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Introduction

by

K. S. Fu
Purdue University

The NASA Workshop on Image Analysis held on April 28-30, 1982 at
Texas A&M University, College Station, Texas, provided an opportunity for
experts in the areas of pattern recognition, image processing, and remote
sensing to assess past progress and to project future development in the
area of image analysis with respect to remote sensing applications.

A block diagram of the general image analysis system is given in
Figure 1. The preprocessing stage v<ually refers to filtering, enhance-
ment, and/or coding of raw imagery data. The segmentation stage involves
the determination of various regions of importance in the image. Features
such as shape and texture measurement are then extracted from each region;
a classification technique is often employed to recognize these regions.
Once each region has been recognized and the relations among these
regions have been identified, a complete description and possibly the
interpretation of the image can be obtained through a structural
analysis. A priori knowledge (the so-called "world model") of the
images under study plays an important role in the design of each stage.

The program of the three-day workshop was devoted to the three major
topics of image analysis: segmentation, shape and texture analysis, and
structural analysis. A survey paper and two or three special papers
were presented on each topic. Formal presentations were followed by
panel discussions which assessed past progress and identified future

research problems in each topic area.
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Figure 1. Block diagram of image analysis system
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Room 510, Rudder Tower

Wednesday, April 28:
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8:15 - 8:30 Coffee and donuts

8:30 - 9:30 Introduction
R. B. MacDonald, NASA/Johnson Space Center
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" '

Opening Remarks

ij L. F. Guseman, Jr., Texas A&M University
, 9:30 - 10:00 Overview: Image Analysis
: {' K. S. Fu, Purdue University
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E- 10:30 - 11:30 Image Segmentation: A Survey

Robert M. Haralick, /irginia Polytechnic and State University
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15 Larry Davis, University of Maryland
12:30 - 2:00 Lunch
2:00 - 3:00 Dual Problems in Image Segmentation
- Jack Bryant, Texas A&M University
| Susan Jenson, EROS Data Center
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3:30 - 5:00 Panel Discussion--Image Segmentation

Moderator: Azriel Rosenfeld
Panelists: R. K. Aggarwal
Jack Bryant
Larry Davis
Robert M. Haralick

Thursday, April 29:

8:15 - 8:30 Coffee and donuts

8:30 - 9:30 Shape and Texture
Azriel Rosenfeld, University of Maryland
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Moderator: Robert M. Haralick
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Cofree and Donuts

Structure Analysis Techniques for Remote Sensing
Linda Shapiro, Virginia Polytechnic and State University

Determining 3-D Motion and Structure from Image Sequences
Thomas S. Huang, University of I1linois

Coffee Break

Panel Discussion--Image Structure Analysis
Moderator: Thomas S. Huang
Panelists: K. S. Fu

Linda Shapiro
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Image Segmentation Survey

|
Robet M. Haralick ‘
Virginia Polytechnic Institute and State University
Dept. of Electrical Engineering
Dept. of Computer Science
Blacksburg, VA 24061

Image segmentation can be accomplished by a variety of

techniques which in this survey we classify as: ?

Single linkage schemes

Hybrid linkage schemes
Centroid linkage schemes
Histogram Mode Seekirg Schemes
Spatial Clusterning schemes

Split and Merge Schemes '
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Single Linkage Image Segmentation

Single linkage image segmentation schemes regard each pixel

as a node in a graph. Neighbering pixels whose properties are

similar enough are joined by an arc.

maximal sets of pixels all belonging

The image segments are

to the same connected

component. Single linkage image segmentation schemes are

attractive for their simplicity. They do, however, have a problem

with chaining, because it takes only one arc leaking from one

region to a neighboring one to cause the

The simplest single linkage scheme

regions to merge.

defines similar enough by

pixel difference. Two neighboring pixels are similar enough if

the absolute value of the difference

between their gray tone

intensity value is small enough. For pixels having vector values,

the obvious generalization is to use a

vector norm of the pixel

difference vector. Instead of using a Euclidean distance, Asano

and Yokoya (1981) suggest that two pixels be joined together if

this absolute value of their difference

is small enough compared

to the average absolute value of the center pixel minus neighbor

pixel for each of the neighborhoods
Haralick and Dinstein (1975), however,
using the simpler Euclidean distance on
with which unwanted region chaining can

limits its potential on complex or noisy

the pixels belong to.
do report some success
LANDSAT data. The ease
occur with this technique

data.

Hybrid single linkage techniques are more powerful than the

simple single linkage technigjue. The hybrid techniques =reek to

assign a property vector to each pixel where the property vector

depends on the KxK neighhorhood of the pixel. Pixels which are
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similar, are similar because their neighborhoods in some special
sense are similar. Similarity is thus established as a function
of neighboring pixel values and this makes the technigue better
‘behaved on noisy data.

One hybrid single 1linkage scheme relies on an edge operator
to establish whether two pixels are 3joined with an arc. Here an
edye operator is applied to the image labeling each pixel as edge
or non-edge. Neighboring pixels, neither of which are edges, are
joined by an arc. The initial segments 2are the connected
components of the non-edge labeled pixels. The edge pixels can
either be left assigned edges and be considered as background or
they can be assigned to the spatially nearest region having a
label.

The quality of this technique is highly dependent on the edge

operator used. Simple operators such as the Roberts and Sobel

operator may provide too much region linkage, £for a region cannot
be declared as a segment unless it is completely surroundcd by
edge pixels. Haralick (1982) reports some success with thie
technique using the zero-crossing of second directional derivative
edge operator.

Another hybrid technique first used by Levine and Leemet

(1976) is based on the Jarvis and Patrick (1973) shared nearest

neichbor idea. Using any kind of reasonable notion for

similarity, each pixel examines its KxK neighborhood and makes a
list of the N pixels in the neighborhood most similar to it. Call
this list the similar neighbor list, where we understand neighbor

to be any pixel in the KxK neighborhood. An arc joins any pair of
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immediately neighboring pixels if there are enough pixels common
to their shared neighbor lists; that is, if the number of shared
neighbors is high enough.

To make the shared neighbor technique work well each pixel
can be associated with a property vector consisting of its own
gray tone intensity and a suitable average of the gray tone
intensity of pixels in its KxK neighborhood. For example, we can
have (x,g) and (y,b) denote the property vectors for two pixels
where in the first pixel, x is its gray tone intensity value and a
is the average gray tone intensity value in its neighborhood.
Likewise, for the second pixel, y is its gray tone intensity value
and b is the average gray tone intensity value in its

neighborhood. Similarity can be established by computing
2
s = wy (x=y)% + wy(x-b)% + wyiy-a)?

where Wir W, and w, are non-negative weights. The pixels are

called similar enough for small enough values of s.
Region Growing / Centroid Li' age

In contrast to single linkage, in centroid linkage pairs of
neighboring pixels are not compared for similarity. Rather, a
pixel's value is compared to the centroid of an already existing
but not necessarily completed segment. If the values are close
enough, then the pixel is added to the segment and the segment's
centroid is updated. If no neighboring region has a centroid

close enough, anen a new segment is established having the given

pixel's value as its first member. Such a region growing
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technique was first suggested by Brice and Finnema (1970).
Instead of using the absolute value of the difference as the
measure of dis-similarity, Gupta, Kettig, Landgrebe, and Wintz
(1973) suggest using the more appropriate t-test.

Simple single pass approaches which scan the image in a left
right top down manner are, of course, unable to make the left and
right sides of a V-shaped region belong to the same segment. To
be more effective, the single pass must be followed by some kind
of connected components algorithm in which pairs of neighboring
regions having centroids’ which are close enough are put into the
same segment.

One minor problem with centroid 1linkage schemes is their
inherent dependence on the order in which pixels are examined. A
left right top down scan does not yield the same initial regions
as a right left bottom up scan or for that matter a column major
scan. Usually, however, differences caused by scan order are

minor.
Histogram Mode Seeking

Histogram mode seeking is a measurement space clustering
process in which the clusters in measurement space are mapped back
to the image domain where the maximal connected components of the
clusters constitute the image segments. For images which are
single band images, calculation of this histogram in an array is
direct. The measurement space clustering can be accomplished by
determining the valleys in this histogram and declaring the

clusters to be the interval of values between valleys. A pixel
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whose value is in the ith in

terval is labeled with index i and the
segment it belongs to is a connected component of all pixels whose
label is i. |

For multiband images such as LANDSAT, determining the
histogram in a multi-dimensional array is not feasible. For
example, in a six band image where each band has intensitites

5, 1pl2

between 0 and 99, the array would have to have 100
locations. A large image might be 10,000 pixels per row by 10,000

rOwS. This only constitutes 108 pixels, a sample too small to

estimate probabilities in a space of 1012 values were it not for
some constraints of reality: (1) there is typically a high
correlation between the band to band pixel values and (2) there is
a large amount of spatial redundancy in image data. Both these
factors create a situation in which the 108 pixels can be expected
to contain only between 104 and 105 distinct 6-tup}es. Based on
this fact, the counting required for the histogram is easily done
by hashing the 6-tuple into an array.

Clustering using the multidimensional histogram is more
difficult than univariate histogram clustering. Goldberg and
Shlien (1977, 1978) threshold the multidimensional histogram to
select all N-tuples situated on the most prominent modes. Then
they perform a measurement space connected components on these N-
tuples to collect together all the N-tuples in the top of the most
prominent modes. These measurement space connected sets form the
cluster cores. The clusters are defined as the set of all N-
tuples closest to each cluster core. A variation on this idea is

discussed by Matsumoto, Naka, and Yamamoto (1981)

- "
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An alternate possibility is to locate the highest mode and
region grcw around it in  the multi-dimensional measurement space.
The region growing includes all successive neighboring N-tuples
whose probability is no higher than the N-tuple from which it is
growing. This procedure identifies the most prominent mode and
its associated mountain as the first cluster core. Then the same
procedure is repeated on the remaining N-tuples until all multi-
dimensional peaks and their associated cores have been accounted
for. The clusters are defined as the set of all N-tuples closest
to each core.

