet turbulence, such as the axisymmetric turbulence model
used by Kerschen (Ref. 11), could easily be incorporated if
desired.

Laksminarayana et al. have collected an extensive set
of measurements of the mean and fluctuating components of
the flow downstream of a wultibladed fan operating at
subsonic tip speed, using a transducer rotating at the same
rate as the fan (Refs. 12, 13, 1l4). Their measurements of
the mean (or time-averaged) component of the flow at lc.a-
tions remote from the blade hub or tip indicite that the
radial velocity immediately downstream of the fan blade
tralliag edges 1s substantial, but that this velocity
decays rapidly, so that at distances greater than about
one-half blade chord downstream the circumferential and
axlal components of the mean velocity predominate. Measure-
ments of the velocity defect profiles show marked asymmetry
about the streamlines on which the minimum velocity occurs,
but this asymmetry alsc disappears within a half-chord length
downstream of the faa blade trailing edges. At greater dis-
tances, the normaiized velocity defect profiles all show
a Gaussian distribution, there being one such velocity de-
fect profile for each fan blade. Due to the diffusion of
momentum in the flow, the widths of the velocity defect
profiles increase wich distance downstream, while the
maximum velocity defect decreases. But for the purpose nf
calculating the noise radiated by the stator, it is suffa-
clent to model the wake flow in the vicinity of the sta-
tor. Thils can be done by ignoring momentum diffusion,
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provided that the wake thic! iess and velocity defect are
assizned the values they attain in the vicinity of the
stator, say at the leading edges of the stator vanes.

With these approximations. the mean flow streamlines
down-stream of the fan become a series of parallel lines, as
viewed by a cylindrical surface opened out to form a flat
plane. The velocity defect profiles are Gaussian, with the
wake width and maximum velocity defect left as parameters to
be specified. The flow velocity, telng periodic in the
azimuthal direction, 1s conveniently expressed as a Fourier
series for the pur,2se of calculating tre inflow velocity
fluctuations normal to the stator vanes.

One additional aspect of the mean wake geometry is note-
worthy. At each radius the mean flow streamllnes all bear
the same angle to the centerline of the duct, but this angle
is a function of the racdius, the precise nature of which
depends upon the radial variation of design 1lift coefficient
and chord length of the rotor blades. The locus of center-
lines of any given wake form a surface whose shape depends
upon the radial variation of the wake angle; thls surface
will in general intersect any selected stator vane at only
one point, and this point will move along the leading edge
of the stator vane as the fan rotates. Particularly if the
gap between the fan and stator 1s large, each stator vane
will at any given instant intersect many rotor blade wakes,
and for each wake intersected, there will be two changes in
the sign of the disturbance velocity seen by the stator
vane. The pressure induced on the stator vane will have as
many sign reversals as the inflow veloclty, and will tend to M
excite duct acoustic modes with that same number of circular !
nodes. If, at the frequency of interest (which of course :
must be the blade passage frequency or one of its
harmonics), few or none of the duct modes with that nuiber
of radial nodes propagate in the duct, the stator will not,
at that frequency, be an effective generator of sound. The
significance of this wake roll-up phenomenon in the genera-
tion of sound by the stator was nolnted out previously by
Bliss, et al. (Ref. 15). In their discussion, they chose
to emphasize the radial trace velocity of the vane/wake
intercept instead of the number of nodes in the normal

TG v T i Sramh
i v e e



ORIGINAL PAGE IS
OF POOR QUALITY

component of the inflow velocity. Their criteria for
efflcient sound generation, namely that the trace velccity
of the points of intersection of the wake centerllnes with
the stator vanes be supersonlce, 1s perhaps more appropriate
to an unshrouded rotor/stator combination, but the two
criteria are roughly equivalent when the ratio of hub and
tip radil is close to one, and are exactly equivalent for a
set of two linear cascades 1in relative motion between two
infinite parallel planese.

In the equations derived in this report, and in the .
computer programs developed from them, the radial variation of the
the angle between the mean wake streamlines and the duct
centerlines may be specified arbitrarily, so that the
effects of wake roll-up are properly accounted for.

Wake turbulence measurements made by Laksminarayana, et al.
(Refs. 13, 14) using a transducer rotating at the same speed as the
rotor indicated that the turbulence on the centerline of the
mean velocity defect wakes 1s both more intense and contains
more energy at high frequencies than does the turbulence in
the region between wakes. The maximum turbulence intensity
coincides roughly with the maximum mean velocity defect, and
the fall-off in intensity with distance normal to the wake
centerline follows roughly the same Gaussian distribution as
the mean wake veloclity defect. The width of the turbulent
wake 1s also roughly the same as the width of the mean wake.

Based upon these observations, we have chosen to model
rotor wake turbulence as homogeneous turbulence modulated by
a function which is constant on the wake centerlines, but
which varies periodically along lines drawn normal to the
wake centerline. This model is at variance with the
observations quoted above in that the turbulence midway
between wake centerlines has the same frequency content (but
at diminished intensity) as the turbulence on the center-
lines. But because of the diminished intensity of the
"between wake" turbulence, it cannot figure signifi:zantly in
the noise generated by the stator.

Only one other model of rotor wake turbulence (as ;
applied to acoustic calculations) has been published to.

¥
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date. In his model, Hanson (Ref. 16) took a very different
tack by modeling both t*he mean and turbulent components qf
the wake flow as a series of veloclty defects of randomly
varying amplitude and position. The mean value of the
amplitude of the wake defect coincldes, of course, with that
of the mean wake velocity defect, and the functional form
(or shape) of the velocity defect must likewise conform to
that of the mean wakes. In this regard, Hanson's model is
less {lexible than the one used in this report. Also, in
calculating the noise radiated by the stator, Hanson modeled
the stator vanes as point dipoles. He was therefore unable
to account for the (quite reasonable) possibllity that the
radial integral scale of the turbulence might be consider-
ably shorter than the span of the stator vanes. The point
dinole model also requires that the wavelength of the
radiated sound be considerably greater than the chord of the
stator vanes, which at high frequencies is not the case.

No attempt has been made to model the flow field
downstream of the rotor hub or tip; such work is beyond
. the scope of this investigation.

The remainder of the report is arranged as follows:
pertinent aspects of the geometry of the duct, rotor and
stator are discussed in Chapter 2. 1In Chapter 3, a brief

; discussion of the acoustics of annular ducts is presented,

i along with a derivation of the amplitudes (or expected

; values of the amplitudes) of the duct modes excited by a
given pressure distribution on the fan or stator blades.
The computation of the blade or vane pressure distribution
caused by a given vortical inflow velocity is outlined in
Chapter 4, and mathematical models of the fan blade mean
velocity defect wakes, rotor inlet turbulence, and rotor
wake turbulerice are provided in Chapters 5, 6, and 7,
respectively. Finally in Chapter 8, selected aspects of
the numerical procedures used in the computer programs
are discussed. Program listings and documentation are
supplied in Volume 2.

e
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GECMETRY OF DUCT, ROTOR, AND STATOR

For our purposes, a turbofan is a rotor and stator
combination mounted in an annular duct of infinlte length
(1.e., reflection of acoustic waves from the ends of the
duct are to be ignored). A sketch of the rotor/stator
combination is shown 1in Fig. 1. As shown in the figure, a
cylindrical polar coordinate system is established in the
duct, with the polar axils lying along the duct centerline.
The axlal coordinate x increases in the direction of air
flow, and the rotor rotates in the sense of increasing ¢.
The outer radius of the duct 1s rp and the inner radius
is ryg. The rotor has B identical evenly spaced blades, and
the stator has V identical evenly spaced vanes.

The rotor blades and stator vanes are modelled as
twisted sheets of zero thickness and camber, whose pitch
angle and chord vary with the radius, r. The axial and
azimuthal sweep, if any, of the rotor blades are defined
by extending a radial line from the axls of rotation
through the mid-chord point of the blade at the hub
(radius = r;). The location of the mid-chord point at
any other radius r is defined by the two component vector
§ = (86:,82) which gives the displacement of this point
from the radial line. (&8, = axial displacement and
§2 = azimuthal displacement.) In general, both §; and
§2 are functions of the radius r, and by definition
6y = 8, = 0 at the hub (r = ry). See Figure 2.

The intersections of the rotor blades and stator vanes
with a cylindrical surface of radius r is shown in Fig. 3.
The stagger angle of the blades is X, and that of the vanes
is 8 (both are functions of r). The spacing between the
blades 1s 2mr/B, and between the vanes, 2mr/V. The local
semichord of the blades is b (a function of r). The same
symbol is used for the semichord of the vanes. The dis-
tance between the rotor and stator is d.
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DUCT ACOUSTICS
3.1 Normal Modes in an Annular Duct

The normal modes of an annular duct with hard walls are
the set of solutions to the two-dimensional Helmholtz
equation having the special form.

¥(r,¢) = £(r) exp(im¢) (1)

where m is any integer, positive, negative, or zero. The
Helmholtz equation is, in polar coordinates,

2 2
(9__+%%§+LL Y+ kY =0 . (2)
or? r? 3¢?

In this equation « is an undefined constant. As is shown
below, the equation has non-trivial solutions which fit
the appropriate boundary conditions on the walls of the
annular duct only for certain specific values of «x.

If Eq. (1) 1s substituted into Eq. (2), we obtain

2
af,1ldf 2 D0y pog | (3)
dl"z r dr r2

Substituting u = kr for r reduces Eq. (3) to Bessel's equa-
tion of order m:

2 2
Q.i+l§§+(1_m——)f=0 .
u qu uZ

The solutions are mth order Bessel functions of the first and
second kind, i.e., f(u) = wm(Kr), where

Yo (kr) = AT (kr) + BY (xr) . (4)

If we specify that ¥(r,¢) = y,(xr) :xp(im¢) is either the
pressure or the velocity potential, then the radial deriva-
tives of ¥, must vanish at the inner and outer walls of the
duct, so i? A and B are to be not both zero,

G o aaie . - -
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Jé(KrH) Yﬁ(KrH)

Jé(KrD) Y&(KrD)

This transcendental equation has a countably infinite number
of roots k for every integer m; if we denote these roots

by kp.pns N = 1,2,3,..., and arrange them in order of
incredsing magnitude, then the functions Ym(km.nr) have
(n-1) zeros in the interval ry < r < rp. Thesé functions
are also orthngonal with respect to the weight function r
over the same interval; that 1s,

r
D =
f r wm(Km,nr) wm(Km,Rr) dr = 0
T
unless & = n. Using this fact, plus the fact that the func-
tions exp(im¢), m = any integer, are orthogonal on the

interval 0 < ¢ < 27, 1t Is casy to show that the normal modes

YKy o) exp(im¢) are orthogonal over the cross-section of
the dabt. Specifically,

rp2m
f J W (kg qriexp(dme) } = {¥i(e  rlexp(-1k¢)lrdedr
ry O

=0ifk #mor 2 #n

Tp
= 27 I wé(xm,nr)r dr , (6)
Ty

if k smand 2 = n. It is convenient to adjust the constants
A and B in Eq. (4) [which are determined by Eq. (5) only to
within an arbitrary multiplicative factor] so that

2 2
r ry=-r
D 2 = d "n
I wm(xm,nr)r dr —2_ .
Tx

The orthogonality relation [Eq. (6)] then becomes

13
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m' m,n

n 0

A special FORTRAN program has been writtenwhich cal-
culates ky p and the constants A and B in Ea. (4) smbject

to the normalization given in Eq. (8); for details see
Aprendix C.

The significance of the normal modes is that they can
be used to represent pressure patterns which propagate

within the duct without change in form, and that any acoustic

fileld within the duct, however generated, can be repre-
sented as a sultable combination of these patterns.

The wave equation in a duet containing a fluid moving
at a uniform axial velocity U is#

2 4 32 _ 1 (23 I LN
Vp"'axz cz(‘é'{;""bax P 0 ’ <9)
0

where p 1s the acoustic pressure, and V? is the two-
dimensional Laplace operator,

Now assume that p is the real or imaginary part of

wm(xm’nr) exp[i(mé-yx-wt)] . (10)

This pressure pattern hasm diametral nodes (like the spokes
of a wheel), and (n-1l) concentric circular nodes. If we
substitute expression (10) into Eq. (9), and recall that

Vz{wm(xm’nr)exp(1m¢)} = —K;’nwm(xm,nr)exp(im¢),

the following relation 1s obtalned:

*Between the rotor and stator an appreciable circumferential
veloclty exists as well. This velocity 1is not accounted for
in Fig. (9). .

1

rd 2m
I I {v_(x_ rlexp(im¢)} - {wk(Kk,2r)exp(-ik¢)}rd¢dr
r

P e

B in -
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2
- 2 - 2 + _OL_ U_Y = .
Km,n Y ¢, + c, 0

Solv ng for v in terms of K n and w, we find that
Y = (w), where ’

Yn,m

=2 (M _“.’.2 2.2 )
Yn,m(w) = a2 (co bl ‘/(co) —B"x Km,n

Equation (11) shows that y is real whenever w is real and
w/cy > BKp n* Under these conditions, the pressure pattern
propagates’unchanged along spiral paths normal to the lines

(11)

m¢ -~ ¥X - wt = const.

If w is real but w/cy < BKm,n>» then vy 15 complex and the
pattern grows or decays exponentially along the duct depend-
ing on which sign 1is selected in Eq. (11).

Modal pressure patterns such as

wm(Km’nr)exp{1[m¢—yn,m(w)x-wt]} (12)

can be superimposed to form a general description of the
acoustic pressure field in a turbomachine. Thus, if we
multiply the pattern above by an arbitrary function of w,
say Pm, nlw), integrate over frequency (w/2m), and sum
over m, ,nh, we obtain¥*

o(x,6) = T T v (x r)[ 5 (wexplilmoty. (wx-wt]} 32 (13)
g g m' m,n mn n,m wix=w am

where now x is the point (r,x,9) in the duct. Note that in
general p(x,t) is composed of both propagating and non-
propagating modal pressure patterns. The Fourier transform
of thils equatilon, namely,

od

b

) = 11 B (@ (kp  rlexplimg+dy, - (0)x] (14)
mn )

*Where no integration limits are specifled, -= to += 1s
implied.

15
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exhibits mere explicitly the role of the functions ppy(w)
as complex modal amplitudes.

3.2 Acoustic Energy Flux

In a duct containing a fluid flowing at a uniform
axial velocity U, the instantaneous acoustic intensity
is (Ref. 17).

I = (g% + Uu)(pou+Up) (15)

where po is the nominal fluid density and p, P, and u
are the instantaneous acoustic nerturtation pressure,
density, and axial velocity, respectively. The acoustic
pressure and density perturbations are proportional to
one another (p = cip), so Eq. (15) can be written in
terms of the pressure and axial velocity only:

I = (1+M%) pu + p? + pocoMu2 (16)

poco
where M = U/c, is the nominal axial flow Mach number.

