General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

SEMI-ANNUAL STATUS REPORT

NASA-sponsored

ER $\overline{3}-10120$
 CR -169723

 ti tow in se made there ats"

Cornell University Remote Sensing Program
1 June - 30 November 1982

Co-Irvestigators: Ta Lang
William D. Philpot

Original photognt $\%$ way be purchased g10ux Falls.: SD EY198

Cornell University

remote sensing program
SCHOOL OF CIVIL AND ENVIFTMMENTAL ENGINEERING HOLLISTER HALL
ITHACA, NEW YORK 14853-0211
(607) 256-4330, 256-5074

ORIGINAL PAGE ES OF POOR QUALITY.

10 January 1983

NASA Scientific and Technical
Information Facility
P.O. Box 8757

Baltimore-Washington International Airport
Maryland 21240
Re: NASA Grant NGL 33-010-171
Dear Sir/Madam:
In accordance with the provisions of the subject grant, we are submitting two (2) copies of our 21 st Semi-Annual Status Report, which covers the period 1 June to 30 November 1982. In addition, three (3) copies of this report are being sent directly to Dr. Alexander J. Tuyahov at NASA Headquarters.

Associate Professor and Principal Investigator
cc: A.J. Tuyahov, NASA Hdqts. D.A. Douvarjo, NASA Hdqte. Deans T.E. Everhart \& W.B. Streett T.R. Rogers \& F.J. Feocco Director R.N. White

ORIGINAL PACE IS OF POOR QUALITY

The primary objective of the NASA-sponsored, Cornell University Remote Sensing Program is to promote the application of aircraft and satellite remote sensing, particularly, in New York State. In accordance with NASA guidelines, this is zccomplished through conferences, seminars, instruction, newsletters, news releases, and most directly, through applied research projects. Each project must be, in some way, unique; essentially noncompetitive with commercial firms; and, potentially, benefit- or action-producing. Relatively little emphasis is placed on technology transfer, per se.

The activities of the Remote Sensing Program staff, from 1 June to 30 November 1982, are reviewed in this Semi-Annual Status Report, the 2lst to be submitted to NASA since the Program's inception in June 1972.

COMMUNICATION AND INSTRUCTION

Contacts and Cooperators

The Program staff regularly spends many hours discussing remote sensing activities, capabilities, projects and research, with representatives of various local, county, regional, state, national and international agencies, public and private organizacions, foreign countries and the academic community.

During the past six months, Ta Liang, Program co-investigator, spent five weeks on a soil mapping project in the Northwest Province, Zambia, where he was a consultant to the spectral Data Corporation, working through the Regional Remote Sensing Facility in Nairobi, Kenya. Warren Philipson, Program principal investigator, spent one month in the Xinjiang Region of the People's Republic of China, providing remote sensing consultations to a livestock development project. He also spent one month in Syria, coordinating a project on developing remote sensing techniques for agricultural applications. Both of philipson's projects were conducter for the Food and Agricultural Organization of the United Nations, and both are continuing.

Program staff participated in three technical conferences over the past six months. William Philpot, Program co-investigator, attended the OCEANS ' 82 Conference in Nashingten, D.C., serving as co-chairman of the session on Coastal Marine Applications of Remote Sensing. Philipson attended the Fall Technical Meeting of the American Society of Photogrammetry in Hollywood, Florida, where he presented a paper, "An Analysis of Seasat SAR for Detecting Geologic Linears" (Appendix C). Las'tly, Katherine Minden, a graduate student, presented the preliminary results of the vineyard study at the International Symposium on Machine Processing of Remotely Sensed Data, held at purdue University, W. Lafayette, Ind. (Appendices A and C).

In other travel, William Philpot visited NASA Langley Research Center to consult with researchers of the Atmospheric Sciences Division and to borrow a spectral absorption meter. Other equipment, a thermal radiometer and blackbody reference source, was borrowed from the U.S. Army Night Vision Laboratory, through the U.S. Environmental Protection Agency, for use in an EPA-funded study.

Since August 1981, the Program has hosted a Visiting Scholar, Yan Shou-yong, from the Inst tute of Remote Sensing Application of the Chinese Academy of Sciences, Beijing. Zhu Min-hui, another Cornell Visiting Scholar from the People's Republic of China, was being hosted by the School of Electrical Engineering; however, because Ms. Zhu's major interest is image processing, she recently transferred to the Program. Yan and zhu will continue to work and study with the Program for approximately six more months.

As in the past, many new and continuing dialogues were also held via the mail and telephone. These were often in response to requests for remote sensing consultations (e.g., Eastman Kodak regularly refers requests to the Program, and Newsletter articles often elicit requests). Philipson, however, has been especially active in developing an itinerary for two Syrians who are scheduled to undertake a Remote Sensing training program in the United States in January.

Newsletters

The Program's "Cornell Remote Sensing Newsletter" continues to be an important link to and beyond the Cornell community (Appendix E). By highlighting remote sensing activities at Cornell while reporting other items of interest, the Newsletter has attracted a readership which rixeatly exceeds the mailing list of some 500 individuals or groups in 45 statis and 27 countries (Appendix D).

Seminars

The Program's weekly Seminar in Remote Sensing was not held during the fall 1982; however, planning for the spring semester has begun. Scheduled guest speakers include those from NASA, NOAA, the U.S. Department of Agriculture, the Canada Centre for Remote Sensing, the Eastman Kodak Co., Exxon Research and Engineering Co., Rochester Institute of Technology, and PAR Technology Corp.

During the fall semester, Philipson and Philpot presented an invited seminar to Cornell's Department of Environmental Engineering on the use of remote sensing in environmental studies. The session was attended by some 50 students and faculty members.

Courses, Special studies and Graduate Theses
During the fall semester, some 45 students were enrolled in formal courses in remote sensing. Active graduate thesis investigations focused on:
engineering properties of arid region landforms (Ph.D., W. Teng), landform identification through quantitative drainage network analysis (M.S., W. Brooks), shifting cultivation and grazing patterns in Kenya (M.S., G. Wayumba), and soil salinity in Libya (M.S., M. Dribika). In addition, among the approximately 15 graduate students who minor in remote sensing while majoring in other fields (e.g., Geological Science, Natural Resources, Limnology, and City Regional Planning), several have adopted remote sensing topics for their theses.

DATA AND FACILITIES

As described in earlier reports, staff research and instruction have been enhanced through continued acqusition of a wide range of remotely sensed, aircraft and satellite data, and through extension of capabilities for their analysis and interpretation. These data, along with Program facilities and equipment, are made available at no cost to cooperators, students and other interested users.

With assistance from the NASA Office of University Affairs, the Program received Landsat, Skylab, high altitude and low altitude aircraft photographic and scanner coverage of sites in the Northeast. To support program research, the U.S. Environmental Protection Agency also obtained multispectral coverage over selected test sites; and in the course of various projects, imageries were obtained from the U.S.A.F. Rome Air Development Center, the U.S. Geological Survey, the U.S. Department of Agriculture, the National Oceanic and Atmospheric Administration, the st. Lawrence Seaway Development Corporation, the National Archives, the Tri-State Regional Planning Commission, the National Air Photo Library of Canada, Eastman Kodak Company, and several commercial mapping firms. In addition, the Johnson Space Center supplied the Program with copies of selected surplus films.

The Program maintains or has access to spectroradiometers and selected image analysis equipment: zoom and non-zoom stereoscopes, density slicer, color-additive viewer, monoscopic and stereoscopic Zoom Transfer Scopes, densitometer and other photographic and photogrammetric instruments. The Program also has an active file of computer routines for analyzing multispectral digital data ("ORSER"). These routines have received increased usage in Program-sponsored, spin-off and thesis investigations with Landsat and aircraft scanner data. Additionally, the Program's computer routines for analyzing Landsat tapes have been used by researchers at the N.Y.S. College of Environmental Science and Forestry at Syracuse, and the State University of New York at Binghamton, the latter, via a telephone Jink.

To increase image analysis capabilities, the Program secured funding for a visually interactive digital image analysis facility. A grant for specialized engineering research equipment from the National Science Foundation, combined with additional funding from Cornell's school of Civil and Environmental Engineering and the College of Engineering, was used to purchase a VAX $11 / 750$ computer and an $I^{2} S$ Model 70 image processing system, which are now being installed.

PROJECTS COMPIEETED

Two applied research projects were completed during the six-month period, 1 June - 30 November 1982: "A remote sensing study of concord vineyard canopy reflectance" (Appendix A), and "Relationships between linears and natural gas occurrences in the Southern Tier of New York State" (Appendix B).

In the vineyard study, which was the M.S. thesis investigation of Katherine Minden, field spectroradiometric and airborne multispectral scanner data were related to vineyard yield and other agronomic variables, in an attempt to determine the optimum wavelengths for yield prediction modeling. Relationships between vine canopy reflectance and several management practices were also considered. Spectral analysis of test vines found that, although some correlations with vine yield were significant, they were inadequate for developing a yield prediction model. On the other hand, the findings indicated that the vines examined through field spectroradiometry were not truly representative. A follow-up study is concentrating on the airborne scanner data.

In the gas exploration study, which was conducted for the Southern Tier Central Regional Planning and Development Board, Corning, N.Y., geologic linears identified from aerial photographs, Landsat images and maps were compared to gas well locations in three New York counties. Correlations were found between the dominant trends in regional linears and gas field boundaries and trends. Recommendations for limiting any follow-up exploration to these linear trends are being considered by the planning board.

PROJECTS IN PROGRESS

Program-Sponsored

As of 1 December 1982, the Cornell Remote Sensing Program staff was conducting six applied research projects under the NASA grant.

1. Grapevine yield estimation
2. Vegetable acreage in mucklands
3. Site selection for windmills (phase 2)
4. Spectral effects of sulfur dioxide
5. Screening tomato seedlings for salt tolerance

The objectives, cooperators, users, expected benefits and actions, and status of these projects are described, as follows:

1. Grapevine Estimation
-cooperators/users: Taylor Wine Company; N.Y.S. Agricultural Experiment station
-users: Taylor Wine Company and other vineyards; USDA Economics, Statistics, and Cooperatives Service; N.Y.S. Crop Reporting Service
-benefit:
-expected completion date:

Potentially, the capacity to improve and estimate vineyard yield with remotely sensed data

May 1983
As a follow-up to previous vineyard-related investigations (7th, 9th, 14th, 16th, and 17th Semi-Annual Status Reports, Dec. 1975, Dec. 1976, June 1979, June 1980, and Jan. 1981, respectively, and Appendix A), the Program staff is attempting to develop an algorithm for predicting vineyard yield on the basis of remotely sensed measurements. Efforts are being concentrated on a re-evaluation of the airborne multispectral scanner data.

2. Vegetable Acreage in Mucklands

-cooperators/users:
-benefit/action:
-expected completion date:

N.Y.S. Crop Reporting Service; USDA/SRS

A more efficient means for collecting statistics on vegetable acreage
pilot-study-mJanuary 1983

Mucklands are important vegetable-growing areas in New York state. At the request of the New York State Crop Reporting Service, Program staff began a study to test the value of Landsat for inventorying vegetable acreage in mucklands. A crop calendar was compiled and compared to dates of available Landsat data. One July 1981 scene was selected for the pilot study, and the computer-compatible tape was purchased for the Program by the cooperator. Analysis of the single scene, supported by the State's field enumerations, has had some success in separating specific vegetables. Although improvement could almost certainly be had by incorporating a second date of Landsat into the algorithms, no other good scene is available for the 1981 season. At this time, the interpretations and recommendations are being finalized, and follow-up activities with thematic mapper data are being discussed with the cooperators.

3. Site Selection for Windmills (Phase 2)

-cooperators:	N.Y.S. Energy Office; Niagara, Erie, and Orleans counties, $N . Y$.
-users:	N.Y.S. Energy Office; citizens of New York State
-benefit/action:	Selection of best sites for windmills
-expected completion date;	2nd Phase-May 1983

A methodology was developed for identifying and ranking sites of highest wind power potential within any defined region (l8th Semi-Annual Status Report, June 81). The methodology was applied to selecting sites in three counties in western New York. State and county officials erected anemometers at 16 sites; but because of the lack of cooperating land owners,
few of the recommended sites were used. Site monitoring periods ranged from 2 to 11 months before the program was terminated by state budget cuts. The Program staff is attempting to obtain the collected data in order to relate the wind monitoring results to the criteria relied on for site selection. Although the best sites may not have been monitored, wind differences should still be informative.

5. Spectral Effects of Sulfur Dioxide

-cooperator:	Boyce Thompson plant Research Institute
-users:	U.S. Environmental Protection Agency; other monitoring agencies
-benefit/action:	Development of a procedure for monitoring SO_{2} and its effects
-expected completion date:	Feasibility study--May 1983

Researchers at the Boyce Thompson Plant Research Institute, which is $10-$ cated on the Cornell University campus, are investigating the effects of sulfur dioxide on the yield of beans. During the summer of 1980 , Program staff collected field spectroradiometric measurements and $70-\mathrm{mm}$ ground photographs of selected rows of beans, exposed to varying concentrations of sulfur dioxide. The spectroradiometric data have been calibrated and film densitometric measurements made. Limited data on bean yield and gas concentration have been provided by the cooperator, and they are being correlated with both types of remotely sensed data.

6. Screening Tomato Seedlings for Salt Tolerance

-cooperator/user:	Boyce Thompson Plant Research Institute
-users:	Tomato growers
-benefit/action:	More efficient screening using
	remote sensing methods
-expected completion date:	May 1983

At the request of researchers at the Boyce Thompson Flant Research Institute, the program staff undertook a project to determine if remote sensing methods could be applied to reduce the time and costs involved in screening tomato seedlings for salt tolerance. The aim of the initial phase of the work is to use greenhouse photography and densitometry to determine if the leaf spectral response of "salted" tomato seedlings exhibits any correlation with known levels of seedling tolerance. Early results were inconsistent and a more rigorous experiment was planned; however, equipment failures have delayed project implementation.

Spin-Off Projects

During the past six months, the program staff has been involved in two projects which arose directly from NASA-funded research and teaching activities. The staff is assisting in a characterization of acid lakes in New York's Adirondack Mountains using digital analysis of Landsat data. This project is funded by a Mellon Foundation grant to Cornell's Department of Ecology and Systematics. The staff is also evaluating the feasibility of using remote sensing to characterize the contents of liquid chemical waste storage drums. This project is funded primarily by the Environmental Protection Agency.

In another ongoing investigation, William Philpot was awarded an NSF grant to extend his Ph.D. research through verification of a model for radiative transfer in non-homogeneous waters. This work will continue through at least 1984.

FUTURE PROJECTS

The Program staff is continually soliciting and receiving proposals for new remote sensing, applied research projects. As described, criteria for project acceptance are that the projects must be, in some way, unique; that project acceptance would not compete unduly with private companies or consultants; and that, if completed successfully, the project would produce tangible benefits or actions by defined users.

PROGRAM STAFF

The Program staff is comprised of Warren R. Philipson, principal investigator, Ta Liang and William D. Fhilpot, co-investigators, and Chain-Chin Yen, computer data analyst. Donald J. Belcher, Arthur J. McNair, and Ernest E. Hardy are general consultants to the Program and, for specific projects, assistance has been provided by many Cornell and non-Cornell personnel. Students who have contributed significantly to the Program staff effort over the past six months include Katherine Minden, William Teng, Anthony Vodacek, and Ellen Weeks.

