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ABSTRACT

Relative spectral response data for the multispectral scanner subsystems (MSS) to be flown on
Landsat-D an¢ Landsat-D backup, the protoflight and flight models, respectively, are presented
and compared to similar data for the Landsat 1, 2, and 3 Subsystems, Channel-by-channel (six
channels per band) outputs for soil and soybean targets were simulated and compared within eac
band and between scanners, The two Landsat-D scanners proved to be nearly identical in mean
spectral response, but they exhibited some differences frem the previous MSS's. Principal differ-
ences between the spectral responses of the D-scanners and previous scanners were: (1) a mean
upper-band edge in the green band of 606 nm compared to previous means of 593 to 598 nm,

(2) an average upper-band edge of 697 nm in the red band compared to previous average: of 701
to 710 nm, and (3) an average bandpass for the first near-IR band of 702-814 nm compared to a
vange of 693-793 to 697-802 nm for previous scanners, These differences caused the simulated
D-scanner outputs to be 3 to 10 percent lower in the red band and 3 to 11 percent higher in the
first near-IR band chan previous scanners for the soybeans target. Otherwise, outputs from soil
and soybcan targets were only slightly affected. The D-scanners were generally more uniform from
channel to channel within bands than previous scanners. One notable case of poor uniformity was
the upper-band edge of the red band of the protoflight scanner, where one channel was markediy
different (12 nm) from the rest. For a soybeans target, this nonuniformity resulted in a within-

band difference of 6.2 percent in simulated outputs between channels,
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SPECTRAL CHARACTERIZATION OF THE LANDSAT-D
MULTISPECTRAL SCANNER SUBSYSTEMS

Brian L. Markham and John L. Barker
NASA/Goddard Space Flight Center
Earth Resources Branch
Greenbelt, Maryland

INTRODUCTION

The two multispectial scanner subsystems (MSS) to be flown on Landsat-D and Landsat-D backup,
the protoflight (PF) and flight (F) models, respectivcly, have been fabricated and tested by Hughes
Aircraft Company. Each MSS has four bands in the reflective portion of the electromagnetic
spectrum: (1) a greer band, nominally 500 to 600 nm; (2) a red band, 600 to 700 nm; (3) a near-
IR band, 700 to 800 nm; and (4) a second near-IR band, 800 to 1100 nm. On previous Landsats,
these bands were known as MSS-4, MSS-5, MSS-6, and MSS-7, respectively, because the three-band
return-beam vidicon (RBV) camera system occupied bands 1, 2, and 3, With the absence of the
RBYV camera system on Landsat-D, this designation is obsolete, and the MSS bands are referred to
as 1, 2, 3, and 4, respectively. Each band consists of an array of six channels (i.e., six detectors and
six filters). Thus, there are a total of 24 channels (i.e., four bands with six channels per band) that
are numbered sequentially from 1 to 24 as follows: band 1 (channels 1 through 6), band 2 (chan-

nels 7 through 12), band 3 (channels 13 through 18), and band 4 (channels 19 through 24).

The engineering test data that were collected included channel-by-channel spectral response curves,
detailing the relative respcnse of each channel as a function of wavelength. Because this response
is measured through the system’s optics, it includes the combined effects of optics, filters, and
detectors on the spectral response. A description of the test procedure is included in Appendix A.
For previous MSS’s, these data were contained in generally unavailable contractor reports to NASA
(Norwood et al., 1972; Felkel et al., 1977). The primary intent of this document is to make

available to the Landsat user community data on the spectral characteristics of these two sensors,



including a characterization of the variability within and diffzrences between the two sensors.

These data can be used by individual investigators to assess the data’s utility for their applications.

A second objective is to provide, threszh simulation, an estimate of the potential contribution of
spectral differences between channels to within-band striping. In the remainder of this report,
this type of striping will be referred to as “spectral striping.” This should not be confused with
“radiometric striping,” which results from gain or offset differences between channels. Because
spectral striping cannot be removed by uniform radiometric calibration, it limits the ability to

remove banding from images.

One objective in placing an MSS on Landsat-D was to provide continuity with the previous three
Landsats. Thus, the Landsat-D MSS’s were designed, to the extent possible given the lower 705-km
altitude of Landsat-D, to replicate the imagery of the previous MSS’s. Therefore, a third objective
of this document is to assess the extent to which the new MSS’s match the previous MSS’s in terms

of spectral response.

METHODS

Relative spectral response (RSR) curves for each channel (six in each of four bands) of the Landsat-D
PF and F multispectral scanners,* as well as the MSS’s on Landsat 1, Landsat 2 (Norwood et al.,
1972) and Landsat 3 (Felkel et al., 1977), were digitized at 10-nm intervals for bands 1, 2, and 3

and at 20-nm intervals for band 4. The more recent set (1981) of curves for the PF were used to

characterize the scanner.

* Hughes Aircraft Company, “Relative Spectral Response of MSS D/P-1,” internal memorandum HS248.6312,
Santa Barbara Research Center, July 24, 1980; “MSS-D Multispectral Scanner Protoflight Radiometric Calibration
and Alignment Handbook,” HS249-1379, prepared for GSFC under contract NAS5-25050, 1981; and “MSS-D
Multispectrai Scanner Flight Model Radiometric Calibration and Alignment Handbook,” FS§248-1490, prepared
for GSFC under contract NAS5-25050, 1981.
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The following attributes were computed from the digitized curves:
1. Lower-band edge (50-percent relative response point)
2. Upper-band edge (50-percent relative response peint)
3. Lower-edge slope interval (width between lower 5- and 50-percent response points)
4. Upper-edge slope interval (width between upper 5- and 50-percent response points)
5. Spectral flatness (maximum positive and negative deviation from mean response in central

70 percent of nominal band pass)

Although listed only under specifications for the filters (Table 1), these five characteristics were
deemed appropriate for chays¢terizing the overall relative spectral responses. In addition, the band-
width (band edge t¢ band edge) was calculated. For completeness, a characterization of the filter

components for the ¥F and F models is included (Appendix B).

Each band was checked for anomalous channels (i.e., channels within the band that are significantly
different from the rest). A modified F test was used for the screening (Grubbs, 1950) with an

a-level of 0.01.