Now introduce the Fourler transforms. of p and u,
defined as follows:

p(x,w) { p(x,t)exp(iwt)dt (17)

p(x,) = | Blx,u)exp(-tut) 52 (18)

with the corresponding definition tor u(x,w). (In both
integrals above the limits of integration are understood
to be t», This convention wlll be adhered to throughout
this report.) The axlal intensity can now be written as
a double inverse Fourier transform: -

P(x,w)p*(x,v)

I = ”{(1“’)5(5:“)5*(’5"’) * ooMCo

+ p,e,M T(x,w)u*(x,v)} + expl-i(w-v)t] %% %% . (19)

AL
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where the superscrig: ' ‘lenotes the complex conjugate.

Both P(x,w) and U(x,w, .:n be written as sums of modal
pressure patterns, as “. £q. (14). Thus,

plx,w) =Y} P mn S \m,nr)exp[im¢—iyn’m(m)x] (20)
m n ‘

Gig,v) = 3 % g .;¢n(xk’zr)exp[ik¢-iy2,k(v)x] . (21)
<

The modal co:Fficlents ppu(w) and uUp, (w) are not inde-
pendent, but are related through the 'axial momentum
equation,

du , ,8u . 1 3p
] + U 3x + g. 90X 0

If Eqs. (20) and (21) are substituted into the Fourier trans-
form of this equatlion, the following relationship 1is obtained:

_ Ao (@) _
U, (w) = -—?ﬁr_pmﬂm) (22)
where
(w)
A () = I (23)
ma % Yn,m(“’)

The axial intensity can now be written entirely in terms
of p
mn

I = % g E ; wm(Km,nr)wk(Kk,lr)eXp[i(m'k)¢3‘
%ﬁ ” (M- (LeU2D AR (V) 4 A, (0)AR, (V)] (24)
. exp@i[Yn,m(w)-vl’k(v)]x-i(m-v)t]}.5 (m)pﬁg(v) g: g: .

17
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The Instantaneous sound power 1s found by integrating
the intensity over the cross-section or the duct. That
is:

“pean m(rd-r)
Power = J J I rdddr = —=—— ) ZJIEMZ-(1+M2)A* (v)
: Y ma m
T 0

+ Amn(w)A;n(v)Jexp{itvn,m(m)-vg,m(v)Jx

-1(e-v)t} B (o) (v) (25)

The noise gen-»rated by the stator blades interacting
with the mean wake momentum deficits of the rotor is
periodic, the period being the blmcde passage interval,
Thus

Pan(@) = 27 1 2y o6 (0-Bs)

TR (v) = 2n ; p* 6(v-0Br) (26)

and the sound power flux in the duct is

m(ri-rl?)
Power = —B_H_§ 7 7§ {M2-(14M2?;A* (rBR)
Y mnrs b

* "
+ Amn(sBQ)Amn(rBQ)]exp{i[yn’m(sBﬂ) yn,m(rBQ)]x

t—i(s-r)vBQt]}p . 2

*
mnspmnr

Those terms in this equation with r # s represent fluc-
tuations in the power. The time average sound power is

ﬂ(r%—r%)
Power = —=p—=] ] | (MZ-(1+mMP)AR (sBR)+|A_ (sBR)|?}|p
0 w1 8

(28)

18
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The term in braces {+++} car be simplified:

IM2B*(sBR/U)k,_ _ (sBQ)
{eee} = Ll . (29)
[sBa/c,tMic ' (sBR)]?2

The upper set of signs apply upstream of the rotor (where
tne energy flows upstream or in the negative x-direction)
and the lower set apply downstream.

When the sound in the duct 1s random, Eq. (24) can be
used to calculate the ensemble-averaged or expected value
of the power, say <Power>, in terms of the expected value
of the mode spectrum in the duct, <pmn(w) p¥n(v)>.

If the mode spectrum is correlated at differing frequencies
(1.e., 1f <pyn(w) pHp(v)> # 0 when w # v), then the sound
power within the duct fluctuates. For example, as will be
shown later on, when turbulence is convected past either
the rotor or the stator, a modal spectral density of the
form

B (0P (90> = 21 1 B (08 (wmv-sp) (30)

is prOunced If this expression is substituted into
Eq. (@4), the following result is obtailned for the
expected value of the acoustic power:

ﬂ(r’-rz) 2 2 .
<Power> = 5 T ; g é exp(isBQt)-I (M%~(1-M )A;n(m+saﬂ)

(0)Ak (w+sBR) Jexp{ily, p(@)-v, (w+sBR)Ix}T () = g
(31) '

All terms with s # 0 correspond to fluctuations in the .
power in the duct. If we average over one period, only '

the s = 0 term remains:
o n(rk -r \ , - :
<Fower> = ———ﬂ—\ 11 [[M (MDA ()R (0)[2TF, (o) $2 . 5
(32) :
A.
, W
v .'v?if
19 W
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The integrand 1s the p_wer spectral density. That 1s,

<Power> = J S{w) 2% s
where
ﬂ(rs-rﬁ) \ -
S(w) = "——p"'a—- % 121 (M2~(1-M )A:m(w)*'l'\mn(w)l meno(“’) .
0 (33)
But p (w) is Just the time average of the amplitude

spect?g? density of the (m,n)th duct mode, which later on
we will denote by Ppp(w). Thus, we can write

2 2
v(rD—rH

S() = =g T 1 M- QHAL (o)

+ A () ]2} P () (34)

Again, the quantity in braces in this equation can be
simplified:

IM26“<m/U)kn (e

{1} = (35)

[w/coiMkn’m(w)]z

3.3 Duct Acoustic Modes Excited by Fluctuating Loads
on the Rctor or Stator

In this section, we shall derive equations which re-
late the acoustic modes in the inlet or exhaust ducts to
fluctuating loads on the rotor or stator blades. The

starting point is Eq. (4.13) in Goldstein's book Adero-
acoustics® (Ref. 17).

¥Joldstein's equat!on has the density fluctuation p(x,t)
on the left-~hand side; the version shown on the following
page is actually his equation multiplied through by c:.

I
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+00
p(§,t) = I J VG(§,g,t-r)-g(g,r)ds(g) dt , (36)
-0 s5(7)

which gives the pressurer fluctuation p(x,t) at any point x =,
within the duct in terms of the force/unit area f exerted :
by the blades on the fluid. In this equation, G(x,y,t-t1)

is the time-dependent Green's function for a hard-walled

annular duct. If we Iintroduce a cylindrical coordinate

system such that the field point x is (r,xi1,¢) while the

integration point y 1s (r',y:,6), then G can be written
as follows:

v (¢« 1)y (k_ r') -
G(x,q,t-1) = oy | §] BB B WD explim(¢-4)]
mn

-I kl exp[—iw(t—r)+yn’m(yl-xl)]dw , (37)

n,m
where

z Mo n.m -
Tn,m = Bzco + g2 sen (yx x,) (38)

~
]

n,m ‘/Ygf)z'szxé n (39)

In Eq. (36), wm(Km r) exp(im¢) is a normal mode of the
duct, and Ym(xkp v ? exp(-im¢') 1s the complex conjugate
of %he §ame norhal mode, evaluated at (r',¢ ) instead

of (r,¢

If the fluid is assumed to be inviscid, the force f
will be normal to the surface,

f=pn ,

21 Loy
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where p is the local pressure. Thus,

pe0) = [[ n(p)velay,e-) (DS at . o)
S(y)

The integration is to be carried out over both faces of
each blade. On each blade, we can divide the integral

in the equation above into two parts, one over the forward
or upstream face of the blade, and the other over the
downstream face. Calling the upstream face + and the
downstream face -, we have, because the hlades are very
thin,

p,n, +pn; = (pe-p_)n ,

where n is a unit normal vector erected on the middle
surface of the blade. Define Ap as Ap = P_-P,. Then

p(%,t) = - [ J n(y)vG(x,y,t-1)*ap(y,t)ds(y)dr , (41)

m

where now the integration is over the blade surfaces (as
opposed to the two blade faces).

Because we are interested in frequency spectra rather
than pressure time historiles, it 1s convenient to calculate
the Fourier transform of Eq. (41), using the Fourier trans-
form pair as defined in Eqs. (17,18). Before this can
be done, however, we must first {ntroduce the following
change of variable: ¢' = ¢=-Qt. The angle ¢' remains
fixed as the rotor rotates, so the order of the time and
space integrations in Eq. (41) can be interchanged.

With the above substitution, G contains 1 in the combina-
tion exp(i(w-mQ)T], so, carrying out the t integration,

we ldentify

400
[ Ap(y',t)exp(i(w-m)t]dT = AS(Y',w-mQ) . (42)

22
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Because t appears in Eq. (37) only as the Jactor
exp(~-iwt), the w integration is effectively an laverse
Fourier transform. Thus,

p(x,w) = i Z wm(nm’nr)exp(im¢-iyn’mxl)- (43)
--—].'_.— " SO B v VIAT
2Tk, J V(e o u(Y) V[expt—;mw'+iyn’m“‘,]Ap(g,w—mﬂ)dS(z) ‘
] B
Sm
Note that

wm(rm,nr)exp(im¢-iyn,mxl)

is a rotating pressure pattern of the type discussed pre-
viously.* Equation (43) is thus a normal mode expansion
of the Fouriler transform of the acoustic pressure within
the duct:

- 1
p_(0)  z7mi——0 [ v (k_ r')
mn 21Fkn m m' m,n

3 Sm
n(z)-v[exp(-im¢'+1yn,myx)]Aﬁ(g,w—mﬂ)ds(g) , (44)
and
P(x,0) =] § an(m)wm(mm’nr)exp(im—ivn %) (45)

mn

¥Except for the factor exp(-iwt).

o .
* ?.:'-‘iz.ﬁ‘ [,

[
s e e
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In Eq. (4%), the integration 1s to be carried out
over all B rotor blades. To reduce the region of integra-
tion to one blade, arbitrarily select cne blade as a
reference blade. Assign this blade the number 0, and the :
remaining blades, in the direction of decreasing ¢', the s
numbers 1 through (B-1); Let the pressure on the sth
blade, s = 1, B-1, be Apg(yo,w-mR}, where y, is
the point (r',yi1,¢'). Then the corresponding point on blade

s 1s (r',y:1,¢'-27s/B. The total contribution of all B blades
is thus

Pan(®) = IR | ¥t ) n(y, ) Vlexp(-tme ety v, 0

{EAES(ZO,m-mﬂ)exp(i2ﬂms/8)}d3(y°). (46)
. J

The noermal vector on the reference rotor blade is
n = (0,-siny,~-cos4), so

. = lm - - !
n V[exp(-im¢'+iYn’mY1] (I" cosy iyn,msinx)exp( im¢ +iYn,my1)

To facilitate the Integration over the blade surface,
establish an intrinsic chordwise coordinate z', varying
from z' = -b at the leading edge to z = +b at the trailing
edge. Then, following the discussion of blade geometry
in Chapter 1, coordinates y; and ¢' are glven by

¥, = §; + z'cosy'
¢' = -(6;+z'sinx)/r' R (48)

where x'(r') is the angle between the local blade chord
and the axis of rotation, and (6;,6;) is the displacement

24 %
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of the blade mid-chord line from a radial line
drawn through the mid-chord of the blade at the hub.
Using r' and z' as integration variables, Eq. 46)
becomes

r
d
= - 1 ( m
pmn(‘“) mr-;—n: J wm(Km,nr')(F cosX'
T r
n
_Yn,msinx|)exp(iyn’m6; + 5 81)e

+b

B=-1 _

J { ) Aps(r',z',w-mﬂ)exp(ég%mi)}
-b s=0

expli(y,. _cosy' + f% siny')z']dz'dr . (49)

n,m

The corresponding equatlon for the sound generated
by the stator 1s obtained from Eq. (49) by changing B to V,
and by setting @ = 0 and x' = -6':

Ehn(m) = EfgL—- J ° v (k_ r') (EL cosfH!
n,m

' I,
+Yn,m81ne )exp(iyn’m5;+ - 8

+bfv-1 '
[ ] AB(r',z',u)exp 12208
‘b s=0

n

exp[i(yn’mcose' -

sing')z'Jdz'dr' . (50)

25
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ROTOR/STATOR CASCADE RESPONSE

The pressure distribution on the rotor or stator
blades can be calculated by dividing the rotor or stator
into a series of radial "slices," and calculating the
pressure on each "slice" as though it were a llnear cas-
cade of thin flat plates. In thils approximation, the
radial variation of the inflow to the blades 1s ignored —
an application of "stilo-theory" to rotor aerodyramics.

The fluid velocity relative to the rotor blades (or
stator vanes) is supposed to be a random or deterministic
fluctuation u(r,x1,X2,t) superimposed on a nominal flow
Up(r), which™is a function of the radius only. We are
interested only in the fluctuating portion of the loading
on the blades, which in the linear approximation i1s
dependent only on the component of the velocity fluctua-
tion that 1s normal to the blades, say w(r,x,t), where
x = (x1,x2). This velocity component can be expressed as
a sum of traveling waves:

d’k dw ,
- (51)

w(r,z,t) = m 7 (r,k,w)exp[1(krx-ut)] e

where d°k = dkidk2

In the coordinate system shown in Fig. 4, the mid-
chord points of the rotor blades are located at the points
(0,sh), where s is any integer. The normal velocity that
would exlist 1f the blades were not present 1s found by
substituting x = z¢c + s) into Eq. (51), where ¢ = (cosy,siny)
is a unit vector directed along the blade chords, and
h = (0,h) 1s the vector separation between any two neigh-
boring blades. The coordinate z 1s equal to -b at the
blade leading edges and +b at the tralling edges. Thus

the vilocity that would exist if the blades were not pre-
sent 1s

» 'A\ 2
w(r,zc+sh,t) = exp(iskeh) fjIﬁlr,g,w)exp[i(k-cz-mt)] d kz %% .

oo (2m)

(52)

Because the blades are 1lmpermeable, they induce an
additional velocity which negates the normal inflow velocity
at the blades themselves. This induced veloclty field has

26
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associated with 1t a pressure distribution which 1s con-
tinuous except on the blades where a discontinuity, say
Apg(r,z,t), exists. The problem ¢f calculating the chord-
wise pressure discontinuity (or pressure loading) on a
cascade of blades exposed to the normal inflow veloclty

w(r,k,w) exp[ik«(cz+sh)-1lut]

can be reduced to the solution of an integral equation
of the following form:

2 +b - d
P, U, w(r,k,0)exp[ik-(¢z+sh)] = J K,(z=y) 8p {r,y) 1¥ .
-b (53)

The kernel function K, 1s derived in Appendix B.
For our purpcses, 1t is convenilent to normalize Eq. (53)

by dividing both sides by pourﬁ(r,g,w)exp(isk-g):

o A5 (r,y) exp(-isk-h)) 4
-b OoUr.W(r,lf,m)

By assumption (see Appendix B) the quantity in braces is
independent of s; we dencte it by f (r,z,k,w). The solution
of Eq. (54) for f(r,z,k,w) 1s obtained numerically. The
chordwise pressure distribution is then

- A
Aps(r,z,g,w) = p,U, w(r,k,w)f(r,z,k,0)exp(iskeh) . (55)

Because the problem 1s assumed to be linear, the pressure
loading due to an arbitrary normal inflow velocity [as

in Eq. (51)] can be obtained by multiplying Eq. (55) by
exp(~iwt) and integrating over w, ki, and k..