ORIGINAL PREE IS OF POOR QUALITY

IITST OE APPENDICES

A. VINEYARD YIELD ESTIMATION
B. NATURAL GAS EXPLORATION
C. RECENT PUBLICATIONS
D. NEWSLETTER RECIPIENTS
E. RECENT NEWSLETTERS

APPENDIX A

A REMOTE SENSING STUDY OF CONCORD VINEY ARD CANOPY REFLECTANCE

A Thesis
Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment for the Degree of Master of Science by

Katherine Anne Minden

August 1982

Abstract

This study used field spectroradiometric and airborne multispectral scanner data to relate vineyard canopy reflectance to vine yield and other agronomic variables, and to assess the optimum wavelengths for yield prediction modeling. Relationships between vine canopy reflectance and several management practices were also examined.

Field spectroradiometric measurements of 18 vines were collected on three dates; at the Vineyard Laboratory of the New York State Agricultural Experiment Station, in Fredonia, New York. Replicated vines had been subjected to nine agronomic treatments involving levels of nitrogen, weed control, pruning and training.

During field data collection, radiance from a white Lambertian standard and vine radiance were measured simultaneous ly with portable spectroradiometers (ISCO Model SR), taking readings at intervals of 25 nm from 400 to 1100 nm . The data were transformed into percent hemispherical-conical reflectance.

Correlations were then computed between the spectral reflectance of each vine, on each date, and vine yield. Relation ships between vine reflectance and pruning weight, clusters, nitrogen application and weed control were also evaluated.

As an extension of the field program, one date of airborne multispectral scanner data (M2S, 11 channels) was flown by NASA

over the vineyards of the Taylor Wine Company, Inc. 。in Hammondsport, New York. The spectral radiance values for eight vineyard sections of Concord grapevines were averaged and related statistically to yield.

An analysis of variance indicated that the 18 vines sampled were not representative of the average vine response to available nitrogen. Spectral analysis of these vines found that, although some correlations between vine yield, pruning weight, clusters per vine and reflecrance were statistically significant, they were inadequate for developing a yield prediction model. It was apparent, however, that reflectance data collection could be limited to certain wavelengths, depending on the growth stage.

It is also of note that canopy reflectance was strongiy influenced by available nitrogen, which was determined by the merhod of weed control and nitrogen input, as well as growth stage.

BIOGRAPHICAL SKETCH

Katherine Minden was born on \square in
She attended Montclair High School for three years, and spent her senior year in Brazil as a Rotary Exchange Student. In 1974, she entered the Natural Resource Department at Michigan State University where she focused her studies on International Resource Policy and Watershed Management. After graduating with a B. S., she worked at the U.S. Geological Survey EROS Program office in Reston, Virginia, as a physical scientist, specializing in Landsat studies of Antarctica. In January, 1980, she enrolled at Cornell University as a graduate student in Civil and Environmental Engineering, majoring in Aerial Photographic Studies and Remote Sensing. While at Cornell, she was employed as a research assistant for remote sensing studies of snow depth, SO_{2} and vineyard yield. She was also a teaching assistant for a graduate course in image analysis of landforms.

She is a member of the American Society of Photogrammetry, American Women in Science and the Association of Women Geoscientists.

In memory of my mother, Joan Lancy Minden

She set an example of great courage and strength that I will always strive to follow. Her encouragement and support were abundant, and her giving and love were unending.

ACKNOWLEDGEMENTS

Thanks are due to the many people who contributed their knowledge, time and support to the success of this project.

My graduate committee, Professors Warren Philipson, Ta Liang and Ernest Hardy, are to be thanked for their assistance throughout my graduate career. I am particularly indebted to Professor Philipson, whose invitation precipitated my entering the Remote Sensing Program, and whose assistance in this thesis investigation made the completion of my degree possible. I also thank Professor Liang for his patience and guidance which allowed me to clarify the direction of my research when it seemed most overwhelming.

The assistance in the field of Mike Duggin of Syracuse-ESF was indispensable. In addition, thanks are due him for developing the method of radiance data transformation.

The viticultural staff of the Fredonia Experiment Station gave generously of their time, expertise and friendly support. I am especially grateful to Dr. Nelson Shaulis, John Harker, Harriet Hubbard, and Dr. Robert Poole for their invaluable assistance.

The staff of Taylor Winery Co. , Inc. also devoted many hours to this study. Special thanks go to Harland Tyler, Jurgen Loenholdt and Glen Salva,

Several Cornell professionals were instrumental in this research. Special thanks are due to Chain-Chin Yen who did
excellent work in computer processing. John Yost and Glen Darling designed and built necessary field equipment with unsurpassed ingenuity. Ron Clayton, Don Warholic and Dick Mandl are to be sincerely thanked for the loan of their spectroradiometers.

This study would not have been possible without the help of a terrific team of field technicians. Lisa Balliet, Tom Erb, Bill Hafker, Karen Jahn, Sandy Matulonis, Dave Smith, John Stanturf and William Teng worked with enthusiasm and cooperation through many long and hot days reading instruments.

My officemates and other friends provided an atmosphere of mutual support throughout the ups and downs of graduate school and the difficulties of everyday living. I am especially grateful for the friendships of Elaine Aderhold, Bill Brooks, Zekai Can, Mustafa Dribika, Anna Gibson, Katsutoshi Kozai, Christina Stas, Gordon Wayumba, Ellen Weeks, Yemane Zecharias and Kathy Zvanovec.

Helen Lewis did an excellent job of typing, and I thank her.
Most important are the thanks due to my parents, brothers, sister and brother-in-law whose unfailing confidence in my abilities has been my mainstay throughout.

Lastly, I must thank my husband, Parker Auburn, who still wanted to marry me after seeing me perform as a graduate student. Through taking a great interest in my work, he shared all the joy of learning and the misery of writer's block. Thus, he also shares the excitement of finishing at last.

This study was supported by NASA Grant NGL 33-010-171.

TABLE OF CONTEN'TS

PAGE

1. INTRODUCTION 1
2. LITERATURE REVIEW 3
2.1 Spectral Characteristics of Crops 4
2.1.1 Leaf Reflectance. 4
2.1.2 Canopy Reflectance 7
3. 2 Remote Sensing of Yield 8
2.2.1 Aerial Photography 10
2.2.2 Spectroradiometers 12
2.2.2.1 System Operation 12
2.2.2.2 Application of Ground-Based Spectroradio- meters and Radiometers to Crop Yield Study 12
4. 2. 3 Multispectral Scanners--Landsat 16
2.2.4 Thermal Scanners
2.2.4 Thermal Scanners 18 18
2.3 Vineyard Management for Yield Optimization 18
2.3.1 Traditional Methóds. 19 19
2.3.2 Remote Sensing Methods. 20
2.4 Summary 24
1. MATERIALS AND METHODS 26
3.1 Site Descriptions 26
3.1.1 Fredonia 26
3.1.1.1 Physical Characteristics 26
3.1.1.2 Vineyard Management Practices 28
3.1.2 Hammondsport 31
3.1.2.1 Physical Characteristics 31
3.1.2.2 Vineyard Management Practices 34
3.2 Data Selection 35
3.2.1 Information Needs 35
3.2.2 Field Data 35
3.2.3 Airborne Data. 39
3.3 Data Collection 42
3.3.1 Intrument Calibration 43
3.3.2 Field Data Collection 46
3.3.3 Airborne Data Collection. 51
3.4 Data Analysis 51
3.4.1 Spectroradiometric Data 52
3.4.1.1 Analysis of Reflectance and Yield. 54
3.4.1.2 Analysis of the Nitrogen Effect on Yield and Reflectance 56
PAGE
3.4.1.3 Analysis of Agronomic Variables and Reflectance 57
3.4.1.4 The Effect of Time on Yield-Reflectance Relationships 58
3.4.1.5 'Additional Analyses 59
3.4.2 Multispectral Scanner Data Analysis. 61
3.4.2.1 Site Location and Boundary Definition 61
2. RESULTS 68
4.1 Introduction. 68
3. 2 Canopy Reflectance and Yield. 68
4.3 The Effect of Weed Control and Nitrogen - Application 76
4.4 Agronomic Variables and Reflectance 79
4.5 The Effect of Time on Yield Reflectance Relationships 87
4.6 Multiswectral Scanner Reflectance Data and Yield 87
4. DISCUSSION. 94
5.1 Vineyard Canopy Spectral Characteristics 94
5.1.1 Canopy Reflectance and Yield 94
5.1.2 The Effect of Weed Control and Nitrogen Application 95
5.1.3 Agronomic Variables and Reflectance 96
5.1.4 The Effect of Time on Yield-Reflectance Relationships 97
5.1.5 Multispectral Scanner Réélectance Data and Yield. 98
5. 2 Limitations of̂ Current Study 98
5.2.1 ISCO Spectroradiometer 98
6. 2. 2 Multispectral Scanner 99
1. CONCLUSIONS. 100
REFERENCES 102
APPENDICES 107
Appendix A 108
Appendix B 114
Appendix C 175

LIST OF TABLES

TABLE PAGE
2. 1 Correlation between yield and remotely sensed spectral and morphological factors (Philipson, et al. , 1980) 23
3.1 Management treatments applied to selected vines at Fredonia, New York 30
3.2 M2S channel classification 40
3.3 Flight data summary 41
3.4 Spectral bandwidths of the simulated M2S reflectance data 55
3.5 Summary of spectroradiometer data analysis 59
4.1 Summary of correlations between yield of 18 vines and their reflectance at 30 wavelengths 69
4. 2 Correlations between yield and reflectance ratios for 18 vines. 71
4.3 Summary of correlations between linear transformations of 1980 yield (Y) of 18 vines and reflectance at 30 wavelengths 72
4. 4 Summary of correlations between yield and reflectance ratioed by month, for 18 vines 73
4.5 Summary of correlations between yield and simulated scanner (SM2S) averaged reflectance values for 18 vines 74
4.6 Summary of correlations between yield and ratioed SM2S reflectance data for 18 vines 75
4.7 The response of yield to the method of weed control and nitrogen application for 36 vines, (a'), and for 12 sampled vines, (b). 77
4. 8 Summary of correlations between yield and reflectance for vine groups stratified by method of weed control 78
TABLE PAGE
4.9 Correlations between several agronomic variables for 18 vines. 80
4.10 The response of clusters per vine to the method of weed control and nitrogen application for 36 vines, (b), and for 12 sampled vines, (b) 81
4.11 The response of pruning weight to the method of weed control and nitrogen application for 36 vines, (a), and for 12 sampled vines, (b) 82
4.12 Summary of correlations between pruning weight of 18 vines and reflectance at 30 wavelengths 84
4.13 Summary of correlations between pruning weight and reflectance for vines stratified by method of weed control 85
4.14 Summary of correlations between clusters per vine Of 18 vines and reflectance at 30 wavelengths 86
4.15 Summary of correlations between clusters per vine and reflectance for vines stratified by method of weed control 88
4.16 Nine groups of vines stratified by time of day 89
4.17 Summary of correlations between yield and reflectance for vines stratified by time of day 90
4.18 Summary of correlations between yield and Simulated M2S reflectance for vines stratified by time of day 91
4.19 Summary of correlations for clusters and pruning weight with reflectance for vines stratified by time of day 92
4. 20 Correlations between yield and multispectral scanner reflectance and linear reflectance variables for eight Concord vineyards 93

LIST OF FIGURES

FIGURE

PAGE
2.1 Plant leaf reflectance, absorptance and transmittance spectra(Knipling, 1970) 5
2. 2 Geometric relationships between solar zenith angle, target and detector (Duggin, 1980) 9
3.1 Locations of the two vineyard study sites in
New York State 27
3.2 The gently sloping terrain at Fredonia is evident in the regional topographic contours 29
3.3 Single (a) and double (b) curtain training of viney ard canopy 32
3.4 The Taylor vineyards are grown on the moderate slopes that form the western boundary of Keuka Lake 33
3.5 ISCO spectroradiometer showing scale and sensitivity ranges. 37
3.6 Diagram of the significant internal systems of the ISCO spectroradiometer (ISCO manual). 38
3.7 Three receptors mounted horizontally above the white Lambertian reflectance target 44
3.8 Simul taneous manual readings were made by three operators 45
3. 9 Spectroradiometers mounted on a grape harvesting tractor for field data collection 48
3.10 Positioning of cone receptors from spectroradiometers \#2 and \#3. 49
3.11 Data sheet on which spectroradiometer readings were recorded (Duggin, 1980) 50
3.12 Typical spectra of grapevine canopy measured by spectroradiometers (12 September 1980) 53
3.13 Field map of Taylor Vineyard Area II 62
3.14 Black-and-white copy of color-infrared aerial photograph of Tay lor vineyard sections 8-15 and 17 in Area II (Fig. 3.13) 63
3.15 Geometrically corrected NMAP of vineyard section II-14. Note that NMAP is a mirror image of the aerial photograph (Fig. 3.14) of the same section 64
3.16 Tangential scale distortion in unrectified line scanner imagery (Lillesand and Kiefer, 1979) 67

CHAPTER 1

INTRODUCTION

In New York State, vineyard management decisions focus on assessing crop status and applying appropriate treatments for maximizing crop yield. Remote sensing methods have previously been applied to problems addressed by viticulturalists. Results have included cost-effective methods of assessing drainage; soil depth, compaction, and texture; and crop health and vigor.

The staff of the Remote Sensing Program at Cornell University has been involved in developing remote sensing techniques for vineyard management since 1975. All past studies were applied to the vineyards of the Taylor Wine Company, Inc., of Hammonds port, New York. In 1977, a preliminary assessment of vineyard yield using remotely sensed data was performed. The results were promising enough to merit the more in-depth study described here.

This research was intended to determine the extent to which grapevine characteristics, including yield, could be described through the spectrai properties of the vine canopy. In addition, it was hoped that this study would lead to the development of remote sensing procedures that the viticulturalist could apply operationally.

The specific objectives of this research are:

1. To relate viney ard canopy reflectance to vine yield and other agronomic variables through field spectroradiometric measurements;
2. To define the optimum wavelength(s) for yield prediction modeling; and
3. To extend the ground-level results to the design of airborne data collection.

CHAPTER 2

LITERATURE REVIEW

Remote sensing is the science of detecting information about an object, area or phenomenon from a distance, without direct contact with the target. Remote sensors record variations in reflectance and exitance of electromagnetic energy by objects under study. It is a tool that has been used in many fields to assist in the inventory, monitoring and mapping of earth resources (Reeves, 1975). This literature review consists of an examination of remote sensing applications to crop condition and yield assessment. The specific focus is on the potential of remote sensing techniques for vineyard yield estimation.

The main concern of vineyard management in New York State is optimizing yield. Crop y deld data affect all stages of production, including processing, storage and disposal (Luney and Dill, 1970). Ordinarily, yicld estimates are made by ground checks during the growing season. The vineyard manager observes the crop vigor, the number of clusters and buds, and the pruning weight of cuttings to calculate the yield potential. The expected yield is incorporated into the production plans for each wine. Over large areas, ground checks can be time consuming. Detailed observations can often be made only for a small number of plants. Thus, the accuracy of potential yield estimates is limited.

Remote sensing has been used to obtain more timely, rapid and accurate assessment of crop conditions and yield. Studies have been primarily devoted to measuring stress effects on plant vigor (Colwell, 1970). The losses in crop vigor are evalunted and equated to a percent loss in expected yield. More recent quantitative studies explore the relationship of spectral response to agronomic properties (McDaniel and Hans, 1982). These variables include leaf aren index, biomass, disease, percent green percent ground cover, nutritional status and yield. The following sections will discuss the studies and their applicability to viney ard yield estimation.

2.1 Spectral Characteristics of Crops

2.1.1 Leaf Reflectance

Phant canopy reflectance is largely the product of the interaction of radiation with individual leaves and within multiple layers of leaves. Therefore, an understanding of the optical characteristics of leaves is necessary when attempting to analyze canopy characteristics.