Rather than accomplish the clustering in the ful. measurement
space, it is possible to work in multiple lower order projection
spaces and than reflect these clusters back to the full
measurement space. Suppose, for example, that the clustering is

done on a four band image. If the clustering done in bands 1 and

~ 2 yield clusters ¢, c,, c; and the clustering done in bands 3 and

4 yield clusters Cy and Cqg than each possible 4-tuple from a pixel
can be given a cluster label from the set ((cl,c4), (cl,cs) ’
(cz,c4), (CZ'CS)’ (c3,c4), (c3,c5)}. A 4-tuple (xl,xz,x3,x4) gets
the cluster label (cz,c4) ) & - (xl,xz) is in cluster c, and (x3,x4)

is in cluster Cye
Spatial Clustering

It is possible to determine the image segments without
periorming an independent clustering in measurement space. Such
techniques are called spatial clustering. In essence spatial

clustering schemes combine the histogram mode seeking tecinique
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with the region growing/centroid linkage technigue. Haralick and
Kelly (1969) suggested it be done by locating, in turn, all the
peaks in measurement space. Then determine all pixel locations
having a measurement on the peak. Beginning with a pixel
corresponding to the highest peak not* yet processed,
simultaneously perform a spatial and measurement space region
growing in the following manner. Initially, each segment is the
pixel from which we begin. Consider for possible inclusion into
this segment the neighbors of this pixel (in general, the
neighbors of the pixel we are growing from) if the neighbor's N-
tuple value 1is close enough in meaéurement space to the pixel's
value and if its probability is not larger than the probability of
the pixel's value we are growing from.
Split and Merge

The split method for segmentation begins with the entire
image as the initial segment. Then it successively splits each of
its current segments into quarters if the se¢ment 1is not
homogeneous enough. Homogeneity can be easily established by
determining if the difference between the largest and smallest
gray tone intensities is small enough. Algorithms of this type
were first suggested by Roberston (1973) and Klinger (1973)

Because segments are successively divided into quarters the
boundaries produced by the split technique tend to be squareish
and slightly artificial. Sometimes adjacent quarters cuming from
adjacent split segments need to be joined rather than remain
éepatate. Horowitz and Pavlidis (1976) suggest a split and merge

strategy to take care of this problem Chen and Pavlidis (1980)
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suggested using statistical tests for wuniformity rather than
examination of the difference between largest and smallest gray
tone intensities.

The data structures required to do a split and merge on
images larger than 512x512 are extremely large.' Execution of the

algorithm on virtual mememory computers results in so much paging

that the dominant activity is paging rather than segmentation.
Browning and Tanimoto (1982) give a description of a split and
merge scheme where the split and merge ic first accomplished on
mutually exclusive subimage blocks and the resulting segments are
then merged between adjacent blocks to take care of tne artificial

block boundaries.
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Cooperative processes in image segmentation
Larry S. Davis

This talk will survey recent research into the role
of cooperative, or relaxation, processes in image segmenta-
tion. Cooperative processes [l1] can be employed at several
levels of the segmentation process as a preprocessing en-
hancement step [2,3,4], during supervised or unsupervised
pixel classification [4,5] and, finally, for the interpreta-
tion of image segments based on segment properties and rela-
tions [6].

1. L. Davis and A. Rosenfeld, "Cooperative processes for
low-level vision: A survey," A.I. 17, 245-263, 198l.

2. L. Davis and A. Rosenfeld, "Noise cleaning by iterated
local averaging," IEEET-SMC, 8, 706-710, 1978.

3. L. Davis and A. Mitiche, "MITES: A new tool for image
segmentation," to appear in CGIP.

4. K. Narayanan and A. Rosenfeld, "Image smoothing by local
use of global information," IEEET-SMC, December 1981.

5. L. Davis, C. Wang and H. Xie, "Some experiments in multi-
spectral, multi-temporal crop classification using relaxa-
tion," Univ. of Maryland Computer Science TR-1131,
December 1981.

6. L. Kitchen, "Scene analysis by region based constraint
propagation," in preparation.
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CooPeRATIVE PROCESSES IN IMAGE ANALYSIS

LARRY S. Davis
CoMPUTER VISION LABORATORY
UN1VERSITY OF MARYLAND
CoLLeGe Park, MD 20742




- CooPERATIVE PROCESSES

[T GOAL:  ASSIGN SYMBOLIC AND NUMERICAL LABELS TO PICTURE PARTS

- ASSIGN SYMBOLIC LAND-USE CATEGORIES TO PIXELS
- ASSIGN NUMERIC STEREO DISPARITY LABELS TO PIXELS

[
. ‘

CONSTRAINT: IMAGES ARE LARGE, SO LABELING PROCESS MUST BE FAST
= SEQUENTIAL: TOO SLOW

= PARALLEL: TOO ERROR PRONE
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SoLuTioN: CCOPERATIVE PROCESSES

- ASSESS EACH PART INDEPENDENTLY {PARALLEL) Ll
- COMPARE ASSESSMENTS OF "RELEVANT” PARTS (PARALLEL) n
- COMPARISONS MUST BE LOCAL
- ENTIRE PROCESS 1S ITERATIVE

ORGANIZATION i
A) INITIAL, INDEPENDENT PART ASSESSMENT 1
B) ADJUSTMENTS OF ASSESSMENTS BASED ON RELATIONSHIPS BETWEEN PARTS

C) ITERATION OF STEP (B)
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2, APPLICATION TO MOTION DETECTION

AssuMe

1) IMAGE INTENSITY IS A CONTINUOUS, DIFFERENTIABLE
FUNCTION F(X,Y,T)

2) THE INTENSITY CORRESPONDING TO ANY GIVEN SCENE
POINT DOES NOT CHANGE OVER TIME

3) BoTH THE MOTION (U,V) AND THE TIME INTERVAL, T,
BETWEEN FRAMES IS SMALL ENOUGH THAT A MACLAUREN
SERIES EXPANSION IS A GOOD LOCAL APPROXIMATION
TO THE PICTUKE FUNCTION.

APPROX IMATE F(x+U,Y+V,T+1) BY A SERIES EXPANSION ABOUT
(x,Y,Y) (wHICH cAk BE REGARDED As (0,0,0)).

F{X+y,Y+y,T+1) = F(X,Y,T)+FX-U+FY°V+FT-T
++1GHER ORDER TERMS

ARSITRARILY SET =1 ANUL NOTE THAT (2) IMPLIES F(X*u,Y+v,T+1) =

F(X,Y,T)
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Fr = FyUtFV : MOTION CONSTRAINT
Fy = TEMPORAL DERIVATIVE

FX'FY = SPATIAL DERIVATIVES

NOTE:
1) IF FysFysJ, THEN MOTION INFORMATION CANNOT BE
ACCURATELY DETERMINED
2) IF Fy=d, THEN -F =F,V SO THAT V IS DETERMINED BUT
U IS UNKNOWW
3) LET 6 ANu % DENOTE THE GRADIENT AND LEVEL CIRECTIONS
AT A PIXEL.
6= a1 Fy/Fy
vle, Fp=0

THEN Fr = Fg DG/DT SO COMPONENT OF VELOCITY IN THE

GRADIEWT DIRECTION !S KNOWN, BUT NOT IN THE LEVEL
DIRECTION,
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CoMBINING MoTIiON CONSTRAINTS

ASSUME THAT U,V ARE CONSTANT OVER SMALL REGIONS OF THE
IMAGE AND OBTAIN A LOCAL LEAST SQUARE SOLUTION FOR U,V.

C. Carror1o AiWD F., RoccA, “TRACKING MOVING OBJECTS IN
T.V. Imaces,” SieNAL Proc., 1, 1979, 133-140.

J. LiMB AND J. MuRPHY, "ESTIMATING THE VELOCITY OF MOVING
IMAGES IN T.V. sienaLs,” CGIP, 4, 1975, 311-327.

ASSUME THAT U,V VARY SMOOTHLY OVER THE IMAGE AND USE
RELAXATION TECHNIQUES TO COMPUTE "OPTIMAL" VALUES AT U,V.

B.K.P. HORN AND B. SCHUNCK, "DETERMINING OPTICAL FLOW,"
ARTIFICIAL INTELLIGENCE, 1/= 1901, 185-203.
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Supervised Relaxation

- Statistical models for various textures

Ml Mz P Mn
Prl P2 Ps
P'-l X P5
Ps| P74 Ps

1) ProbiX interior to Mll = rlt problpj ¢ Mll » problx ¢ Mll

2) ProbiX e Ml and on a vertical edge separating

MJ from Mll =

TC orovtp; « M;) + TT probip) e My ProbiX = My
J'IJQIB 1*11416
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|

Label Set = {ml, Mys Mzs vov » My

VI21 VZBJ Cve 2 vn_l‘n' | 3

HlZl H231 T 2 Hn_l'n}

[terative procedure: |
-~ For each pixel, X: |
: s
’ 1) compute the most probable label for X |

. 2) Smooth X “appropriately”

EX: 1) X interlor - average with all neighbors

2) | Py Py Pz

average X with
Pq X PS

|
I
| Mmool om oM,
I
I
I

ey
-
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: Figure 32. 15th iteration smoothing (a) and

labelling (b). 3x3 simple smoothing.
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Figure 19 (a) Concrete in Grating |
(b) Grating left and Bricks right
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MULTI-TEMPORAL IMAGE SEGMENTATION

OBJUECTS - PIXELS
LABELS =~ REGION CLASS NAMES

RELAXATION RULES CAN BE HEURISTICALLY DERIVED FROM THE FOLLOW-
ING OBSERVATION:

FIELDS ARE, IN GEE™AL, MUCH BIGGER THAN A SINGLE PIXEL AND
DO NOT CHANGE LABELS DURiING A SINGLE GROWING SEASON.

PX(1,4,T) - PROBABILITY THAT THE PIXEL AT SPATIAL LOCATION
(1,J,T) AND TIME T IS IN CLASS X AFTER K ITERA-
TIONS OF THE RELAXATION RULE

et e s Bl i i« it e, St A R vy o e S e
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RELAXATION RULES

RULE SCHEMA

P§+l(l,J,T) - % PX(1,4,T) ;.;T PCLsdsT")

o ((PX (17,0",m): A€ L, (1',0') A NEIGHBOR

I oF (1,4)1)
SPECIFIC RULES
/
F1 = max PY(x;,T)

1=0

Xg (1,49 Xo
X5 ] Xy | X3
Fy = MAX PA(X 4,0 T)
J=0 1=0
Fg= I _ P(x,,T)
57 5=0,2,4,6 AW

~
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SCENE ANALYSIS - TANKS WORLD

TANKSWORLD

GROUND

Sky

SMOKE

TANK

TREE

TREE FRAGMENTS

UNARY CONSTRAINTS
BINARY CONSTRAINTS
EXISTENTIAL CONSTRAINTS

LyxLy
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EXAMPLES

BINARY CONSTRAINTS (ARCS)

TANK CANNOT SURROUND SMOKE
IF (TANK,SMOKE) ¢ LIxLJ AND IF NI SURROUNDS NJ, THEN
DELETE (TANK,SMOKE) FROM LI*LJ.

EXISTENTIAL CONSTRAINTS
1 A TREE FRAGMENT MUST BE ADJACENT TO A TREE FRAGMENT
l' IF TREE FRAGMENT ¢ L, AND IF FOR NO ADJACENT L, 1s
(TREE FRAGMENT,TREE FRAGMENT) € L xL,, THEN ELIMINATE

[ E———
’ 1

TREE FRAGMENT FROM LI.