Thus,
2 2
bpg(r,z,t) = poUrJ[I W(r,k,0)f(r,z,k,0)exp(~tat+isk.n) 0 4 K
" P
(56)
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Given the complex wavenumber-frequency spectrum w(r,k, w),
Eq. (56) allows us to calculate the pressure loading on each
blade as a function of position (r,z) and time t. Where the
Fourier transform (in time) of Aps is required, it 1is given by

- 2 2
bp(r,z,0) = p U, ff w(r,k,e)f(r,z,k,e0) exp(isk+h) (: fz .
m

€57)

Eor future reference, it is worthwhile to note here that

ﬁ(r,g,m) is the triple Fourler transform of the inflow to
the rotor or stator, calculated in a coordinate system
fixed to the rotor or stator, as the case may be. That is,

3(P,E,M) 3 fff wir,x,t)exp(lut-ik+x)d?xdt (58)

Because the inflow 1s necessarily periodic in X,
w(r,x,t) can also be written as a Fourier series:

nx.
w(r,x,t) = 2 wn(r,xl,t)exp[i(—;i)] s (59)
n
where
p ot nx,
wn(r,xl,t) T 5o } w(r,x,t)exp|-1 - dx, . (60)
-1y

If Eq. (59) is substituted into Eq. (58), we obtain
2 A .
W(r,k,w) = 2m ril W (r,ky,0) 8(k, - D)

and, in turn,

29
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AES(T,Z,N) = poUn Zexp(isnh/r)J Wn(r,kl,m)
n

dk
! (61)

f[r,z,kl,(n/r),wi 5

This expresslon for the pressure on blade s is convenient
for calculating the duct modes excited by the rotor mean
velocity deficit wakes, because 1t displays clearly the

perlodic nature of the rotor wake.

]
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MEAN ROTOR WAKE
5.1 Rotor/Wake Model

In this section, we derive an expression for the
complex amplitudes of the duct modes excited by the inter-
action of the rotor blade wakes with the stator vaues.

We are concerned here only with the mean value (time
averagej of the rotor wakes, which, belng periodic,
generate sound at harmonics of the blade passage rate, 0B.
Broadband nolse generated by the turbulence contained
within the rotor blade wakes is dealt with in Chapter 6.

Consider an imagi .ary cylinder of radius r, centered
on the duct axis of symmetry. The intersection of this
surface with the rotor and stator is depicted in Fig. 5.
In this figure, two sets of coordinate axes are shown;
axes (X1,X) are fixed in the rotor, while axes (xi1,X:)
are fixed in the stator. The relation between them 1=

X =x +D + arte, , (62)

where e,1s a unlt vector in the azimuthal direction and
D= Q(rs is the vector distance from a rotor blade to a
stator vane, both selected arbitrarily. D 1s defined
only to within an additive vector r¢e,, where ¢ repre-
sents an arbitrary angle of rotation of the rotor.

So as to arrive at a reasonably simple model cof the
rotor wake, which will be valid in the vicinity of the
stator vanes, 1t 1s convenient to iIntroduce two plausible
assumptions. They are

1. no radial flow occurs, and

2. pressure gradients and turbulent or viscous diffu-
sion can be neglected over the chord of the stator.

The fluid velocity then has only two components,
(0,Wy,W,) in (r,X,,X,) coordinates, and the equations of
motion of the fluid reduce to

(W-9)W = 0 (63)

Ve (pW) =0 . (64)

31

[



RPN

Figure §.

O!\IG;;‘ML P".".“‘.-'. -...:
OF POOR QUAL!TY

ROTOR STATOR

Rotor/Stator Geometry for Mean Wake Analysis
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A parallel flow of the form

W= WXndw |, (65)

-~ -~ o

where w and n are constant orthogonal unit vectors (see
Fig. 5) is a solution to these equations, and is the form
we will assume for the wake. The velocity 1is everywhere
parallel to the unit vector w = (cosy,sinyx), and is con-
stant in magnitude on the lines Xen = constant. The
variation of the magnitude across the waxkes is determined
by the as-yet-unspecified function W(X-n).

W(X-g) is periodic, because all the wakes are assumed
to be 1identical, the period being the normal distance
between wake centerlines, hcosy. W(X¢n) can therefore
be written as a Fourier series, i.e.,

W(g.g) =Y Wq exp(;%%gi X*n ) s (66)
q

where we have substituted 27r/B for h, the gap between
rotor blades, measured azimuthally. The unit vector n
has components (-siny,cosy), so the Fourier series may
also be cast in the following form,

q

which indicates that the rotor wake velocity is periodic
in the azimuthal airection also (as opposed to the direc-
tion normal to the wakes). The azimuthal period is, of
course, 2mr/B.

In principle, the Fourier coefficients Wq of the
wake flow could be determined experimentally By process-
ing ~ sufficient number of flow measurements collected
from a transduczer mounted behind the rotor, and if only
the first few harmonics ¢f the blade passage frequency
are of interest (it will transpire that the qth harmonic
in the wake flow interacts with the stator to gene-
rate sound in the qth harmonic of the blade passage

33
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frequency ), this {s a treasible proposirion. However,
by assuming an explicit (and plausible) form for the
wake velovity proflle, 4t 1s posslble to characterize
the wake veloctly profiile by only two independent at-
tributes of the flow, as, 'or example, the mean wake
veloclty and the root-mean-square deviation from the
mean velocity, or the mean velocity and the velocity
deficit on the centerlines of the wakes., To do this,
we express the wake veloclty da2ficit as a series of
"haystack" functions, all of the same form but dis-
placed from one anothear by the gap between the rotor
blades, h - /B, That is, momentarily setting X, = 0,
we witite

w(X,) = A[l - e] f(X -2mrem/B)V] (68)
m

where the constants A and ¢ are yet to be evaluated, and
the tunction r(X,) is a function such as

TN, = oexp ROY; $)TInll (59)

o oany similar function which has the value 1 when

N, = 0, and whtch decreases monotonically to O as

Ny = v In Eq. (o9), § 1s the halfevelocity width of
t

he Mlean wiake, that 1is
L]

ry8) = 1 2, (TO)

If Eq. (©38) above is written as a8 Fourier seriles,
we find that the Fourler coefi’iclients are proportional
to the Fourler transform of f£(X,), l.e.,

SAR °
wq-—e}%r(%g) L ado . (71)

The zeroth-order Fourier coefficient need not be cal-
culated because, as with any Fourler series, it is equal
to the mean value of the wake velocity, W. The constant
¢A can be evaluated either of two ways; one is to

compute the root-mean-square value of the deviation of the
wake velocity from its mean value,

s
=
]
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{z%? £2m~/B [W(Xz)'ﬁjzdx}% .%qzo lwq“;%

l/;
= %ﬁé‘ ) |f(3_)| I

" laro i

Denote by S2 the sum

- 2y1/2
£ (48 (71)
{q§o| r | }

and by (AW)pms the square root of the average of the square

of the deviation of the wake velocity from its mean value.
Then, the Fouriler-coefficients of the wake velocity have
the following values:

W, = W

(72)
(aw) ~
- - rms B
W —5, = (F) g0

and the velocity In the wake at any point (X,,X,) is

WK =
(Aw>rms ~rQB .1 B
V- "‘“g:”* qZO £33 exp[—%— (X,=X,tanx)| . (73)

An alternative scheme 1is to define €A in terms of the mean
velocity W and the velocity at the wake centerlines, say
We. Then, we find

W(X) =

(W,-W)
W+ ——s——— qZO f(g-‘ exp[ (x X tanx)] (74)

L3}
w
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s = £(3By | (75)
: q;o =

For the Gaussian profile of Eq. (69), whose Fouriler trans-
form is

f(a) = 6 /77TAZ exp[-(as) /b 1n2] (76)

the sums S1 and S2 are defined as follows:

@ 2
S, = 28/n/In 2 § exp[-(mB&/r" /4 1n2)] (77)
m=1
2‘" e 2 1/2
S, =&75% ) exp[-(mB&/r) /2 1n2]} : (78)
m=1

5.2 Duct Modes Generated by Mean Wake/Stator Interaction

To calculate the duct modes excited by the inter-
action of the stator vanes with the mean rotor wake, we
have first to calculate the loading on the stator vanes

themselves. To do this, calculate the wake velocity
relative to the stator vanes,

Up =W - Qre, , (79)

~

find the component of this velocity that is normal to
the vanes,

-~ ~

we=U-N , (80)

and substitute into this expression the coordinate trans-
formation given in Eq. (62). To calculate the normal

velocity on any specific vane, say vane s, substitute for
X,

36
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X = z¢ + sH

s (81)

where again z 1s a chordwise variable, equal to -b at the
vane leading edges, and +b at the tralling edges. The

result of these several steps is o
w=1)w_explik z + 2msgB _ igRat]), (82)
q ¢ q \
where
= a . 1gB -
Wq Wq sin(6+x) exp[ - (D, Dltanx)] (83)
and
kq = %ﬁ (sin6+cos8tany) . (84)

In these equations, D and Up are both functions of the
radius r.

The vane pressure loading generated by this normal
inflow veloclty is obtained numerically by solving an
integral equation just as discussed in Chap. 4. Speci-
fically, let fq(r,z) be the solution of the following
equation:

+b 4
exp(iqu) = I Kc(z—y) fq(r,z)1¥ s (85)

-b

where K, is the cascade kernel function derived in
Appendix B. The parameters needed to calculate K, for
this situation are listed below:

Frequency: w = qBQ
Chordwise wavenumber: k_ = %§ (sind+tanycos#)

q
Inter-blade phase angle: o = 2mqB/V (See Appendix B)

-
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Inter-blade gap: h = 2mr/V
Stagger angle: -6

Given the elemental stator vane loading function
fq(r,z), the pressure loading on stator vane s 1s

4pg = p,U, g fq(r,z) exp(i2nsqB/V) . (86)

This is the gqth harmonic of the pressure on vane s. To
calculate the (m,n)th duct mode generated by this vane
pressure, multiply both sides of Eq. (86) by exp(-iqBft),
calculate the Fourier transform, substitute this into

Eq. (50), and invert back into the time domain. The

sum over vane number in Eq. (50) can be evaluated

explicitly:
V-1
20 exp{i%EE (m+qB)}
s-

=V ifm + gqB = pV
= 0 otherwise,
where p 1s any integer. The final result is
poUrV [rD
pmnq " IR

m,n,q ;,

¥ (

n Km,nr) wq(r)

sind) exp(iy 5, +25,) 87)

m
= +
(r cosf+y n,m,q°1 %%

n,m,q

+b
. I fq(r,z) expli(y

-b

m
n,m,q°°se'F sing)z] dzdr |,

where
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H
- o19B& 2_ 2.2
kn,m,q - ‘/co Ber,n (88)
- 1 (vana :
Ya,m,q = 02 ( 2, t kn’m’q) . (89) ,
r i

The quantity pq is the complex amplitude of the
(m,n)th mode at ' End qth harmonic of the blade passage i
frequency. As 1s evident from Eq. (87) above, Pm,n,q is
proportional to LD the qth-order Fouriler coefficient of
the mean rotor wake. In its present form, the computer
code computes these coefficients from Eq. (74), which
assumes a Gaussian profile for the individual rotor H
wakes, and which relates each harmonic in the Fourier :
serles to the mean wake velocity and the velocity at the

centerlines of the wakes. As mentioned previously, how-

ever, the code can easily be modified to accept the Fourier
coefficients of the wake velocity as inputs, and compute

the duct modes directly from them.

P P S .

5.3 Sound Power

The flux of sound power in the duct 1s found by substi-
tuting Eq. (87) into Eq. (28). The result is given below:

Power =

T(pri-p2)
_o G._(gBQ)|P

D N X lz
png mn

DOU

where G(gBR) is the quantity in braces in Eq. (29), but with
the integer s replaced by q. .n the equation above, the
index m 1s related to the summation indices p and q through
the equation m=pV-qB. Finally, if the sound power flux at
one specific harmonic of the blade passage frequency is
desired, the summation over q is deleted, and q is set equal
to the desired harmonic number.

U SURNUUURIeI. - S
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INLET TURBULENCE
6.1 Inlet Turbulence Velocity Correlation Function

Figure 6 shows a cytindrical slice of the rotor which
has been opened out to form a linear cascade. Axes (X,,X,)
are fixed in the duct, while axes (X;,X,) move with the
rotor blades. The equation relating the two sets of axes
is

X = x + Qrte, . (90)

The nominal inflow velocity 1s assumed to be purely axial,
so it can be written as U = Ue;, where e1 1is a unit vector
along the x; and X, axes.

Let w be the component of the inflow turbulence which
is normal to the rotor blades. We assume that this tur-
bulence is convected with the mean flow J, i.e., a sample
velocity field expressed in duct-fixed coordinates wouuid
be

w(r,x-Ut)

Many such samples are recorded and averaged to form the
inflow velocity correlation function:

<w(r,,x-Ut) w(r, ,y-Ut)> = eBUzéD(rl,rz,§-§t,¥-gr).
(91)

If we assume that the inflow turbulence 1s homogeneous at
any radius r, and stationary in time, then ¢p does not
depend on x-Ut -~nd y-Ut separately, but only on their

difference x-y- J(t-1); we can write o, as follows:

¢y = ¢p(x-y-U(t-1),r,Ar) , (92)
where
r=l(r+r)
2'71 T2

Ar = r =T, . (93)

Lo
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Figure 6. Rotor with Fixed and Moving Coordinate Systems
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The mean-square turbulence intensity is obtained by setting
x=yand t = t. If ¢p is normalized so that ¢p(Q,r,0) =1,
then ep 1s the root mean-square turbulence intensity ex-
pressed as a fraction of the nominal flow velocity 1n the
duct:

ep = fﬁ%ii_ . ) (94)

6.2 Wavenumber-Frequency Spectrum in Rotor-Fixed Coordinates

In order to calculate the power spectral density of the
sound generated by the interaction of inlet turbulence with
the moving rotor blades, we must calculate the expected
value of the inflow wavenumber-frequency spectrum in rotor-
fixed coordinates:

A R
<w(r, ,k,w) W*(rz,§,v)>

IIJIIj <w(r,,x-Ut) wir,,y-Ur)>

exp (iwt-ivr-1kX+iK-Y) d2X 4%y dtdt . {95)

~ o~

The expected value of the inlet turbulence 1s given in
Eq. (91). If we substitute this expression into the equation

given above and introduce new integration variables x and y,
where -

154
[[]

X + Qrte2

T=y+arme, (96°

then we obtain the following integral:

42
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<W(r1,g,w) W(rz,g,v)> =

o [[[]] s

exp{i(w-Qrk,) t - 1(v-QrK,)

>]

- 1kex + 15-2} d%x 4%y drdt . (97)

Now substitute £ = ¥ -~ y - U(t-1) for x, and integrate with
respect to t, 1; ana y, recalling the following integral
expression for the delta function:

J exp(iax) dx = 27 §(a) . (98)

The result is,

A A
<w(r_ ,k,uw) wir,,K,v)> =

(2n)“56U2 § (w-0rk,-U-k)
+ §(v-0rK,-U-k) 8(K-k) 0p(k,r,ar) , (99)

where SD(K,r,Ar) is the double Fourier transform of the tur-
bulence velocity correlation function:

exp (~1k-y) d?y . (100)
Because the inlet duct 1s annular, the turbulence

velocity correlation function is a periodic function, the

period being 2nre.. QD can be written as a Fourier Series,
i.e.’