Two parameters were calculated for each spectral characteristic for each band of each MSS:

(1) the band mean (the average value of the characteristic for the six channsls in the band), and
(2) the band standard deviation (equal to the sample standard deviation[s] using each channe] as
an observation). A statistical comparison between .scanners of the band means and band standard
deviations for each spectral characteristic was not possible because independent multiple measure-
ments of each channel’s spectral characteristics were not generally available. Two independent
sets of measurements were available for the Landsat-D PF scanner only. The approach used here
was to consider an indicated difference between scznners in band mean or band standard deviation
as a real difference if it exceeded a threshold determined from the differences between the two

sets of PF relative spectral response measurements (Appendix C). These thresholds were:



¢ 3 nm for means and 1.8 nm for standard deviations for band edges, widths, and slope
intervals except as indicated below

® 33 nm for means and 2.7 nm for standard deviations for band 4 upper-band edge, width,
and upper-edge slope interval

® 4-percent means and 0.9-percent standard deviations for positive and 6-percent means and
1.5-percent standard deviations for negative spectral flatness in bands 1 through 3

¢ [9-percent means an¢ 2.4-percent standard deviations for positive and 12-percent means

and 2.5-percent standard deviations for negative spectral flataness in band 4

A simulation procedure was established for assessing for each MSS the contribution of the channel-
to-channel spectral differences to within-band target-dependent striping and for comparing the
scanners’ mean outputs to typical targets. The procedure uses field reflectance spectra as input

and outputs channel-by-channel digital MSS counts.

Reflectance data of soil and soybeans collected with a Barnes Mark-1I spectroreflectometer were
used as input for the analysis, This instrument simultaneously samples incident sunlight and target-
reflected light to provide target reflectance. Pertinent instrument characteristics over the spectral
interval of 450 to 1150 nm are:

® A sampling interval (filter position spacing) of 4 nm

® An average spectral bandwidth of about 16 nm

® Rms noise of about 0.5-percent reflectance with a 50-percent reflective target (0.2-percent

with a 3-percent reflective target) at a 35-degree solar zenith angle.

One spectrum of a moist soil plot and one of a soybean plot having a full canopy cover collected
on day 226 in 1978 were used in this study. In addition to being common agricultural targets,
soil and soybeans were selected because they were spectrally diverse. In particular, soil is relatively

spectrally flat and soybeans are more uneven (Figure 1).



The simulation procedure involved the foliowing steps:
¢ Normalization of the relative spectral responses of the individual channels
e Conversion of narrowband target reflectance data to simulated radiances at satellite
altitude, using an atmospheric and irradiance model
® Integration of narrowband radiances across each bandwidth, weighting by the normalized
response coefficients (interpolated to match spectroreflectometer saniple points)

® Scaling the integrated radiances to match the output of the MSS

The procedure for normalizing the responses of the individual channels was designed to simulate
the procedure that was used to calibrate the channels during system testing. In the simulation
program, the sensors “viewed” a spectrally flat target illuminated by a spectrally flat source, and
correction factors were compufed so that each channel gave the same output for this flat source.
In performing this normalization, perfect relative radiometric calibration within-bands and perfect

#hyilute radiometric calibration: for all scanners has been assumed.

In actual testing, a spectrally nonuniform target (integrating sphere) is observed. Postprocessing
of the data, where each channel’s spectral response and the integrating sphere’s spectral output are

known, allows the integrating sphere to appear spectrally flat.*

Conversion of the narrowband field measured reflectances to satellite level radiances was facilitated
by wavelength specific additive and multiplicative factors obtained from the use of the Turner and
Spencer (1972) atmospheric model. Inputs to the model included 40-degree solar zenith angle,
20-km horizontal visibility, 100-percent target reflectance, background refiectance (average value
for 50-percent soil/50-percent vegetated surface at a given wavelength), and 705-km satellite

altitude. The use of the Landsat 1-3 altitude at 910 km would not have changed the atmospheric

*General Electric Company, “MSS Standard Interface Document,” GE-BO-78-034, prepared for GSFC under
contract NAS5-11255, 1978.
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model’c output, The two mudel output parameters used for each wavelength input are target-
contributed (beam) radiance and path radiance. To determine the total satellite level radiance for
a particular target, the beam radiance (for 100-percent reflective target) was multiplied by the
target reflectance and the path radiance was added to the product. The Turner and Spencer model
considers only atmospheric scattering (haze), which is the most important atmospheric factor in
the MSS bandpasses, However, berause water absorption does attenuate light in the region, par-
ticularly between 900 and 950 nm, the radiances obtained by this model are expected to be some-

what high in band 4.

The narrowband simulated radiances were then summed across the individual channels, weighted

by the normalized relative response coefficients, The integrated radiances were then scaled to match

the digital counts of decompressed MSS data. Bands 1 through 3 were linearly scaled from 0 to
27.99 counts and band 4 from 0 to 63.99 counts, using the given nominal saturation radiances of

2.48,2.00, 1,76, and 4.60 mW cm~2 st! for bands 1, 2, 3, and 4, respectively, to determine the

sciliag factors.

The simulation procedure can be described by the following equation, which is applied individually

to each channel on each scanner:

b RESFAC;

N = T X REF, X BRAD.) + PRAD; ) X ———— X WAVSPA
DN = SCFAC g ((REF; X BRAD)) + PRAD;) X —=rdd
where

DN = simulated digital number output for MSS channel (nontruncated counts)

SCFACT = scale factor for conversion of radiance to digital counts: Band 1, 51.61;

band 2, 64.00; band 3, 72.73; band 4, 13.91 (counts/mW cm™2 srh)

1]

index for filter positions (spectral sampling points) of spectrometer

1]

a, b first and last filter positions, respectively, of spectrometer for which the MSS

channel relative spectral response exceeds zero



REFi = target reflectance at i
BRAD; = Tumer model spectral beam radiance at i for 100-percent reflective target
(mW cm2 sr7) um‘l)
PRAD; = Turner model spectral path radiance at i (mW em™2 sl ,um'l)
RESFAC, = relative response factor of MSS channel at i
NORFAC = normalizing factor for MSS channel
WAVSPA = wavelength spacing between spectrometer filter positions (nominally 0.004 um)