Incident energy is reflected, transmitted, and absorbed by a leaf. All three processes contribute to any evaluation of leaf spectral properties. Figure 2.1 shows the percent incident energy that undergoes each process as a function of the wavelength of that: energy. The variations in percent energy reflected by a leaf between different wavelengths can be related to plant physiology. Factors that affect reflectance include chlorophyll and other pigments, water content, maturation, senescence, and internal leaf structure (Bauer, 1975)

ORIGINAL PAGE IS
 OF POOR QUALITY

Figure 2.1 Flant leaf reflectance, absorptance, and transmittance spectra (Knipling, 1970).

Plant reflectance in the visible region of the spectrum (400 to 700 nm) is relatively low due to the absorption of visible light by chlorophyll and other pigments (Wiegend et al. , 1972). Chlorophyll absorbs slightly less radiatical in the green wavelengths than in the blue or red wavelengths. Therefore, a small peak occurs in the reflectance curve of a vigorous plant at approximately 550 nm .

Plant pigments become transparent in the near-infrared (near-IR) region of 750-1350 nm. Therefore, the internal leaf struc-. ture becomes dominant (Myers and Allen, 1968, Wiegand et al., 1972; and Bauer, 1975). The result is that a high reflectance curve exists in this region along with a corresponding decrease in absorption.

Leaf structure continues to exert a slight influence in the 1350-2500 nm infrared wavelength interval. However, the dominant plant parameter that affects reflectance at those wavelengths is leaf turgidity. There are two strong water absorption bands at 1450 and 1950 nm (Myers and Allen, 1968, Wiegand et al. , 1972; and Bauer, 1975).

As the leaf matures, the structure of the leaf mesophyll expands and the percent chlorophyll present increases. A cor. esponding increase in reflectance in the near-IR and green wavelength peak, as well as a decrease in the red wavelengths occurs (Myers, 1975).

When the leaf enters senescence, the chlorophyll production drops and becomes less dominant in the leaf spectra (Myers, 1975). The red reflectance increases and the green reflectance decreases. Leaf turgidity also drops during senescence. When the turgidity reaches $70-80 \%$ or below, reflectance in the visible and near-IR
increases. This effect, which is most significant in the near-IR, is partly due to the increase in air interfaces in the leaf structure that accompanies dehydration (Myers and Allen, 1968).

2.1.2 Canopy Reflectance

There are both quantitative and qualitative differences between optical properties of individual leaves and those of canopies, Colwell (1974) summari zed the significant parameters affecting canopy reflectance. They are: leaf area and orientation; leaf hemispherical transmittance and reflectance; the characteristics of other plant canopy components (trunks, petiole, etc.); background surfaces (soil, leaf litter); solar zenith angle, look angle, and azimuth angle.

A decrease in the leaf area index can result in a canopy reflectance increase in the red and a decrease in the near-IR (Suits, 1972), Light-toned soil background reflectance causes an increase in the near-IR and a decrease in the red, depending on the percent cover, look angle, and the solar zenith angle (Colwell, 1974). Variations in the tone of the background, whether soil, rock, or vegetation, will cause variations in the total canopy reflectance. Increasing shadow within the canopy has caused decreases in the near-IR reflectance.

Colwell (1974) also observed that canopy reflectance, when measured from a 20° look angle in a downsun direction, was higher in the green, red, and the near-IR than when measured with a vertical look angle. When the look angle was 20° upsun, the reflectance decreased in the green and red relative to the vertical measurements. The near-IR reflectance increased slightly.

Egbert and Ulaby (1972) found that the variations of percent reflectance of the horizontal and vertical components of a vegetation canopy also change in relation to look angle and solar zenith angle. The greater the percent canopy cover, the less the angular dependence (Colwell, 1974).

The effects of the solar zenith angle, look angle and the azimuth angle on the reflectance of pasture vegetation were studied by Duggin (1980a). Using ground level radiometers, he found that the reflectance in the red and near -IR changed as the elevation of the detector changed. This change was highly dependent on the solar zenith angle and the azimuth angle. These factors affected the red reflectance up to 60% and the near-IR up to almost 40%.

Measurements taken at different times are also varied with the solar zenith angle. The geometric relationships of the sun to the detector and target are illustrated in figure 2.2, where z is the solar zenith angle and ϕ is the azimuth of the detector with respect to the sun.

2. 2 Remote Sensing of Yield

Yield estimation with remote sensing is based on the ability to define plant morphological factors that correlate with yield and, at the same time, affect canopy reflectance. Several parameters that are commonly considered are leaf area, maturity, plant vigor, and plant health. Leaf area is characterized by the leaf area index, which represents the cumulative leaf area and layering in a plant or field of plants (Wiegand et al., 1979). Maturity indicates the growth stage. Plant vigor is the rate of growth, while plant health is an indicator of disease, nutrient, and insect effect.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 2. 2 Geometric relationships between solar zenith angie, target and detector (Duggin, 1980a).

Some methods of yield prediction combine historical crop yield information with assessment of crop condition on aerial data to determine a yield potential (Colwell, 1979). Other techniques apply crop reflectance data directly to the development of yield prediction equations (Kanemasu, 1974; Idso et al., 1977; Wiegand, et al. , 1979). These and other remote sensing research involved with yield prediction are discussed in the following sections.

2.2.1 Aerial Photography

Panachromatic black-and-white, color, and color-infrared (color-IR) aerial photography have been used for yield prediction research. The advantages of aerial photographs over other technology include the low cost of equipment; high spatial resolution; the ease of acquiring and processing data; and the ability to often use unaided human interpretation. Photographic emulsions are spectrally limited to the visible and near-IR wavelengths; however, combinaEions of film and filter sensitivities and densotometric measurement, can provide wavelength specific information.

Colwell et al. (1966) examined medium and large scale, black-and-white aerial photographs to determine acreage and yield for raisin and wine grape crops in California. To estimate total yield, photo counts of raisin drying trays laid out between rows of vines were multiplied by the average yield per tray of 20-25 lbs, Crop acreage was also measured on the photographs. The use of aerial photographs in this instance allowed the growers to save substantially on field checking, and to stabilize production (Colwell, 1970).

Allen and Von Steen (1969) examined color and color-IR aerial photography in determining fruit tree yields. They found a significant correlation between the actual yield and the fruit per tree counted by eye on oblique color photographs.

Because the optical density of fruit differs from that of foliage, fruit has also been located by densitometric measurements (Myers, 1975). This system of fruit counting on aerial photographs was computerized. The round shape of most fruit along with its tonal variations, generally a darker perimeter than center, are taken into account in computer decision making. Although the computer accounted for less fruit than manual photo interpretation, it was a more consistent method.

Houseman and Huddleston (1966) developed an operational system for fruit tree yield forecasting that entails making plant measurements on aerial photographs. They estimate preharvest sampling through a predictor equation which incorporates the maturing of fruit, the number of fruit at each level of maturity, and the stage of crop development. The probability that a fruit at some maturity level would contribute to harvest was calculated. The sum of the above factors is used to estimate the number of fruit that will actually be harvested. Several years of historical data on the trees are necessary to implement this method.

In another study using large scale color-IR film, Von Steen et al. (1969) found statistically significant correlations between film density and plant yield parameters for five vegetable crops. The film was flown late in the growing season when crop canopies were well developed and soil reflectance was minimized. A
densitometer with blue, green, red and neutral filters was used to make density measurements on the color and color-IR films, Crop yield potential was predictable with this technique.

2.2.2 Spectroradiometers

2.2.2.1 System Operation

In order to determine whether spectral information can be used for crop yield study and which wavelength(s) would be optimum, the character of the plant reflectance signature must be examined over a broad spectrum. A spectroradiometer is used to make measurements of radiant flux in narrow spectral bands. Radiometers work on the same principle as spectroradiomerers, the only difference being that they have broader bandwidths. There are several types of both instruments available for in situ field work.

2.2.2.2 Application of Ground-Based Spectroradiometers and Radiometers to Crop Yield Study

Spectroradiometers and radiometers can be designed as portable field equipment. Therefore, they have been used to collect in situ, non-destructive crop reflectance measurements. This provides a means for better understanding the response of aerial data without significant atmospheric interference. Thus, more appropriate mission planning and sensor design is possible.

Vegetation study with these instruments usually involves measurements of spectral radiance and agronomic factors. Statis tical analyses are then used to investigate and define the relationship between the two data sets.

In one example, Tucker (1977) studied a grass canopy with a spectroradiometer. The instrument had a spectral range of $350-$ 800 nm . He found a significant correlation of total wet and total dry biomass with reflectance in the blue spectral region ($350-450 \mathrm{~nm}$), while leaf water content was closely related to percent reflectance in the blue, green, and red bands (450-800 nm).

In a study of soybean rust severity and yield, Casey and Burgess (1979) measured canopy reflectance with radiometers. The instruments were mounted on a tower seven meters above the canopy. They collected radiant flux across four broad spectral bands: green, 500-600 nm; red, $600-700 \mathrm{~nm}$; near-IR, $700-800 \mathrm{~nm}$ and $800-900 \mathrm{~nm}$. The reflectance measurements for each band were correlated with yield and with disease severity. Their results show a highly significant relationship between all four bands and both plant parameters. For yield, the correlation coefficients were positive with the near-IR bands and negative with the visible bands. The relationships were reversed for the disease severity correlations.

In an earlier study of wheat sorghum and soybean canopies, Kanemasu (1974) used a spectroradiometer to monitor red and nearIR radiance over one growing season. To compensate for changes in the solar elevation during the season, he used a simple ratio of the two bands. He found that the correlation of reflectance with the leaf area index was higher with the ratioed data than with single band data. He also found that when soil reflectance dominated the canopy reflectance, as with a mature crop, the ratio value decreased to less than one. He concluded that the ratioed value was a better
indicator of crop development than the near-IR reflectance measurements alone.

Tucker et al. (1979a) used a two-channel radiometer to monitor corn and soybean crop development. The instrument measured radiant flux in the red and near-IR regions. The plant parameters measured were percent crop cover, plant height, biomass/unit area, and plant chlorosis (or chlorophyll density/unit area). They found that red reflectance decreased with increasing green leaf biomass and chlorophyll. When senescence began, the red increased with chlorophy 11 breakdown and leaf loss. The near-IR reflectance increased with the increase in green leaf biomass and dropped with senescence. Linear combinations of the two bands in several combinations were developed to compensate for variability due to sun angle, time of day, and atmospheric effects. The spectral variables used by Tucker et al. (1979a) are the following:

1. IR - red,
2. $I R+r e d$,
3. $\frac{\text { Infrared }}{\text { red }}$,
4. $\frac{\text { Infrared }- \text { red }}{\operatorname{Infrared}+\text { red }}=$ Vegetation Index (VI),
5. $\mathrm{VI}+0.5=$ Transformed Vegetation Index (TVI).

The first two spectral variables were not significantly correlated with the measured plant parameters. However, the three ratios were found to be significantly related to plant height measured early in the season, and to the other parameters throughout the season. The results were consistent with another study (Tucker,
1979) which examined these and other ratios in relation to biomass, leaf water content, and chlorophyll content from a grass canopy. The principal findings of the corn and soybean monitoring were that five stages of crop growth, from emergency to maturity, could be defined by the spectral properties of the canopy, and that correlations were highest with the Vegetation Index ratio.

In another study, Tucker et al. (1979b) collected in situ reflectance data with two-band radiometers of alfalfa fields. The wavelengths examined were red ($650-700 \mathrm{~nm}$) and near -IR (775825 nm). The agronomic parameters studied were: plant height, percent canopy cover, percent drought stress, total wet biomass, total dry biomass, and water forage content. The IR/red ratio and the Vegetation Index ratio were also used in the data analysis. Highly significant correlations were found between all four reflectance variables and all six agronomic variables, when sampled predrought. Canopy cover was 85%. When sampled post-drought, the canopy cover was only 50%. The correlation coefficients dropped for all agronomic variables except forage water content and estimated drought stress.

In summary, in situ collection of crop canopy reflectance data has been satisfactorily accomplished with spectroradiometers and radiometers. Several plant parameters can be defined by spectral information. Ratios of the red and near-IR bands can provide more significant relationships between reflectance and plant parameters than single channel data.

2.2.3 Multispectral Scanners--Landsat

Research discussed in the preceding section illustrates that agronomic variables that relate to crop yield affect different regions of the plant reflectance curve. Therefore, when aerial data began to be used for crop study, multispectral scanners became a major data source. Platforms for the scanners include airplanes and satellites.

The Landsat Multispectral Scanner (MSS) has been used extensively in previous crop studies. This satellite-mounted MSS is a wide-band scanner with four channels (USGS, 1979). Two of the channels collect data in the visible, and two in the near-infrared. They are defined respectively as: band 4 (green, $500-600 \mathrm{~nm}$), band 5 (red, 600-700 nm), band 6 (near-infrared, 700-800 nm), and band 7 (near-infrared, 800-1100 nm).

As part of ${ }^{4}$ study of plant characteristics that relate to yield, Wiegand et al. (1974) analyzed Landsat MSS data. They correlated reflectance data from bands 4,5 , and 6 , and linear combinations of those data with four measured plant parameters of corn, sorghum and cotton. These were: plant population, canopy cover, plant height, and leaf area index. The spectral variables were: band $5 /$ band 6 and band 6-band 5.

They found that the four plant parameters explained a highly significant percent of the brightness variability in all three bands alone and the combined spectral data. The best correlations for leaf area index were found with band 6 -band 5 and with band 6 . They concluded that ratioing was a viable method for normalizing soil background reflectance. A further conclusion was that band 6 and
possibly band 7 contain certain information that can be related to probable crop yield and to rangeland animal carrying capacity.

In later research, Colwell et al. (1977) based a Landsat study of wheat yield on two propositions. One asserts that early season vegetative development is a good indicator of potential crop yield. The second is that Landsat MSS data can provide a reasonable estimate of wheat vegetative development. To test those theories, they correlated two between-channel ratios of MSS brightness values wich green wheat cover and with yield. The ratios were the SQ75 and the TVI as shown in the following equations.

$$
\begin{gathered}
\sqrt{\frac{\text { MSS }}{\mathrm{MSS5}}}=\mathrm{SQ75} \\
\sqrt{\frac{\mathrm{MSS} 7-\mathrm{MSS5}}{\mathrm{MSS} 7+\mathrm{MSS5}}}+0.5=\mathrm{TVI}
\end{gathered}
$$

The correlation coefficient of the SQ75 data with the percent wheat cover was extremely high (0.98). The correlation with yield was also very significant (0.80).

Landsat data have also been integrated into previously established crop yield models. Heilman et al. (1977) used Landsat MSS data in an evapotranspiration model to predict winter wheat yield. The major assumption of this model is that soil moisture is the main limitation to winter wheat growth. Therefore, the model combines daily estimates of solar radiation, temperature change, precipitation and other ground-based data. To allow the model to respond to crop growth, leaf area indices derjved from Landsat were also integrated into the equation. In general, the yields calculated were well correlated with those estimated by the Statistical Reporting Service.

The Large Area Crop Inventory Experiment (LACIE) also used Landsat data to assist in yield modeling (Houston, et al. 1979, Stuff et al. 1979). The MSS data were used to determine the spectral signatures, and thus the acreages, of different crops. Ground-based climatological information and agricultural statistics were used to formulate the actual yield predicting model. Some spectral variables developed from the MSS data were highly correlated with green leaf area. However, these relationships were found to be unique to the training data used, and were inconsistent when applied to other regions, years and scenes.