QD(§,r,Ar) =z om(x;,r,Ar) exp (imxa/r) (101)

whe. 2 1p
@m(xl,r,Ar) H ir I OD(§,r,Ar) (102)

N 3

+ exp(=imx,/r)dx,

43
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Now let the nonperiodic function ¢(x,r,Ar) be defined as
follows: -

¢(x,r,4r) = ¢D(§,r,Ar) if X, |<wr, (103)

= (0 otherwise

Then the Fourier coefficients of &, (Eq. (102)] can be written
as the Fourier transform of ¢:

¢m(x1,r,Ar) = E%;@(xl,m/r,r,Ar) (104)
where,
¢(x1,m/r,r,Ar) = [ ¢(x,r,0r) exp(-imx./r) dx:. (105)

The cdouble Fourier transform of QD is then

© »
[
»

plk,r, v) = 3 g ¢(k,,s/r,r,Ar) §(k,-s/r) (106)

Equation (99), the expected value of the complex
wavenumber-frequency spectrum, contains five delta functions.
[Note that 6§(k-K) 1s a short-hand notation for the product
of two delta functions: &(k,-K,) &8(kz-Kz2).] The five

delta functions in Eq. (99 ) can be rewritten in the fol-
lowing exactly equivalent form:

G(N-SQ-E'Q) §(v=w) -
+ §(k-K) 8(ka-s/r)

The final expression for the complex wavenumber-frequency
spectrum 1is as follows:

A ~

<w(r, ,k,w) w(r, ,K,v)> =
2772 4
eDU (2m)

= §(v=-w)

5(k-K) § 8(k,-s/r) $(k,,s/r,r,br) {u-s2-Usk)  (107)
S

6.3 Inflow Velocity Spectral Density in Fixed And Rotating
Reference Frames*

Equation (107), which has been cast in the form most
convenient for calculating the power spectrum of the sound

$This section is adapted from Ref. 1, pages 37-47.
4u
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radiated by the rotating rotor blades, does not itself have
an obvious physical interpretation. It is worthwhlle,

therefore, to calculate the spectral density of the inflow
turbulence as "seen" by both flxed and rotating sensors. S
Comparing the two spectra provides some insight into the .

effects of rotation.

The mean-square velocity of the 1inlet turbulence can

be calculated by setting ri = r, = r in Eq. (107), multi-
plying it by (27)7° exp[i(v-w)t+1(k-X)+x] and integrating

over all values of v, k, and K:

<wi(x,t)> =

~

) IJJJJ <ﬁ(r’]f’w) W*(I':If,\))> . (108)
2 2
expli(v-w)t+i(k-K)x] d‘K d%k dv
- (2m)$
The result 1is,

<W2> = .A
edu Alu - ma m iy
—I'—r%[¢(—U .-’;’O’O)ﬁ . (109)

The velocity spectral density (per Hertz) is the integrand:

e2U 2
D w-mg m
Splw) = —& I§1q>(——ﬁ--- s 3o 0,0) . (Q10)
IZ we set Q@ = 0, we obtain the corresponding velocity !
spectral density in nonrotating coordinates: -~
€U 2 :
D w m
Splu) = — % o(ﬁ T o,o) : (111)

At this point, it 1s necessary to introduce the integral
scales of the turbulence. One such scale exists for each

L5
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a) Fixed coordinates

b) Moving Coordinates

Velocity Spectrum in Fixed and Rotating Coordinates
(Adapted from Figs. 12 and 13 of Ref. 1)
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of the three coordinate axes, but we need now consider
only thc axial and circumferential scales. They are de-
fined as follows:

"
-

I ¢(x,,0,0,0) dx,

"
|

I ¢(0,x2,0,0) dx, 2

The velocity correlation function ¢(x,r,0) 1s plotted
as a function of the axial coordinate xi1 in ‘he upper curve
of Fig. 7 . A plot of o¢(y,r,0) vs x, would be qualitatively
similar. Note that ¢ becomes very small when x, exceeds the
axial integral scale L,. The Fourler transform of ¢ is
plotted in the lower part of Fig. 7 , where we see that the
transform of the correlation fuaction is small when k,
exceeds QWfL\. Similar behavior is demonstrated by the
correlation function and its transform when plotted vs x,
and k,. 1In Eq. (111), the terms ‘

Q
\b(ﬁ’. s r.O)

are small when either w/U > 27/Ly or m/r > 2n/L.,. Con-
sidered as a function o1 w, each term in the sum is
similar in form, but of course becomes smaller as m/r
increases. The result is a spectrum similar to the one
shown in Fig. 3 . The spectrum decays monotonically as

w increases. The bandwidth of the spectrum is roughly

wp = 21mU/Li. When this is expressed as a fraction of the
rotation rate, we obtain the following:

b, 2w/g
R AL

The numerator 1s the peried of rotation, whereas the de-
nominator is roughly the time required for one coherent
eddy to flow past the rotor. Thus, the bandwidth exceeds
the rotation rate only if the axial length is small
enough that the eddy passage time is less than the period
of rotatioen.

On the other hand, each term in the expression for
the velocity spectrum in rotating coordinates [Eq. (110))

=
(s A
-
.
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peaks at a different multiple of the rotation rate. More-
over, the mth term, considered as a function of frequency,
is small whenever w 1s outside an interval of width

4nU/L. centered on mQ. But the frequency interval between
peaks 1is @, so the peaks are distinct whenever HwU/L1< Q°
or

21/ <2

L/0 <7
Thus the spectrum seen in rotor-fixed coordinates consists
of distinct peaks at multiples of the rotation frequency
whenever the eddy passage time considerably exceeds the
period of rotation. Equivalently, the spectrum in rotor-
fixed coordinates 1s peaked whenever the bandwldth of the

spectrum in nonrotating coordinates is appreclably 1less
than the rotation rate.

The heights of the successive peaks diminish as the
rotation order m increases, and cease to be appreciable
when m/r > 2n/%L2, or m > 2nr/La. Many peaks occur only
if the azimuthal integral scale 1s considerably shorter
than the rotor circumference, 2nr. The requirement for
many distinct peaks 1s thus that the axial integral scale
be long and the azimuthal integral scale be short. These
conditions are met when atmospheric turbulence is drawn
into the inlet of a turbofan operating at low or zero
forward speed, as has been pointed out by Hanson (Ref.
10) and others. The peaked spectrum which results is
shown in Fig.8 ; when the axial integral scale is
short, a broad-band spectrum without sharp peaks is
found.

6.4 Spectral Density of Duct Modes Excited by Inlet
Turbulence/Rotor Interaction

In this sectlon, we will derive an equation for the
power spectrum of the sound generated by the rotor blades
as they rotate through turbulence in the inlet duct. The
starting point is Eq. (49), which gives the Fourier trans-
form of the complex amplitude of the (m,n)th duct acoustic
mode generated by a given pressure distribution on the
rotor blades. From this equation, we can write out an
equation for the expected value of the (m,n)th mode {in
the frequency domain):

49
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By (0) BE (V) > = . -

2
ur ko m(v) kn,m(w)

’

r rD - p+b!
. JD R(r',w) f R(r",v) I expliu(r',w)z']

+b" B=-1
. I exp[~iu(r",w)z"] { 320 exp(i2mmj/B) -

~p"
B-1
220 exp(-12mg/B)<apy (r",2",u-m) -
Aﬁi(r“,z",v-mﬂ) >}»dz" dz' ar" ar' , (112)
where
R(r,w) = wm(ﬁnﬂgﬁ [(m/r)cosx-yn’m(m)sinxf (113)
u(r,w) = yn’m(w) cosx+(m/r)sinxy . (118)

The expected value of the blade loading can be obtalned
from Eq. (55):

<AEJ(r',z',w-mQ) Aﬁz(r",z",v-m9)> =
(DoUr)2 JI £f(r',z',k,0-mQ) exp(ijk+h)
II f*(r",2",K,v-mQ) exp(-12K+h) -

£ A 2 2
<w (r',k,u-m3) w*(r",K,v-mQ)> d’k 4% (115)

(2m)2 (2m)?
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The quantity in braces in Eq. (112) can be written out
as follows:

(Eq. (112)} =
(polJr)2 IIII f(r',z',%,w-mQ) -

£f¥(r",2",K,v-m) - f

B-1
} exp[1j(2mm/B+k+h)]

B-1
- 1 explig(2m/B+K+h)] -

A R 2 2
< w(r',k,u-m) w*(r",g,v-mﬂ) > 4k _d'K (116)

(2m)2 (2m)?

The wavenumber-frequency spectrum [Egq. (106)] contains the
factor 6(K-k) &§(k,-s/r), so in the expression above, we can
set X =k “and k, : s/r. By noting that h = (2mr/B)g,, the
summations over the indices J and g can be carried out
explicitly:

B-1
} expli2n(m+s)j/Bl = B if m+s = pB; -
J=0 = 0 otherwise

where p 1s any integer. A similar result holds for the
sun: over L. Thus, we can set s = pB - m in Eq. (106) and
change the sum over all integers s to a sum over all
integers p. If we now integrate over k and K, we obtain
the following result:

{Eq. (115)} =

e2U(p,U_)2B2
D ~L o 5(v-u)

Yy f(r',2! ,kp,w-mQ) f#(r",z",k

,V-m@) ¢(k_) (117)
p P

~P
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where kp is defined as follows:

.. | w-pBQ B-
Ep = ( % ’ R m) . (118)

r

It would appear from Egq. (117) that the elemental load-
ing functions f(r,z,+++) and f¥(r",z",...) must be computed
ailew for each value of the integer p. But, if we assume
that the rotor is lightly loaded, so that the flow relative
to the rotor blades is roughly aligned with the blade chords,
then this 1s not the case. In the integral equation from
which the elemental loading function f(r,z,--«+) is computed
[see Eq. (54)], the wavenumber appears in two roles. First,
the chordwise component of kp appears in the expression for
the chordwlse distribution og the inflow velocity normal to
the chord, which is the inhomogeneous or forcing term in
the integral equation. The nominal inflow velocity relative
to the blades 1s Up = U +Qre,. If we assume that the blade
1s 1lightly loaded; then Uy, Will be roughly parallel to the
blade chord, so that the chordwise component of gp is

gr . Ep/UP = (m—mQ)/Ur >

which 1s independent of p. The wavenumber k, also appears
in the kernel function itself (see Appendix!f) as the
inter-blade phase angle o, defined as follows:

gk +h

2n(p-m/B) .

But the kernel function is a periodic function of the
inter-blade phase angle, and the period is 2m. Thus, the
term 2mp can be deleted from ¢ without af :cting the
kernel function. It is apparent, then, that the elemental
loading function f(r,z,...) does not depend on the integer
P, SO we can rewrite Eq. (117) as follows:

edU(p,U,)*B2
{Eq. (115)} = D ; L §(v-w) -

. f(r',z',go,m-mn) f*(r",z",go,\»mﬂ)

) (ky,r,0r) (119)
where ko 1s obtained by setting p = 0 in Eq. (118),
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The expected value of the (m.n)th duct mode may now
be written as

_ efU(p,U)2B? &(v-w)
(w) p¥ (v)> = .

21,2
Lbr kn,m(w)

“Pmn

D Ty +b!
R(r',w) I R(r",w) J expliu(r',w)z']
r
H ry ~b!
+b "n
. exp(-ipu(r",w)z"] f(r',z'k,,w-mQ) -
~b"

(o=}

2
r
. f(r",z",go,v-mﬁ) dz" dz'- (ﬁ—) .

3

ES
3 ¢(5p,r,Ar) dr" dr' . w20 )
P

At this point, it 1s necessary to express the auto-
correlation function ¢(x,r,Ar) as the product of three
functions, each one cf which depends only upon a single
variable., That 1s,#

X X
¢(x,r,ar) = ¢1(tf) ¢2(53) ¢r(%3) : (121)

2 r

The three integral scales Li, Lz, and L_ may be functions
of the radius r. Procedures by which the functions $1,
¢2, ¢ and the length tccales L,, L,, and Lr may be chosen
to fit turbulence data collected from transducers placed
in the inlet duct are described in Ref. (1). The Fourier
transform of ¢ 1s then

#(k,v,87) = L,L,¢, (k,Ly) ¢,(k,L.) ¢r(%£) , (122)
r

*The representation given by Eq.
ful only where L, << 2mr,
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SO

$(ky,r,00) = L,L,6, |—Fp—|-

.

~ | (pB-m)L Ar
¢2{——7;—-3l ¢rkﬁ-) : (123)

r
And the expected value of the (m,n)th mode is

_ _ p2U%B? §(v-w)
* = .
Ppn (@) Py (V)2 4T 2K 2
© n,m

rp Ty +b!
I R(r',w) [ R¥(r",uw) [ f(r',z',k,,w-mQ)
Ty ry b! -

+°"
oxpliu(r',w)z'] 4z I f(r",z",go,v-mﬂ)
_b "

g2 [U_\?
exp{-iu(r",w)z"] dz" - ;2 ﬁ£ LL, -

~ (w-pBQ)L ~ (pB—m)L
. ¢r(%£) g ¢1[———v—£] ¢2[————£'—-—2-] dr" dr' . (12“)

r

This rather cumbersome equation can be simplified 1f we
assume that the radial integral scale, Lp, is very much
shorter than the radius of the duct, rp. If this 1is the
case, both r' and r" may be replaced by r = i(r'+r"),
everywhere but in the argument of ¢r. The integration
variables can be changed from r' and r" to r and Ar =y,
and the integration over y can be approximated as

+o
f ¢,(y/Ly)dr = L, . (125)

O

w,,
v el
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When this 1is done, we obtain the following result:

p,U*B26(v-u)

* =
<pmn(w) pmn(v)> hrzkz
n,m

I‘D 212 2 Elz) U]."2
b2R2%(r,w) ICmn(r,w)l = \T L,L,L,

Y ——y

H .