The band mean outputs to soil and soybeans (averages of six channels) were used to compare dif-
ferences between PF and F and between PF, F, and the MSS’s on Landsats 1 through 3, The max-
imum difference in output between channels within a band was used to compare the potentials
for “spectral striping” among the scanners. Differences in means and maximum deviations were
considered to be important if they exceeded:

® (.30 digital counts (the Rms quantization noise)

® The differences in Table C-3 of Appendix C (differences between outputs simulated with

two sets of PF measurements)

RESULTS

SPECTRAL CHARACTERIZATION OF LANDSAT-D MULTISPECTRAL SCANNERS:
PROTOFLIGHT (PF) AND FLIGHT (F) MODELS

In most respects, the spectral responses of the PF and F (Figures 2 through 4) scanners are similar,
and the following comments apply to both scanners unless otherwise noted:
® Band 1 — No outliers; relative spectral responses meet all filter specifications except
flatness (Table 2).
® Band 2 — PF channel 7 upper-band edge is 12 nm higher than the average of the other PF
channels and is rejectable as an outlier (Figure 5); responses meet all filter specifications

except flatness (Table 3).



® Band 3 — No outliers; 21l channels are slightly wide (2 to 4 nm) to the long wavelength
side; otherwise, responses meet filter specifications except flatness (Table 4).

® Band 4 — No outliers, but upper-band edge varies by as much as 42 nm, resulting in width
variations of up to 20 percent; system response upper-half power points below filter spec-
ifications because of silicon photodiode detector response; response flatness considerably

below filter specifications (Table 5).

Besides the poorer uniformity of band 2 on the PF compared o tne F as noted previously, the
only other differences between the two scanners concerned the uniformity of the spectral flatness
in bands 3 and 4, where the F is more uniform than the PF (Tables 6 through 9).

COMPARISON OF PF AND F SCANNER SPECTRAL CHARACTERISTICS WITH LANDSAT
1, 2, AND 3 SCANNERS

Meeting Filter Specifications

The relative spectral responses of previous MSS’s failed to meet the filter specifications (Tables 6
through 9) in basically the same manner as those of the PF and F scanners (i.e., in the spectral
flatness criteria). Although previous scanners met the band 3 upper-band edge specification, they

occasionally failed elsewhere (e.g., the band 4 lower-band edge on the Landsat 3 MSS).

Outlier Channels

Anomalous channels are not new to MSS scanners. Channe! 6 (band 1) on the Landsat 1 (LS1)
MSS was an outlier on the basis of its spectral flatness (less flat). Channel 7 (band 2) on LS2 MSS

was an outlier based on its upper-edge slope interval (wider).

Mean Characteristics

Because the PF and F scanners are essentially the same in terms of mean spectral response character-
istics (Tables 6 through 9), they had a common set of differences from the LS1, LS2, and LS3

scanners. Because the characteristics of the LS1, LS2, and LS3 scanners were not consistent, the



PF/F scanners differed from each one individually in dissimilar ways. The PF and F were dif-

ferent from all three previous scanners in the following ways:

® Band 1 — Upper-band edge higher (7 to 14 nm); (Table 6)
Bandwidth wider (8 to 13 nm) (Figure 6)
® Band 2 — Upper-band edge lower (3 to 13 nm); (Table 7)
Upper-slope interval narrower (10 to 16 nm) {Figure 7)
® Band 3 — Lower-band edge higher (4 to 11 nm);
Upper-band edge higher (11 to 21 nm); (Table 8)
Upper-slope interval narrower (17 to 2! nm). (Figure 8)

In band 4 (Table 9, Figure 9), a number of large differences were apparent between the PF/F
scanners and previous Landsats, particularly in regard to upper-band edge, bandwidth, and spectral
flatness. The large r.ngnitudes of these differences are believed to result from differences in test
conditions or test equipment when the tests were conducted on the different scanners (Appendix C).
This belief is based on the lesser differences between the PF model June 1980 measurements and

the previous scanners than between the June 1981 PF measurements and the previous scanners

(Figure 10).

Within-Band Variation

Previous Landsat MSS’s displayed quite a range of within-band variability (Tables 6 through 9)

in their spectral characteristics. For example, a factor of 4 difference in the standard deviation for
a given characteristic between the best previous MSS (least variable) and the worst MSS (most
variable) was not uncommon. Thus, in very few cases did the Landsat-D MSS’s differ from (fall
outside the range of) all three previous scanners. However, for all spectral characteristics except
those related to the band 4 upper-band edge (PF and F) and the band 2 upper-band edge (PF),

the Landsat-D MSS’s were as uniform as the most uniform of the previous MSS’s. The band 4
upper-band edge (PF and F), as well as the negative spectral fiatness (PF), were less uniform than
that of any previous MSS (Table 9), as was the band 2 upper-band edge (PF) and its related width

(Table 7).



SIMULATED MSS BAND MEAN OUTPUTS TO SOYBEANS AND SOILS:
PF, F, LSI1, LS2, AND LS3

PF Versus F

Because the PF and F have essentially the same mean spectral characteristics, they gave essentially
the same simulated outputs to soil and soybeans targets (Table 10). The only difference occurred
in band 3, where the F output to soybeans was higher than the PF. This difference resulted from
the slightly shifted response of the F (704 to 814 nm), compared to the PF (701 to 813 nm),

combined with the rapid increase in soybeans reflectance between 690 and 770 nm (Figure 8).

PF/F Versus LS1, LS2, and LS3

For the soybean target, differences in output between the PF and F scanners and previous scanners
were apparent for bands 2, 3, and 4. Band 2 and 4 outputs were lower and band 3 output was
higher than that for previous Landsats. The band 2 output was lower because the upper-band edge
was lower than that of previous Landsats and because of the rapid increase in soybean reflected
radiance from 690 to 770 nm (Figure 7). A contributing factor was the steeper upper slope of the
PF and F. The elevated band 3 output resulted from the band shifting to longer wavelengths and
widening of the band relative to previous Landsats. Thus, the proportion of the near-infrared high
reflectance plateau of the vegetation included in the band was increased (Figure 7), which increased

the output in the band.