I ——)
M

=

-

= T
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COOPERATIVE PROCESSES IN IMAGE ANALYSIS

L. S. Davis
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Computer Vision Laboratory, Computer Science Cemter, University of Marylend,

College Park, Maryland 20742

Absrract.

This paper contains sn overviev of the organization of cooperative

(or 1elaxation) processes for low-level vision. Two examples (one involving
pixel classification and the other motion disparity estimation) are used to
1llustrate the various steps in applying s relaxation algorithm to image

analysis protlems.

Note: This paper also appears in the Proceedings of IFAC 32.

1. 1Issuss

Many imagz anmalysis problems can be regarded
as problems of aceigning a label to each
element in a set of picture parts (pixels

or regions). For exvmple, pixels can be as-
signed symbollic land use category labels
based on their spectral signatures, or numeri-
cal wmotion disparity labels based on local
comparisons amor- st consecutive frames in &
time-varying image. Both of these problems
will be used as examples ‘throughout this

paper.

The large number of pixels in a digital image
demands that such labell ing processes be very
fast. One obvious solut:on to this problem
is to make the labelling process highly
parallel. However, in a parallel process,
each picture part would be analyzed indepen-
dently of all otber picture parts. Thus,
parallel processes fail to make use of con-
textuai information (vhich is often avail-
able), and make many labelling errors.

1o order to overcome this problem, one can
assess the labelling possibilities for every
part independently, and then compare each
part's assessments to those of other, related
parts, in order to correct inconsistencies.
Since both the sssesment and the comparison
can be done independently for every part,
each stage of the process is parallel. On
the other hand, context is nov being used at
the comparison stage, vhen relsted parts are
able to communicate and ‘cooperste’. To heep
the computat iomal cost low, the comparisons
should be local; they should involve only
perts that are directly related (e.g., neigh-
boring pizels). This localoess can be com-
pensited for by iterating the comparison pro-
cess, in order to allov informatiom to pro-
pagste.

These considerations lead maturally to the
design of a 'cooperative' approach to lebel-
ling picture parts which allows context to
be used in the labelling process while still
permitting fast parallel implementation and
lov computational cost. Such processes are
called 'relaxation’ processes, because of
their resemblance to certais iterdtive pro-
cesses used in mumerical analysis. Very
generally, a relaxation process is organized
as follows:

(a) A list of possible labels is indepen-
dently selected for esch part, based
on its intrinsic characteristics. A
measure of confidence can aleo be
associated with each possible label,

(b) The possibilities (and confidences)
for each part are compared with those
for related parts, besed on s model
for the relationships betwveen the
possible labels of picture parts.
Labels are deleted or modified or con-
fidences are adjusted, to reduce in-
consistencies.

(c) Step (b) can be iterated as many times
48 required.

This approach is very genmeral: Ve have mot
specified hov to formulate label relstionship
sodels, choose possibilities, es imste con-
fidences, or adjust them; mor have we dis-
cussed vhen the process should be fterated,
and 4f so, hov many times.

These fssues are discussed in some detail

in (1), end, in general, are a function of
the problem at hand. For a gemeral discus-
sion, the reader should consult [1). we
vill, instead, consider two specific problems
in detail - pixel classif ication and motion




disparity estimation. The first involves a
symbollic label set and the second a numeric
one. The first involves confidence adjustment
and the second, additionally, involves wodi-
fication of suseric labels. Secticns 2,3,
and & vill consider steps o,b, and c above
for these two problems.

2. INITIAl LABEL ASSICNMENT

The firet step of & relazstion process in-
volves assigning initial labals to sach pie-
ture part. 1If the given label set 1s sym-
bollic, then this is ordinarily done using
techoiques from statistical pattern recogai-
tion. Nere, measurements are computed for
each picture part and, based oo a priori
nodels of the clase conditional densities of
these measurements & probability that each
label 18 the correct one for a picture part
can be computed. These probabilities serve
s the measures of confidence referred to in
Section 1. Some sxamples of symbollic label
sets, L, and associsted picture part mea-
surements, M, are:

(1) 1a & "epring-loaded” template matching
prodblem [2) L would be the set of sub-

T ————— g
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1f one were forced to decide on & fined
label for a pixal, x, then one would choose
the 5 for wvhich p (x) 1o maximal. As sen-
tioned earlier, such an independent classi-
fication contains many errors. Figure 2a-i
1llustrates this. Yu the next sectios we
describe hov & simple relanation process cas
improve on these results.

In many apjlications, the natural label set
18 & nuseric property value rather thas
sysbollic, and the labal set at each picture
part is often initially represanted by the
®Ost current estimate of the most likaly
property value at that picture part and a
measure of confidence often related to the
variance of local property values. Por
exasple, in relaxation slgoritime for grey
level image enhancement, the initial property
value at each pixel is the pixel's grey level,
and the measure of confid » for pi e
constant images, would be the grey leval
variance in some neighborhood of the picture.

A more complicated example 1s motion dis-
parity estimation. Here, the initial property
value 1s a motion vector which can be com-
puted as follows. At each pizel, one can
compute & linear coustraint on the = and y

tenplate nanes and N the T~
lation of tie subtemplate at a parti-
cular image position. See [3) for
detatls.

(2) 1o dot cluster detection, L = {intertor
point, edge point, moise point) and N
are seasurements o local dot density.
See [4) for detatls.

(3) 1o supervised pixel classification, L
1s the set of given class names, and
M ordinarily contains spectral and,
possibly, local textural features.

Pursuing the pixel classification in more de-
tail, Figure la-g shows six images of a LACIE
test site (1473). These six images are from
three time acquisitions and two bands (2 and
3). Cround truth is available for this site,
and 1t can be usad to compute the class com-
ditionsal probability deneitiss at sach time
for the i-vector of measurements at each time.
By wodeling thass densities as mormal, we can
sdopt the following simple procedure for de-
determining class probabilitias for each
pixel at each time:

(1) Compute the folloving distance mes-
sure of & pizel, x, from & class, d:

4,(x) = lo.l!xl + (x-y )? I;l(:—y )

Here, y, 1s the mean vector for class A and
I, 1e 1its covarisnce matrix.

(2) Wext, compute the probability thet
pizel x belongs to class A by:

P = @I/, )
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-p e (u,v) of that pixel's woticn based
on the equation:

-1‘ - l" * l’v Q)

Here, 1_ 1s the temporal image intemsity
change ind 1_ and I_ represent the spatial
image ut-n!ty nJQ-l. Ve assume here
that grey leval 1is an invariant of motiocn.
Assuning that the image motion is locally o
translation, then one could combine the equa-
tions at two adjacent points to obtain a
unique velocity vector at each poiat, or, more
gmerally, one can compute the “pseudo-inter-
section” of the linear constraints in a
peighborhood of each pixel [3). In this case,
the error of the fit can be used as & measure
of conf idence at each pixel, although we will
ignore the confidences in what follows.

As an example, FPigure ) cootains two frames
io » tis2 varying image, and FPigure & con-
tains the initial velocity vector computed
by the pseudo-intersection technique.

3. RELAXATION

After initial labellings (and confidences)
are computed, one begics & sequence of itera-
tions where the labels and confidences at
each picture part are modified based oo the
distribution of labels and counfidences on
related picture parts and apme model of how
labellings affect one another. Thus, the
relazation algorithm is based on:

) a model for the neighborhood of a
picture part, and




b) & model for the interactions between
1iballings of adjacent picture parts. .

The neighborhood model for s relazation pre-
cess speL‘“Z.e which pairs of picture parts
directly communicate with one snother im \ae
relaxation process, and detarmines the topo-
logy of the graph on which the relaxation
process oparstes. This graph has individual
picture partes as nodes. Its arcs comnect
those pairs of parte that comsunicate with
one another., The neighborhood model 1s usw-
ally desigaed to establish connections oaly
between 'vasrby’ parts.

A peighborbuod model 10 specified by & set of
seighbor celatioms r = {r,,ry,..0,x ). Rach
T, is & bisary velation olulu ovar the ap-
p‘onhu oot of picture parts. Por example,
if the picture parts are pizels, then the
neighborhood model aight specify that a pixel
is connected to ¢ ary pizel ite Ix) paighbor-
hood. In this 7aese, there are still several
possibilities for the relations contained ia
the set r. Por example, r might be the set
{directly above, directly below, etc.) which
would distinguish between pairs of pointe
that are horisontally sdjscent, vertically
sdjecent, etc., or it could be the singleton
relation "in the 3x) meighborbood”. 1o the
latter cace, the comnections between paire

of pizels would mot be recoverable from the
graph oo which the relaxation process will
operate. The choice of r will, in general,
be determined by the isotropy of the universe
of labels. For example, Af we are designing
s relaxation process for edge reinforcesent,
then the relative positions of pixzels are
crucial since edges generally 'line uwp',
vhile 1f we are designing & relaxation pro-
ceass to enhance an image's grey levels, thes
the positional information may not be re-
quired.

When the picture parts are regions rather
than pixels, then connections might be formed
between adjecent regions only. In some site-
stions, it might be necessary to distinguish
between regions that are sbove, belowv, inside,
surrounding, etc.

The intersctioe model defines hov a picture
part changes its label g based on the
labellings of its meighbors. An interactiocs
wodel is composed of two parte:

(1) s knovledge representation for the
relationships between labels, and

(2) a mechanism, or procedurs, for apply-
iog the knowledge i (1) to change,
or update, labellings.

For discrete symbollic labellings the sim-
plest knowledge representation 1s & set of
the paire of labels thet can sisultanecusly
be associsted with pairs of neighboring pic-
ture parts. It can be represented by a
binary relation R defined over the universe
of labels D. Intuitively, (d,d') € R
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Af & pair of neighbors cin simultanecusly

be labelled with d and /'. 1In general, there
18 & binary relation asvociated with ssch
seighbor relation,

The nost obvious updating sechanism for dis-
crete, symbollic labelling is & labal dis-
carding process, vhich looks at pairs of pic-
ture parte ot a time. A ls%el, 4, can be
deleted from the laballing of & picture part
ai, for some maighboring picture part, that
neighbor does not contain & label, 4', 1a 1te
laballing with (d,4°) € R,

The binary relation knowledge representation
can be generalized to sysbollic labellings
with confid for sach symbollic labal

by specifying & real-valued competibilicy
function, C, vhose domain 1s DD, As before,
in general, a compatibility fusction 1s de-
fined for each picture relation in the set r.
A variety of applications have used compati-
bility functions whose range s (-1,1). 1la-
tuitivaly, 4f C(d,4') = -1, than d ond 4' are
sazximally incompatible, and the strong pre-
sence of d' at one picture part (i.e., 4°
has & bhigh likalibood at thet part) should
depress the likelihood of 4 at & neighboring
picture part. 1If C(d,4') = 1, then d and &'
are saximally compatible, and the strong pre-
sence of d' at a picture part should incresse
the likelihood of ¢ at a neighboriug picture
part. Finally, 1f C(4,4') = O, then the pre-
sence of d' at a picture part should have mo
effect on the 1ikalihood of 4 at a neighbor-
ing part. Ilotermadiste values of C should
bave intersediate effects.