A (U-pBQ)Ll A (pB-m)Lz
IZ) o, |—g—| ¢ & >

where the chordwise integral Cmn(r,w) is defined as

+b
Cmn(r,w) = f(r,z,go,w-mn) .

-b

expliu(r,w)zl %5

The mean-square value of the (m,n)th mode is given by

w2 = [[ Banle) B> -

exp[1(v-u)t] 2 §2

which 1is

p2U’B? rp
<p:m> = I _— I b2R%(r,w) -
BnPk; o
’ H

Ez
2 _D 2 .
ICmn(r,w)I 7 (U,/U)* L,L,Ly,

~ [(u-pB)L.] ~ | (PB-m)L
ol e
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The spectral density of the (m,n)th mode is the integrand
of the integration with respect to w/2m:

2113n2
poU B

r
I D p2gz(p,u) -
Ty

P (w) =
mn Bnrzkg m(w)
b}

; e 2
D
' ICp(rsw)]® &= (U,/0)® LI L, -

~ [(u-pB)L.] ~ [(pB-m)L
g ¢1[———U—"'1‘] ¢2|:-——r—£] dr . (130)

Recalling the discussion of Sec. 6.3, ¢1 is small unless
the following inequality 1is satisfied:

v e v n . o g 1 .

® . 2m/9B
o8 ~ P L 7o

Thus, if the axial integral scale L; is long enough so that
the eddy passage time, L,/U, is considerably loager than
the blade passage interval, 2w/QB, the modal spectrum will

. contain distinct peaks at multiples,of the blade passage

- rate. Now looking at the function ¢,, we see that the

i peaks exist only at those multiples of the blade passage
rate which satisfy the following inequality:

n

|pB-m| < £

, 2

[

Thus, i1f the azimuthal integral scale is small compared to
the me n circumference of the rotor, many peaks will
+ appear 1in the spectrum. On the other hand, if L., is large,
N few peaks appear, and a mode selection process occurs by
, which modes with a number of azimuthal nodes equal to
some multiple of the number of blades are most strongly
excited. Finally, if L, is small, a broadband spectrum
will result.

Recall that the spectral density of the inlet tur-
bulence sensed by a blade-mounted transducer tends to peak
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at multiples of the rotor rotation rate, whereas acoustic
mode excitatlon peaks at multiples of the blade passage 3
rate. On a multi-bladed rotor these peaks occur at much 3
higher frequencies. g

6.5 Sound Power Flux Generated by Inlet Turbulence/Rotor ;
Interaction ;

The sound power flux within the duct 13 obtained ;
from Eq. (34): P
2 2 i

G () P__(w) , 131
o 116, Py (131) ;

S(w) =

where Gpn(w) is the quantity in braces given in Eq. (35). If
we introduce Spn(w) as the sound puwer “lux per mode,

i.e., f
2 2
n(rD-rH)

Smn(u) = -——-E-OTJ——

G (w) P (w) , (132)

then the total sound power flux is obtained by summing over
m and n:

S(w) = s (w) . 1
w ;gmnw (133)

In the computer program, both S(w) and Spp(w) have been
divided by poclrp to make them dimensionless. Using
the dimersionless varlables defined in Appendix A, the
following expressions are obtalned:

S(w) . gw ® Smn(w)

(134)
p,ciry m=-® n=1 pyciry

where
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smn(w) B*M Mo B2(w/Q)
= M ~ 7 )
p c?pd 2 O )
0 0 D ﬂ(l-or)kn,m(-—-n + M kn,m

o 1 9
=< 2 m gy .
5 J Y (Km,nX) (x cosY vn,m sinx)
o

r
Mpx z
-ICmn(x,m/S'Z)l2 ef(x)N1 + |5 b?(x)

L.(x) L,(x) L,{x) -

ML (pB-m)L
~ o T 1] 2 2| dx

(135)
The chordwise integral Cp,(x,w/Q) is Jdefined as

follows:

e+l
C(x,w/Q) = f £(x,2/b,k,w)

-1
exp[iocE(?n mcosx#% siny)z/b] dz/v . (136)

3

The elemental loading function f(...), the chordwise inte-

gral Cpn(...), and the modal power flux Sp,/p

computed numerically. The procedures used arg
in Chapter 8.
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CHAPTER 7
ROTOR WAKE TURBULENCE

7.1 Rotor Wake Turbulence Model

Figure 9 shows a cylindrical slice of the rotor and

stator opzned out to form two linear cascades. Axes (Xx1,X2)

are fixed in the stator, while axes (X,,X:) move with the
rotor blades. The equation relating the two sets of axes
is

X=x+D+arte, , (137)

where D 1s a vector extending from the refererice blade on
the rotor toO the reference vane on the stator, The re-
ference blade and vane csn be chosen arbitrarily, and D 1s
defined only to withirn an arbitrary additive constant
vector parallel to the x; and X, axes. In *:g.9 the
centerlines of the rotor blades wakes are . »>wn as dashed
lines. These strike an angle x with the axis of rotation,
as seen by an observer moving with the rotor blades. The
unit vector g 1s normal to the wake centerlines, co the
components of n along the X1 and X, axes are (-siny, cosy).
Note that x and n have here different definitions than
they had in Chapter 4, where they were defined with regard
to the rotor blades themselves rather thar tha rotor blade
wakes. The two sets of definit.ons become ident.cal only
when the rotor is operating under ro load, so that the
wakes are lined up with the blade chords. Since the equa-
tions to be derived in this chapter are seli-contailned,

no ambiguity should arise.

The wakes are supposed to be convected with the
nominal flow downstream of the rotor. Reynolds, et
al. have conducted surveys of the turbulence within the
wakes, using transducers fixed with respect to the rotor
(Refs.13,14). These measurements indicate that the
turbulence intensity 1s maximum on the wake centerline,
and diminishes monotonically with distance on either side
of the wake centerline. The surveys were conducted
relatively close to the tlade tralling edges and show
marked asymmetry of the wake widths on either side of the
centerline. But at larger distances downstream, at
distances comparable to the blade chord, the wakes become
more symmetric.

Qur mathematical model of rotor wake turbulence may
be described as follows. Samples of the fluid velocity
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FIGURE 9. Rotor/Stator Geometry for Wake Turbulence
Analysis
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downstream of the rotor, as seen in a rotating frame of
reference, are &ssumed to have the following form:

w(r,X,t) = e WF(X-n) g(r,X-wt) . (138

In this equation, w(r,X,t) is the component of the fluc-
tuating velocity downstream of the rotor which i1s normal
to the stator vanes, while W is the magnitude of the mean
flow velocity, and gy 1s the rms turbulence intensity

on the wake centerline. The function g(r,X-Wt) is a
random function of the variables indicated, and F(X-n)
is a deterministic function chosen so as to model the
variation of the turbulence intensity with distance

from the wake centerlines. Note that Xen is constant on
planes parallel to the wake centerlines. To sustain

the definition of ey as the rms turbulence intensity,
F(¥-n) must be normalized so that F(0) = 1. Because

all the wakes are assumed to be identical, F(¥-.p) must
be a periodic function, the period being the distince
between wake centerllnes, measured normal to the center-
lines themselves.

It 1s convenlent to express F as an infinite series
of identical "haystack" functions, each representing
the variation of the turbulence intensity across one of
the wakes. The normal dlstance between wakes is
emr cosyx/B, so F(X-'n) can be written as follows:

(139)

.. [(Xen-mhcosy
F(Xen) = , f
~ - m

6cosy

where h = 2nr/B. The denominatce of the argument of

£f( ),8cosy, is the width of the wake turbulence intensity,
measureG normal to the wake centerlines. Thus, & itselfl
is the corresponding width measured azimuthally. One
example of a candidate "haystack” function, and in fact
the one currently being used in the computer program, 1is
the well-known Gaussian profile,

£(y/6) = expl-m(y/6)2] (140)

where y = Xen. As defined here, & 1is equivalent to an
integral scale, in the sense that
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I f(y/8) dy = 5 . (141)

Because F(X+p) 1is a periodic function, it can be
expressed as a Fourler series, which can be reduced to
the form shown here:

_B »[sBs 1sB .
F(X-n) 21r g I( r ) exP(rcosx Xe 9) ’ (142)

where f(a) 1s the Fourier transform of the "haystack"
function f£(x):

E(a) EY Jf(x) exp(-iax) dx . (143)

For example, if f(x) = exp(-mx?), then f(a) = exp(-a?/im).

The random function g(r,¥-Wt) is assumed to be a
stationary random function, with respect to the spatial
variable Y. Therefore, the correlation function ¢, is a
function only of X-Y, and not of X and Y separately.
Thus, &4 can be written as follows:

<wir ,X-Wt) wir,,¥-Wt)> = o [X-Y-W(t-1), Ar] , {144)

where r = i(r;+r;). Once again, the duct is annular,

go ¢y must be a periodic function, jfust as ¢p was in
Chapter 6. ¢, also can be written as an Fourier series,
Just as ¢p was. Thus, we have

ow(g,Ar) = & %y exp(dmXa/r) (145

The Fourier coefficients ¢ are proportional to the Fourier
transform of the nonperioch function ¢ (X,Ar), aefined as
follows, N

o(X,ar) = & (X,ar) 1t |Xa|<wr (146)
= 0 if [Xal2 r
That 1s,
0 = x==5(X,,n/r,ar) (147)
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so

¢,(X,ar) = == & 8(X1,m/r,Ar)exp(imX,/r) (148)
and the Fourier transform of ¢ is

w
A
. 1

‘bw(f’Ar) = —r—%s(z\‘,Al‘) G(Xz-m/r). (1“9)

7.2 Wavenumber-Frequency Spectrum in Stator-Fixed Coordinates

In order to calculate the power spectral density of
the sound generated by the interaction of rotor wake turbu-
lence with the stator vanes, we must calculate the expected
value of the wake wavenumber-frequency spectrum in a
nonrotating reference frame:

~

<%(r1,5,w) WE(r,,K,v)> =
]fjfff wir ,X-Wt) wir,,Y-Wr) (150)

exp(imt-ivr-ik-x+1§-Y) d?x d?y drdt .

The expected value of the wake turbulence, as discussed in
the previous section, is

wlry,X=We) wh(r,,Y-ut)> =
e;w’F(§~:) F*(Yen) -
+ 0 [X-Y-W(t-1), ar] . (151)

From here on, we will assume that the radial integral scale
of the wake turbulence is small enough so that we can set

ry = r; = r except in the last argument of &, above. To
reduce the integrals in Eq. (150), substitute Eqg.(151) in for
the integrand, and change the integration variables to X and
g, where -

X = x + p + artez

~

Y=y +D+arte, . (152)
Having done this, introduce a second change of variables,
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E=X-Y-Wt-1) |, (153)

where £ replaces X. The integration with respect to t and =
can now be carried out explicitly by recognizing the integral
W expression for the delta function [Eq. (98)]. The result at
; this point 1s

<w(r,,k,v) W(rz,g,v)> =
(2m)% 8(w-W-k+ark,) 8(v-W-k+ark,) -

S p——

exp(1(K-k)-¥Y~ik-£] d%¢ a%Y -
- exp[1(K-k)-D] . (154)

The remaining inte,_ations can be completed by substituting
for F and F* the Fourier series as given in Eq. (1l42). The
result, using Eq. (149) for the Fourier transform of ¢ , is
shown below:

>

A 2
<w(r,,k,w) w*(rz,K,v)> =

2npg) 2 xpli(K-k)-Dl
r r

5(w-g-g+nrk2) 6(v-g-g+an2)

7 (mBe) 74 2BS (m-2)B
L)) o e fmstie

A B
o(k r?osig’Ar) * g 6(&:'8;@§) . (155)
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Finally, it is worthwhile to Introduce Up, the mean or
nominal velocity relative to the stator,

gr =W - Qre, (156)

and to re-arrange the arguments of the five delta functions

into a form more convenient for subsequent calculations.
The final result is shown below:

~
A

<w(r oK, w) w(r K,v)> =

2
(ZHEWWBG)

3
N \
mBé LB6 1(m~-%) .
] (E8) (1) oo|Hastian]
A mB
. ¢(F- 7oosx 1 A% S{v~w=-(2-m)B]

(m-l)B :,+mB
6[5'§' rcosy ~] ) 6( ) . (157)

7.3 Wake Turbulence Velocity Spectral Density in
Rotating and Nonrotating Coordinates

ISR

L

In Sec. 6.3, the velocity spectral densities of inlet
turbulence in fixed and rotating reference frames were
derived from the inlet turbulence model adopted, in order
to discuss the effects of rotation on the spectra. 1In
this section, the veloclity spectral densities of rotor wake
turbulence also will be calculated in fixed and rotating
coordinates, for purposes of comparison.

The mean-square velocity of the wake turbulence can
be calculated by setting ry =r, = r in Eq. (157), multi-
plying it by (2m)S exp[i(v-w)t+i(k-K) *X], and integrating
over v, § and E
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<w2(r,x,t)> =

JJIJI <§(r’]§"°) %*(I"If’\)b .

exp[1(v-w)t+1 (k-K) +X] 4k dk dv (158)
(2m) 5

The result 1s

<w2(r,§,t)> =
(e, WBS)?

W I:(mlaa) tx (wa)
(2mr) %V, % % r

exp{M (x4D)*n + 1Q(2-m) Bt}
rcosy 7

2 mB dw
g J ¢(ks Teosx ° 0/ Y C ) (159)

where the wavenumber kg is defined by the following two
equations:

gr.lfs =
_ S+mB
e,'ks =% . (160)

Behind the rotor, the mean-square veloclty at a point fixed
in the duct fluctuates at multiples of the blade passage
vate, OB, The time-averaged mean-square velocity is
obtained by setting £ = m and deleting the summation over
2. If we delete the integration with respect to w, we
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obtain the time-averaged rotor wake velocity spectral
density. In the expression below, the components of ks
have been written out explicitly,

(E:WWBG)2
Se(w) = —4—r .
(2mr) Ulr
U
mBs\| 2 2 [ w+mBQ r2 s, s,r,0
o || 3 (e g2 o) 60

To simplify matters, assume that the .rotor is operating at
no load, so that the azimuthal velocity in the wake, as
seen by an observer fixed in the duct, is zero. Then the
first argument of ¢ depends only on the index m:

‘ 2
o - ok (32 &
1r r

mB&\ | % = w+mBQR , s, r,0
R TN A (162)

rl
The spectrym conslsts of the sum of several "haystack"
functions ¢1(w+mBR/Up;...) centered at integer multiples of
the blade passage rate. The width of these "haystacks"
is roughly 4w Un,/Li, where Ly is the axial integral scale
of the turbulence, and the frequency increment between them
is OB, so the peaks are distinct only if

4ry

L

2U
Lo ()5

The first factor on the right-hand side of this in-
equality 1s 2mr/B = h, the gap between the rotor blades,

rl

< OB

or
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and the second is twice the ratio of the axial velocity be-

hind the rotor to the rotational tip speed of the rotor.