2.2.4 Thermal Scamers

Possibly due to the emergence of the Landsat MSS as a prime tool for the study of crops, little has been done in wavelengths other than the visible and near-infrared.

Thermal scamers have been used in an attempt to develop a remote sensing yield prediction model that would not require collection of ground-based data. Isdo et al. (1977 and 1979) developed the stress-degree-day (SDD) concept whicit relates the crop yield to the plant water stress. The model uses the difference between crop canopy temperature, mensured by the scanner, and ambient air temperature to calculate the SDD. When these data were combined with the traditional growing-degree-day concept, reasonable estimates of yield were possible.

2.3 Vineyard Management for Yield Optimization
 Effective management practices for vineyard yield optimization maintain a delicate balance between plant healch and plant

vigor. Health is defined by the levels of disease, insects and nutrients present in and on the vime, Vigor is the rate of vine growth which is usually measured by the annual weight of prunings taken in the dormant period. Generally, an increase in plant health results in an increase in yield, however, the same does not necessarily hold true for vigor (Shaulis, 1980, perscnal communication),

If the vine has too little leaf area, it will not be able to absorb enough sunlight for chlorophyll and sugar production. The resulting yield will be low. On the other hand, if there is too great a leaf area, the layering effect in the canopy will block the sunlight from reaching the leaves most crucial to fruit production. Again, the grape yield will be depressed. Therefore, to optimize yield, the vineyard manager must control fertilizer and other inputs to obtain a maximum benefit for plant heaith while maintaining a moderate rate of vine growth or vigor.

2.3.1 Traditional Methods

In New York State, vineyard managers depend on field obser vations for plant status assessment. The viticulturalist walks each vineyard and, by close observation of the leaves and fruit, locates low vigor vines. If the exact cause of decline cannot be identified in the field, laboratory analyses are run on leaf and soil samples. Once a problem is defined, a proper treatment is developed and applied.

Vineyard management for yield optimization consists of combinations of weed control, fertilization, pruning, and grafting of disease resistant rootstock (Shaulis and Steel 1969). To determine
the appropriate treatment for a yineyard, viticulturalists rate plant vigor, leaf area, size and color. This information can then be combined with pruning weight, historic yields, and climatic factors to estimate future yield.

Experiments at Fredonia, N. Y., study the response of Concord grapevines to combinations of the various treatments (Shaulis et al 1955, 1969). Statistical analyses show significant relationships between yield and most treatments. These include grafted rootstocks, varying levels of pruning severity, weed control, increasing amounts of nitrogen, and different training methods. The interactions of these treatments often have a more significant effect on yield than when considered separately.

2.3.2 Remote Sensing Methods

Traditional assessment of vineyard plant, soil and drainage status over large regions can be very time consuming. A more cost and time effective assessment can sometimes be made with remotely sensed data.

For example, using black-and-white aerial photography, Clore (1973) observed a lack of canopy cover in vineyards in Washington State. Field checks found the gaps to be the result of poor soil conditions and crop damage.

Feldner and Allan (1976) also used black-and-white airphotos to monitor vineyards. On three dates during the season, they obtained $1: 10,000$ scale photos of a $270 \mathrm{~km}^{2}$ grape growing region in Spain with the intent of monitoring the total acreage in vines and determining when vineyard managers were planting new vineyards.

Local farmers, trained in photo interpretation, delineated four vine categories based on age differences. Plants in the two older categories were accounted for with 100 percent accuracy. The two young vine classes were defined with only 70 percint accuracy. A comparison of the three dates of photography showed that spring and early summer photos were useful for identifying vines at least two years old. However, fall photos were best for identifying all classes of vines.

Philipson et al. (1980) used 1:24, 000 scale black-and-white aerial photography to determine soil drainage limitation classes at a new vineyard site. Using stereoscopic analysis, they delineated three classes based on relative photo tone and topography. Existing tile drainage was also located. Based on this study, new tile drains were installed as needed, and existing drains were incorporated into the system.

In a follow -up study, Philipson et al. (1980) used large-scale color-IR aerial photographs to assess vine health and vigor. Using visual airphoto interpretation, they defined six classes of first-year vine status, high vigor, average vigor, low vigor, very low vigor or gap, gap or dead plant, and double plant. Field checking of the six classes found a 100 percent agreement with actual plant condition. To make their survey more useful to the vineyard manager, they grouped the vines into broader classes of low-to-average vigor and average-to-high vigor. Management decisions based on these vineyard status maps resulted in increased input to low vigor areas.

Additional uses of color-IR aerial photography for vineyard management were developed by Wildman (1979) for some California
vineyards. Tonal differences of vines were used to determine levels of plant vigor. They were also used to monitor plant response to soil depth, texture, compaction, irrigation drainage problems, disease, and pest infestation. By delineating patterns of tonal changes, the areal extent of stress-affected plants was documented. An operational program that acquires annual photos was established. This cost- and time-effective photo analysis will be used by vineyard managers to determine the optimum time to replace entire vinoyard blocks. In addition, soil irrigation practices which were developed from the analysis resulted in greatly increased yields.

Crop yield was the focus of another study by Philipson et al. (1980). They used airborne multispectral scanner digital data, as well as color-IR film, to evaluete 16 vineyard sections of three grape varieties. Average plant yields for each variety were compared statistically to two plant parameters measured on the film and to the average radiance value of each variety measured in each of the 11 scanner channels. The two plant parameters, canopy continuity and width, showed little correlation with yield. However, the relationship of yield with reflectance, as measured by the scanner, was found to be significant. In particular, the Concord variety showed the highest correlations (Table 2.1).

Thermal-IR imagery was used to assist in vineyard site development for cold-sensitive grape varieties developed in the Niagara fruit belt (Stewart et alo., 1978). A line scanning radiometer ($800-1400 \mathrm{~nm}$) was flown during the spring of three successive years. Ground truth for surface temperatures and meteorological conditions were also recorded. Three classes of temperature zones were

Table 2.1
Correlation Between Yield and Remotely Sensed Spectral and Morph logical Factors. (Philipson et al. , 1980).

Variety	Delaware		Concord		Catawba	
Correlated Variables	June	Aug	June	Aug	June	Aug
Yield, 1977 versus:						
Chan 1	-. 13	-. 79	-. 02	-. 90	-. 22	-. 47
Chan 2	-. 13	-. 80	-. 02	-. 94	-. 25	-. 45
Chan 3	-. 10	-. 79	$-.00$	-. 96	-. 25	$-.45$
Chan 4	-. 06	-. 76	. 01	-. 96	-. 27	-. 49
Chan 5	-. 10	-. 80	. 00	-. 96	-. 26	-. 41
Chan 6	-. 11	-. 82	. 01	-. 96	-. 24	-. 33
Chan 7	-. 11	-. 82	. 01	-. 96	-. 21	-. 33
Chan 8	. 31	-. 71	. 07	-. 96	-. 18	-. 71
Chan 9	. 79	-. 64	. 12	-. 95	-. 13	-. 85
Chan 10	. 88	-. 67	. 12	-. 94	-. 11	-. 82
Chan 11.	- 39	-. 98	-. 58	-. 65	-. 34	-. 11
Continuity		. 19		-. 16		-. 16
Width		. 19		-. 16		-. 16
Yield, 1976		9		81		

distinguished: cold, intermediate and warm. Cold areas were found to be sites where plants were most likely to sustain frost damage under radiation frost conditions. Therefore, frost resistant varieties were planted at those sites.

2.4 Summary

Although little research has been carried out specifically on grape yield, the literature shows that yield prediction for some crops is possible with remotely sensed data.

The spatial properties of black-and-white and color-IR aerial photography have been utilized in combination with agronomic data to predict yield. However, the applications of film spectral responses have not been well developed or documented. Fruit has been identified by its density on large-scale color-IR photography, but canopy reflectance was not examined at the same time.

Most studies of crop canopy reflectance and its relationship with plant agronomic variables have been performed with nonphotographic systems, in particular with radiometers and the Landsat Multispectral Scanner. The bulk of this research has applied remote sensing methods to grain crops and legumes. The data base that exists for these crops is now quite extensive.

Generally, researchers have found that crop parameters correlate best with reflectance measured in the red and near-IR wavelengths, and with ratios of those wavelength bands.

In the actual study of vineyard reflectance with color-IR film and an airborne multispectral scanner, certain conclusions can be drawn. First, that differences in vine vigor can be defined visually
by observing variations in the response of color -IR film. Second, that some relationship appears to exist between yield and reflectance of Delaware and Concord grapes.

The present study was conducted to further define the specific spectral properties of vineyard canopies and to determine the relationship of these properties to crop yield. In particular, several sets of spectral measurements of single vine and whole vineyard canopies were collected and were related statistically to yield, agronomic parameters, and management input.

CHAPTER 3

MATERIALS AND METHODS

3.1 Site Descriptions

Remotely sensed data were collected at two locations in New York State. The first, the Vineyard Laboratory of the New York State Agricultural Experiment Station, at Fredonia, is an experimental site with highly controlled plant treatment and conditions. The ability to acquire detailed information about individual vines made this an excellent site for collection of the ground-based data.

The aerial data would have to be acquired over a larger region where access to a reasonable number of Concord vineyard sections would be possible. The Taylor Wine Company vineyards at Hammondsport, New York, easily met this condition. In addition, historical data were available for Hammondsport as past remote sensing yield studies were based at this site (Philipson et al, 1980).

3.1.1 Fredonia

3.1.1.1 Physical Characteristics

The Vineyard Laboratory at Fredonia is located in western New York approximately three miles southeast of Lake Erie (Figure 3.1). The vineyards are part of the Chautauqua County grape belt, one of the highest grape production regions in New York.

The high yields are largely due to climatological factors. The regional climate is strongly moderated by the presence of Lake Erie, resulting in a lengthened growing season (Pack, 1978). At Fredonia, the average length of frost-free growing season is 175 days (Patrie, 1951).

The terrain, modified by glacial lakes, is smooth and level (Figure 3.2). Local soils are derived from glacial till, lacustrine sediments and old beach deposits that are remnant of glacial lakes (Morrison et al., 1914).

3.1.1.2 Vineyard Management Practices

In 1956, the west tier vineyard at Fredonia was planted with Concord grapevines on deep, well-drained, acid soils (Shaulis and Steel, 1969). It serves as a test site for studying the effects of various management practices on vine heaith, vigor and yield. These practices include combinations of nitrogen input, weed control, pruning, and training. A broad range of vine sizes and yields result from the interactions of the treatments.

For this study, nine Concord treatment blocks of six vines each were selected on the basis of their expected yields (Table 3.1). Treatment blocks that represented low, medium and high management input were examined. A brief description of each of the treatment inputs follows (Shaulis and Steel, 1969).

Cultivated vs Sod--There are two types of weed control used. The first is sod, where grass between rows is mowed several times during each growing season. No tillage occurs in these rows, but an herbicide is applied. Cultivated blocks receive discing between rows

SCALE 124000

Figure 3.2 The gently sloping terrain at Fredonia is evident in the regional topographic contours. (U.S.G.S. Dunkir, New York 15' Quadrangle)

OFtGINAL PAEE IS
OF POOR QUALITY

Treatment	Cultivated or Sod	Pruning Severity	Rootstock	Nitrogen N/Ac/Yr	Training	Row \#	Location
1	C	$30+10$	Own	0	HRU 2	409	$7-12$
2	C	$30+10$	Own	50	HRU 2	414	$20-25$
3	C	$30+10$	Own	100	HRU 2	413	$33-38$
4	S	$30+10$	Own	0	HRU 2	413	$1-6$
5	S	$30+10$	Own	50	HRU 2	409	$33-38$
6	S	$30+10$	Own	100	HRU 2	408	$14-19$
7^{1}	C	$30+10$	Grafted	100	HRU 2	416	$33-38$
8^{1}	S	$30+10$	Own	0	GDC 3	428	$20-25$
9^{1}	C	$30+10$	Grafted	100	GDC 3	406	$20-25$

[^0]throughout the season to prevent the establishment of grass and weeds.

Pruning Severity --The scale of pruning severity of all planis examined in detail was kept constant. Thirty nodes are retained at pruning time for the first pound of prunings and ten additional nodes are retained for each additional pound of prunings.

Rootstock--The grafted vines have a phylloxera-resistant rootstock.

Nitrogen Fertilization--The nitrogen application varies between 0,50 , and 100 lbs . N/acre/year.

Training--The Hudson River Umbrella, which is very common in New York State, is a single curtain training method where the vine spreads along a single wire. The Geneva Double Curtain in which the vine is positioned along two wires, several feet apart, is becoming more popular as this method allows the vine more space to spread (Figure 3.3). Thus, a greater number of leaves are directly exposed to sunlight, and an increase in chlorophyll production results.

3.1.2 Hammondsport

3.1.2.1 Physical Characteristics

The Tay lor Wine vineyards at Hammondsport are located on the western shore of Keuka Lake. The vines are grown on moderate slopes, approximately 350 meters above the lake surface (Figure 3.4). Good air drainage, the proximity of the lake, and the southern exposure moderate the local climate and extend the frost-free growing season two to five weeks longer than in nearby areas of higher

Sal

(b)

Figure $3.3 \quad \begin{aligned} & \text { Single (a) and double (b) curtain training of vineyard } \\ & \text { canopy. }\end{aligned}$

Figure 3.4
The Tay lor Vineyards are grown on the moderate slopes that form the western boundary of Keuka Lake. (U.S. G.S. Hammondsport Quadrangle)
elevations (Harding, 1957; Pack, 1978).
Glaciation shaped the sloping terrain and deposited glacial till and moraine from which the local soils are derived. In addition, some soils are developed from lacustrine sediments (USDA, 1978). In general, sites planted with vineyards have deep gravelly soils; however, even the poorer soils are cultivated where slope and climate are the dominant factors in producing high yields.

3.1.2.2 Vineyard Management Practices

The specific vineyard sections examined at Hammondsport were selected on the basis of three factors: the canopy continuity observed on 1977 color-IR airphotos, age, and the necessity that they be planted with only one variety of grape, Concord.

The management treatment of these eight sections is comparable to the Fredonia site. The crop inputs are summarized as follows (Salva, 1981, personal correspondence) (Also, see Appendix A).

$$
\text { Pruning Severity } \quad 30+10
$$

Rootstock own

Total N/acre/yr 350 lbs.
TrainingUmbrella Kniffen (single curtain)

Cultivation and Herbicide Alternate row
Alternate rows are disced until late in the growing season. At this time, an oat cover crop is planted in the disced rows. Every other row is sprayed with an herbicide and mowed throughout the season.

3.2 Data Selection

3.2.1 Information Needs

The intent of this research was to develop a detailed characterization of Concord vineyard canopy reflectance and to synthesize this information into a practical format for vineyard managers. Consequently, a controlled setting was required for spectral data collection. The data were compared with additional spectral data that were imaged from an aerial platform during the same season that the ground measurements were made.

Already existing remotely sensed data were not examined in this project, however, these data may be useful for historical information on crop status and for testing theories developed from the current study. A list of available imagery can be obtained from the New York State Department of Transportation.

3.2.2 Field Data

Vineyard agronomic variables often do not have the same relationship to crop yield as with other crops for which substantial data have already been collected. For example, wheat yield is usually positively correlated with wheat leaf area index. However, with vineyards, too much leaf can result in excessive layering and depressed yield. The optimum leaf area is not easily determined. Therefore, detailed information on vineyard reflectance is needed to study yield factors specific to grapevines. This information was collected at Fredonia with field portable spectroradiometers.