Several mechanisms have been suggested for
spplying this knowledge representation to
updating labellings. For example, Rosenfeld
et al. [6) suggested the formals

i) = p (@A + QM (@

1)

and N is & normalizing factor which guarantees
that p_(d)=l. The . valuss can be used to
sive M‘hu waight to ‘-n maighbors at part
1 than othars. Q,(d) measures the oversll
support of the neighborhood of part 1 for
label d; it takes oo values in the range
[-1,1) and can be interpreted similarly to C,
The ab)ve operation is applisd in parallel

st every part and for every label., The p'
values thes replace the p values, and the
operation cen be iterated.

Qd) =Iwm I C(d,d")p, (") ()
A 3 a ]

Very often, however, a general updating rule
1ike (2) 1s inappropriste because it feails to
take sdvantage of knoviedge about the speci-
fic probles at hand. For example, in the
crop classification problem several plausible
relaxation rules can be derived from heuristic
arguments based oo the following genersl ob-
servation:
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Fields are, in general, such bigger than a
single pixel and do not change class during
& slngle groving sesson.

11 ve det p, (I.).t) derote the probability
that the pl.nl at spatial location (1,§) and
tise t 18 in class ) after k iterations of
the relasation rule, than the folloving rule
schama can be uoed to darive various speci-
fic rvles:

kel ) J
Bl - 4l AR

 HCh) (10,3501 1A, (15,9°)

meighbor of (1,3)})
Nere, N 15 & normalization facte: (= I ':ﬂ
Av
(1,3.8)) ond A 1o the set of possible clasess.
The second Larm reflects the fact that the
clase of a pizel doss not change over time,
wvhile the third term must represent the spa-
tial dependence of (1,)) being in class )
on the likelihood that ite meighbors are in
various classes. Ve can fdentify at least
three plavsible fusctions for f:

! .
1) £, = max p,(x_,t).
1 Hl 1

Mere, x, s n l-ulnht of (J,0) (nee

figure ‘o and this rule can be interpreted
as saying: u (3.%) 10 10 class A, then since
fielde are large, ot lesst cne spatial meigh-
bor of (J,k) must be in class A,

(%M
e 1
RS
12
2) lz - ,-.; '!o pl(l“’.t). subscripts mod 8,

1f fields are roughly rectangular, thes any
poiat will have at least three comsecutive
seighbors in the same fiald, MNotice that

sisply chooeing .
k
ty= 0 p(x.,2)
2 3=0 | S |

would at first iteratios lowar the probabili-
ties of correct labale at border pixzels, and
propagete these lov probabilites into the

center of the f1r°d at subsaquent iteratiomns.

6,2 N
3ty ’fo 'A(l’.l)

One potentisl advantage of the mum over the
product 1s ite fnsenaitivity to one or two
erronecusly lov probabilities. Using l’ also

sSives more equal welight to the temporal and
spatial information 4o the relenation rule.
In the naxt section we will consider the
effect of applying this updating rule te
the images in Figure 1,

Next, consider the -nr estimation prodiem.
At sach pizel we have v, the estimate of
the velocity after the l‘ iteration of
relanation. Now, we will assume that,
locally, the pattors of image motion vectors
can be well described by & rigid image plane
wot {on consisting of & translatios and rete-
tion (over large regions this might be &
poor assumption since the image notice is
the projection of a 3-D rigid motion).

Consider a 3x) paighborhood of velocities

v, v
2173

v

1

s ()

7|V |"s

wvhare v, 1 the velocity at Py

Since any 2-D rigid motion can ba represemted
as & trsnslation plus & rotatioe about &
fizxed point, if our assumption of local mo-
tiocns being rigid image plane wotions is
correct, than the 30 pattern of velocities

should be a rotation about the center point.
In general, if point a is rotating about
point b with velocity et then

. P l- -0
when dp, 1s the vector from b to a. Thare-
fore, II 1s straightforvard to compute &
least squares estimate of the angular veleci-
c,. .e. of po.u any 30 (or m™a) image
1 hood

In order to compute & valus for v.ﬂ e
proceed with the following pnllal opera-
tion: Rach pixel 1o & wambar of the outer
ring of 8 3x) peighborboods (ome centered
at sach of ite 8 neighbors). Choose the
peighbor, 1 with minimal least sguare error
and set v:’L\v= +v,.

4. ITERATION

An important problem in the application of
relaxation processes is determining a ter-
sinstion criteris for the iterations. The
two obvious tersination criteris are:

ORIGINAL PAGE IS
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1) "convergence” in the sense that the
change (in probability vectors, mu-
seric labels, otc.) from one iterstice
to the naxt s eufficiently small
(oee [6] for o discusaion of
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nusber of investigators. 1m spite of

these successes, little 1o 88 yet known

about the design and contrel of these pro-

cesses. However, & nuaber of promising ap- .
hes to their theoretical forsulation

gesce o realsnation processes).

1) exhaust ing sllocated computstional
resources - 6.5., in motion detection,
one way only have & short time (< )
#°t) to iterste the ralazation process.

Somet imes one finds that while the first se-
varal iteratices of o relaxation process
"and to improve upon the initial lebeling,
ciloving the iterations to proceed sctually
degrades the results. 1a such cases one
would vast to terminate after only & few
iteratioms.

For the multi-temporal, sulti-spectral pizel
classification, we find mmpiricazly, that
the largest incresse in classification ac-
curscy occurs in the firet iterastior, with
subsequent iterations having little effect
on the results. Figure 5 contains the
classification maps for each major class ia
Figure 1 after © iterations of the ralass-
tice algorithm describad in Section 2 weing
function fy. Prom these figures, it 1s
clear that the relasation algorithm ho. sub-
stantially eshanced the detection ¢/ the
fielde and the overall classification stre-

tegy.

Next, consider the motion estimation prob-
len. Here, the critical facter in deter-
mining the mumber of iterations of the re-
lanation process 1s time, since frases are
arriving every .0) seconds. Figure 6 shows
the moticn vectors after 5 iterations of
relaxstion. Although the vectors in Figure
6 appear moother thra those of Pigure &,
one nesds scme quantitative messure for
comparing tham. Ooe such measure 1s to see
bow well the velocity vectors predict image
structure (say, for coded tranmmission).

If g(X,t),t=1,2 1s he istensity at pizel
¥ ot time t, thes 1.t

o m = I|(|.l)-¢(-n:..!)|
and, finally,

:.-:.‘m

If the ralaxstion is truly improving the
wvelocity vectors, then we would expect

to be monotooically monincreasing with k.
Figurc 7 shows l for k=0,...,5 for our

esampl..

S. CONCLUDING REMARKS

Relazation processes have potential speed
sdvastages because they can be implemented
in parallel (hardware permitting). They
have been successfully applied to s wide
wvarfety of labelling problems by & groving

nn beaing pursvad, and 1t 15 hoped thet o
deeper understanding of their mature will
soon be achieved.

The support of the Natiomal Science Pounds-
tiss under Cranmt.NCS-79-23422 s gratefully
acimoviadged, as 1s the balp of Janet Salsmas
s preparing this paper.
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Initial iabeling (left colun Figure 5.

is ground truth, right contains
pixels classified into thet
ground truth class)

Labeling after 5th iteration

Figure 6. Motion vectors after 5 iters-
tions of relaxation
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Dual Problems in Image Segmentation

Jack Bryant* and Susan Jenson+

- Summary. The obvious duality between edge finding and segmentation
was exploited in [1]. This work has been refined, including a more

general model for multi-image data, and many more tests of the cluster-

e e

ing program AMOEBA. Possible directions for future work in edge follow-

i ing and clustering are suggested, using (now) the duality betwecn seg-

- mentation and classification made possible by regarding AMOEBA as a

segmentation to c)assification mapping.

R S —

1. J. Bryant, On the clustering of multidimensional pictorial data,
™ Pattern Recognition 11 (1979), 115-125.

* Jack Bryant, Department of Mathematics, Texas A&M University, College
Station, Texas 77843.

+ Susan Jenson, Applications Branch, EROS Data Center, Sicux Falls, South
Dakota 57198.
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SHAPE AND TEXTURE
Azriel Rosenfeld
Compute:-Vision Laboratory

Computer Science Center

University of Maryland

College Park, MD 20742

Regions in a segmented image are characterized, for purposes.
of description and recognition, by their geometrical properties
(size, shape, etc.), as well as by properties that depend on their
pixel values (lightness, color/spectral signature, texture). Such
properties are also used to define or modify the segmentation pro-
cess itself, as discussed in the session on segmentation.
| The methods used to measure the geametrical properties of
a region depend on the data structure used to represent the region.
The simplest representation is a binary "overlay" array that has l's
at region pixels and 0's elsewhere. However, other types of repre-
sentations are often used that are moke compact, and that may make
it easier to extract certain types oi geometrical information. One
classical approach is to represent regions by border codes, defin-
ing the sequence of moves from neighbor to neighbor that must be
made in order to circumnavigate the border; curves can also be
represented by such move sequences ("chain codes"). Another stan-
dard way of representing regions is as unions of maximal "blocks"
contained in them - e.g., maximal "runs" of region points on each
¢

row of the image, or maximal upright squares contained in the re-

gion; the set of run lengths on each row, or the set of centers
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and radii of the squares (known as the "medial axis"), completely
determines the region. The square centers tend to lie on a
set of arcs or curves that constitute the "skeleton" of the
region; if we specify each such arc by a chain code, and also
specify a radius function along the arc, we have a reprasenta-
tion of the region as a union of "generalized ribbons", which
are 2D analogs of the "generalized cylinders (or cones)" often
used to represent 3D objects.

There has been recent interest in the use of hierarchically
structured representations that incorporate both coarse and
fine information about a region or feature. A hierarchical
maximal-block representation based on recursive subdivision into
quadrants, where the blocks can be represented by the nodes
of a degree-4 tree (a "quadtree"), is described in (Samet and
Rosenfeld, 1980). A hierarchical border or curve representation
based on recursive polygonal approximation, with the segments
represented by the nodes of a "strip tree", is discussed in
(Ballard, 1981); on a border or curve representation based on
guadrant subdivision see (Shneier, 1981).

Classically, textural properties have been derived from
the autocorrelation or Fourier power spectrum; for example,
the coarser the texture (in a given direction), the slower its
autocorrelation falls off in that direction from the origin
(zero displacemerit) and the faster its power spectrum falls
off in that direction from zero frequency. A related approach,
studied extensively by Julesz and Haralick, characterizes tex-

tures by their second-order intensity statistics, i.e., by the

/
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frequencies with which given pairs of gray levels occur at
given relative displacements. It has long been realized,
however, that first order statistics of various local proper-
ty values (e.g., responses of operators sensitive to local
features such as edges, lines, line ends, etc.) are at least
equally effective in texture discrimination.