The outputs in band 4 to soybeans on the PF and F models relative to LS1, LS2, and LS3 scanners
were depressed because the response of the PF and F apparently extended to longer wavelengths
and the radiance reflected from soybeans decreased with increasing wavelength (Figure 9). As
mentioned earlier, because the extended responses in the PF and F are believed to be mainly

spurious, the extent of depression of the output values is overestimated.

For the spectrally flatter soil target, the differences between scanner characteristics did not result
in differences in mean outputs between the PF/F and the LS1, LS2, and LS3 scanners, except for

the apparent difference in band 4.



WITHIN-BAND VARIATION IN MSS OUTPUTS TO SOYBEANS AND SOIL:
PF,F, LS1, LS2, AND LS3

The within-band sensor cutput differences (Table 11) were larger for the PF than the F scanner
in bands 2, 3, and 4 for the soybean target. The larger difference in band 2 of the PF compared
to the F resulted from the anomalous channel on the PF with an upper-band edge of 708 nm, as
opposed to the 696-nm norm for the rest of the band 2 channels. The band 3 and 4 differences
were a result of the poorer uniformity of the PF than the F in spectral response, particularly flat-
ness. For the soil target, differences between the PF and F in within-band sensor output differ-

ences were negligible.

The within-band sensor output differences of the PF and F for the soybean target were equal to

or better than those of the most uniform previous Landsat, except for PF band 2 and PF/F band 4
(Table 11). The maximum difference in PF band 2 was of the same order as the difference ob-
served in the Landsat 2 MSS, which was the worst of the previous MSS’s in that band. In band 4,
the maximum within-band difference for the F model was of the same order as the Landsat 3 MSS,

which was the worst of previous MSS’s; the PF was somewhat worse.

The band 4 PF and F maximum within-band output differences to scil were not larger than those
for previous Landsats by the criteria used. In terms of percentage of mean output, however, these
differences were similar between soil and soybean targets. This indicates that the striping would

be primarily nontarget-dependent and would therefore be potentially removable.

COMPARISON OF SIMULATED DATA TO REAL LANDSAT DATA

The simulated Landsat data were compared with actual Landsat 2 data collected under conditions
similar to those simulated (37° solar zenith angle moderately clear east-coast United States summer
day) to determine if the simulated data were reasonable (Table 12). Except for band 4, the out-
puts of the simulated and actual soybean targets were in good agreement. The only targets char-

acterized in the Landsat 2 scene that resembled bare soil were harvested wheat and oats. As might



be expected, larger differences between simulated and actual were observed given the differences
in the targets themselves. As noted earlier, the high values of simulated band 4, particularly for

soybeans, probably resulted from the lack of modeling of atmospheric water absorption.

DISCUSSION

DIFFERENCES IN MEAN RESPONSES BETWEEN SCANNERS

The comparisons performed to determine how the PF and F differ from previous scanners in mean
responses and outputs essentially indicate the ways in which the PF and F fall outside the range
exhibited by the LS1, LS2, and LS3 MSS’s. Note that, if these comparisons were done with LS3
MSS’s as compared to LS1 and LS2 MSS’s, for example, a similar number of differences would be
indicated. Thus, although the PF and F are different from previous scanners in selected ways,
differences of this level are not unexpected or unprecedented, but are typical of the differences
between existing scanners. No greater problems are anticipated in comparing data from the D-
scanners (e.g., as in a change detection algorithm) than between LS3 MSS and LS2 MSS data.

In addition, it is encouraging that the PF and F scanners are so similar in response.

DIFFERENCES IN WITHIN-BAND VARIATION BETWEEN SCANNERS

Target-dependent output differences between channels place a fundamental limit on the ability
to discriminate between targets, producing “spectral striping.” Exclusive of band 4, where the
apparent output differences appear to be nontarget-dependent, the PF band 2 is the only case in
which one of the D-scanners is poor in ““spectral striping” potential for the targets evaluated.
This “spectral striping,’”” simulated to be 6.2 percent for a soybean target, occurs in a band that is
important for vegetation discrimination. This may have an impact on data utility for this type of

application.

Previous studies have assessed the magnitude of the spectral striping problem for the MSS’s on
Landsats 1 through 3 in a manner somewhat similar to this study (Slater, 1979; Duggin and Ellis,

1980). Except for band 4, the relative magnitudes of the within-band stripings between scanners



are similar between studies (e.g., Landsat 1 is the most variable in band 1, Landsat 2 is the most

variable in band 2, and Landsat 3 is the most variable in band 3).

However, the relative magnitudes of the striping as simulated here are different from those of
previous studies because these studies:

® Assumed constant irradiance across the bandpasses

@ Did not add a path radiance (haze) to the simulation

® Used different reflectance spectra for the simulations

The first factor is primarily of concem in the wider bandpass of band 4 and tends to induce striping
in this band. This results in the larger (0.8 to 1.7 percent) maximum intraband striping for this
band in this study when compared to the work of Duggin and Ellis (O to 0.6 percent). Because

this is not target-dependent striping, however, it is potentially removable.

The second factor has the largest effect on bands 1 and 2 because the addition of a spactrally
slowly varying haze reduces the relative magnitude of the interline striping. For example, using
the data of Slater (1979), the percent difference in response between channels 7 and 8 on the
Landsat 2 MSS is reduced from 14 percent when using reflectance to about 8 percent when using
simulated radiances, including path radiance. The i:mount of this reduction depends, of course, on

the level of haze.

The third factor is most important in band 2. A significant amount of variation occurs in the
wavelength of onset and the steepness of the reflectance slope of vegetated targets in the wave-
length interval of 690 to 800 nanometers. The spectra of an orange-tree leaf used by Slater (1979
nearly reaches its maximum reflectance at 730 nm, whereas the soybean canopy spectra used her
does not reach the same reflectance until 770 nanometers. This accounts for the 8-percent dif-

ference when using Slater data as opposed to 4.5 percent when using the data of this study.

1



SUMMARY AND CONCLUSIONS

The Landsat-D PF and F scanners were essentially identical in mean spectral response. Spectral
differences between the PF and F model and previous scanners resulted in some differences
between the simulated outputs t~ targets. The principal differences that affected the simulated
sensor outputs from soybeans and/or soil were:
® A lower upper-band edge and a narrower uppes-slope interval on PF and F in band 2,
resulting in lower sensor output from a soybean target than that of previous Landsat
MSS’s
® A higher lower-band edge and a higher upper-band edge on PF and F in band 3, resulting

in higher sensor outputs from soybean targets than those of previous Landsats.