The ISCO spectroradiometer was selected largely for three reasons. The first is the wide spectral range over which it can
measure spectral radiance ($400-1100 \mathrm{~nm}$) (Figure 3.5). The second is the large number of discrete bands available within that range. The instrument is capable of measuring 30 bands, each of 25 nm width. In addition, the instrument was expected to be portable and, as such, convenient for work in the field. Three such instruments were available at Cornell.

The spectroradiometer has three main parts (Figure 3.6). The first consists of a cosine collector with a hemispherical field-of-view (FOV) on the end of a fiber optic probe (Rennilson, 1978; Hudson, 1969). This system collects radiant flux over a $180^{\circ} \mathrm{FOV}$ and transfers it to the monochromator. The monochromator or wedge interference filter is part of the second system which divides the radiant flux into narrow spectral bands. To reach the filter the light first passes through a chopper which automatically adjusts the dark current to prevent machine drift. The filter allows continuous scanning from 400-1100 nanometers (nm), through the visible and near-infrared ranges.

The third system consists of a photodiode, amplifier and coherent detector. Together these convert the radiant flux into an electrical signal. The signal is measured in units of energy rate intensity per bandwidth. The meter of the spectroradiometer can then be read in microwatts per centimeter squared per nanometer ($\mathrm{w} \mathrm{cm}^{-2} \mathrm{~nm}^{-1}$). There are eight ranges of sensitivity on the scaie of $0.3,1.0,3.0,10,30,100,300$ and $1000 \mathrm{w} \mathrm{crn}^{-2} \mathrm{~nm}^{-1}$. These measurements can be converted to percent incoming radiance reflected by means of a calibration technique (Section 3.4.1.1).

ORIGIVAL RAUL ITY
OF POOR QUALITY

Figure 3.5 ISCO spectroradiometer showing scale and sensitivity ranges.

ORIGINAL PACE IS OF POOR QUALITY

Figure 3.6 Diagram of the significant internal systems of the ISCO spectroradiometer (ISCO manual).

Color-infrared film was also selected for ground-level data collection. The portion of the spectrum that the film responds to has been found to be useful in yield studies. In addition, the technology involved in exposing, developing and analyzing the film is relatively accessible to vineyard managers.

The viticulturalists at Fredonia annually collect detailed agronomic information on each vine, including counts of yi eld, nodes, clusters and other agronomic variables. Both current and historic data of this nature were made available to this project (Appendix A).

3.2.3 Airborne Data

Selection of airborne sensors for the study of vineyard canopy reflectance was based on agronomic characteristics of the crop and on previously discussed information needs. Sensor spatial resolution was limited by the distance between rows of vines and by the canopy width. Furthermore, adequate spectral resolution was required to discriminate between vineyard canopy, grass boundaries, weeds and soil, as well as to correspond to the ground sensors used.

The Bendix Modular Multiband Scanner (M2S), used in the preliminary vineyard assessment study, was used again for airborne data collection. The M2S is an optical-mechanical line-scanning system that is operated from an aircraft (Bendix, 1972). The system contains an imaging spectrometer that measures energy over a spectral range of blue through the thermal IR ($420-1040 \mathrm{~nm}$), split into ten narrow wavelength bands (Table 3.2). There is also a thermal detector that coilects data from 800-12.08 nm Spatial resolution limited by the instantaneous field-of-view (IFOV) of 2.5

Table 3.2
M2S Channel Classification

Channel Channel	Range (Nanometers)	Nominal Spectral Band
1	$420-460$	blue
2	$460-500$	blue
3	$500-540$	green
4	$550-580$	green
5	$580-620$	green/red
6	$620-660$	red
7	$660-700$	red
8	$700-750$	near-infrared
9	$770-860$	near-infrared
10	$960-1040$	near-infrared
11	$8000-12080$	thermal-

Table 3.3
Flight Data Summary NASA Mission 430--3 September 1980

Sensor	- Altitude, ft.	Pixel Resolution	$\begin{gathered} \text { Nominal } \\ \text { Scale } \\ \hline \end{gathered}$
M2S		At Nadir $=$	
$\mathrm{IFOV}=2.5 \mathrm{mrad}$	1500	$2 \mathrm{M} \mathrm{x} \mathrm{2M}$	
		At image edge $=$ 6.2 M x 6.2 M	
	3000	$\begin{aligned} & \text { Ar nadir }= \\ & 5 \mathrm{M} \times 5 \mathrm{M} \end{aligned}$	
		At image edge $=$ 12 M x 8 M	
Focal Length $=$			
15 cm .	1500		3,000
	3000		$1=6,000$

milliradians. The smallest possible ground area that can be resolved, the resolution element, is determined by the IFOV in combination with the plane altitude. The swathwidth is broken inte 803 elements which are represented on the final digital format by picture elements or "pixels."

The scanning action of the detector is accomplished by mechanically rotating a mirror that moves the IFOV in a direction perpendicular to the flight line (Bendix, 1972; Lillesand and Kiefer, 1979). The swath width is determined by the total scan angle of 50° on either side of the nadir. The spectral information is electronically converted to a numerical format of 256 brightness levels. It is recorded on high density tape while still on the aircraft. Eventually, the information is recorded on computer compatible tape (CCT) and is then accessible to the user.

The spectral range of the M2S was comparable to that of the spectroradiometers and was split into eleven discrete bands. Therefore, differences between cover types could be defined by examining reflectance in one or more of these channels.

In addition to the M2S, color-infrared film was selected for aerial data collection for the same rea, ons that it was utilized at ground level, as well as for the advantages of the film's spatial resolution relative to that of the scanner. The film used was Kodak Aerochrome, infrared 2443, (24 cm format). The camera focal length was 15.25 cm .

3.3 Data Collection

3.3.1 Instrument Calibration

In order to provide accurate and viable reflectance data, the instruments were calibrated using a procedure developed by Duggin (1980a) and modified by Duggin and Philipson (1981). Their calibration equations account for the sun-angle dependence of the cosine receptors used and for the wavelength and time dependent variations between instruments.

A white Lambertion reflectance target was used as a standard for the instrument calibration. The field portable target was coated with barium sulfate, and its absolute reflectance values were determined at the Eastman Kodak Research Laboratories, Rochester, N. Y.

The fiber optic probe of each instrument was equipped with a thirty-degree conereceptor to limit the field of view. One instrument had a one-merer probe (Spectroradiometer \#1) and the other two had two-meter probes (Spectroradiometer \#2 and \#3).

To determine the initial between-instrument calibration factor, the three receptors were mounted one meter above the target which was set in a horizontal plane with a level (Figure 3.7). Each probe viewed a circle with a radius of approximately 24 centimeters.

Three operators took simultaneous readings from the spectroradiometers at thirty wavelength intervals, each of 25 nm width (Figure 3.8). The two spectral ranges of the instruments were visible, $400-750 \mathrm{~nm}$, and near-infrared, $750-1150 \mathrm{~nm}$.

Data collected on July 9 and 10 were used to develop the

Figure 3.7 Three receptors mounted horizontally above the white Lambertian reflectance target.

Figure 3.8 Simultaneous manual readings were made by thrfe operators.
calibration equations at each wavelength. The calibration factor ($\mathrm{C}(\mathrm{\lambda})$) was calculated for each pair of instruments such that

$$
C_{1}(\lambda)=\frac{V_{1}(\lambda)}{V_{2}}(\lambda)
$$

and

$$
C_{2}(\lambda)=\frac{V_{1}(\lambda)}{V_{3}(\lambda)}
$$

where at any wavelength, $\mathrm{C}_{1}(\lambda)$ is the calibration between spectroradiometers $\# 1$ and $\# 2$, and $C_{2}(\lambda)$ is the calibration between spectroradiometers \#1 and \#3. The voltages measured from the respective instruments are $\mathrm{V}_{1}(\lambda), \mathrm{V}_{2}(\lambda)$ and $\mathrm{V}_{3}(\lambda)$ (Duggin and Philipson, 1981).

It was found that the calibration factors varied with the length of time instruments were operated due to different rates of instrument drift (Duggin and Philipson, 1981). Therefore, regression equations based on operation time were developed to predict the final calibration factor at each wavelength.

3.3.2 Field Data Collection

Each of nine management treatments selected for study was applied to a block of six plants (Table 3.1). To facilitate field work, two viticulturally representative plants were picked from each block for detailed study. This evaluation was based on the viticultural history of each vine, its position relative to others in its block, and its apparent health and vigor. Thus, spectroradiometric measurements were collected on 18 vines out of a total of 54 vines. These data were collected at three times during the season, July 17 or 18 , August 21 or 22, and September 12, 1980. Weather conditions in

July and September were fairly cloud-free, although the August date was heavily overcast.

In order to collect in situ radiance data over the Concord vineyard canopy, the spectroradiometers were mounted on a grape harvesting tractor that was stripped of the normal harvesting and pruning equipment (Figure 3.9). Thus, the instruments could be moved over the vines without damaging the leaves or fruit. The spectroradiometer receptors from units \#2 and \#3 were positioned on rods one meter above the canopy target. The two probes were placed 20 centimeters apart so that they viewed the canopy of the same plant (Figure 3.10). The probe of Spectroradiometer \#i was mounted one meter above the standard reflector in order to obtain calibration data for each reading.

Simultaneous measurements were made from the three instruments (Figure 3.11). The spectral refiectance of each vine's canopy could then be calculated by using the following equations (Duggin and Philipson, 1981).

For Spectroradiometer \#2:

$$
R_{1}(\lambda)=\frac{V_{2}(\lambda)}{V_{1}(\lambda)} \quad x K() ;
$$

and for Spectroradiometer \#3:

$$
R_{(2)}(\lambda)=C_{2}(\lambda) \times \frac{V_{3}(\lambda)}{V_{1}(\lambda)} \times K(),
$$

where at any wavelength, ,
$R(\lambda)=$ the present reflectance;
$C(\lambda)=$ the calibration factor adjusted for machine drift;
$V(\lambda)=$ the voltage measured from each radiometer; and

Figure 3.9 Spectroradiometers mounted on a grape harvesting tractor for field data collection.

oalgrorl PaOE is

OF POOR QUALITY

Figure 3.10 Positioning of cone receptors from Spectroradiometers \#2 and \#3.

Figure 3.11 Data sheet on which spectroradiometer readings were recorded (Duggin, 1980).

$K(\lambda)=$ the actual spectral reflectance of the standard reflector.

Simultaneous readings with the three instruments were made at the beginning and end of each day's data collection with all three receptors mounted over the Lambertian standard reflector. Thus, changes in instrument behavior could be compensated for by adjusting the calibration factors.

The color-IR photos were taken with a Hasselblad camera (70 mm . format) held at a height of approximately one meter above the canopy. One photograph was exposed over each vine immediately following the spectroradiometric readings.

3.3.3 Airborne Data Collection

The aerial mission for data collection over the two vineyard sites was flown by NASA on September 3, 1980. The plane flew west of the Fredonia site which resulted in inadequate data for aerial analysis of the experimental vineyards. In addition, although the Hammondsport site was not adequately flown to cover all the Taylor Winery vineyards, sufficient aerial data were collected to perform analyses using eight Concord vineyard sections.

The mission was flown at two altitudes to provide sufficient detail. Flight data are summarized in Table 3.3.

3.4 Data Analysis

The purpose of the data analysis was to define the relationship of canopy reflectance to yield and other plant variables. Statistical analyses performed on the data included correlations and regressions and analyses of variance.

3.4.1 Spectroradiometer Data

Using the calibration equations described in Section 3.3, the spectroradiometric measurements of radiance were transformed into percent reflectance. The reflectance data were plotted versus wavelength for each plant. In general, these reflectance curves were typical of green vegetation with peaks in the green and near-infrared regions, and troughs in the blue and red regions (Figure 3.12).

Additional data were generated from the reflectance values. First, linear combinations of pairs of spectral bandwidths were developed to produce four new spectral variables. The combinations selected were those found useful in previous crop studies (Chapter 2). Data points found at the peaks and troughs of the reflectance curves were averaged with two points nearest them to develop the new variables. The resulting linear combinations were:

$$
\begin{align*}
& \frac{\% \mathrm{R}_{900}-\% \mathrm{R}_{675}}{\% \mathrm{R}_{900}+\% \mathrm{R}_{675}} ; \tag{1}\\
& \left(\% \mathrm{R}_{900}-5 \times\left(\% \mathrm{R}_{550}\right)\right) ; \tag{2}\\
& \frac{\% \mathrm{R}_{550}}{\% \mathrm{R}_{675}} \text {; and } \tag{3}\\
& \frac{\% \mathrm{R}_{900}}{\% \mathrm{R}_{675}} \tag{4}
\end{align*}
$$

where, for example, \% R900 is the percent reflectance measured at the 900 nm wavelength interval.

The second set of data generated consisted of the thirty wavelengths of spectroradiometer data averaged into spectral bandwidths

Figure 3.12 Typical spectra of grapevine canopy measured by spectroradiometers
corresponding as closely as possible with the visible and nearinfrared channels of the M2S (multispectral) scanner (Table 3.4). This data set of averaged spectral bandwidths will be referred to as the simulated multispectral scanner (SM2S) data.

3.4.1.1 Analysis of Reflectance and Yield

The preliminary analyses of the Concord canopy reflectance data were based on two assumptions. The first was that all plants with similar yields would reflect in a like fashion that would be different from plants with lower or higher yields. The second assumption was that plants with a low nitrogen input would yield less than plants which received a high nitrogen input (i. e. , pounds of nitrogen applied was the management treatment which had the strongest effect on yield). Thus, all 18 vines sampled were examined statistically as one group.

In order to define any linear relationships between yield and percent reflectance (\%R) in 30 wavelengths, the variables were correlated with each other. To define possible curvilinear relationships, the \%R data were also correlated with transformation of yield (Y). They were $1 / Y, Y^{2}, Y^{3}$, and Y^{4}. The $\% R$ data were plotted against yield and its transformations.

In addition, the yield of a vine for any given year is affected by the plant condition and yields during the three previous years, (Shaulis, 1981, personal communications). For example, a vine that has a low yield one year will have stored, unused sugars that will contribute to a higher yield in the following year. Therefore, yields for all 18 plants from 1977 to 1979 were correlated with data collected in 1980 for yield and reflectance. Trends in yields were

Table 3.4 Spectral Bandwidths of the Simulated M2S Reflectance Data

Simulated M2S (SM2S) Bands	Spectroradiometer Bands		Visible Range
Band	Band	${ }^{\prime} \mathrm{nm}$	
1	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 400 \\ & 425 \\ & 450 \end{aligned}$	
2	4	475	
3	$\begin{aligned} & 5 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 525 \end{aligned}$	
4	$\begin{array}{r} 7 \\ 8 \\ \hline \end{array}$	$\begin{array}{r} 550 \\ 575 \\ \hline \end{array}$	
5	$\begin{array}{r} 9 \\ 10 \\ \hline \end{array}$	$\begin{array}{r} 600 \\ 625 \\ \hline \end{array}$	
6	11	650	
7	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 675 \\ & 700 \end{aligned}$	
8	$\begin{array}{r} 14 \\ 15 \\ \hline \end{array}$	$\begin{array}{r} 725 \\ 750 \\ \hline \end{array}$	
9	$\begin{aligned} & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \\ & 21 \\ & \hline \end{aligned}$	$\begin{array}{r} 750 \\ 775 \\ 800 \\ 825 \\ 850 \\ 875 \\ \hline \end{array}$	
	$\begin{aligned} & 22 \\ & 23 \\ & \hline \end{aligned}$	$\begin{array}{r} 900 \\ 925 \\ \hline \end{array}$	Near- Infrared Range
10	$\begin{array}{r} 24 \\ 25 \\ 26 \\ 27 \\ \hline \end{array}$	$\begin{array}{r} 950 \\ 975 \\ 1000 \\ 1025 \\ \hline \end{array}$	
	28 29 30	$\begin{aligned} & 1050 \\ & 1075 \\ & 1100 \end{aligned}$	

ORIGINAL PAEE IS OF POOR QUALITY.
evaluated by correlating combinations of 1980 yield and other years with 1980 data.