More recent work (Beck et al., 1982) suggests that local
processes of linking between local features, giving rise to
"texture elements" or "primitives", also play a significant
role in the perception of texture differences. Texture dis-
crimination based on second-order statistics of local features
(e.g., occurrences of edge elements in given relative posi-
tions and orientations) has begun to be investigated (e.g.,
Davis et al.. 1979). Texture analysis based on explicit ex-
traction of primitives has also been explored (e.g., Maleson
et al., 1977); here statistics derived from properties of
the primitives, or of pairs of adjacent primitives, are used

as textural properties.
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SHAPE AND TEXTURE
. Azriel Rosenfeld
Computer Vision Laboratory
Computer Science Center
University of Maryland
College Park, MD 20742
Regions in ¢ segmented image are characterized, for purposes.
of description and recognition, by their geometrical properties
(size, shape, etc.), as well as by properties that depend on their

pixel values (lightness, color/gpectral signature, texture). Such

properties are also used to define or modify the segmentation pro-

cess itself, as discussed in the session on segmentation.

. The methods used to measure the geametrical properties of
a region depend on the data structure used to represent the region.
The simplest representation is a binary "overlay" array that has 1l's
at region pixels and 0's elsewhere. However, other types of repre-
sentations are often used that are moke compact, and that may make
it easier to extract certain types of geometrical information. One
classical approach is to represent regions by border codes, defin-
ing the sequence of moves from neighbor to neighbor that must be
made in order to circumnavigate the border; curves can also be
represented by such move sequences ("chain codes"). Another stan-
dard way of representing regions is as unions of maximal "blocks"
contained in them - e.g., maximal "runs" of region points on each
row of the image, ;r maximal upright squares contained in the re-

gion; the set of run lengths on each row, or the set of centers
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and rad... of the squares (known as the "medial axis"), completely
determines the region. The square centers tend to lie on a
set of arcs or curves that constitute the "skeleton" of the
region; if we specify each such arc by a chain code, and also
specify a radius function along the arc, we have a representa-
1ion of the region as a union of "generalized ribbons", which
are 2D analogs of the "generalized cvlinders (or cones)" often
used to represent 3D objects.

There has been recent interest in the use of hierarchically
structured representations that incorporate both coarse and
fine information about a region or feature. A hierarchical
maximal-block representation based on recursive subdivision into
quadrants, where the blocks can be represented by the nodes
of a degree-4 tree (a "quadtree"), is described in (Samet and
Rosenfeld, 1980). A hierarchical border or curve representation
based on recursive polygonal approximation, with the segments
represented by the nodes of a "strip tree", is discussed in
(Ballard, 1981); on a border or curve representation based on
quadrant subdivision see (Shneier, 1981).

Classically, textural properties have been derived from
the autocorrelation or Fourier power spectrum; for example,
the coarser the texture (in a given direction), the slower its
autocorrelation falls off in that direction from the origin
(zero displacemert) and the faster its power spectrum falls
off in that airection from zero frequency. A related approach,
studied extensively by Julesz and Haralick, characterizes tex-

tures by their second-order intensity statistics, i.e., by the
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frequencies with which given pairs of gray levels occur at

. given relative displacements. It has long been realized,

however, that first order statistics of various local proper-
: ty values (e.g., responses of operators sensitive to local

E features such as edges, lines, line ends, etc.) are at least

: ‘;qually effective in texture discrimination.

i More recent work (Beck et al., 1982) suggests that local
processes of linking between local features, giving rise to
"texture elements" or "primitives", also play a significant
role in the perception of texture differences. Texture dis-
crimination based on second-order statistics of local features
| (e.g., occurrences of edge elements in given relative posi-

tions and orientations) has begun to be investigated (e.g.,

Davis et al., 1979). Texture analysis based on explicit ex-

‘4 a“

traction of primitives has also been explored (e.g., Maleson

et al., 1977); here statistics derived from properties of

-4

the primitives, or of pairs of adjacent primitives, are used

[ -

- as textural properties.
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Shape

a) Moments

In this section, we review moments, which are
a very useful class of shape properties.
The (i,j) moment of f is defined by

m = I Exiyjf(x.y)
XYy

(in the continuous case, LI becomes [[dxdy). The first few

moments of the picture .

wWwwN
N
O

are as follows, if we take the origin at the pixel in the

lower left-hand corner of the picture:

i3 Dy
0 0 14
1l 0 8
0 1 12
2 0 12
1 1 7
0 2 20

Moments can be given a physical interpretation by regarding
gray level as mnass, i.e., regarding f as composed of a set

of noint masses located at the points (x,y). Thus m is the

00

total mass of £, and m and m20 are the moments of inertia

02
of £ around the x and y axes, respectively. The moment of
inertia of f around the origin m, £ ZZ(x2+y2)f(x,y)=m20+m02.

It is easily verified that m, is invariant under rotation of £
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about the origin. Moreover, if £ is
rescaled, say by the factor c, it is not hard to see that m,
is multiplied by c4. Thus we can normalize f with respect

to magnification by rescaling it to give m, a specified value.

Alternatively, a ratio of two moments

that have the same value of i+j, e.qg. mol/mlo, is invariant

under magnification.

If we substitute -x for x in the definition of mij' we
obtain zt(-x)iyjf(-x,y) = (-l)itzxiyjf(-x,y),so that if f is
symmetric about the y axis (i.e., f(-x,y) = f(x,y) for all
x,y), we have mij = (-l)imij. Thus if i is odd, mij must be
zero. Similarly, if f is symmetric about the x axis and j ic
odd, mij=0: and if f is symmetric about the origin (f(-x,-y)=
f(x,y) for all x,y), and i+j is odd, mij = 0. Moments for
which i, j, or i+j is odd can thus be used as measures of

asymmetry about the y axis, x axis, and origin, respectively.

Jf £ is a binary-valued picture, say with S as its set of

1l's, the moments of f provide useful) information about the

'
—




spatial arrangement of the points of S. To compute moments

from the binary array representation Xg of S, we simply sum
[ the xiyj values for all (x,y) in S. To compute them from
the run length representation of S, we compute them for each 1

l run and sum the results; for example, the (i,j) moment of

x

l‘ the run whose endpoints are (x',y) and (x",y) is yj T 3t !
| X=X L} 1

Similarly, they can be computed from the quadtree i

' |
l representation of S by computing them for each black leaf !
' |

node, based on its position in the tree, and summing the

.n!‘-'

results. They

e p—

are not easy to compute from the MAT representation, since
the blocks overlap. They can be computed from the crack or
chain cnde representations of the borders of S in much the
same way that area is computed from these representations.
As an example, for each horizontal

crack Cyr let Sk be the vertical rectangle of width 1 extend-

ing from the bottom oif the picture to Cyi then S is the union
of the Sk's for which Sy is an upper boundary of S, minus the
union c¢f those for which Sy is a lower boundary. The coordi-
nates of Cx determine the moments of Sk, just as in the case
of runs; to compute the (i,j) moment of S, we add the (i,]j)

moments of all the upper-boundary Sk's, and subtract the sum of

the (i.,j) moments of all lower-boundary Sk's.
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b) The centroid; central moments

The centroid of f is the point (X,y) defined by

X = mo/m,
Yy = myy/mgg

Thus the centroid of the 3 by 3 picture shown earlier is

(4/7,6/7). It is easily verified that if f is shifted, its
centroid shifts by the same amount. (Proof: If we shift f
by (a,8), the origin is now at (-a,-8), and the new coordi-
nates of (x,y) are (x+a,y+B). Hence [II(x+a)f(x,y)/Ilf(x,y) =
mot o= X+a, and similarly for y.) Thus if we take the origin
at the centroid of f, we have normalized f with respect to
translation. Note that since the centroid does not have
integer coordinates, if we take it at the origin we should
redigitize f; alternatively, we can normalize f by taking the

origin at the integer-coordinate point closest to the centroid.

(Analogous remarks apply in the case of normalizing with -

respect to magnification in subsection (a).) ne
When we take the origin at the centroid, moments computed I

with respect to this origin are called central moments, and

will be denoted by m . Evidently Eoosmoo, and it can be T

i)
verified that mlo-mol-o. (Proof: Take (a,B)=(-x,-y) in the -
preceding paragraph to obtain 510 = LI (x-x)f(x,y) = ”1o'§“oo = 0, -

and similarly for mg, ) -
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c) The principal axis n

The moment of inertia of f about the line .
(y-8)cos® = (x-a)sin® , which is the line through (a,B) 3
with slope 6, is

L[ (x-a)sin® - (y-a)coselzf(x,y)

we can find the a, B8, and 6 for which this is a minimum by

o

differentiating it with respect to a and B and equating the

results to zero; this yields ;
LI[(x-a)sin6 - (y-B)cosB)f(x,y) = 0 (from 3/3a or 3/3B)
LI[(x-a)cos® + (y-B)sinB]f(x,y) = 0 (from 3/36) A

Multiplying the first equation by sinf, the second by cos6 ,

and adding gives IIL(x-a)f(x,y) = 0, so that a=IIxf(x,y)/Ilf(x,y)

=%. Similarly, multiplying the first equation by cos6, the

second by sinf, and subtracting gives 8=y. Thus the minimum-

inertia line passes through the centroid of f. This line is

called the principal axis of f. 1
To find the slope of the principal axis, take the origin
at the centroid; then the moment of inertiz of f about the 1
line y=xtanb is
LI(xsin6-ycos#) 2¢ (x,y) = m‘zosinze-2x-n'nsinecosa+l'£°2cosze
Differentiating this with respect to 6 and equating to zero
gives

2m sinecose-zill(cosze-sinze)-2E°2cosesine =0

20

or ﬁzosinze - zﬁllcosze - m..sin26 = 0

02
so that tan2é = 2m11/(m20 - m02)
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Since tan26 = Ztane/(l-tanze), we can obtain tanf as a root

of the quadratic equation
m, . -m
tanlp + 20 02

tand -1 =0
s t |

It is easily seen that the last equation above is equivalent to

2 2
(mlltan6+m20) - (m2°+m02)(mlltane+m20) + (mzomoz-mll ) =0

This implies that mlltan6+m2° is an eigenvalue of the matrix

(20 s b |

)
M1 Mo2

Show that the principal axis is in the direction of the eigen-

vector correponding to the larger eigenvalue of this matrix.

A standard method of normalizing f with respect to rota-
tion is to rotate it so that its principal axis has some
standard orientation, say vertical. (Here again, this involves
redigitization.) More generally, f can be normalized with
respect to various types of geometrical distortions by trans-
forming it so as to give standard values to various combinations
of its moments.