A higher upper-band edge and a wider bandwidth on PF and F in band 1 did not affect the out-
puts from soil or soybean targets. The differences between PF, F, and previous scanners were
usually small (i.e., differences between the PF or F and the most similar previous MSS were about
the same as differences between previous MSS’s). In general, therefore, these differences should

not affect data utility more severely than the variability between prior Landsat MSS’s.

One anomalous channel in the red band (2) on the PF scanner, with an upper-band edge 12 nm
higher than those of the other channels in the hand, has the greatest potential effect on the utility
of Landsat-D MSS data. This characteristic resulted in a potential within-band striping in simulated
output to a vegetated target in band 2 of 6.2 percent, which was about the same as the highest
observed for previous Landsat MSS’s (5.4 percent). In band 4 on the PF and F scanners, the
upper-band edge was also more variable than those of previous MSS’s. Otherwise, the PF and F

scanners were generally more uniform within bands than previous scanners.

1T A
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APPENDIX A
RELATIVE SPECTRAL RESPONSE MEASUREMENT PROCEDURE

The relative spectral responses of the protoflight and flight model MSS’s were measured at Santa
Barbara Research Center. The protoflight model RSR was measured in June 1980* and June
1981.7 The flight model RSR was first measured in March 1981¢, then the fiber optics assembly
was replaced, and it was remeasured in June 1981.8 The earlier flight model measurements are

considered inapplicable due to this optical change.

The instrumentation used to measure the relative spectral response of an MSS consisted of the
following:

® A tungsten-halogen light source

® A plane diffraction grating monochromator

® Two beam steering mirrors

® A calibrated reference silicon photo diode

® The MSS collimator

White light from the tungsten-halogen source impinged on the entraice slit of the monochromator.
Within the monochromator dispersion was accomplished by means of a plane diffraction grating
equipped with sine bar motion. A counter on the drive screw read wavelength directly in nano-
meters. The entrance and exit slits were adjusted to obtain 4 nanometer spectral resolution at any

particuiar wavelength setting. Light exiting the monochromator impinged on a fiber optic bundle

* .
Hughes Aircraft Company, Santa Barbara Research Center, “Relative Spectral Response of MSS-D/P-1,” internal
memorandum HS248-6312, July 24, 1980

t Hughes Aircraft Company, Santa Barbara Research Center, “MSS-D PF System Relative Spectral Response,”
internal memorandum HS248-1357, June 23, 1981

iHughes Aircraft Company, Santa Barbara Research Center, “MSS-D F RSR Measurement,” internal memorandum
HS248-6594, March 13, 1981 |

§Hughes Aircraft Company, Santa Barbara Research Center, “RSR Measurement of MSS-D/F-1 with Spare Fiber
Optics Assembly,” internal memorandum HS248-6677, June 10, 1981



which transferred the light to the focal plane at the MSS collimator. The two beam steering mirrors
located at this point chopped the light, alternately focusing it on the reference detector and letting
it pass into the collimator. The collimator, optically aligned with the MSS, passed the light to the
MSS, where the slit image completely overfilled all 24 channels simultaneously. The outputs from
the reference detector and the MSS detectors were sampled at 10 nm intervals from 450 to 800 nm
and 20 nm intervals from 800 to 1100 nm. The ratio at these two outputs, normalized to 100%

maximum for each channel, was the relative spectral response.

A-2
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APPENDIX B
PROTOFLIGHT AND FLIGHT MODEL FILTER CHARACTERISTICS

With the exception of the upper-band edge of band 4 (800 to 1100 nm), which is determined by the

silicon photodiode yesponse, the spectral filters are the primary components that determine the

spectral response of the various channels. Tables B-1 and B-2 list the spectral response (transmis-

sion) characteristics of the filters only. These data were computed from curves supplied by Hughes

Aircraft Company* and subsequently digitized at 10-nm intervals for bands 1 through 3 and 20-nm |

intervals for band 4.

Technically, most of the band 1 filters, having negative deviations greater than 5 percent, failed the
flatness criteria, However, because the flatness criteria are considered to be met if the sum of the
positive and negative deviations does not exceed 10 percent, they do pass. A similar situation exists
for band 2; however, the sum of the positive and negative deviations typically slightly exceeds the

specified 15 percent. Otherwise the filter specifications were met.

When compared to the total system response, the band edges, widths, and slope intervals of the filters
compare favorably for bands 1, 2, and 4, being generally within 2 nanometers of each other. For
band 3, the measured filter band edges are lower than the system response band edges. The upper-
band edge of the system response is generally 10 nm greater than the filters, except for three channels,
the difference of which is § to 6 nanometers. Smaller differences with the same pattern exist for the
lower-band edge. One unexplained observation is that filters 13, 15, and 18 on the F model, which

are offset 4 nm relative to the other filters, do not show the same pattern for the total system response

There are several possible explanations for this discrepancy. One is that there was a difference in

the spectral calibration of the spectrometer used to measure the filter transmission coefficients and

*“MSS-D Multispectral Scanner Protoflight Radiometric Calibration and Alignment Handbook,” HS249-1379, and
“MSS-D Multispectral Scanner Flight Model Radiometric Calibration and Alignment Handbook,” HS248-1490,
prepared by Hughes Aircraft Company for GSFC under contract NAS5-25050, 1981.
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Table B-1
MSS Filter Spectral Characterization by Channel: PF for Landsat-D

Band Edge Slope Interval S .