The SM2S \%R data were correlated with yield using data from the 18 plants. Ratios and other linear between-channel combinations were also developed for SM2S \%R data, and correlated with yield. They were:

*B9 - B7/B9 + B7	$\mathrm{B} 9 / \mathrm{B} 5$
$\mathrm{~B} 9-(5 \times \mathrm{B} 4)$	$\mathrm{B} 1 / \mathrm{B} 5$
$\mathrm{~B} 4 / \mathrm{B} 7$	$\mathrm{~B} 1 / \mathrm{B} 7$
$\mathrm{~B} 9 / \mathrm{B} 11$	$\mathrm{~B} 1 / \mathrm{B} 10$
$\mathrm{~B} 7 / \mathrm{B} 11$	$\mathrm{~B} 9 / \mathrm{B} 7$
$\mathrm{~B} 9 / \mathrm{B} 10$	

3.4.1.2 Analysis of the Nitrogen Effect on Yield and Reflectance

Shaulis and Kendall (1969) found that the management treatment which most strongly affects yield is the quantity of nitrogen applied per year. The second most important effect on yield is due to the weed control method used. The combination of these two treatments determines the available nitrogen. Therefore, 12 of the 18 vines sampled were stratified into two groups of six vines based on nitrogen and method of weed control.

The first group was cultivated for weed control (Treatments $1-3$) while the second was planted with sod and sprayed with herbicides (Treatments 4-6) (Section 3.1.1.2). In each group, two plants received 0 lbs . nitrogen, two received 50 lbs . nitrogen and two

[^1]received 100 lbs , nitrogen. The yield data of each group was correlated with $\%$ R. A two-way analysis of variance was run using the 12 plants selected to determine the effect of nitrogen input and weed control on yield. In addition, to determine whether the response of the 12 plants to nitrogen input was representative of grapevine behavior, the same analysis of variance was made using all plants in the six treatment blocks from which they were selected. Treatments 7 , 8 and 9 included either grafted rootstock or double curtain training. Both of these could cause a significant change in yield or vine vigor, so they were not used in the above analyses. However, to further define the effect of nitrogen on reflectance, all nine management treatments were broken into groups with comparable nitrogen input. Based on this division, plots of $\%$ R versus wavelength were made.

3.4.1.3 Analysis of Agronomic Variables and Reflectance

In addition to yield, there are two agronomic variables which are measured on the vines of the experimental vineyards. They are the pruning weight, which corresponds to the number of nodes per vine, and the number of clusters of grapes per vine. To further define the spectral characteristics of vine canopy, the two variables were examined in relation to yield and reflectance. Pruning weight, clusters, yield/pruning weight, yield/cluster and clusters/pruning weight were correlated with yield. Transformations of pruning weight (PW) were also correlated with yield. They were: PW^{2}, $\mathrm{PW}^{3}, 1 / \mathrm{PW}$ and $\log _{10} \mathrm{PW}$. Pruning weight and the number of clusters were correlated with \%R.

Also, because nitrogen appeared to strongly affect vines, analyses of variance were made to define the relationship between the number of clusters and the pruning weight to nitrogen input.

3.4.1.4 The Effect of Time on Yield-Reflectance Relationships

In order to check for error due to the time of day or instrument drift with duration of instrument operation, the 18 plants were stratified by time of operation. Based on this factor, each day 's readings were split into three groups and correlated with yield.

3.4.1.5 Additional Analyses

Linear and multiple regressions were used to examine relationships that became apparent with the correlations. Because none of these added significant information to the analysis, however, they are not included in this report.

All statistical procedures are summarized in Table 3.5.

Table 3.5
Summary of Spectroradiometer Data Analysis
SPECTRORADIOMETRIC DATA--30 Wavelengths

1. Correlations of $\% \mathrm{R}$ with yield of 18 plants, and smaller groups stratified by time and by treatment.
2. Correlations of $\% \mathrm{R}$ with PW / Y for 18 plants and by time and treatment.

ANALYSES OF VARIANCE

1. Tests relationship of yield to nitrogen input for 12 plants.
2. Tests relationship of yield to nitrogen input for 36 plants.
3. Tests relationship of pruning weight to nitrogen input for 12 plants.
4. Tests relationship of pruning weight to N input for 36 plants.
5. Tests relationship of clusters to nitrogen input for 12 plants.
6. Tests relationship of clusters to N input for 36 plants.

Table 3. 5 (Continued)

PLANT PARAMETERS

1. Correlation matrix of yields 80-77, brush weight,
2. Correlation matrices $B W$ vs $\% \mathrm{R}, 18$ plants, 3 dates.
3. Correlatior Y 79-77 with $\%$ R for all 18 plants.
4. Correlation of all measured plant parameters with each other.
5. Correlation of Y 79-77 with $\% \mathrm{R}$ by time and by treatment.
6. Correlation of Y 79-77 with $\% R$ SM2S by tims and treatment.
7. Plots of $\% \mathrm{R}$ vs for comparable treatments based on nitrogen input.

SIMULATED M2S (SM2S) - 11 BANDS

1. Correlations of $\% \mathrm{R}$ with yield of 18 plants, and stratified by time and by treatment.

3. 4. 2 Multispectral Scanner Data Analysis

The airborne multispectral scanner (M2S) data were used to generate relative reflectance values for selected Concord vineyard sections at Hammondsport. Average reflectance values from each channel were found for the individual sections, and average reflectances were correlated with yields. Some ratios of channel pairs were also correlated with yield. The procedure followed for obtaining average reflectance values is discussed in the following section.

3.4.2.1 Site Location and Boundary Definition

Field maps representing the vineyards were used to locate each section on a frame of the color-IR film (Figures.3.13, 3.14). The multispectral scanner (M2S) flight line that corresponded to each frame was then determined using the flight log. Each line was examined on a visicorder stri\$ of Channel 7 which had sufficient contrast for visual location of each vineyard. When the position of a vineyard on the visicorder strip was determined, its pixel location on the M2S computer compatible tapes (CCTs) was calculated.

The ORSER Program (Borden, et al., 1977) was used on the Cornell University IBM 370/168 computer to subset the vineyard data from the tapes. A digital brightness map (NMAP) of each section was produced where each pixel was represented by a symbol, designating up to ten groups of brightness levels (Figure 3.15). Due to an error in recording the CCTs, the NMAPs were mirror images of the actual vineyard sections as well as of the color-IR film transparencies. In selecting and locating the sections, this problem was compensated for by reversing the film transparency on a light table.
original page is OF POOR QUALITY

Figure 3.13 Field map of Tay lor vineyard Area II.

Figure 3.14 Black-and-white copy of color-infrared aerial photograph of Taylor vineyard sections 8-15 and 17 in Area II (Figure 3.13).

Figure 3.15 Geometrically corrected NMAP of vineyard section II-14. Note that NMAP is a mirror image of the aerial photograph (Figure 3.14) of the same section.

The next step in processing the M2S data was to precisely define the actual field boundaries using the NMAPs and the corresponding frames of the color-infrared film on a Zoom Transfer Scope. Some difficulty in transferring the boundary data was caused by two factors, the spectral signature of the grassed waterways that bounded each vineyard section and the scanner data geometry.

The problem of separating the spectral signature of the Concord vineyard canopy from that of the grasses became significant when the vineyard section imaged was in direct sunlight. Although ratios of channels 7 and 9 and channels 4 and 9 were used to assist definition, the final field boundaries were set several pixels within the apparent boundaries to insure exclusion of grass pixels.

When vineyard sections were imaged entirely in cloud shadow, the resulting canopy signature differed sufficiently from the field boundary. In addition, the row pattern present in the vineyard was visible in these NMAPs, and boundaries were clearly defined.

Three types of systematic, geometric distortion are inherent in the scanner system (Lillesand and Kiefer, 1979). The first dis tortion, one-dimensional relief displacement, results from the sidelooking view of the scanner and causes vertical objects to be displaced at right angles from the nadir. In vineyards, relief displacement can cause the reflectance values to vary depending on the distance from the nadir and the angle of the rows in relation to the view angle. Vineyard sections selected for this study were viewed from approximately the same angle so the effect of the displacement was minimized.

The second type of systematic distortion is pixel size variation along the scanline. The greater the view angle from the nadir, the greater the ground area included in a pixel. To a much smaller degree, the ground area covered in a pixel increases along the flight direction with increased scanning angle.

Tangential scale distortion which is caused by the constant rate of the scan mirror oscillation occurs perpendicular to the flight direction. The ground area scanned per unit of time increases with increasing distance from the nadir. The result is an increasing compression of the image scale (Figure 3.16).

The effects of both cell size variation and tangential scale distortion could be corrected on a pixel-by-pixel basis, however, such resampling alters the radiometric values of the pixels.

The ORSER Display Program was used to partially correct the scanner data geometry and the resulting NMAPs were reduced by 50%. This produced NMAPs which could be used effectively on the Zoom Transfer Scope. After locating the section boundaries on the corrected NMAPs, the corresponding pixels were found on the original NMAPs and a new subset of each section was produced. Average radiance values for each section were then calculated.

Figure 3.16 Tangential scale distortion in unrectified line scanner imagery (Lillesand and Kiefer 1979).

CHAPTER 4

RESULTS

4.1 Introduction

The results of the statistical procedures applied to the vineyard canopy spectral data are presented in this chapter. Unless otherwise stated, the evaluation of the correlations was limited to a 10% level of significance (Fisher, 1954). Complete lists of correlations are avail le in Appendix B. The interpretation of the numerical results in relation to agronomic variables and instrumentation is included in Chapter 5.

4.2 Canopy Reflectance and Yield

Yield data from 1980 and percent reflectance from 30 wavelengths, collected on three dates, were correlated using a sample of 18 vines. The resulting correlations are summarized in Table 4.1. Correlations between yield and reflectance for 18 vines sampled were generally poor, with most values being below the 10% significance level. There were no significant correlations between July reflectance data and 1980 yield. For August data, reflectance was positively correlated with yield, with significant correlations occuring in the visible range from 400 to 525 nm and from 675 to 725 nm . Yield and reflectance were negatively correlated for September data with significant relationships in the near-infrared range from 775 to 850 nm . Correlations between yield, reflectance and

Table 4. 1

Summary of correlations between yield of 18 vines and their reflectance at 30 wavelengths

	Range of correlations	No. of wavelengths With correlations significant at a 10\% level
Month	-.299 to .327	0
July	-.286 to .549	9
August	-.539 to .117	8
September		

combinations of yields from 1977 to 1980 did not provide significant information.

Four ratios of reflectance data were also correlated with 1980 yield using all 18 vines sampled (Table 4.2). The results were generally poor; however, the ratio of $\left(\% R_{550 \mathrm{~nm} /} \% \mathrm{R}_{675 \mathrm{~nm}}\right.$) was significantly correlated with yield for August, while the linear reflectance variable of $\left(\% \mathrm{R}_{900 \mathrm{~nm}}-5 \times\left(\% \mathrm{R}_{550 \mathrm{~nm}}\right)\right.$) was significantly correlated with yield for September data.

Curvilinear relationships between 1980 yield (Y) and reflectance were examined by first plotting and then correlating $1 / \mathrm{Y}, \mathrm{Y}^{2}$, $\mathrm{Y}^{3}, \mathrm{Y}^{4}$ and $\log \mathrm{Y}$ for 1980 with reflectance for all 18 vines. The resulting correlations were at approximately the same levels of signifjcance as the linear relationship between 1980 yield and reflectance. The results are summarized in Table 4.3.

Ratics of each month's reflectance measurements at 30 wavelengths with every other month's measurements were not significantly correlated with yield (Table 4.4).

The relationships between the simulated multispectral scanner (SM2S) data and 1,980 yield for all 18 vines were similar to those of the 30 wavelengths of data (Table 4.5). The main differences were that the correlation coefficients were generally less significant and that often a relationship that was positive with the uncombined data, was negative with the averaged SM2S data.

Ratios of the SM2S data were correlated with yield and are summarized in Table 4.6. For all 18 plants, on all three dates, only one reflectance variable, band $9-(5 \times$ band 4$)$, was significantly correlated with yield at the 10% significance level.

ORIGINAL PAGE IS
 71 OF POOR QUALITY,

Table 4. 2

Correlations between yield and reflectance ratios for 18 vines

Ratios	July	August	September
(1) $\frac{\% R_{900}-\% R_{675}}{\% R_{900}+\% R_{675}}$	-.025	-.126	-.304
(2) $\left.\% R_{900}-5 \times\left(\% R_{550}\right)\right)$.162	.137	-.474
(3) $\frac{\% R_{550}}{\% R_{675}}$	-.349	-.526	.050
(4) $\frac{\% R_{900}}{\% R_{675}}$	-.001	-.113	-.314

Table 4.3

Summary of correlations between linear transformations of 1980 yield (Y) of 18 vines and reflectance
at 30 wavelengths

Month
$1 / Y$

July August September

Range of correlations

1/Y

-.300 to .820
.049 to .547
-. 543 to . 152
No. of wavelengths with correlations significant es a 10% level

$$
Y^{2}
$$

July
-. 299 to . 420
August
September
.035 to . 545
2
$\therefore .541$ to .161
9

$$
\begin{equation*}
Y^{3} \tag{2}
\end{equation*}
$$

July
August
September
-. 298 to .442
.021 to. 540
9
-.541 to .169
Y^{4}
July
August
September
-. 209 to .225
0
-.543 to .013
8

	$\log \mathrm{Y}$	
	-.276 to .269	
July	-029 to .547	0
August	-.527 to 022	8
September		8

Table 4.4
Summary of correlations between yield and reflectance ratioed by month, for 18 vines

Month	Range of correlations	No. of wavelengths with correlations significant at a 10% level
$\frac{\text { August }}{\text { July }}$	-.263 to .248	0
September July	-.312 to .238	0
September	-.318 to 287	0

Table 4.5

Summary of correlations between yield and simulated scanner (SM2S) averaged reflectance
values for 18 vines

Month	Range of correlations	No. of wavelengths with correlations significant at a10\% level
July	-.299 to .342	0
August	.180 to .805	6
September	-.172 to .350	0

$$
C-2
$$

Table 4.6
Summary of correlations becween yield and ratioed
SM2S reflectance data for 18 vines

Month	Range of correlations	No. of wavelengths with corrrelations significant at at 10% level
July	-.229 to .295	0
August	-.376 to .264	1
September	-.477 to .190	1

4.3 The Effect of Weed Control and Nitrogen Application

When data from all 36 vines which received treatments 1-6 were analyzed in a two-way analysis of variance (ANOVA), the interaction of the method of weed control and the level of nitrogen application was found to significantly affect vine yield at a 5% level ('Table 4.7). However, when the same ANOVA was computed using data from only the 12 vines which were spectroradiometrically sampled, the relationship between weed control, nitrogen and yield was not significant (Table 4.7). Therefore, it was apparent that the vines sampled for this study were not representative of vine response to available nitrogen.

The nitrogen-weed control effect was considered strong enough to merit separating the 12 comparable vines from Treatments $1-6$ by method of weed control and then correlating 1980 yield with reflec tance (Table 4.8). In general, the correlations improved over those for 18 plants sampled, especially with Group 2 (sod with herbicides), where a high number of correlations were above the 10% significance level. It was aiso noted that, in most cases, the correlation coefficients for Group 1 (cultivated) had the opposite sign from those for all 18 plants sampled, while Group 2 (sod) had the same sign.