This latter ratio i1s roughly one half, so the peaks are dis-

tinct only if the integral scale of the wake turbulence is
greater than the rotor blade gap. But the amplitude of
the mth "haystack" is proportional to |f(mBé/r)|2?, which
is small unless mB§/r < 27, or m < 2mr/B§ = h/§, where

h = 2mr/B is trF> blade gap. This means that the high-
order peaks are attenuated unless the width of the wakes,
8§, 1s much smaller than the blade gap. Therefore, if we
assume that the integral scales of the turbulence within
the wakes are comparable to the wake width, then the
velocity spectral density, in a nonrotating frame of
reference, will not contain pronounced peaks at multiples
of the blade passage rate. On the other hand, if the
wake width 1s considerably smaller than the rotor blade
gap, but the axial length scale 1s larger, then a "peaky"
spectrum willl result.

7.4 Spectral Density of Duct Modes Excited by
Rotor Wake/Stator Interaction

In this section, we will derive an equation for the
modal spectral denslty of the duct modes excited by the
interaction of the rotor blade wakes and the stator
vanes. The starting point 1s Eq. (50), which gives the
Fourier transform of the complex amplitude of the (m,n)th
duct mode generated by a given pressure distribution on
the stator vanes. Usling this equation, we can write out
an equation for the expected value (or ensemble average)
of the (m,n)th mode in the frequency domain:

= - 1
< (w) p* (v)> = .
Pmn 7 Pun t T2 o (wk (V)
- r +b!
I D R(r',w) [ D R(r",v) I expliu(r',w)z'] -
-b!

Ty Ty

\

+b" V-1
'f expl=iu(r",w)z"] - Y exp(i2mmj/V)
Zp" J=0

(Cont.)
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V-1 f
« 1 exp(i2ma/v) < SJ(r',z',w) . ’

2=0 ,
. Eg(r",z“,v) >3 dz" dz' dr" dr!' s (163)

where R(r,w) and u(r,w) are defined in Egs. (116,117).% ©The
expected value of the stator vane loading can be obtained
from Eq. (54),

<AEJ(r',z‘w) Aﬁz(r",z",v)> =

(DoUr)‘ jj f(r',z',g,w) exp(ijg-g)

. JI f*(r",z",§,v) exp(—12§-§) .

2 P 2 g2
, © <w(r',k,w) WE(r",K,v)> ek d’K (164)
o - N (2m)*

DEI Kt v e e

and the quantity in braces in Eq. (163) can be written
out as follows:

{Eq. (163)} =
CRUSL ffff f(r',z',k, ) £*(r",2",K, ) .

V-1
) exp( 11 (2mn/V+k H)]
J=0

V-1
) exp[iz(znm/v+§.§)3 .

=0
2 2 2 2
<w(r',k,w) wE(r" K,v) > dk d°K . (165)
- ) (2m)* .
¥But substitute — 8 for x. ¢
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The complex wavenumber-frequency spectrum was derived
in Sec. 5,23 it is rewritten below with dlfferent summati n
indices to avoid confusion later on.

>

A ~

<w(r',k,w) w¥(r",K,v)> =
2

(ZﬂEWWBS)

3 G(w-gr'¥) *

r

~fm,BEY ~f% BS i(m,-%,)
% E = f\—%") ®*P| ~Tcosx YD

1 1

2 m_B
1
¢(5 " Toosx B,Ar) SLv-u-R(2,-m, )B]

(m,-%,)B s+m_B 5
S|6-%- Toosy 2| L 5(kz~ K (166)

Equation (169 contains two summations over the number
of stator vanes, V. These can be summed explicitly if we
note that the wavenumber-frequency spectrum contains the
factor

§[k-K-(m,-2,) Bn/rcosx] 6(kz' S;mB) g

which means that we can set k; = (s+m:3)/r and K, = (s+2:B)/r
everywhere they appear. Also, the intervane gap on the :
stator is H = (2mre./V), so \

-~

k*H = 2ﬂ(s+m1B)/V

[ -

*H = 2n(s+£1B)/V

and
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V-1
Y explij(2mm/V+k-H)]
J=0 T
=Vifm+s+mB=p7V :
= 0 otherwise; and :
V-1
Y expli2(2mm/V+K<H)]
2=0 ~ o~
=Vifm+s+2B=gq\V

= 0 otherwise,

where p; and q, are arbitrary integers, positive, negative,
or zero., If we eliminate m and s from the equations

m+ s + mlB plv

m+ s + 2,B q,V s

we obtain the following relationship between m,, 21, and

(m -2 )B = (p-q )V .

This equation has integer solutlons for arbitary integers

m; and %; only if py - 41 = JB for some integer J. Then '
my - 23 = JV. If we set 23 =m; - JV, then s = q1V - m;B b
- JVB - m. The summations over £; ana s; can thus be ’
changed into summations over q; and J. When this is done,

the quantity in braces in Eq.(163) becomes

U WBVS)?
(Eq. (163)} Lolrfw¥BVE)"

(2mr)2r

~fm,B8§Y ~ | (m,~JV)BS
i) )
ERAE [ 7

1

(Cont. .,
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m,B (qIV-jBV—m)
(5 - n,Ar) $ kz -

© »

rcosy -~ r

x + BV —JBV-U_+k) a%K a2
5(1515+rcosx§ § (u-JBV-U_+k) a’K d%k

rcosy ~ -~

§(v=w=jBV) - exp(iigz— n-D) .

Those terms in this equation with j = 0 represent fluctua-
tions at frequencies JBVQ,. The time-averaged modal
spectral density 1is obtained by eliminating the summation
on J and setting J = 0. Because of the factor &§(K-k)
§(v-w), we can set K = k and v = w wherever they appear.
Integrating with respect to K and k, we obtailn

2
(poUrEWWBVG)

{Eq. (163)}= S(v-w) =
(2mr)%r
~fm B8\ 2
2 z f( r l ) f(r",z"k,w) .
m, q, N
$(nlt o1 A m,B

£r(r",2",k,0) 0|k - oooes n,o2) (167)
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where nov k 1s a specific vector whose components 1n the
axlal and circumferential directlons are

U q,V-m

r

k, = (qlv-m)/r . £168)

Equation (167).can be considerably simplified if we
accept two approximations. The first 1s that the radial
integral scale of the wake turbulence is much smaller
than the stator vane chord. If this is so, we can
replace r' and r" by their mean value r = ;(r'+r")
everywhere but 1n the last argument of the correlation
function ¢. The second approximation is that the stator
vanes are roughly aligned with the mean ve¢locity in the
wakes, so that the chordwise component of the wavenumber
can be approximated as

ke

(U, k) /U,

= w/Ur

This expression contains neither of the summation indices
m, or gq;. The inter-blade phase angle, which is the
product of the circumferential component of the wavenumber
and the 1inter-blade gap, does contoin q,, but only as an
integral multiple of 2w, But the kernel function K¢ is

a periodic funrntion of the inter-blade phase angle, and
the period 1s 27. The indicial chordwilse loading

function f(r,z,k,w) is therefore independent of m, and

qQ,, &nd so can be removed from the summations in éq.
(167). We then have

P oULEWBVS 2 5 (vew)
{Eq. (363)} = ( e rvrl

(Cont.)
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1 11
- expected value of the (m,n)th duct mode may now
by substituting Eq. (169) into

be written as shown below,
Eq. (163):

B () BE,(V)> =

(poewava\z 5 (v-w) .
2 ] uraed | (w)

r.. U2(r)W(r)
IrD I D __I'________ wé(Km nr) .
\Ur1(r)r3 ’

'y TH

—

m ) 2 ., 2 2
( cose+yn’ms;ne) b (r)lCmn(r)I
~(m,B 2 A m B

— —- e s— ' "
R s BT S
m, 9,

In this equatilon,
elemental loading function,

+b
Cmn(r) = I f(r,z,g,w) exp(iuz) dz/b
-b

and
Yy cosf - B sine .
n,m r
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Ir. Chap. 6, the correlati»n function of the inlet
turbulence was approximated as the product of three func-
tions, each of which depznded on only one variable. The
object of this procedure is to facilitate the use of
exprrimental data to select the appropriate correlation
function. We will adopt the same tactic here:

o(x,8r) = ¢,(x, /L)) ¢,(x,/L,) ¢,(8r/L,) (173)
so that

¢Ci,8r) = L Lo, (kL) ¢,(k, L) ¢,(8r/L,) (174a)
and

2 mlBg A A

¢ (k- ooy d0) = LL, 6, (A L)e, (A, L)¢ (8r/L)

(174p)

where

, = w+m_ BQ ) UI_2 (QIV—mlB-m)

1 Url Ur; r
_ q,V-m,B-m
Az P . (175)

By changing the intagration variables in Eq. (170) from r'
and r" to r = 3(r'+r") and Ar, and by approuximating the
integral over Ar bty the following infinite integral,

J ¢(br/L,) d(br) = L,

the double integration over the radius in Eq. (170) can be
reduced to a sirgle 1integral:

<Pp, (w) D2 (V)> =

{(C~nt,)
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~.{
(p‘i\evaa)z 6(\)-03) LLL
2 4rkz (@) ' T
>

W2 ( r) -

rp U;(r)W(r)
[P2——

K
U _(r)r? m,n
1r

Ty

¢ cosb+y, sin6)? b2 (r) |Cp (r)|?

=R

A m By 12 A
L lf( 1 )l ¢, (ML) ¢ (A L) dr

1 1

In this equation, the chordwise integral Cppn(r,w) is defined

just as it was in Chapter ©:

+b
Cmn(r,w) = J f(r,z,k,w) exp(iuz) dz/b ,
-b

where now

o=y

m
6 - =
.n’mcos T sin®

(176)

(177)

(178)

The mean-squared value of the (m,n)th mode can be

calculated by integrating ov. * w and v:
2 = 0 A* .
Pin> = | Ppnlw) BE, 0>

exp(i(v-w)t] %% g% .

The result 1s
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2
<p2 > =‘f (DOZWBV6\ LleLr

mn T 2
Ml‘kn’m(w)

r
peo(K
3 m' m,n
Url(r)r ?

cPn U2 ()W{x)
o B

Ty

m 2 2 2
[r cos® + yn,m(w)sinel b (r)lcmn(r,w)l
~f{m_B§
1
f()

and the modal spectral density c¢f the (m,n)th mode is the
integrand of the integration with respect to w/2w:

pqstVG 2 L,L,L,
P {w) = 5 ireye
T kn,m(m)

2

- N dw
¢1(11L1) ¢2(AZL2) dr * 5= , (180)

)

m, 9

/

ro U%(r)W(r)
D ™r 2
—————————— a— K r L3
J U (r)r3 wm( m,n )
I'H ri

m 2 2 ~ 2
‘r cos6 + Yn,m(w)Sine] b (r)lumn(r,w)l

A m186 '2 A ~
f‘( = )l ¢, (ML) ¢,(A,L,) ar . (181)

)
m, q

1 1

As discussed in the previous section, the mo<dal spectral
density will be broadband in nature unless the rotor blade
wake width is less than the rotor blade spacing, and the

axial integral scale of the wake turbulence 1s considerably
larger than the rotor blade gap.
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7.5 Sound Power Flux Generated by the Interaction Between

the Rotor Blade Wake Turbulerce and the
Stator Vanes

The sound power flux within the duct is obtained from
Eq. (34):

2

S(w) = G (w) P (w) , (182)
. 1T Gy (@) By

where Gp.(w) is the quantity in braces in Eq. (35). If
we introgube Smn(w) as the sound power flux per mode,
l.e.,

2.2
ﬂ(rD—rH)

Smn(w) = —TO'U—— Gmn(w) Pmn(w) ’ (183)

then the total sound power flux 1s obtained by summing
over m and n:

S(w) = S__(w) . (184
9~ 1] s >

In the computer program, both S(w) and Spn(w) have been
divided by pochrd to make them dimensionless. Using
the dimensionless variables defined in Appendix A , the
followling expressions are obtained:

S(w) . % Sy (185)
poczrﬁ m=-» n=1 pocgrs
where
4. 27 2
Smn(w) ) M (w/Q)(s BVS) 2 L . (136)
2.3 2 :
Po%sTD  BUn* (1-0,) K, (—g- )
(Cont.)
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(% cose+'fn ;;51n8)? D)
. ml ql

N A dx
¢1(A1L1) ¢2(7\2L2) ra .

The numerical methods used in compute this integral are
discussed in Chapter 8.
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COMPUTER PROGRAMS OF POOR QUALITY

Computer programs have been written which compute thne
sound power per mode and the totzl sound power flux up-
stream and downstream of a turbofan for the three noise
source mechanisms discussed in Chapters 5, 6, and 7. These

- computer programs are discussed in general terms in this

Chapter; FORTRAN listings and sample displays of the
input and ocutput data ‘are provided in Volume 2.

8.1 Rotor Mean Wake Velocity Deficit

The mean wake program computes the complex amplitude
of each propagating mode excited by the interactioca of the
stator vanes with the mean veloucity deficit wake of the
rotor. The sound power flux per mode 1s also computed,
and by summing over al. propagating modes, the total
sound power flux is obtained. Recall that a multivaned
stator excites only a subset of the propagating modes at
any given frequency; specifically, only modes whose nunuber
of diametral nodes m is related to the number of rotor
blades and stator vanes by the equation m = pV - gB,
where p and q are arbitrary integers. The program takes
this selection mechanism into account in choosing which
mode amplitudes to compute.

A dimensionless version of Eq. (87) is used to
compute the complex amplitude of each of the modes at the
first three harmonics of the blade passage rate. The
dimensioniess form of Eq. (87) 1s written out below:

2
Pm,n,q _ (/0% v .

poUz 2n(l-c;) k

n,m,q

1w _
[ Ug v (X x) (% cosd + ¥y

. mXmn sine) .

n,m,q

°r

— m-— ~
exp[i Y 8 -—62] b Cmnq(x)dx . (187)

Given the modal amplitudes ppng/eU?, the tota. sound power
is obtained from Eq. (28). In'dimer:ionless form, this is
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P 2
m,n,g

s (188)
p,U?

= % g Gmn(sBQ)

where Gpn(qBR) is the quantity in braces in Eq. (28) or

(29).

In Eq.
the elemental blade loading function fq(r,z) multiplied by

(187), Cmng(x) is the chordwise integral of

an exponential function:

Q
~N
>
~—
m

Nl
c e

+b oc
I fq(r,z) expli .