. pectral Flatness Maximum

Band | Channel (nm) \z:?‘g‘* (nm) : I'ransmission
Lower | Upper Lower | Upper | Positive | Negative (%)
1 1 495 | 607 | 112 14 21 2.5 58T 93
2 495 | 60S | 110 15 21 2.5 5.8t 93
3 494 | 605 | 111 14 21 2.1 5.6 93
4 494 | 606 | 111 14 21 2.1 5.6t 93
5 494 | 605 | 112 13 21 2.1 5.0 93
6 493 | 604 | 111 13 2 1.7 4.9 93
2 7 603 | 710 | 107 12 16 3.2 13.1% 95
8 601 697 | 96 13 16 3.3 12.1% 94
9 602 | 697 | 95 13 16 33 13.8T 94
10 602 | 698 | 96 12 17 2.8 1311 94
11 602 | 697 | 95 12 18 3.3 13.21 94
12 602 | 697 | 95 13 17 3.3 13.8F 94
3 13 696 | 804 | 107 14 14 1.5 2.7 96
14 697 | 804 | 107 15 13 1.4 2.9 96
15 696 | 804 | 108 14 13 1.8 2.4 96
16 697 | 804 | 107 15 13 1.1 2.2 94
17 697 | 804 | 107 15 13 1.3 2.8 98
18 697 | 804 | 108 14 13 2.1 3.1 98
4 19 806 - - 24 - 2.4 3.0 96
20 806 - - 24 - 2.0 3.3 96
21 806 - - 24 - 1.8 4.6 96
22 806 — - 24 - 1.8 3.5 96
23 806 - - 24 - 2.4 2.9 96
24 806 - - 24 - 1.6 3.7 96

*No filter specification,

T Fails to meet filter specification.

the monochromator used to measure the relative spectral responses (i.e., one or both were spectrally
improperly calibrated). This possibility appears unlikely because the band 4 filters, which were
measured with the same spectrometer at approximately tlie same time as the band 3 filters and
whose lower-band edge corresponds approximately with the upper-band edge for band 3, show little
difference in their lower-band edge when compared to the relative system response lower-band

edge (Figure B-1).
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Table B-2

MSS Filter Spectral Characterization by Channel: F for Landsat-D

Band Edge Slope Interval S .
. pectral Flatness Maximum
Band | Channel (nm) \2:?:)1* (rm) Transmission
Lower | Upper Lower | Upper | Positive | Negative (%)
1 1 495 | 606 | 111 16 23 2.2 5.41 94
2 494 607 112 15 20 24 5.8t 93
3 494 605 111 14 23 2.3 4.2 94
4 494 |- 605 | 111 14 24 3.6 5.8% 94
5 495 | 605 | 111 14 21 2.6 5.7 93
6 494 606 112 15 21 2.1 5.67 93
2 7 602 696 95 11 14 2.7 12,17 94
8 601 696 96 10 14 3.2 13.3F 94
9 601 | 697 | 95 11 14 3.0 12.9% 94
10 601 696 94 11 14 34 12.9% 95
11 601 696 95 11 15 2.6 12171 94
12 601 696 95 11 14 29 13.0% 94
3 13 701 808 108 17 i2 2.1 2.1 98
14 697 804 107 15 13 1.6 1.5 98
15 701 808 107 17 12 1.3 1.8 96
16 698 804 106 15 13 1.8 2.4 97
17 698 804 106 16 13 2.0 2.2 97
18 701 809 108 16 14 1.5 2.7 98
4 19 808 — _ 24 - 2.3 4.1 96
20 806 - —_ 24 — 2.1 4.2 97
21 807 - - 25 — 2.7 3.6 97
22 808 - - 24 — 2.0 4.4 95
23 808 - - 24 - 38 4.8 97
24 808 - — 24 - 3.2 5.4 96

*No filter specification.
T Fails to meet filter specification.

A second possibility is that the band 3 filters have been changing in their bandpass with time. The

spectral characteristics of all the band 3 filters except for F 13, 15, and 18 were measured in Decem-

ber 1978. F 13, i5, and 18 were measured in November 1979. The relative spectral responses

reported herein were measured in June 1981. When plotted versus time, a monotonic change is

suggested (Figure B-1). When data from the first relative spectral response runs on the PF are

included (June 1980), the curve shows a leveling-off trend. This suggests that the filters ceased to

B4



change after they were incorporated into the scanner. One explanation is that one or several layers
of the many-layered interference filters were disturbed during storage or handling. The adsorption
of water by interstitial voids or structural changes in the layers are possibilities. This multilayered
structure principally determines the upper-band edge, whereas a color absorption filter primarily
determines the lower-band edge. Thus, a disturbance to the interference layer structure would

more likely affect the upper-band edge, as was observed (Yuh, private communication),

When expressed as the sum of the positive and negative components, the spectral flatness criteria
are always lower for the filters than for the entire system. This indicates that the principal effect

of the detectors and optics is to degrade thé flatness of the spectral response.



APPENDIX C
REPRODUCIBILITY OF RELATIVE SPECTRAL RESPONSE MEASUREMENTS

Only for the PF scanner was more than one set of relative spectral response (RSR) measurements
available for the same unaltered scanner. The second set was collected in June 1980 (Table C-1),

a vear before the RSR measurements presented in the main text were acquired. The differences
between the two sets of RSR measurements resulted from the composite effects of: (1) the stability
of the alignment and calibration of the test equipment used to measure RSR, (2) the stability of the
scanner spectral response itself, and (3) the reproducibility of the digitization of the RSR curves.

Note that the June 1980 PF RSR curves were more difficult to digitize than the June 1981 curves.

Table C-2 lists the differences in the means and standard deviations of the PF RSR characteristics.
Several explanations are suggested for the large band 4 mean upper-band edge (and flatness) differ-
ences that were measured: (1) a drift in the response of the reference photodiode used in measuring
RSR, (2) poorer monochrometer-to-collimator alignment for the earlier tests, or (3) instrument

operating temperature differences between the tests (Yuh, private communication).