The principal axis of f can be regarded as a
line that "best fits" f. More generally, one can find
higher-order curves that "best fit" f in various senses. For

example, given a general quadratic curve

alx,y) ax? + bxy + cy2 + ux + vy + w =0
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we can attempt to find the values of the coefficients a, b,
¢, u, v, w such that

I(qlx,y)) %E(x,y)
is a minimum. The curve having these coefficients would be
a sort of "quadratic principal axis" for f. Given f's best-
fitting quadratic curve q,+ ©One can attempt to perform "shape
normalization®™ on f by transforming coordinates so that 99

becomes some standard type of curve--for example, if 99 is an

ellipse, we could transform to make it a circle.

T PRV A S P————
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2. Texture

This section discusses statistical picture properties,

Ty o T T——

and in particular, properties that can be used to describe
the "visual texture" of a picture, or better, of a statistically |
homogeneous region in a picture. We will not attempt to de-
fine conditions under which a region would be called uniformly
textured. Such regions are often described as consisting of
large numbers of small uniform patches, or "primitive elements,"
arranged according to "placement rules," where the patch

1
shapes and positions are governed by random variables. }
|
!
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a) Gray level statistics i |

The histogram pf(z) of a digital picture f tells us how
often each gray level occurs in f; it provides an es:imate ﬁ 1

of the gray level probability density in the ensemblie of

sastptnny T

pictures of which £ is a sample. If there are k possible ‘
gray levels, ZyreeerZys Pg is a.k-element vector. Statistics :

computed from Pg give us general information about this gray

level population. For example,

1) The mean gray level of f, Mg = % Zzpf(z), where
N = zpf(Z) is the number of points in £, is a measure of the
overall lightness/darkness of f. The median gray level, i.e.,

the gray level me such that (about) half the points of £

are lighter than me and half are darker, is another such

measure.

2) The gray level variance of f£, og = %Z(z-uf)zpf(z), and

the standard deviation Og, are measures of the overall con-

trast of f*; if they are small, the gray levels of f are all

dose to the mean, while if they are large, f has a large range

of gray levels. Another such measure is the interquartile

range rg, which is defined as follows: Let m ¢ be the gray
level such that 1/4 of the pixels of f are lighter than m1f

and 3/4 are darker; let Mg be defined analogously, with the

*Note that if we define one-dimensional moments by m. = Zzlpf(z),
we have N = m, and Mg = ml/m0 (so that Mg is the centroid of pf);
moreover, if we define central moments ﬁi = Z(z-uf)ipf(z) by

taking ucas the origin, we have og = ﬁ-/ﬁb
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1/4 and 3/4 interchanged; then r_ = Imlf-m3f|. Other per-

f

centiles can be used here in place of the guartiles m e and

m3f.
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b) Second-order gray level statistics

Statistics computed froﬁ the histogram P, are of only

e M il A M I BB i b, -

] limited value in describing f, since Pg remains the same no

matter how the points of f are permuted--for example, Pg

e

#i is the same when f is half black and half white, when f is
a checkerboard, or when f consists of salt-and-pepper noise.

More insight into the nature of f is obtained by studying how

often the possible pairs of gray levels occur in given rela-
tive positions.

Let § = (Ax,Ady) be a displacement, and let Mé be the
k-by-k matrix whose (i, 3j) element is the number of times that
a point having gray level z; occurs in position § relative to

a point having gray level zj, l =14i,j s k. For example, if

f is
1122
0221
0021
1001
and § is (1,0), then M. is N

oOMN
N
NHN O

Note that the size of M6 depends only on the number of gray
levels, not on the size of f. Elements near the main diagonal
: of M6 correspond to pairs of gray levels that are nearly

| equal, while elements far from the diagonal correspond to

pairs that are very unequal.
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Let N6 be the number of point pairs in f in relative
position §; this is less than the total number of points in

f, since if (x,y) is near the border of f, (x+Ax, y+Ay) may

lie outside £f. Then in the matrix P6 MG/N6 (i.e., if we
divide each element of HG by NG)’ the (i,j) element is an
estimate of the joint probability that a pair of points in
relative position § will have the pair of gray levels (zi,zj).

P is called a gray level cooccurrence matrix for f.

The matrices 95' for various §'s, provide useful informa-
tion about the spatial distribution of gray levels in f. For
example, suppose that f is composed of patches of approximately
constant gray level of a certain size s. If the length of §
is small relative to s, then the high-valued entries in P
will be concentrated near its main diagonal, since a pair of
points § apart will often have nearly the same gray level.

On the other hand, if § is long relative to s, the entries in
P will be more spread out. If f consists of elongated streaks
oriented in a given direction, the spread of values in P6 will
depend on both the length and slope of §. 1If directionality

\\\ is not important, we can use matrices P that are averages
of P6's (or matrices M that are sums of M;'s) for sets of
displacements of a given size in various directions. For

example, if £ is the 4-by-4 picture shown above, and we use

the displacements (1,0), (0,1), (-1,0), and (0,-1), then the
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combined matrix M is

il e A o e

L - -]
Vo
@ U
-

(Note that M is symmetric, since the set of directions used |
is symmetric.)
In principle, a large set of P6 matrices is needed to

completely specify the second-order gray level statistics of

f. 1In practice, however, matrices corresponding to large
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displacements are not necessary. As § becomes long, the
pairs of gray levels separated by § become uncorrelated,

and Pd(i,j) approaches the probability that a pair of ran-
domly chosen points of £ have gray levels z; and zj. ‘Thus
for practical purposes we need not use §'s having lengths
greater than the distance over which f's gray levels remain
correlated, or greater than the size of the "patches" of
which f is composed. 1In fact, the most important Pd's are
usually those for which § has length 1. Historically, gray
level transition probabilities p(zj[zi) have been used to
characterize textures; p(zjlzi) is the probability that a
point has level zj given that the preceding point (with
respect to a scan of the picture) has level z;. Note that the
joint probability p(zi,zj), which is equal to p(zi)p(zjlzi).
is just the (i,j) element of P, for § = (1,0). Other investi-
gators have characterized textures by fitting a time series
model to the sequence of gr-y levels, and using the parameters
of this model as texture descriptors; this approach will not
be discussed here in detail. .

Haralick has suggested a number of statistics
that can be used to describe » given cooccurrence matrix PG'
Four of these are:

1) "Contrast", I L(i-j)?P,(i,3); this is the moment of

inertia of P: gbout its main diagonal. Evidertly,
it is low when the diagonal concentration of P is

high, and vice versa.
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2) "Inverse difference moment", I ch(i,j)/ll+(i-j)2];
i
this is high when the diagonal concentration is high.

3) "Angular second moment", I tég(i,j); this is lowest

when the Ps(i,j)'s are ali gqual, and high when they

are very unequal, so that in particular it tends to

be high when the diagonal concentration is high.

4) "Entropy", =L ;PG(i,j)loqIG(i.j): this is highest
when the Pé(i,g)'s are all equal, and hence is low
when the diagonal concentration is high.
It should be pointed out that the arrangements of values

in the cooccurrence matrices depend not only on the coarseness
or busyness of the given picture, but also on its lightness and
contrast. For example, if we stretch the grayscale of a pic-
ture, the entries in the matrices will spread away from the
diagonal, since the pairs of gray levels will be farther apart.
Features (1l-2) defined above will be especially sensitive to
such changes (this is why feature (1) is called "contrast"),
while features (3-4) will be less so. To avoid confusing the
effects of the first and second order statistics of the picture,
it is-.common practice to normalize its grayscale (e.g., by
histogram flattening) before computing the
matrices, so that the first order statistics have standard
values.

We can define cooccurrence matrices that may be more

sensitive to the spatial structure of the given texture by

e Y s Sl A
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using only selected pairs of points in constructing the
matrices, rather than using all possible pairs having a given
relative position. ' For example, suppose that we consider

only point pairs (Q,R) in which Q is on an edge (e.g., is at

a local maximum of the gradient magnitude), and R is a given
distance § away from Q in the gradient direction. 1In the
matrix Pé defined in this way, diagonal conce.atration still
corresponds to coarseness, since if § is small relative to the
texture patch size, R should be interior to the patch on the

edge of which Q lies. However, Pé may be more sensitive to

coarseness changes than the P6 matrices were, since Pé is not

influenced by point pairs that are both interior to patches.
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c¢) Local property statistics

Another way of obtaining information about the spatial
arramement of the gray levels in f is to compute statistics
of various local property values f' measured at the points

of f£.

As an illustration of how local properties can be used
for texture description, let § = (Ax,Ay) be a displacement,
let fa(x,y) = f(x,y)-f(x+Ax, y+4y), and let Ps be the histo-
gram of f6’ Suppuse that f is composed of patches of size s.
If § is short relative t)> s, the high entries in Ps will be
concentrated near 0, since pairs of points § apart will usually
have small differences in value; but if § is large, the entries
in Pg will be more spread out. (Note, in fact, that pd(z)
is the sum of the entries in the matrix MG along the line
parallel to its main diagonal for which i-j = z.) Thus the
concentration of pg near 0 is a measure of the."coarseness" of
f relative to §, or equivalently, the spread of Pg Qway from 0
is a measure of the "busyness" of f. Here again, these pro-
perties may depend on direction. Similar remarks apply if we
use absolute rather‘than signed differences; thissimply folds

Pg over on itself at the origin.
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The gray level (absolute) difference histograms pg are
not affected by shifting the grayscale (as cooccurrence
matrices are), but they are affected by stretching it; thus
they too should be used in conjunction with graysc;lc normali-
zation. Various statistics can be used to describe Ps» includ-
ing its mean (% zzpa(z), if we use absolute differences), its

second moment (Iz2

ps(z): this is proportional to the "contrast"
statistic for the corresponding cooccurrence matrix), its
entropy (-Zps(z)log ps(z)). and so on.

A wide variety of local properties f' can be used in place
of f6 for texture description. For example, we can use com-
binations of differences, such as the gradient (magnitude)
or Laplacian; matches to local templates, such as spot, line,
corner, or line end detectors; and so on. f' can be a predi-
cate, e.g. 1 if an above-threshold difference is present and
0 otherwise; in this case, the histogram consists of only two
values, and its mean tells us how many edges (or spots, lines,
etc.) are present in f per unit area. Another possibility i
is to count local gray level maxima and minima in f; evidently, ‘
both the number of edges and the number of extrema per unit |
area are measures of "busyness". More generally, we can count -

occurrences of arbitrary local patterns of values in f.

We can use second order as well as first order local

property statistics as texture descriptore, by constructing
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3 ! cooccurrence matrices of the values cf £' in given relative

( positions. 1If desired, we can use only selected pairs of

—

: points in constructing the matrices, e.g., pairs of extrema
! or pairs of above-threshol\d edge points, and we can use diz-
] . placements at each point that depend on f', e.g., displacements

1 ! in the gradient direction, as at the end of subsection (a).