- m z | dz
(Yn,m,q cosd - X sin9> EJ '

Because fg5(r,z) has a square root singularity at the leading

edge (z=-b), it is necessary to change the integration
variable from z to ¢y, where z = b tosy. We then have

T
Cmnq(x) = I fz(v,z) siny -

exp[i

This integral is easy to compute numerically using Simpson's

0 [ ] .
~—=— ¥ cost - 3 sine)cosw dy (189)

n,m,q

rule, because the product fq(r,z)siny is finite at the
leading edge (y=0,. The spanwise integration requires
special treatment, however, because wq 1s the qth Fourier

coefficient of the component of the rotor mean wal!'e normal

to the stator chord,

_ igB -
W = wq sin(8+x) exp > (D2 D, tanx)

contalins a

phase angle which varies rapidly over the span

when the separation between rotoer and stator is large or
when the rotor wake angle x is a strong function of the

radius r.

To handle this rapidly varying phase, an
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adaptation of Filon's rule of integration has been used
in place of Simpson's rule for the spanwise integration
(see Appendix G).

8.2 Inlet Turbulence and Rotor Wake Turbulence

Rar.dom loads on the rotor or stator blades caused
by convected turbulence generate continuous noise spectra,
as opposed to the purely tonal noise generated by the
rotor mean velocity deficit wakes. To plot these con-
tinuous spectra accurately, it is necessary to compute
the modal power flux in the turbofan duct at many more
frequencies than are required for the mean wake tone
noise. To save computer time, therefore, it was decided
first .o compute and store the elemental blade loading
functions f(r,z,k,w) over a pr-~determined range of
frequency and wavenumber, and then to interpolate between
these values to compute the power spectral density at
intermediate values of the frequency. The advantage
gained by doing this arises from the fact that the elemental
loading functions can be computed and stored once and for
all for a given rotor/stator geometry. Once this has been
accomplished, parameter variations (frequency, turbulence
length scales, etc.) for the chosen rotor/stator geometry
can be conducted conveniently and economically. The
elemental loading functions have been found to be reason-
ably smoothly varying functions of the frequency (and
for convected turbulence frequency and wavenumber are
related), so acceptable accuracy (within 5%) can be
obtained by computing and storing the loading functions
at integer multiples of the rotor rotation rate Q. Care
must be taken, however, to assure that the array of
stored loading functions encompasses the required range of
frequency, especially for the inlet turbulence case,
because in that situation the frequency appears in the
combination w ~ mQ, where m, the number of diametral
nodes, can take on large positive and negative values.

The inlet turbulence and rotor wake turbulence pro-
grams print out the spectral density of the power flux
per mode for each propagating mode, and by summation, the
spectral density of the total sound power flux. Dimen-
sionless expressions ror the spectral density of the power
flux per mode are given in Eq. (135) (inlet turbulence)
and Eq. (186) (rotor wake tuvrbulence). Both equations
require numerical integration over the chord and span
of the blade (or vane). The integral over the chord is
basically the same as the integral required in the mean
wake program; the same change of integral variable is used

ORIGINAL FiGE 'y
OF POOR QUALITY
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to eliminate the singularity at the leading edge. Once

this change of variable has been effected, a straightforward
application of Simpson's rule is sufficient for both the
chordwise and spanwise integrations.

8.3 Integral Equation for the Blade Loading

As discussed in Chapter 3, the elemental blade loading
function f(+,y/b,...)* is the solution of an inte;ral
equation,

+b
exp(ik z) = f Ko(+s ZgL,eee) £(o,y/b,) ay/b ,
~-b

whose kernel function K¢(+,(z-y)(b,*++) is derived in
Appendix B. Given the elemental blade loading function,
the pressure on the blades is obtained by multiplying

A
£(+,y/b,+++) by poeUp w(r,k,w) and inverting the Fourier
transforms with respect to time and/or space as appropriate.

The integral equation contains two basic difficulties.
They are

a. the solution f(+,z2/b,+++) is singular as (z+b)-%
at the leading edge (z=-b), and

b. the kernel function K.(*,y/b,+*+) contains both
a Cauchy singularity %l/y) and a logarithm'~
singularity at y = 0.

Difficulty (a) is circumvented by introducing the
independent varlable transformations

z/b cos @

y/b = cos ¢

Equation (B.1l) then becomes

*Ir previous chapters, the elemental loadi
J ng function f
has been written as having dimensional arguments. Use éf )

dimensionless arguments in Ch
apter 8 is convenient and i
si.use no confusion. ne shouid
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™
exp(ikcb cosf) = I K,(+,cos8-cosy,+++) F(y) dy ,
' (190)

where F(y) = f(+,cosy,***)siny. Whereas f{+,cosp,*++) is
singular at ¢ = 7, F(¥) is not. Thus the integral equation
is solved for F(y) rather than for f(e--) itself.

To solve Eq. (19C), the method of collocation is used.
(Refs. 18, 19). That is, the integral on the right-hand
side of Eg. (130) is required to equal the forcing function
on the left-hand side at the N points.

8, = (m=1/2)m ; m = 1,°+*N , (191)

The equations to be solved are then
exp(ikcb cosf ) = I(ey) 5 m = 1,2,+N (192)
where

™
I(e) = J Kc(°,cose—cosw,--~)F(w) dy . (193)
0

In computing I(8), the left-hand side of Egq. (i93), the
points

¥y = nm/N , no=0,1,2,- N

2re used.* Having the collocation and integration pnints
evenly interlaced has the dual effects of aveciding the
point ¢y = 8, where Ky 1s singular, and of insuriang that the
solution obtained satisfies the Kutta condition, which
requires that f(+++) = 0 at the trailing edge.

*Because F(0) = -, use of N - 1 integration points as
called for in Eq. (193) introduces only N unknowns f(fn/n),
I‘l--l’..lN.
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The logarithmic portion of the kernel function must
be singled out for speclal treatment. Thus,

Kc(o’y/b,.o.) = KI(.’y/b’.'.)

and I(8) =
where
rﬂ
I,(8) =
0
e
IL(G) =

+ G(+,y/b,+++) log Iy/bl

I,(0) + 1.(0)

K,(+,cosb~cosy, +«)F(y) dy

G(+,cosfB-cosy,***) -

log |cos6-cosy|F(y) dy

The trapezoidal rule suffices to compute I,(8),

N
I,(8) = }

n=0

where B, = B
integration

BnKl(',cose-coswn,-

= 1/2, while B =
rule, devised b9 Wh

~-)F(wn) m/N

1 otherwise; but a special
itehead (Refs. 18, 19)

is required for the logarithmic portion of the kernel.
Whitehead's integratlion rule is given below,

N
IL(S) = zZo BzG(',cose-coswz,-.-) .

log |cnse-cosw1| S,(8) w/N

where the By's are the same weighting functions as defined

above, and
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S,(8) = - {log(2) +

N .
2 )} (Bg/s) cos(s®) cos(san/N)}
s=1

By combining I, (8) and If(6), the integral equetion is
reduced to the following set of algebraic equations for
the unknowns F(nn/N):

exp(1(k b) cos(m=1/2)n/N] =
N
nzo AL F(nn/N) s

where

A = Bo{Ke(x)+G(x)[S (e )-log|x|] /N

and

X = cos(em) - cos(wn) .

Any standard matrix package that handles equations with
complex coefficients can be used to solve these equations.

FORTRAN 1listings for computer subprograms which
arompute the elemental lcading function f( ), based upon
the equations set forth in this section are provided in
Volume 2. These subroutines have been used to compute
the blade 1ift and picching moment coefficients for a
cascade of oscillating blades in uniform flow, and for
a rigid cascade of blades in a sinusoidal gust, for
comparison with results of similar calculations published
in the lite-ature {(Refs. 18, 19). Agreement was obtained
to four sign ficant figures in every case tried. Com-
parisons have also been made with the loading function
itself, published in graphical form by Kaji (Ref. 5).
Again agreement was excellent, within the limitatlons
imposed by the small scale in the figures provided in
Kaji's paper.
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LnAPTER 9
SAMPLE COMPUTATIONS

Ll el e

No computations have been made with the Inlet Turbulence/ RN
Rotor Interactlon program, and only a few have heen made with
the Mean Wake/Stator Interaction and Wake Turbulence/Stator
Interaction Programs. Typlcal results from tinese latter compu-
tations are presented in this chapter only as examples of
output data generated by the programs; a systematic set of
parameter variation studies has not been performed.

The Mean Wake/Stator Interaction Program computes the r—
sound power per mode and the total sound power radiating up- )
stream and downstream of a turbofan at the blade passage
frequency and 1ts first two harmonics. The sound radiating
upstr=zam from a 15 blade fan and 11 blade stz.or 1s displayed
in Fig. 10%*., As indicated in the Figure, wl -eas at the blade
passage frequency only one propagating mode 1s excited, many
are exclted at higher frequencies.

Typical results obtained with the Wake Turbulence/Stator
Interaction program are shown in Fig. i1l. In this figure,
the upstream sound power spectral density for various values
of the turbulence length scales 1s plotted as a function of the
frequency. The axial, radial and azimuthal length scales were
assumed to be equal. The width of the turbulent wake 1is
0.072rn and the rms turbulence intensity 1s assumed *- be
1% of ghe nominal flow velocity. (The sound power is directly
proportional to the rms turbulc.ice intensity, so the sound power
at any other intensity may be found by shifting the vertical
scale in the figure.) It may be seen that increasing the turh-
ulence length scales caused bands of noice to coalesce around
harmonics of the blade passage frequncy. However, the length
scales required to produce thls effect are probably unrealistically
long. Individual modal amplitudes are not plotted because of
the large number of propagating modes (abcut 130 modes at three
times blade passage frequency).

¥The fan/stator geometry 1is that of NASA Fan Stage 55 (Ref. 20).
The input varlsables used for the computation may be found in
Volume 2 (Mean Wake Piogram).
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CONCLUDING REMARKS

Equations have been derived for the amplitudes (or
amplitude spectral densities) of the propagating duct modes
excited by a turbofan (fan/stator stage) operating at
subsonic tip speed within an infinite hard-walled annular
duct. Three nolse source mechanisms were considered:

a) random noise generated by inlet turbulence
impinging on the rotor blades;

b) random noise generated by rotor blade wake
turbulence impinging on the stator vanes; and

c) tone noise generated by the mean velocity defect
wakes of the rotor blades impinging on the stator
vanes.

Equations have also been derived for the acoustic pres-

sure at ar arbitrary point within the duct, and for the sound
power flux (or sound power spectral density) in the duct
elther upstream of the fan or downstream of the stator.
These latter equations require a summation over all those
duct modes that are excited by the particular nolse source
mechanism of Interest and which propagate at the selected
freavzacy.

A package of FORTRAN computer programs has been
developed which computes the duct mode amplitudes (or
spectral densities of the mode amplitudes) for each of the
three noise source mechanisms, and sums these mode
amplitudes to compute the sound power flux (or sound power
spectral density) within the duct. The inlet turbulence and
rotor wake turbulence programs print out, at any desired
frequency, the sound power spectral density per mode for all
propagating modes and the total sound power spectral
density. The meai. wake program prints out, at the blade
passage frequency and its first two harmonics, the mode
amplitude and sound power per mode for each mode excited.
The total sound power flux is also printed out «t each

frequency.
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A very limited set of prelimirary computations has been
: carried out using the mean wake and wake turbulence
A programs. The output data display the expected qualitative
’ behavior, but no attempt has yet been made to make any
systematic comparisons with experimental data. No
computations have bheen made with the inlet turbulence
program other than those required to verify that the program

runs.
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APPENDIX A
LIST OF SYMBOLS

b L i ot

mode amplitude (Eq. 23)

mn
B # or rotor blades
b blade/vane semi-chord
b, blade/vane seml-chord at radius r
t blade/vane semi-chord at tip
mn chordwise integral (Eg. 130)
o speed of sound
dlsplacement vector extending
from rotor blade to stator
vane (Eg. 62)
d axial distance from rotor to
stator
exp () exponential function
e1s &, unit vectors (Fig. 4)
F(§ *u) amplitude of turbulence in-

£f (r, z, k, w)

fq(r,z)

f(y)

tensity in rotor blade wake

elemental blade/vane chord-
wise pressure distribution
(Eq. 55)

elemental vane chordwise
pressure distribution at gth
harmonic of the blade passage
frequency (Eq. 85)

mean rotor wake veloclty de-
ficit profile (Chapter 3):

or rotor wake rms turbulence
intensity profile (Chapter §5)
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1=

s

See Egs. (134) and (35)
See Eq. (141)
inter-vane gap (stator)
inter-blade gap (rotor)
axlal intensity

V=1

mth order Bessel function of
1st kind

wavenumber vector
See Eq. (39)
wavenumber vector

particular value of wavenumber
vector as defined in Eg. (118,

Turbulence length scale in the
ith direction.

axial flow Mach No.

Mach number of flow relative
to blades/vanes

relative Mach number at the rotor
blade tip.

unit vector normal to stator
vanes

unit vector normal to rotor
blades (Chapter 4); or normal
to rotor wake centerlines
(Chapter 3 and 5)

acoustlc pressure

duct mode amplitude

ampllitude spectral density
of (m,n)th mode

See Egq. (116)
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S(w)

mn (%)
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= (XI,X2)

Xl

= (Xl, X2)
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radlal coordinate
hub radius
duct radius

total intensity spectral
density

intensity spectral density
of (m,n)th mode

time
axial fluid velocity

fluid velocity relative to
rotor or stator vanes

number of stator vanes
velocity downstream of the
rotor (defined in rotor-fixed
coordinates)

component of fluctuating
velocity normal to rotor/stator
blades

rotor-fixed coordinates

axial coordinate

stator-fixed coordinates
integration point (r,y,, §)

mth o2rder Bessel function of
2nd kind

chordwise variable

b =
]
'
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Bp

Ym,n(w)

Aps(r,y,...)

GREEK LETTERS

Fourler transform variable

VAR
A-M3

See Eq. 11

pressure loading on blades
(Eq. 53)
2 2

half-velocity width of rotor
mean wake (Chapter 5), or
width of turbulent rotor wake
(Chapter 7)

blade/vane sweep

rms intensity of th. component
of the inlet turbulence normal
to the blade surface.

rms intensity of turbulence

on cen.erlines of rotor wakes

(component normal to stator
vanes)

stagger angle of stator vanes

eligenvalues of annular duct
modes

Fourler transform variable
See Eq. (1i7)

radian frequency

integration variable (Eq. 153)

3.14159...
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nominal fluid density
interblade phase angle
rH/rD
2bT/rD
time
polar angle
rotor blade stagger angle
Km,nrD
normal mode
radian frequency

rotor rotation rate
(radians/sec.)
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APPENDIX B
KERNEL FUNCTION FOR A LINEAR CASCARE IN SUBSONIC FLOW

The kernel function for a cascade of thin airfolls in
oscillating subsonlc flow has been dervied by several in-
vestigators, using a variety of methods (Refs. 1-6). Of
the various approaches employed to date, the method of
Fourier transforms 1s perhaps the most straightferward.
This procedure was used in Ref. 3, for example, but the
inversion of the Fourier transform was accomplished numer-
ically. More recently, Goldstein (Ref. 7) pointed out
that the Fourier transform of the kernel functlon contains
no branch points, sc the inversion can be accomplished
quits easily by using the Cauchy residue theorem. Gold-
stein outlined the procedure to be followed, but did not
actually carry out the calculation of the kerrnel function.
The purpose of thls Appendix 1s to set forth the details of
the inver-ion, and to record the end result. For the con-
venience of the reader, as well as to document the notation
used, a tirief derivation of the transform of the kernel
function 1is also presented.