The RSR parameters were categorized on the basis of their expected reproducibility, and a threshold
difference for each category was established for use in comparing multispectral scanners. All the
band edges (except for band 4 upper edge), widths (except for band 4) and slope intervals (except
for band 4 upper slope) are primarily filter-determined and were deemed of similar reproducibility.
Thresholds of 3-nm for means and 1.8 nm for standard deviations, (the maximum observed differ-
ences as shown in Table B-2) were established. The other categories that were established are:
® The principally detector-determined characteristics of band 4 upper-band edge, width, and
upper-slope interval with thresholds of 33 nm for means and 2.7 nm for standard deviations
® The positive spectral flatness for bands 1 through 3 with thresholds of 4 percent for means
and 0.9 percent for standard deviations

® The negative spectral flatness for bands 1 through 3 with thresholds of 6 and 1.5 percent



Table C-1
MSS Spectral Characterization by Channel: PF for Landsat-D (June 1980)

Band Edge Slope Interval Spectral Flatness
Channe (nmm) Widthe () 2
Lower Upper Lower Upper Positive Negative
1 498 607 110 17 22 10.67 13.8%
2 497 606 109 17 22 9.71 16171
3 498 606 109 16 21 9.17 13.8F
4 497 607 110 17 21 7.5 17.2%
5 497 605 109 19 23 7.8t 13.21
6 498 607 108 17 22 1.1t 16.1F
7 604 713% 110t 13 15 5.0 12.4F
8 604 700 96 14 16 4.6 16.3F
9 604 696 92 14 18 3.1 17.5T
10 606 701 95 15 15 3.9 23.61
11 603 700 97 13 16 3.4 17.2F
12 604 698 94 14 18 4.5 13.2%
13 702 8137 111 16 15 14.11 13.87
14 702 8121 109 12 14 15.2% 16.5F
15 702 814t 111 18 14 11.47 12.0f
16 703 812t 109 12 15 10.47 10.0f
17 702 814t 111 15 15 10.8T 12.5F
18 703 8131 110 18 15 14.17 12.7F
19 808 991 183 23 139* 44.17 64.7%
20 808 974 166 23 146* 61.1F 71.0%
21 808 1004 196 23 126* 37.8% 59.3F
22 808 992 185 24 133* 47.41 67.2F
23 807 976 169 24 144* 60.8F 69.5T
24 807 1000 193 24 120% 438t 63.0f

* No filter specification.
T Fails to meet filter specification.
I Rejectable as outlier: a = 0.01.

® The positive spectral flatness for band 4, 19 and 2.4 percent

® The negative spectral flatness for band 4, 12 and 2.5 percent

Simulated outputs for soil and soybean targets were also generated by using the June 1980 data, and
differences were computed between these outputs and the simulated outputs by using the June 1981

RSR data (Table C-3).
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Table C-2

Differences in Protoflight Relative Spectral Responses between June 1980
and June 1981 Measurements

Band Edge Slope Interval Spectral Flatness
(nm) Width (nm) (%)
Band (nm)
Lower Upper Lower Upper Positive Negative
Means
1 -2.0 -1.7 +0.2 -2.5 +1.1 -4.2 -6.0
2 -1.2 -3.2 -2.0 -1.3 0.0 +2.9 -39
3 -1.6 0.0 +1.6 0.0 0.0 +0.6 -0.1
4 0.0 +33.0 +33.0 -0.3 -24.5 -194 -12.2
Standard Deviations
1 -0.02 +0.40 +0.03 -0.67 +0.24 -0.4 +1.1
2 -0.34 -1.30 -1.36 -0.36 +0.45 +0,7 -1.5
3 +0.37 -0.03 +0.17 -1.77 +0.10 +0.9 +0.8
4 -0.17 +2.70 +2.30 =0.45 =1.10 -2.4 +2.5
Table C-3
Differences in Simulated MSS Outputs Using June 1980
Versus June 1981 Relative Spectral Response Data
Target Band 1 Band 2 Band 3 Band 4
Mezns
Soy +0.16 +0.04 -0.89 -1.15
Soil -0.02 +0.07 -0.04 -0.36
Maximum Differences Between Channels
Soy -0.02 -0.29 +1.09 +0.30
Soil -0.01 -0.01 +0.03 +0.10




APPENDIX D

PROTOFLIGHT AND FLIGHT MODEL DIGITIZED RELATIVE SPECTRAL RESPONSES

Table D-1
Protoflight Digitized Relative Spectral Responses (June 1981)
Band 1 Band 2

Wavelength Channel Wavelength Channel

{nanometers) | 1 2 3 4 5 6 | (nanometers)| 7 8 9 10 11 12
450 0. 0. 0. 0. 0. 0. 550 0. 0. 0. 0. 0. 0.
460 0. o 0. 0. 0. 0. 560 0. 0. 0. 0. 0. 0.
470 1. 1., 1. 1. 1. 1. 570 0. 0. 0. 0. 0. 0.
480 3. 3. 3, 4, 4. 4, 580 0. 0. 0. 0. 0. 0.
490 23. 24, 24, 27. 28 26 590 3. 3. 2, 3. 2. 4,
500 68. 68 68. 73. 74.° 1. 600 39. 41. 35 38, 36. 42
510 87. 88 89. 90. 93. 89, 610 82. 84. 79. 80. 74. 82,
520 93. 95 93, 95. 94. 93, 620 97. 97. 94. 94, 95, 95.
530 98. 98, 100. 100. 100. 100. 630 98. 99. 100. 100. 100. 99.
540 98. 98. 96. 97. 99, 97, 640 100. 100, 100. 99. 99. 100.
550 100. 100 98. 98 98. 98. 650 97. 96, 95. 95. 96. 94,
560 97. 97. 95. 94. 95. 96. 660 89, 92, 93, 89. 97. 91
570 96. 98, 95. 92, 92. 96. 670 88. 90. 91. 90. 95. 88
580 89. 91 86. 84 82. 88, 680 81. 86. 86. 85 91. 82
590 90. 91 88. 85 85. 90. 690 72. 80. 81. 80. 8. 76
600 68. 66 65. 60 58. 67. 700 70, 30. 28. 34, 37. 28
610 38. 35 37. 34 32. 38 710 44, 6. s. 7. 8. 5.
620 9, 8 9. 8 8. 9. 720 12. 2. 2. 2. 1. 1.
630 4, 4 4, 4 4, 4, 730 2. 1. 1. 1. 0. 0.
640 2. 2, 2. 2 2. 2. 740 0. 0. 0. 0. 0. 0.
650 1. 1. 1. 1 1. 1 750 0. 0. 0. 0. 0. 0.