Rather than using a set of local properties, e.g., uif-
E‘ ferences computed for a set of displacements, we can use a
single property and measure it for pictures derived from the
original oze by a set of local operations. For evample, sup-

pose that we use a sequence of leocal min (or max) operations,

and at each step, measure the average gray level; the rate
at which this decreases (or increases) is a measure of the
coarseness of the high-valued (low-valued) patches in f. Fer

a binary-valued f, the analogous idea is to shrink (or expand)

the 1's in £ repeatedly, and at each step, count the number
of 1's. This approach, using gengralized shrinking and ex-
panding operations, has been extensively ]

[ used for texturc analysis in microscopy. ;H

N
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d) Autocorrelation and power spectrum

In the previous two subsections we saw how various
statistics of the cooccurrence matrix, difference histogram,
etc. for a given displacement § = (Ax,Ay) provide useful in-
formation about a texture. Thus the set of values of a given
statistic a as a function of § (in particular, for relatively

short §'s) can be used as a texture descriptor.

For example, 1et'f3 = f(x,y)f(x+Ax, y+dy), and let a be i {
the mean of f%; then a as a function of § is just the autocor- ;
relation Rf, i.e., the expected value of the product of the

gray levels of a pair of points § apart. By the Cauchy-Schwartz

inequality, this taka2s on its maximum value for § = (0,0).

Lf(x,y) f(x+4x, y+A4y) < 1; but the two factors .;

[Lf (x,y) 2Lf (x+8x, y+by)2]Y* |

(Proof:

in the denominator are the same, so that the denominator is

equal co tf(x,y)z, which is Rf(0,0).) The rate at which Rf

falls off as § moves away from (0,0) is a measure of the -

coarseness of f; the iciloff is slower for a coarse texture, e

and faster for a busy one. )
2

Similarly, let f6 = [£(x,y)-f(x+Ax, y+Ay)]2, and let aZzv

be its mean, i.e., the expected squared gray level difference
at two points § apart; this.descriptor is sometimes called -
the variogram of f£f. (Compare the use of the mean of the -

absolute difference histogram as a texture descriptor in

subsection (c).) The rate at which its value rises as § moves

IR
_m_~“‘““_____._._4__.JJ.uiJ
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away from (0,0) is a measure of the coarseness of £; the

rise is slow for a coarse texture and fast for a busy one.
Note that v(§) = E{[f(x,y)-f(x+Ax, y+Ay)]2} = E(fz(x,y)} +
E{£2 (x+bx, y+Ay)} - 2E{f(x,y) f (x+Ax, y+Ay)}; here the first
two terms are just Rf(0,0) and the third is -ZRf(Q), so that
v(8) = 2(Rg(0,0)-R.(8)). If f is isotropic, the values of Rg
and v depend only on the length of §, not on its direction,
so that they become functions of a single variable.

A texture can be modeled as a correlated random field,
e.g., as an array of independent identically distributed
random variables, to which a filtering operator has been ap-
plied. This model suggests that a texture can be described
by its autocorrelation and by the probability density of the
original random variables; the latter can be approximated by
a histogram after a "whitening" operation has been applied to
decorrelate the texture. If we use the gradient or Laplacian
as an approximate whitening operation, the histogram is just
a histogram of difference values, as in the preceding sub-
section

~

The Fourier power spectrum |F|*

and the autocorrelation Rf are Fourier transforms of each other.
Thus |F|2 can also be used as a texture descriptor. The rate
at which |F|2 falls off as the spatial f-equency (u,v) moves
away from (0,0) is again a measure of the coarseness of f;

the falloff is faster for a coarse texture and slower for a
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busy one, since fine detail gives rise to more power at high
spatial frequencies. Samples of IFI2 taken over rings centered
at (0,0), or over sectors emanating from (0,0) (to detect

directional biases), have often been used as texture features.

Other transforms of £ can also be used as a source of
texture features. In practice, features based on |F|2 (or Rf)
seem to be somewhat less effective for texture discrimination
than features based on second-order or local property statistics.
At the same time, computation of |F|2 is more costly than
computation of a few statistical features (recall that they

usually need only be computed for a few §'s), unless we compute

it optically.
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e) Region-based descriptions

The texture descriptors considered so far are derived from
local or point pair properties. We conclude by briefly dis-
cussing texture description in terms of homogeneous patches
or "primitive" regions. Several types of texture models are
based on such decompositions into regions. For example,
textures can be generated by using a random geometric process
to tessellate the plane into cells, or to drop objects onto the
plane, ard then selecting gray levels (or gray level probabi-
lity densities) for the cells or objects in accordance with
some probability law.

If we can explicitly extract a reasonable set of primitives
from £, we can describe the texture of f using statistics of
proﬁerties of these primitives--e.g., the mean or standard
deviation of their average gray level, area, perimeter,
orientation (of principal axis), eccentricity, etc. Second-
order statistics can also be used--i.e., we can construct
matrices for pairs of values of the area (etc.) at pairs of
neighboring primitives (perhaps in directions defined by each
primitive's orientation. Of course, this approach depends on
being able to extract a good set of primitives from £ at a
reasonable computational cost. A related, but much simpler,
idea is to extract maximal homogeneous blocks (e.g., runs of
constant gray level in various directions) from f, and describe
f in terms of (first or second order) statistics of the block

sizes (e.g., run lengths).
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In general, the description of textures in terms of

primitives may be hierarchical; the primitives may be com-

posed of subprimitives, etc., or they may be arranged into
groupings which in turn form larger groupings, etc. This
makes it possible to define placement rules for the primitives
in the form of stochastic grammars. Texture analysis can
thus be carried out, in principle, by parsing with respect

to a set of such grammars.




ORIGINAL PAGE 1S
OF POOR QUALITY

SHAPE I[DENTIFICATION USING 3-D FEATURES
C.M. Bjorklund

R.S. Loe

Lockheed Research Labs
Palo Alto, CA 94304

Image analysis continues to pose significant difficul-
ties for automatic computer analysis due to th2 unpredicta-
bility of object signatures, variability of scene and il-
lumination content and information lost using two-
dimensional imagery. Systems providing both intensity and
range information permit gcometric analysis of the scene to
be performed concurrently with grey scale analysis. Laser
range imagery provides this capability. Pixel values in a
range image measure the distance to the nearest surface
along the ray; thus, physical measurements of shapes can be
extracted. Two applications will be described. In the
first, planar surfaces are 1identified and extracted for
matching in scenes containing buildings [l1]. 1ln the second,
vehicles (e.g. trucks and tanks) are discriminated based on

features extracted from the 3-D data.

1. D.L. Milgram and C.M. Bjorklund, "Range [mage Process-
ing: Planar Surface Extraction", 5th ICPR, Dec. 1980,
Pp. 912"91&-
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Automatic Photointerpretation via Texture and Morphology Analysis

Julius T. Tou
Center for Information Research
University of Florida

s i S B AR kS il

ORIGINAL PAGE IS
OF POOR QUALITY

Abstract
’ This paper discusses computer-based techniques for automatic photo-
interpretation based upon information derived from texture and morphology
analysis of images. By automatic photointerpretation, we mean the deter-
mination of semantic descriptions of the content of the images by computer.
Such descriptions include a narrative report identifying the objects in
the image and describing their characteristics and relationships. Our
cpnroaches consist of two major tasks: (1) Morphology analysis, and (2)
textural analysis. Morphology and shape information enables us to make a
preliminary identification of the objects or regions. In both tasks, a
growing knowledge-base is generated from past experience and a priori
information. Objects with distinctly different morphology and shape are
recognized and these contents in an image are interpreted. To make a
l, finer identification and more accurate interpretation, we make use of

textural information.

Py

To perform semantic analysis of morphology, we have developed an

heirarchical structure of knowledge representation. The simplest elements

in a morphology are "strokes", which are used to form "alphabets". The
"alphabets" are the elements for generating "words", which are used to
describe the function or property of an object or a region. The "words"
are the elements for constructing "sentences", which are used for semantic
description of the content of the image. We realize that in many cases
morphology aione may not be sufficient to make positive identification and

accurate interpretation. Photointerpretation based upon morphology is

then augmented by textural information. -,
P/{‘q‘\‘&slvul y u“’,ﬁ'!'r UL‘,“L
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To perform textural analysis, we make use of the pixel-vector approach.

Each pixel or cluster of pixels is represented by a property vector which
characterizes the pixels belonging to an object or a région in an image.
Pixels of similar properties are extracted by a correlation and clustering
technique. Since an object or a region may contain several types of
pixels, an object may be decomposed into several clusters of pixels with
different types and properties. The features of the decomposed objects are
used in automatic photointerpretation. When objects can be decomposed into
similar clusters, we determine the textural rythm as positive identifica-
tion of the object or the region in addition to morphology information.
The knowledge-base 1s augmented with acquired information from image ana-
lysis.

Some experimental results of our knowledge-based photointerpretation

system will be discussed.
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Systems & Research Center
Honeywell Incorporated
2600 Ridgway Parkway
Minneapolis, Minnesota 55413
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Summar |

The remote sensing applications typically involve a sensor that
acquires data from the phyiscal world, a processor to process this
data and most likely a controller that performs certain mission
related functions. Remote sensing 1is characterized by 1lack of
control over the sensing environment and the scene being sensed.
Thus, in addition to the problems posed by the recognition task
itself, there are special problems due to uncontrolled environmental
factors, including noise and coherent clutter, and in some cases,
uncooperativeness on the part of the objects that are to be
recognized (countermeasures, camouflage).

One application of remote sensing has been in the area of FLIR
target recognition. The sophistication of reconnaissance and strike
systems is constantly increasing due to the high threat operational
environment. Thus, advanced forward looking infrared sensors are
integrated on high performance aircraft. The fast loading and high
information rate of advanced sensors has made it imposssible for a
human to perform the target search/deduction/recognition task
accurately, consistently, and in real time. A lot of work has been

done by university/industry teams towards the development of FLIR
target screening technology.

A typical target screener would cconsist of segmentation, detection,
and recognition stages. Segmentation step would typically involve
the ability to locate the regions of interest. The detection stage
is to separate out the clutter from potential targets and the
recognition step is to label the type of the target. The process to
date includes not only the simulation of this technology in various
laboratories around the country but also the development of real
time hardware. Some of the hardware boxes have been tested in real
time in helicopters, etc.