Most management treatments affect nitrogen uptake and/or chlorophyli production, and as such, affect reflectance. Therefore, plots of reflectance versus wavelength were graphed for each date, for each pair or triplet of vines which were comparable by management treatment. For example, vines from Treatments 2 and 9 differ only in the method of weed control used. The plots helped illustrate the contrast between stratified treatment groups such as those used

Table 4.7
The response of yield to the method of weed control and nitrogen application for 36 vines, (a) and for 12 sampled vines (b)

	Two-Way Analysis of Variance			
	Degrees of Freedom	Sum of Squares	Mean Square	F-Ratio
Due to:	2	59.6	29.8	.9085
Nitrogen	1	63.0	63.0	1.9207
Weed Control	2	575.6	287.8	8.7744^{*}
Interaction	30	984.3	32.8	
Error	35	1682.5		
Total				

(a)

	2	13.3	6.7	0.140
Nitrogen	1	5.6	5.6	0.120
Weed Control	2	224.7	112.3	2.34
Interaction	6	288.1	48.0	
Error	11	531.7		
Total				

(b)
*Significant at a 1% level

Table 4.8

Summary of correlations between yield and reflectance for vine groups stratified by method of weed control

Month	Range of correlations	No. of wavelengths with correlations significant at a 10% level
July		
Group 1*	-. 601 to .637	0
Grousp 2**	-. 507 to . 751	8
August		
Group 1	-. 390 to . 734	
Group 2	. 147 to . 840	18
September		
Group 1	-. 714 to . 291	2
Group 2	-. 845 to . 459	10

*Groul 1: Treatments 1, 2 and 3 with cultivation. **Group 2: Treatments 4, 5 and 6 with sod and herbicide
to look at the effect of methods of weed control and nitrogen application, and the changes that occur in the reflectance patterns throughout the season. They are included in Appendix C for this reason.

4.4 Agronomic Variables and Reflectance

Pruning weight and the number of clusters per vine were correlated with yield from 1977 to 19r0, with linear transformations of yield, and with some ratios of yield, pruning weight and clusters (Table 4.9). The number of clusters was highly correlated with yield, and its transformations, and with pruning weight at a 1% significance level. Pruning weight was significantly correlated with yield at a 5% level. Therefore, if either variable was significantly correlated with reflectance, it might be incorporated into a yield prediction model.

The results of a two-way analysis of variance (ANOVA) on all 36 vines which received Treatments 1-6 showed that the interaction of nitrogen and weed control has a strong effect on clusters at a 1% significance level (Table 4.10). For the 12 vines which were spectrally sampled, the effect was not significant at a 1% or a 5% level (Table 4.10).

ANOVAS of pruning weight showed that this variable was sig nificantly affected by nitrogen and weed control, both separately and interactively, for 36 vines, but not for the 12 sampled vines (Table 4.11).

Thus, it was again apparent that the spectrally sampled vines were not representative of vine response, but that nitrogen input and

Table 4.9
Correlations between several agronomic

variables for 18 vines

C1	C2	C3	C4	05	CO	C7	CO	09
22.483								
C） 0.290	0.441							
－4 0.247	0.426	0.685						
05 0.998	0.483	c． 300	0.250					
050.993	0.461	0.261	0.231	0.983				
－ 0.971	0.437	0.225	0.211	0.955	0.993			
－ 0.939	0.442	0.186	0.182	0.917	0.974	0.924		
c： 0.993	0.501	0.309	0.251	0.998	0.971	C． 935	0.803	
¢́C． 0.422	0.256	－0．308	－0．30\％	0.428	0.408	0.301	C． 373	0.437
C？1 6.840	0.327	－0．083	－0．143	0.830	0.835	0.920	0.793	0.631
C＋120．11c	0.047	0.556	0.520	0.123	0.107	0.001	0.075	0.126
こ13－0．043	－0． 100	0.342	0.333	－0．043	－0．043	－7．0116	－0．049	－ 0.0119
－14 0.370	0.245	0.722	0.638	0.375	0.352	0.328	0.259	2.378
－15 0.457	0.282	－0．204	－0． 302	0.463	0.445	0.425	0.411	0.457
CiE 0.341	0.193	－0．317	－0．315	0.349	0.324	0.305	0.285	0.356
C10	C11	C12	C13	C14	C15			
U．1 0.713								
012－0．754	－0．326							
こ13－0．826	－0．343	0.924						
$こ ゙ 40.419$	－0．181	0.736	0.499					
$\therefore E 0.994$	0.747	－0．771	－0．84？	－0．422				
－－． 0 20	0.625	－0．710	－0．786	－0．401	0.555			

> C $9=$ log Yield 1980
> C10 $=$ Pruning Weight
> C11 $=$ Clusters per vine
> C12 $=$ Yield $1980 /$ Pruning Weight
> C13 $=$ Clusters $/$ Pruning Weight
> C14 $=$ Yield $/$ Clusters
> C15 $=$ Pruning Weight
> C16 $=$ Pruning Weight 2

Table 4.10
The response of clusters per vine to the method
of weed control and nitrogen application for 36 vines (a) and for 12 sampled vines (b)

Two-Way Analysis of Variance

Due to:	Degrees of Freedom	Sum of Squares	Mean Square	F-Ratio
Nitrogen	2	2110	1055	0.956
Weed Control	1	1272	1272	1.153
Interaction	2	15268	7634	6.921^{*}
Error	30	33091	1103	
Total	35	51742		

(a)

Nitrogen				
Weed Control	1	168	84	0.075
Interaction	2	37	37	0.033
Error	6	6105	3053	2.719
Total	11	6740	1123	

(b)
*Significant at a 1% level

Table 4.11
The response of pruning weight to method of weed control and nitrogen application for 36 vines (a) and for 12 sampled vines (b)

Due to:	Two-Way Analysis of Variance			
	Degrees of Freedom	Sum of Squares	Mean Square	F-Ratio
Nitrogen	2	5.792	2.896	5. 275**
W eed Control	1	2. 571	2.571	4.683**
Interaction	2	8.874	4.437	
Error	30	16.482		
Total	35	33.719		
(a)				
Nitrogen	2	. 995	0.498	0.739
Weed Control	1	. 001	0.001	0.001*
Interaction	2	1. 902	0.951	1,411*
Error	6	4.045	0.674	
Total	11	6.942		
(b)				
*Significant **Significant	level level			

method of weed control do affect the two agronomic variables considered.

Pruning weight and the number of clusters per vine were correlated with reflectance bing data from all 18 vines, and from the weed control-nitrogen groups of 6 vines each.

When all 18 vines were considered as a group, correlations between pruning weight and reflectance were highly significant in many wavelengths (Table 4.12). For July, 12 significant correlations occurred in the visible range and 2 in the near-infrared range at 1000-1025 nm. The highest number of significant correlations were found for August data where all correlations for the 15 near-infrared wavelengths were significant as well as 2 visible wavelengths (675700 nm). For September data, 5 significant correlations were present in the visible range.

When pruning weight was correlated with reflectance for the vine groups stratified by method of weed control, there were no significant correlations in July and August, while for September there were 12 in the near-infrared range, most of which were for Group 2 (sod) data (Table 4.13).

In contrast, when the number of clusters per vine was correlated with reflectance, almost the opposite occurred. When all 18 vines sampled.were used, there were 2 significant correlations for July and none for September. On the other hand, for August data, there were 17 significant correlations which were mostly in the nearinfrared range, with the best correlations in the visible range (Table 4.14). When yields from the smaller groups were correlated with reflectance, there were no significant correlations for Group 1

Table 4.12
Summary of correlations between pruning weight of 18 vines and reflectance
at 30 wavelengths

Month	Range of correlations	No. of wavelengths with correlations significant ar a 10% level
July	-.047 to .759	14
August	.104 to .785	17
September	-.103 to .548	5

Table 4.13
Summary of correlations between pruning weight and reflectance for vines stratified
by method of weed control

Month	Kange of correlations	No. of wavelengths with correlations significant at a 10% level
July		
Group 1*	-. 459 to . 642	0
Group 2**	-. 169 to . 834	1
August		
Group 1	-.706 to .599 -.034 to 655	${ }_{0}$
September		
Group 2	-.798 to .569	10

*Group 1: Treatments 1, 2 and 3 with cultivation
**Group 2: Treatments 4, 5 and 6 with sod and herbicide

Table 4. 14

Summary of correlations between clusters per vine and reflectance at 30 wavelengths

Month	Range of correlations	No. of wavelengths with correlations sigificant at a 10\% level
July	-.318 to .494	2
August	.034 to .529	17
September	-.338 to .187	0

(cultivated), but for Group 2, there were 15 in July, 17 in August, and 13 in Sejtember (Table 4.15).

4.5 The Effect of Time on Yield-Reflectance Relationships

Each day's measurements of percent reflectance were stratified into three groups by time of day and correlated with yield, clusters per vine and pruning weight (Tables 4.16, 4.17, 4.18, and 4.19). The resulting correlations were generally better than those for all 18 vines, and sometimes better than those for plants stratified by method of weed control. In most correlations with 1980 yield, the significant relationships were in the visible range.

4.6 Multispectral Scanner Reflectance Data and Yield

Correlations between yield and reflectance, and some combinations of reflectance variables, were computed for the M2S data (Table 4, 20). There were 3 correlations that were significant at a 10% level. They were: band 6 , green; band 7 , red; and band $7+$ band 5, red plus green.

Table 4.15
Summary of correlations between clusters per vine and reflectance for vines stratified
by method of weed control

Month	Range of correlations	No. of wavelengths with correlations significant at a 10\% level
July	-.665 to .130	0
Group 1*	-.416 to .827	15
Group 2**	-.400 to .712	1
August	.037 to .830	17
Group 1 Group 2	-.728 to .405	1
September		
Group 1	-.910 to .678	13
Group 2		

*Group 1: Treatments 1,2 and 3 with cultivation
**Group 2: Treatments 4, 5 and 6 with sod and herbicide

Table 4.16
Nine groups of vines stratified by time of day

	$\begin{gathered} \text { July* } \\ \text { Treatment } \end{gathered}$	August Treatment	September Treatmertr
Group 1			
A. M.	8	8	7
	8	8	7
	6	9	2
	6	9	2
		4	4
		4	4
Group 2			
Midday	5	1	3
	5	1	3
	1	5	5
	1	5	5
	4	6	1
	4	6	1
Group 3			
P. M.			
	3	2	6
	2	3	9
	2	3	9
	7	7	8
	7	7	8

*July Treatment \#9 was observed on the day preceding other July measurements in the late afternoon

Table 4.17

Summary of correlations between yield and reflectance for vines stratified by time of day

Month	Range of correlations	No. of wavelengths with correlations significant at a 10\% level
July		
Group 1*	-.290 to .954	7
Group 2*	-.559 to .133	0
Group 3*	-.708 to 469	3
August		
Group 1	.135 to .769	9
Group 2	-.268 to .795	6
Group 3	-.100 to .781	2
September		
Group 1	-.851 to .585	5
Group 2	-.811 to .585	3
Group 3	-.906 to .477	2

[^2]Table 4.18
Summary of correlations between yield and simulated M2S reflectance for vines
stratified by time of day

Month	Range of correlations	No. of wavelengths with correlations significant at a 10% level
July		
Group 1^{*}	-.173 to .900	8
Group 2*	-.148 to .117	0
Group 3	-.682 to .394	1
August		
Group 1	-.006 to .823	3
Group 2	-.448 to .818	2
Group 3	-.025 to .679	1
September		
Group 1	-.726 to .003	3
Group 2	-.738 to .606	2
Group 3	-.555 to .269	0

[^3]Table 4.19
Summary of correlations for clusters and pruning weight
with reflectance for vines stratified by time of day
Clusters
Pruning Weight

Range of	$\begin{array}{c}\text { No．of wavelengths } \\ \text { with correlations } \\ \text { significant at } \\ \text { a } 10 \% \text { level }\end{array}$	Month	Range of
Correlations	Correlations	$\begin{array}{c}\text { No．of wavelengths } \\ \text { with correlations } \\ \text { significant at } \\ \text { a } 10 \% \text { level }\end{array}$	

の○～～ロシーツット
 July
Group 1
$\begin{array}{ll}\text { N } & \infty \\ \text { Z．} \\ \text { 흠 } \\ 0 & 0 \\ 0 & 0\end{array}$
August
Group 1
N
0
0
0
产言
Group 2
Group 3

Table 4. 20

Band		Spectral Range (Nanometers)		Correlation
1		420- 460		-. 399
2		460-500		-. 390
3		500-540		-. 421
4		550-580		-. 387
5		580-620		-. 367
6		620-660		-.633*
7		660-700		-.620*
8		700-750		. 250
9		770-860		. 451
10		960-1040		. 411
11		8000-12080		-. 263
	Combined Variable			
	**B7/B9		-. 540	
	B6/B4		-. 084	
	B7/B5		-. 456	
	B7+B5		-. 586*	
-	B7-B5		-. 541	
	***VI		-. 454	
	****TVI		-. 455	

*Significant at a 10% level
**Band
***Vegetation Index
****Transformed Vegetation Index

CHAPTER 5

DISCUSSION

5.1 Vineyard Canopy Spectral Characteristics

5.1.1 Canopy Reflectance and Yield

Most correlations between spectral reflectance and yield were below the 10% significance level when all 18 vines sampled were included. August reflectance data showed better correlation with yield than did July or September, for possibly two reasons. The first is that leaf turgidity, chlorophyll and leaf area were higher in August than in July or September. This occurrence is partially supperted by the dominance of significant correlations in the blue and green wavelengths (400 to 525 nm). The second possible explanation is that the August data collection occurred under overcast skies. This would have limited inter-leaf shadowing and modified the effects of solar zenith angle.

Positive correlations in July and August, and negative correlations in September indicate the change from chlorophyll production in the leaf to sugar production in the fruit and a drop in leaf turgidity due to senescence. This would also explain the higher correlations in the near-infrared range (775 to 975 nm) for September measurements which were made immediately prior to harvest. At this time, senes cence causes an increase in air interfaces in the leaf structure as well as the drop in leaf turgidity, which together result in an increase in the near-infrared reflectance.

Yields from 1979 were correlated with yields from 1980 at a 10% level of significance, but yields from 1977 and 1978 and combinations of yields were not significantly correlated with 1980 yield.

Ratios and other combinations of spectral reflectance were poorly correlated with yield. The green/red ratio which was significant for August data probably relates to the dominance of green chlorophyll pigments over red pigments at this crop stage, while the nearinfrared/green ratio which was significant in September relates to the processes of senescence.

In most cases, when transformations of yield were correlated with reflectance, no new information was gained. Also, correlations were very low when ratios of the spectral reflectance of different months were correlated with yield.

The relationships between simulated multispectral scanner (SM2S) data and yield also added little new information, though it was expected to indicate the wavelengths and ratios on which to focus studies of the aerial multispectral scanner ($\dot{M} 2 \mathrm{~S}$) data. Generally, the correlations were poor for 18 vines sampled.