Band 3 Band 4

Wavelength Channel Wavelength Channel

(nanometers) | 13 14 15 16 17 18 | (nanometers)| 19 20 21 22 23 24
650 0. 0. 0. ) 0. 0 740 0. 0. 0. 0. 0. 0.
660 0. O 0. 0 0. 0. 760 0. 0. 0. 0. 0. 0.
670 0. 0. 0. 0. 0. 0. 780 1. 1. 1. 1. 1. 1.
680 1. 1. 1. 1. 1. 1. 800 18, 20. 18, 21. 21. 2L
690 10. 8. 9, 7. 8. 8. 820 98. 100. 94. 100. 100. 100.
700 50. 44, 46. 40. 47. 46. 840 100. 99. 95. 99. 97. 99.
710 92, 93, 90. 88. 92. 92, 860 98. 96. 97. 97. 96. 98.
720 120. 100. 100. 100. 100, 100. 880 95. 94, 94, 93. 93. 97,
730 95. 94, 91. 95. 94, 92, 900 94, 93. 96. 92. 93. 97.
740 89. 90 88. 91 88. 86. 920 97. 91. 100. 95. 90. 95
750 89. 89 89. 92 90. 85, 940 90. 84. 96. 85. 84, 90.
760 85. 86 88. 90 86. 8l. 960 84, 73. 88. 80. 78, 8l.
770 82. 91 83, 87 83. 175 980 8. 66. 82. 67. 75. 72
780 77. 719 83. 85 80. 73. 1000 66. 54. 73. 56. 63. 60.
790 74. 72 79. 719 74.  10. 1020 51. 41. 63. 46. 52. 49,
800 66. 67 73. 174 69. 63. 1040 47. 34, S6. 36. 44, 41,
810 67. 58 72. 69 66. 58, 1060 39. 25, 43, 28. 36. 31.
820 13. 10, 15. 14, 16. 13. 1080 30, 20. 35. 23, 29. 26.
830 2. 2. 3 2. 2. 2. 1100 21. 14. 25, 16. 19. 18,
840 0. 1. 1. 1. 1. 0. 1120* 11. 7. 15. 9. 10. 9.
850 0. 0. 1. 0. 0. 0. 1140* 3. 1. 6. 0. 2. 1.

*Extrapolated




Table D-2

Flight Digitized Relative Spectral Responses

Band 1 Band 2
Wavelength Channel Wavelength Channel

(nanometers) | 1 2 3 4 5 6 | (nanometers)| 7 8 9 10 11 12
450 0. 0 0. 0 0. 0. 550 0. 0. 0. 0. 0. 0.
460 0. 0 0. 0 0. 0. 560 0. 0. 0. 0. 0. 0.
470 0. 0 1. 1 1. 1 570 0. 0. 0. 0. 0. 0.
480 2. 2 3. 3 3. 3. 580 0. 0. 0. 0. 0. 0.
490 21, 20. 23, 24 21, 22 590 3. 3. 3. 3. 3. 3.
500 63. S8 67. 71 63. 64, 600 36. 37 38. 40. 38, 39,
510 81. 75 86. 88 81. 82, 610 77. 76. 81. 84. 179. 179.
520 87. 82. 91. 94, 88. 88, 620 92, 92. 94, 96. 94. 93,
530 96. 92. 98. 100. 96. 9. 630 97. 98. 99, 99. 98, 97
540 95. 93, 96. 97. 96, 95, 640 100. 100. 100. 100. 100. 100.
550 100. 99. 100. 100. 100. 100. 650 96. 96. 94, 95. 95. 96.
560 98. 98. 95. 96. 98. 98, 660 93. 93 89. 89 92. 93,
570 100. 100. 96. 9% 98. 98. 670 91. 90 86. 85 90. 92.
580 95. 96. 89. 87. 93. 95, 680 88. 86 82. 80 88. 89,
590 99. 98, 92. 88. 94. 97 690 84. 81 77. 74. 83. 85.
600 76. 76, 68. 67 75. 76. 700 37. 31. 34, 31. 34, 37
610 40. 40. 36. 36 39. 40. 710 7. 6. 6. 5. 6. 6.
620 9, 8. 8. 9 9. 9. 720 2. 1. 1. 1. 1. 1.
630 4. 4, 3. 3 4, 3. 730 0. 0. 0. 0. 0. 0.
640 2. 2. 1. 1 2. 1. 740 0. 0. 0. 0. 0. 0.
650 1. 1. 0. 0 1. 0. 750 0. 0. 0. 0. 0. 0.

Band 3 Band 4
Wavelength Channel Wavelength Channel

(nanometers) | 13 14 15 16 17 18 | (nanometers)| 19 20 21 22 23 24
650 0. 0. 0. 0. 0. 0 740 0. 0 0. 0 0. 0.
660 0. 0. 0. 0. 0. 0. 760 0. 0 0. 0 0. 0.
670 0. 0. 0. 0. 0. 0. 780 1. 1 1. 1 1. 1.
680 1. 1. 1. 1. 1. g 800 15. 15 15. 14 15, 13,
690 6. 7. 7. 5. 6. 7. 820 95. 93. 92. 94, 95, 95,
700 25. 28. 27. 23 26.  27. 840 100, 96, 98. 100. 100. 100.
710 85. 88. 91. 85  88. 88 860 93. 97. 96. 98 96. 99,
720 100. 100. 100. 100. 100. 100. 880 97. 98 97. 98 98. 98.
730 95. 93. 95. 92. 94. 94, 900 98. 98. 99. 95 97. 99.
740 88. 89. 90. 89 85. 90, 920 95. 100. 100. 93 96. 97.
750 88. 90. 89. 87 88. 89, 940 91. 94, 95. 84. 91. 94,
760 90. 88 89. 85 87. 89. 960 85. 91 93. 177 82. 87.
770 84. 84, 82. 79 83. 84, 980 78. 87 86. 68 76.  81.
780 83. 82 83. 81 81.  8lI. 1000 70, 77 78. 58 68. 71.
790 81. 78 79. 88 78. 79, 1020 54. 62 65. 47 55. 57.
800 76. 73 72. 71 71.  T72. 1040 46. 55 54, 37 48.  50.
810 75. 71 70, 71 71. 73 1060 37. 42 43, 30 36. 37.
820 17. 19 16. 18 19.  20. 1080 27. 33 34, 23 29. 30.
830 2. 2 2. 2 2. 3. 1100 18. 24 23. 16 20, 21.
840 1. 0 0. 1 0. 1. 1120* 10. 14 14, 9 11. 12,
850 0. 0 0. 0 0. 0. 1140* 3. S 5. 3 4, 4,

*Extrapoiated

D-2
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