In FLIR much work has been done on the segmentation and recognition

of invidual targets, some of it wusing structural as well as
statistical methods. One key problem that still remains is the

ability of these technigques to work under varied conditions without

extensive retraining of the algorithms. This deficiency is what

leads us to the development of what are known as multi-scenario

target screeners. There the key ability for the screener is to

learn from what it sees through its sensor and adapt

accordingly without operator intervention. The work being done by 4
Horeywell in this direction will be cdiscussed at the conference.
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Structural Analysis Techniques for Remote Sensing

Linda G. Shapiro
Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

SUMMARY

Structural analysis uses knowledge of the properties of an entity,
its parts and their relationships, and the relationships in which it
participates at a higher level to 1locate and recognize objects in a
visual scené. For example, Bajcsy and Tavakoli [1] used spectral and
shape properties of roads along with knowledge about required
connections to other roads in a system for computer recognition of
roads from satellite images. Tenenbaum, et. al. [7] set up gewmetric
correspondencz; between sensed images and symbolic reference maps to
aid in monitoring or tracking predefined targets. We will discuss the

basic techniques required for structural analysis.

One problem is the representation of structural knowledge.
Production systems and relational descriptions are the two major
classes of representation used so far. Production systems include
picture grammars [2] that use production rules to parse pictures and
expert systems [4] where knowledge about pictures can be stored and

retrieved. Relational descriptions include trees, graphs, n-ary

o §0__irricariit BEA
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relations, complex relational structures, semantic nets (4], and

frames [3].

A second problem is the development of efficient algorithms for
using the structural information to help analyze an image. In [5] we
defined a general model of a structural description and comparec
several inexact matching algorithms for finding the corresponderce
between models and images. A simple scheme called forward checking
showed the most promise. Parallel hardware can also be used to speed
up the matching process. In general, the more the problem can be
constrained by knowledge, the faster the matching can be done.

A third problem consists of techniques for storage and retrieval of
relational models. A knowledge database will typically consist of a
large number of models and/or frames. Matching an unimown image
against all of them is impossible. Thus schemes for organizing the
database of models for fast retrieval of those models most appropriate
to a given image are essential. In [6] we discuss some preliminary
schemes for database organization. The problem of organizing
structural knowledge and 'knowledge in general is an important topic of

current research.
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THE REPRESENTATION PROBZJEM
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job it is 7o ana/yze scenes?
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THE MATCRING PROBLEM
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EXACT MATCHING

Structoral Description of an demt
D= (P,R).
P={PRP ,....P.3 isa set
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P, & Attributes % Values iem

1
|
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R - iPRl,...)PRK‘S Is a set.
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R Reh
h: 1 =+ A
2+ B
3+ C
4 +D
S+D

Figuee 1.1 illustrates the composition of
binary relation R with mapping h.

Composition of o Aelation
with o FunctTion

Let R€ PY end hiP—=>Q
Roh= £, Q) e | Here eists
(P;_,...,f‘D € R with /)(PO):: 3.‘-‘ ,li-i..s,q: |
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Let R P” s & =R
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EXAACT MATCH DEF/NIT/0A/
let DP =(P,R) be o Pro‘i’o‘fype

Structural descrip‘f‘-ion 3
|

P={P/),Pm3 f 4

R = {(NRU RD:-n;(NRn:RK)} ‘ :
let D.=(Q,8) be a candidate ’
|

Structura ]| description

Q= sl QU-“) Q’”‘*}
S = FONS, S s WSk, S

: . = _" » ] » | - ’ - , L 3 ’ - ,

Do MATCHES Dp 1# there is
a mapeing h: P> Q s-d‘isfychz

;ﬁ D R @y = P € Q

2 NR; = NS, => R, °h = 34
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|
|
1
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INEXACT MATCH DEENITION

let D'° be a weigHeJ Pro-b-of'ype
structural desar.’ﬁ-ibn
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P = €P s Bn3  Res LOVRLRY, ... MR AR

Whe = S, a3
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De = ( C; &q7
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Keep o Future Error Table

FE.T. (L,p = the error that magping

P h ®d will cavse based on +he
pqp_ful ma pping instantiated So far.

MINERA, (.b)-—* #e .snu//es‘t error /n

row L of FET
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PROCEDURE FOR UPDAT/NG F~E.T.

expressed Ffor bivary relation Rept

4

and binary relation S &€ Q* (bth .x’nndl‘k) |

o

Procedure ()PDATE(F’.EI, R, Qc,Po.s‘f‘ean f
Sum_of- Errers '= O |
for each uninstfantiated primitive Pg oa

" be 1N

for each Qg still OK for P oo

axf (Pe,P.)ER and (Qe,Q) € S .
then FET(4,5)=FETED+w(l, R

end . .
MINEAR(L) := Fhe new mmimom 1H MW 4
Som-of Errorsi= Som-of-Emvers + MINELL(L)

_[f Som-of- Errors + Pasterr ? €&

then fail return
end
Mm (Sum_o'\o. Er‘r‘ot‘.s\
end
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TIME IN MILLISECONDS

————————F

NUMBER OF UNITS

Figute 11.¢ 1llustrates the number of milliseconds of CPU time on an
IEM 370/158 as a function of number of units for p=. S.t -1,
and three different sesrch methods.
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| For each cluster C. and i+
representative Re | there "
e threshold Tc,' so that )
a

D REC = D(R,R.) ¢ Tc
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DETERMINING 3-D MOTION AND STRUCTURE
FROM IMAGE SEQUENCES¥*

T. S. Huang Ly
Coordinated Science Laboratory ! =
University of Illinois at Urbana-Champaign | N
1101 West Springfield Avenue ' | 1
Urbana, Illinois 61801

f Sumnazy

The determination of 3-D motion and structure from image sequences has
many applications, including interframe TV coding, target tracking, and
robot trajectory planning using visual feedback. Past work in the area led
to results which involved the iterative solution of nonlinear equations [r-3],

and the questions of convergence and uniqueness were not resolvid. In this

talk, we shall present a new method [4] of determining 3-D motion and struc-
ture from two image frames. This method requires eight point correspon-
dences between the two frames, from which 3-D motion and ;trutture parameters
are determined by solving a set of eight linear equations and a singular value

decomposition of a 3X3 matrix. We also show that the solution thus obtained

is unique,
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* To be presented at the NASA Workshop on Image Structures, April 28-30, 1982,
Texas A&M University, College Station, Texas 77842.
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0 X

X
(X,Y)= Image-space
coordinates of the
point P at time t;

(AX,AY)-Image-  DisplacemsT
space shifts from vecho?y
time 1, to t, for >y

the point P DP?;"J

Object\Space

(x,Y’)
=Image-space
coordinates of the
point P at time 1,

(x,v,2)=Object space
coordinates of a physical
point P on the object
at time t,
L (x'y"2')= Object-space
y; coordinates of the same

point P at time t, p—

Fig. 1 Basic geometry for three-
dimensional motion
egtimation.
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x' X Ax
y'| = Rly| + |Ay (1.22)
z! l_z Az

whera {Ax,Ay,Az) is the amcu t of translation, and R is a rotation matrix

[1.6]
Q" rnz + (1-n2)f'r*:.3 n,n,(l-cos€)+n,sivd n,n_ (l=-cosS) -n s:i.xia—|
1 : L 172 3 173 2
v’. R=|n %2 (1-cei) - n, sind n‘;' + (1 -ng)coé nzn3(1 -cosf) +nlsim3
2 2
1 3(1 -C sr.\+nzsixﬁ n n3(1-co§) -nls:uﬂ n, + (1 -n3)cose J

(1.23)

B T T T T WU, CRNDEFFSSpP i = S5 S
/
. /

where n,, 0, and n, are the directional cosines of the axis of rotation ;
]

A+ & n§ -1 (1.24)

and @ is the amount of rotation between the two frames.

Assume the amount of rntation, 8,is small. Then

1 n39 -nze
R = ~n36 il nle (1.25)
n29 -nle 1
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Technicolor Graphic
Services. Inc.

RE: O0AB5-39 May 10, 1982
Dr. Larry Guseman PACE 1S
Department of Mathematics g?‘?oﬂg; QUALITY. y

Texas A&M University
College Station, Texas 77843

Dear Dr. Guseman:

I would like to thank you for inviting me to the NASA Workshop on Image
Analysis. Since I work in the area of technology transfer and applications
of remote sensing, I viewed the conference from the perspective of how
fundamental research influences applied research.

In the area of image segmentation, we now have many tools for clustering and
classification. The extension to be made from cu: rent capabilities will
perhaps make use of ancillary data for classification refinement via digitized
soils data, terrain illumination correction, etc. With many layers in a data
base, total registration accuracy is a weak point, as well as mechanism to
quickly process mixtures of raster and polygonal formats.

Shape and texture analysis seems to me to present the most exciting possi-
bilities - particularly given the finer resolution of Landsat D. Since we
know a human analyst can identify features from shape and texture, perhaps
images can be enhanced to iteratively improve the interpretability until
ultimateiy some features can be machine-recognized. The role of color in
this process has been relatively untapped which to me implies that the exten-
sion of algorithms from 2-D to N-D is not at all trivial and deserves a great
deal of study.

The area of structural knowledge relates to our needs in that we often model
a desired variable (irrigability, exploration potential, grazing capacity) as
a function of other variables. A structure within which we can analyze and

weight the variables, and arrangements of the variables, would be beneficial.

As to where to look for the evolution of new image processing capabilities,
I personally have been dissatisfied with statistical approaches. They seem
to deal with images in measurement space only and make assumptions that are
not true often enough. The best forward strides I have seen are practical

and arise from a well-defined problem.

Again, I enjoyed meeting you, found the workshop stimulating, and am looking
forward to visiting A&M again.

Sincerely,

~/ 4
XIra 2, L= L.+ )

l /
Susan K. Jenson
Senior Applications Scientist
Geoscience Section

SoutH DakoTa OperAaTIONS - EROS DaTa CENTER + Sioux FaLLs, SoutH DakoTa 57198 + TELEPHONE (605) 594-6511
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COMPUTER VISION LABORATORY

Image Analysis 301-454-4526
Picture Processing
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- May 13, 1982

Dr. Larry Guseman

. Dept. of Mathematics

i Texas A&M University
College Station, TX 77840

I‘ Dear Larry,

The following are some suggestions for future research
T areas under the NASA Fundamental Research Program in
i Pattern Recognition:

1. Application of AI methodology to develop "expert
? systems" for various interpretation tasks.

2. Automatic registration of multisensor data, and
T of images with maps.

,¢

3. Study of VLSI architecture requirements for remote
sensor data processing and analysis.

ey

4. Development of database management techniques
applicable to remote sensor data.

We hope these ideas will be useful. We enjoyed the meeting
and look forward to seeing you again soon.

e | e

Sincerely,
Larry 3. Davis
L} | Associate Professor
i ¢

= Azg}ei Rosenfeld
Research Professor

AR: job

% ; I Computer Science Center, University of Maryland, College Park, Maryland 20742, U.S.A.
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University of lllinois at Urbana-Champaign
College of Engineering 1101 West Springfield Avenve
COORDINATED SCIENCE LABORATORY @i ssaaen

g‘}'ﬂgk gﬁ?\fn‘i 217-333-69%
May s, 1 952
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