The cascade geometry 1s shown in Fig. B.l1. The air-
foil semichord 1s b, and the gap between neighboring
airfoils is bh, with components bh; projected along the
chord, and bh; normal to the chord. The airfolls are shown
as having no camber, because the ultimate objective is
to calculate the pressure fleld scattered by the cascade
when 1t 1s subjected to vorticity convected with the mean
flow. However, other situations, such as a cascade of
oscillating airfolls, can be handled as well. For the
purpose of calculating the kernel function, we need only
suppose that a known chordwise pressure distribution exists
on each airfoil, arnd calculate the resulting velocity field.

The first step 1s to calculate the upwash generated
by a single airfoil. Let the pressure be given by the real
part of p exp(iwt), and the corresponding velocity field
be the real part of (wi,w,) exp(iwt). Then p satisfies
the convected wave equation, and the velocity fileld is
related to the gradient of p through the momentum equations.
These equations are#*

¥A 1ist of symbols for Appendix B 3is provided on page Bl2.
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FIG. B.1. CASCADE GEQMETRY.
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9°p , 3B _ AT (iw + Uréé?) p=0 , (B.1)
2 2
ay1 ay1 Cy 1
(o + U .2) w, + =22 =0 ; j=1,2 . (B.2)

The following definition of the Fourler transform pair is
chosen:

4o
P ¢ap(-iay,) dy,

P

+o
1 —
P =35 I P exp(+iayl) da . (B.3)

The Fouriler transforms of Egq. (B.1)* and the second of
Egs. (B.2) are

2= -
9—% - A\p=0 , (B.4)
dy;
3 1 3p .
(1wtial ) W, + 3 T (B.5)
where
A = {a?-M2 (a+w/U)%)% . (.6)

The pressure p generated by an isolated airfoil 1s bounded
at infinity, and, because the airfnils are assumed to have
zero thickness, 1s antisymmetric in y,. A solution of Lq.
(B.4) satisfying these conditions is

#A11 equation references are to equations in this Appendix.
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P=- Aﬂa_al exp(-Aly,|) * sgn(y,) , (B.7)

provided that A is defined so that its real part is non-
negative on the path of integration_used to invert the
Fourier transform. In Eq. (B.7), Ap(a) is the Fourier
transform of the chordwise pressure distribution on the
airfoll. (Ap is positive if the pressure 1s greatest on
the lower face of the airfoll.) By eliminating p between
Eqs. (B.5) and (B.7), we obtain the Fourier transform of

the upwash generated by a single airfoil. The upwash
itself is

;2(yl:yz) _ 1 e A AE(G)
T Ton

U, 21 (a+w/U,) p,UL

. exp(iay,-Ar|y,|) da

The upwash generated by a cascade of airfoils, located at
the points (y,,y,) = m(bh,,bh,), m = 0, *1, %2,..., 1is
obtained by summing the contributions of the individual air-
foils:

U 2

Wz(yl,yz) _ 1 +o [+° A Asﬁ(u)
r m=-w J

21(a+w/U,) pOU;
* exp{ia(y,-mdbh,) - A|y,-mbh,|} da

This infinite serles can be summed analytically if
the transformed pressure distributions on successive air-
foils in the cascade [App(V)] are related by a constant
increment in phase angle. That 1s, for any integer m,

ap,fa) = ap, (a) exp(imo)

B-4
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where Ap (a¢) is the transform of the pressure on the "zeroth"
or reference airfoil, and o (called the interblade phase
angle) 1s a constant, 0<o<2w. To calculate the upwash near

any selected blade, say blade s, introduce

x, £y, - sbh,
X, 2 ¥, - sbh,
and
nm--s
Then

Wz _
7 (x1+sbh,,x2+sbh2) =
r

expgiscz

[+°° Apo(a) A S(a) expl (dax3) da , (B.8)
- 27 |

0, U2 21 (at+w/U,)

where the iInfinite serles

+o
S(a) =} exp{ino-A|x,-nbh,|-ianbh,}

NZ=®

can be summed:

exp(%ﬁ -Ax,) exp(%A_+Axa)
S(a) = 3 . - s (B.9)
sinh(34,) sinh(3A_)

where

8, = ti\h, + i(o-abh,) . (B.10)

Now, usg the convolution theorem to calculate the inverse of
F
Eq. (B.8):

v
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¥,
T (x, +sbh, ,x,+sbh,) =
+b dpo(2) 4
exp(iso) J Kc(xl-C,xz) — TF
b Polp (B.11)
Kc i1s the desired cascade kernel function:
+® AS exp(iax
Pl 1) da (B.12)

21(a+w/U;7

Ko(x,,x,) = = & ]
- 00

The factor b 1s included to make KC dimensionless.
It is convenient to introduce dimensionless variables, as

follows:
K = mb/B; C, ﬁl 2 x,/b
X, ] xz/b . (B.13)

Gb -A’IrK
The shifted transform variable a completes the square 1n i:

Q>
1]

PRI

. B
' = L J&h2_r2
| A t)~«a K .
x Then

N \ AN

L +o yS exp(iax

. - B, exp(1KM R ) j Y p(iax,) &, (B.14)

; c 2ni 2(8+K/H,)
| where now

(B.15)

= (az_xz)k

B-6
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exp(%A+—Br?xz)

sinh(%A+)

exp(%A_+Bryiz)
sinh(34_) (B.16)

Notice that yS 1s an even function of y, so that even
though the integrand contains the variable

Yy =va?-k? ,

there can be no branch points at a = *¥K. Thus, if we apply
the residue theorem to evaluate the kernel function by
closing the path of integracion on a large arc in the upper
or lower @ plane, no residual integrals around branch cuts
appear; the kernel function is simply the sum of the resi-
dues 1in the upper or lower half plane. To insure that the
integrals on the arcs vanish as their radii are allowed to
become infinitely large, the integrand in Eq. (B.1l4) must
be modified. First, note that

2
s-—L_ 2
(BrY) ax}

s0 Kc can be written as follows

exp(1KM X, )
Ko = - 2niB

32 +o S exp(iax,) - . (B.17)
o« — I — da
2y (a+K/Mp,)

The Iintegral above can be evaluated via the residue

theorem by using the contours shown in Fig. B.2, and the
differentiatlion wlth respect to x, carried out afterwards.
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If §1>O, the integral around the semicircle in the upper
half plane wvanishes when the radius of the contour goes
to infinity. Thus,

1 ~
Kc 2 - 5; exp(iKerl)

92 {sum of residues in}

A upper half plane

ax? (B.18)
2

On the other hand, when §1<0 the integral around the contour
in the lower half plane vanishes, so

K, =+ ék exp(iKMril)

r
2 {sum of residues }
3%2 in lower half plane (B.19)
2
T!e integrand in Eq. (B.17) has poles at o = -K/M,,,

and at points af, where sinh(1/24,) = O:

A, = 2nml (n = any integer).

(c.f. Eq. (B.16)]. Whena+is real, some of these poles lie
directly on the real axis. To arrive at the correct expres-
sion of K,, it 1s necessary to invoke the casuality condition
by stipulatling that w has a small negative imaginary part.
Once the kernel function has been evaluated, we can let
Im(w)+0. The effect of this procedure is to eliminate the
possibility that acoustic waves not generated by the cascade
itself are inadvertantly included in the solution.

If Im(w)<0, the pole at a = -K/M,, is clearly in the
upper half plane. The residue 1is

Mr sinh(B;Khz/Mr)exp(-ixﬁl/Mr)

k ZBrK cosh(B2Kh_/M_)-cos(T+Kh_ /M_) * (B.20)
r 2 r 1 r

R
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é X The roots o of the eguation sinh(1/2A,) = 0 are given
| y

E °§ . rz?l + Bi:z [Kz_ (;;%2]% (B.21)
? where

‘i Pn =T - 2nm

; d = /n2+BZn? (B.22)

If the square root in Eg. (B.21) is defined as follows,
. (Rel®1% = VR %72 | 0 < 0 <2n (B.23)

where YR is the positive square root of R, then solutions
a% having the plus (minus) sign in Eq. (B.21) are located in

the upper (lower) half plane. In either case, the resildue
1ls

~

hd
Brhz exp(ianx )

1
2 T h .
(o - et
d?2 r (B.24)

Using Egs. (B.18) and (B.19), and carrying out the indi-
cated differentiations, we obtain the final result:

b4
Rn(an) =

B-10
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8 2Kh 182Kx . *
r 2 r 1
B;,K sinh( W ) exp(— —— )

K = - r r

c eM,, BKh, Kh,
cosh -coslT + ——

M. .

2
B2h, += (a; -K?)expli(a

2d2 n=-= o - rnhx o
n dz

if x, > 0, and

+KMr)x,]

K
+ =
Mr) (B.25)

54+ |5+

-2, - -
_Bfh, = (a -K )exp[1(a +KM )X, ]

2d2 n.—.x_m - rnh K
a, - e *u
n 42 n r (B.26)

if X, < 0. Having calculated the kernal function for
IM(K) < 0, we can now let IM(K) = 0. Then the roots
become, using the branch of the square root given in o
Eq. (B.22), n

Q

T h 8_h T \?
- 01, 4T ? (_E) -K? (B.27)
ir |r /d| > K, and

I h B_h (r )’
t __n - r2 2 _ n B.28
%n 22 * T4 "/K d ( )

if |rn/d| < K. 1In Eqs. (B.27) and (B.28), af, is to be
calculated using the upper_set of signs, 2and ap using the

lower set of signs. The v  sign means the positive square
root.
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b airfoil semi-chord
c, speed of sound

2 22
d /h1+3rhz
h, (inter-blade stagger gap)/b
h, (inter-blade normal gap)/b
i /=1
K reduced frequency [Eg. (13)]
Mr Mach number
P pressure
S » Eqs' (9: 16)
t time
Ur nominal fluld velocity
(wl,wz) perturbation fluid velocity
(x,,x,) : coordinates [Eq. (13)]
(v,,¥,) coordinates (Fig. 1)
a Fourler transform variable
a ab-MrK

M2
Br Yl Mr
Y Yai-K?
Ai Eq. (10)
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Eq. (6)

3.14159 ...

nominal flow density
interblade phase angle

frequency
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APPENDIX C

NUMERICAL COMPUTATION OF THE NORMAL MODES IN AN
ANNULAR DUCT

As discussed in Chapter 2, the normal modes in an
annular duct are functions of the form

v (

n Kmnr) = A Jm(Kmnr) + B Yn(Kmnr) s (c.1)
where Jm( ) and Ym( ) are Bessel functions of the first

and second kinds, and xpyn are the roots of the following
transcendental equation:

Jé(KmnrH) Yr;l(KmnrH)i
=0 (c.2)

Jé(xmnrD) Yé(KmnrD)

The roots kpurp of Eq. (C.1) are found by first estimating
the root as follows:

_‘m ifn=1
K Io = . (C.3)
mn" D N

l"m,n-er +m ifn > 1

This estimate 1s refined by incrementing the estimated !
value of kmnrp by m/10 until the determinent in Eq. (C.2) '
changes sign. The step size is then halved and changed

in sign. This process continues until the absolute value

cf the determinent is reduced to a preassigned value.

Once the eigenvalue xpmn has been computed, the c¢con-
stants A and B are assigned one of the following two sets
of values:

B Y'(k r.)
As ] A= - m mn D
J!' (x rD)

ord m' mn )

B s A J'(KmnrD) B e 1
Yé(KmnrD)

-
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Of these two sets of values, the one for which (A24B?) is
the smaller value 1s chosen. The desired normalization,
namely,

H 1
J V2 (kpor) vdr = 5 (ri-rf)
Tp

is obtained by computing the value of the integral on the
left-hand side of the equation above, using the formula

r r
JD 2 1{ 2 m? 2 D
J wm(Km,nr) rdr = E(r - ;;—) wm(xmnr)
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The constants A and B are then divided by whatever common
factor is required to produce the correct normalization.
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APPLHOIX D
FILON'S INTSERATION RULE

Filon's 1integration rul: =7Hplies to integrals of the

IS o111
[b
j f(x) exp(igx) d» (D.1)
3
wherein th~ nhase 4ang. . .. is large, so that use of the
trapezolidzal rule or & . i:n's rule would require that the

interval of integrat'. . e divided into many subintervals
to obtain an accurate answer, Filon's rule is obtained
by assuming that the function f(x) can be approximated

by a quadratic funicticn, but the exponential function
expl{igx) 1s integratzd exactly, without approximation.

To extend thils procedure to integrals wherein the phase
angle i1s not a linear function of x, we need only approxi-
mate the phase angle as a linear function of x within
each subinterval. The most straightforward procedure

is to approximate hoth f(x) and g(x) as linear functions
of x. For example, to compute the following integral

b
I = J £(x) explir’ )] dx ,

a

divide the interval (a,b) into N equal subintervals of
length h = (b-a)/N. The integral over the nth subinterval
is then

x th
In = J n f(x) exp[ig(x)] dx

*n

To compute this integral, approximate both f(x) and g(x)
as linear functions:

x—xn
f(x) = fn + (fn+l-fn) (—E-—

X-X
8(x) = g, + (Bn41-8p) (-F—D) , :
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) where f_ = f(xn), and so on. Carrying out the integrations,
we obta?n

I =nhla f +af 1) eZ”-P(iSO) ’

n
. where
-1
8o =3 (Bn*&nyy)
=1 -
Az 2 (gn+l gn)

X N

a =z séﬁk + y{ sind _ cos)
222 22

and a¥* is the complex conjugate of a. When X + 0, the
integral over the nth subinterval becomes

_h
In ) (fn+fn+1) ’

which is the trapezoidal rule.

' If an even number of subintervals are used, it is also
' nossible to appcroximate f(x) as a quadratic function (over
any two neighboring subintervals) while leaving the phase
angle g(x) as a linear function of x. Th's integratiocn
scheme reduces to Simpson's rule when g(x) is constant.

Both the trapezcidal and the quadratic verslions of Fillon's
rule have been tried; the quadratic version did not seem

to improve the convergence significantly over the simpler
trapezoidal rule, so the latter is used in the rotor mean
wake program.
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