5.1.2 The Effect of Weed Control and Nitrogen Application

An analysis of variance (ANOVA) found that weed control and nitrogen input affect grapevine yield through their interactive effect on available nitrogen. Since available nitrogen also determines the leaf chlorophyll content, the two treatments became a dominant factor in assessing yield-reflectance relationships for vineyard canopy. Although another ANOVA showed that the vines that were spectrally sampled were not, as a group, representative of the vine response to
available nitrogen, correlations between yield and reflectance consis tently improved when vines were stratified by method of weed control (i. e., sod with herbicides versus cultivated). The best correlations occurred for those vines which were maintained with sod and herbicides. In addition, the correlations for the 6 vines in the sod group had the same positive and negative relationships as all 18 vines sampled. It may be that simply by chance, these 6 vines were more representative of average vine response to available nitrogen than some other vines sampled and therefore, the correlations improved over those for all 18 vines or for vines which were cultivated.

5.1.3 Agronomic Variables and Reflectance

Pruning weight and the number of clusters per vine were both found to be strongly affected by the method of weed control and the quantity of nitrogen applied. In addition, both variables were found to be significantly correlated with yield.

Correlations between pruning weight and reflectance were highly significant when all 18 plants sampled were included. The most significant correlations were in the visible range for July and September, and in the infrared range for August data. Correlations between pruning weight and September reflectance were also high in the infrared range for the vine treatment group which had mowed sod and herbicides for weed control.

The number of clusters per vine was significantly correlated with August reflectance data in the infrared range for all 18 vines sampled. In addition, clusters per vine was highly correlated with reflectance for all three months when only vines from Treatment

Group 2 (sod) were included. Several correlations with Treatment Group 2 (cultivated) were just below the 10% significance level cutoff point.

From these analyses, it was apparent that the number of clusters per vine and pruning weight for the spestroradiometrically sampled vines were not representative of the average vine response. Therefore, the number of clusters and the pruning weight were not well correlated with available nitrogen. Clusters and pruning weight beth correlate significantly with yield and with reflectance under different conditions, but for either variable, spectral data collected in August resulted in the highest number of significant correlations.

5.1.4 The Effect of Time on Yield-Reflectance Relationships

Correlations between reflectance and yield, clusters and pruning weight for vine groups stratified by time were usually more significant than for all 18 vines sampled and often better than for groups stratified by method of weed control. Time in this instance may represent either the time of day or the duration of spectroradiometer operation.

In the first case, tha time effect could be due to inter-leaf shadowing changing with solar zenith angle, or it could be a response to varying angles of leaf orientation. The second possibility is that a systematic instrument error existed which changed with the duration of instrument use due to heat accumulation or other instrument factors. This seems a less likely explanation because the effect is not consistent across both spectral ranges, and it was not apparent in the calibration procedures previous to in situ data collection. A third possible
explanation is that by chance random selection, some of these vine groups provided higher correlations.

5.1.5 Multispectral Scanner Reflectance Data and Xield
 The lack of correlation between scanner data and yield was

 probably due to several factors. First, the data were collected very late in the growing season (September 3) while ground data analyses indicated that mid-season data collection might have been optimal.The second factor was the atmospheric conditions at the time of data collection which included heavy haze and at least 50% cloud cover. Because of these conditions the vineyard sections were limited to those in sunlight or those in cloud shadow. The majority of Concord vineyard sections were in cloud shadow. These fields lacked between-row vine shadow, simplifying boundary definition; however, the cloud shadow resulted in depressed values of reflectance.

A third factor which may have affected spectral data was that an average value of reflectance was found for each vineyard section and used in ratios and other reflectance combinations. It is possible that a pixel-by -pixel approach would result in different reflectance values.

5.2 Limitations of Current Study

5.2.1 ISCO Spectroradiometer

The three ISCO spectroradiometers which were used in this study for field data collection had inherent problems, most of which were compensated for in the calibration procedure.

The instruments had dry solder: joints which broke during oper ation. Most of these were repaired before field use. One instrument
had a bent chopper shaft which limited data collection to the slow response scale. There were differences in detector sensitivity, scale, and wavelength range between the three spectroradiometers. .

The fiber optic probes of the instruments were manually aligned with the monochromator slit, but lack of precision reduced instrument sensitivity. In addition, several optical fibers in the probe of one spectroradiometer broke during field operation. The probe had to be replaced and the calibration repeated.

Lastly, the instruments were manually read by different observers, which probably resulted in slightly different meter readings. Also, reading errors occurred, such as incorrect decimal point positions. Some reading errors could be corrected after data collection while others became anomalies which probably had a minor effect on data analysis.

5.2.2 Multispectral Scanner

There are four factors which affected the value of the airborne Multispectral Scanner (M2S) data. Initiplly, the mission was improperly flown, and the entire Fredonia site was not covered. Ground data from sampled vines could not be compared with aerial data from the same vines. Secondly, the mission was flown later in the season than requested and the vine senescence was already occurring. Thirdly, the mission was flown during periods of excessive haze. Lastly, scales of scanner data collected during this mission were 1:3000 and 1:6000, with the corresponding ground resolution limited to about 2 meters. Although it is probably unnecessary, a slightly lower altitude might provide useful information for detailed vine study.

CHAPTER 6

 CONCLUSIONSAnalyses of variance indicate that the 18 spectrally sampled vines were not representative of vine reponse to available nitrogen. In addition, it was found that available nitrogen, which was determined by the method of weed control and nitrogen input, as well as by growth stage, significantly influenced Concord canopy reflectance.

Some correlations between vine yield, clusters, pruning weight and spectral reflectance are statistically significant, although they are inadequate for developing a reliable yield prediction model. It is apparent, however, that reflectance data collection could be limited to certain wavelengths depending on growth stage and the agronomic variable of interest.

In July, the highest correlations with yield occurred in several different visible and near-infrared wavelengths. In August, data collection for yield would depend on the weed control method: the visible range for cultivated rows, and the infrared range for sod and herbicide application.

Also, in July and August data collection in the infrared rayge is optimum for studies of clusters per vine and pruning weight. In September, for all three agronomic variables, data collection could generally be limited to the near-infrared range. At any time during the season, the main wavelength intervals of interest, in relation to
plant status, are:

$\left.\begin{array}{l}400 \mathrm{~nm} \\ 450 \mathrm{~nm}\end{array}\right)$	blue: strong absorption by chlorophyll and carotenoids		
675 nm	red: strong chlorophyll absorption		
$750-775 \mathrm{~nm})$	infrared: $850-900 \mathrm{~nm}$		mesophyll structure, turgidicy, and
:---			
inter-leaf scattering			

Because optimum wavelengths have been defined here, the efficiency of data collection will be increased. Greater efficiency and accuracy would also result if a field portable spectroradiometer were designed with automatic scaming capabilities.

Time of day had an effect on correlation of reflectance and yield, and this might relate to leaf-lay'er shadowing, leaf orientation, leaf moisture stress due to diurnal temperature changes, or a systematic instrument error. It should be evaluated in future sampling.

The lack of correlation between the airborne multispectral scanner data and yield was probably due to the combination of poor weather conditions and the late growth stage of the imaged vineyards.

In conclusion, selection of vines for sampling for yield prediction modeling should be random rather than by viticultural standards of average vines. On the other hand, because Concord canopy reflectance was strongly influenced by available nitrogen, vines should be stratified for modeling, based on weed control and nitrogen input. Lastly, selection of spectral ranges for sampling should be based on vine growth stage.

REFERENCES

Allen, R. D. , and Von Steen, D. H. , 1969. Use of Fhotography and Other Objective Yield Procedures for Citrus Fruit. Statistics Reporting Service, U.S.D.A. (No paging).

Bauer, M. E., 1975. The Role of Remote Sensing in Determining the Distribution and Yield of Crops. In Advances in Agronomy, Vol. 27, N. C. Brady, ed., New York: Acađemic Press, pp. 271-304.

Bendix, 1972. Modular Multiband Scanner (Manufacturer's Literature), Bendiy Aerospace Systems Division, Ann Arbor, MI.

Casey, P. D., and Burgess, L. W. , 1979. The Relationship of Soybean Rust and Yield to Reflectance Properties. In Proc. of the 8th Annual Remote Sensing of Earth Resources Conference. Held Tullahoma, Tenn. pp, 315-322.

Clore, W. J., 1973. Increasing Vineyard Yields. In Proceedings of the Annual Meeting of the Washington State Grape Society. pp. 25-29.

Colwell, J. E., 1979. Possible Future Directions in Crop Yield Forecasting. In Proc. of the 13th Intl. Symp. on Remote Sensing of Environment. Field Univ. of Mich. , Ann Arbor, Mich. pp. 1781-1788.

Colwell, J. E. , 1974. Vegetation Canopy Reflectance. Remote Sensing of Environment 3: 175-183.

Colwell, J. E. , Rice, D. P., and Nalpeka, R. F., 1977. Whear Yield Forecasts Using Landsat Data. In Proc. of the 1lth Int'l. Symp. on Remote Sensing of Environment. Held Univ. of Mich. , Ann Arbor, Mich. pp. 1245-1254.

Colwell, R. N., 1970. Applications of Remote Sensing in Agriculture and Forestry. In Remote Sensing with Special Reference to
Agriculture and Forescry. Washington, D. C., National Academy of Sciences. pp. 164-223.

Colwell, R. N., Roberts, E. H., and Lauer, D. T., 1966. The Inventory of Livestock and Crops by Means of Aerial Photography. Berkeley, Calif. Univ. of California, School of Forestry. (No paging).

Duggin, M. J., 1980a. The Effect of Angular Factors on Popularly Used Indicators of Vegetative Vigor. In Proceedings of the 47 th Annual Mtg. of Amer. Soc. Photogram. A.S. ए., Falls Church, VA. Held St. Louis, Mo. pp. 239-25.l.

Duggin, M. J., 1980b. The Field Measurement of Reflectance Factors. Photogrammerric Eng'g. and Remote Sensing. 46: 643-647.

Duggin, M. J., and Philipson, W. R., 1981. Field Measurement and Spectral Reflectance In Proc. of the 47th Annual Meeting, American Society of Photogrammetry. Held in Washington, D. C. pp. 342-350.

Egbert, D. D., and Ulaby, F. T., 1972. Effect of Angles on Reflectivity. Photogrammetric Eng'g and Remote Sensing. 38:556-564.

Feldner, K., and Allan, J. A., 1976. The Application of Air Photo Interpretation to the Identification of Areas Planted to Vines in Different Seasons. ITC Journal. 1:98-110.

Fisher, R. A., 1954. Statistical Methods for Research Workers. London, England: Oliver and Boyd. . p. 209.
Harding, P. H. , 1957. The Effect of Soil Variation on the Nutritional Status of the Concord Grape. M. S. thesis, Cornell University. 156 pp .

Heilman, J. L., Kanemasu, E. T., Bagley, I. O. , and Rasmussen, V. P., 1977. Evaluating Soil Moisture and Yield of Winter Wheat in the Great Plains Using Landsat Data. Remote Sensing of Environment. 6:315-326.

Houseman, E. E., and Huddleston, H. F., 1966. Forecasting and Estimating Crop Yields from Plant Measurements. Monthly Bulletin of Agricultural Economics and Statistics (FAO). 15 (10): 1-6.
Houston, A. G., Pitts, D. E., Feiveson, A. H. , Badhwar, G., Ferguson, M., Hsu, E., Potter, J., Chhikara, R., Rader, M., Ahlers, C., Eppler, W. 1979. Accuracy Assessment in the Large Area Crop Inventory Experiment in Proc. of the 13th Int'l. Symp. on Remote Sensing of Environment Held Univ. of Mich. , Ann Arbor, Michigan. pp. 127-146.

Hudson, R. D., Jr., 1969. Infrared System Engineering. New York: John Wiley and Sons. pp. 24-27.
Idso, S. B., Hatfield, J. L., Jackson, R. D., and Reginato, R. J., 1979. Grain Y ield Prediction: Extending the Stress-Degree Γ ay Approach to Accomodate Climatic Variability. Remote Sent ng of Environment. 8:267-272.

Idso, S. B., Jackson, R. D., and Reginato, R. J., 1977. Remote Sensing of Crop Yields. Science. 196:19-25.
Kanemasu, E. T., 1974. Seasonal Canopy Reflectance Patterns of Wheat, Sorghum and Soybean. Remote Sensing of Environment. 3:43-47.

Knipling, E. B., 1970. Physical and Physiological Basis for the Reflectance of Visible and Near-Infrared Radiation from Vegetation. Remote Sensing of Environment. 1:155-159.

Lillesand, T. M., and Kiefer, R. W. , 1979. Remote Sensing and Image Interpretation. New York: John Wiley and Sons. Chap. 7.
Luney, P. R., and Dill, H. W., Jr. 1970. Uses, Potentialities and Needs in Agriculture and Forestry. In Remote Sensing with Special Reference to Agriculture and Forestry. Washington, D. C.: National Academy of Sciences. Ch. 1.

McDaniel, K. C., and Haas, R. H., 1982. Assessing Mesquite-Grass Vegetation Condition from Landsat. Photogrammetric Eng'g and Remote Sensing. 48:441-450.
Myers, V. I., 1975. Crops and Soils. In Manual of Remote Sensing, Vol. II. Falls Church, Va. : American Society of Photogrammetry. pp. 1739-1743.
Myers, V. I., and Allen, W. A., 1968. Electrooptical Remote Sensing Methods as Nondestructive Testing and Measuring Techniques in Agriculture. Applied Optics. 7:1819-1838.
Morrison, T. M., Engle, C. C., and Fuller, G. L., 1914. Soil Survey of Chautaqua County, New York. Cornell Extension Bulletin 6. Ithaca, N. Y.: Cornell University. 75 pp .

Pack, B. A., 1978. Climates of the States, New York. In Climates of the States. Vol. 2. Detroit, Mich.: Gale Research Co. pp. 696724.

Patrie, L. A., 1951. A Study of Some Factors of the Climate of Fredonia, New York, and Implications Concerning Certain Crops. Cornell Univ., Ithaca, N. Y. 24 pp .
Philipson, W. R., Erb, T. L., Fernandez, D., and McLeester, J. N. 1980. Remote Sensing for Vineyard Management. In Proceedings of the 47 th Annual Mtg. Amer. Soc. Photogram. A.S.P. Falls Church, Va. Held St. Louis, Mo. pp. 371-378.
Reeves, R. G., ed., 1975. Manual of Remote Sensing. A.S.P., Falls Church, Va. 2144 pp.
Rennilson, J. J., 1978. Spectroradiometry. Optical Spectra. 12(5): 46-50.

Shaulis, N., and Kimball, K., 1955. The Association of Nutrient Composition of Concord Grape Petioles with Deficiency Symptons, Growth, and Yield. J. Amer. of the Amer. Soc. Hort. and Sci. 62:141-156.

Shaulis, N., and Steel, R. G. D., 1969. The Interaction of Resistant Rootstock to the Nitrogen, Weed Control, Pruning, and Thinning Effects on the Productivity of Grapevines. J. Amer. of the Amer. Soc. Horr. and Sci. 94(4):422-429.

Stewart, R. B. , Mukammal, E. I., and Wiebe, J. , 1978. The Use of Thermal Imagery in Defining Frost Prone Areas in the Niagara Fruit Belt. Remote Sensing of Environment. 7:187-202.

Stuff, R. G., and Barnett, T. L., 1979. The Use of Spectral Data in Wheat Yield Estimation--An Assessment of the Techniques Explored in LACIE. Proc. of the 13th Int'l. Symp. on Remote Sensing of Environment. Held Univ. of Mich., Ann Arbor, Michigan. pp. 645-651.

Suits, G. H. , 1972. The Calculation of the Directional Reflectance of a Vegetative Canopy. Remote Sensing of Environment 2:117-125.

Tucker, C. J., 1979. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sensing of Envirormment. 8:127-150.

Tucker, C. J., 1977. Spectral Estimation of Grass Canopy Variables. Remote Sensing of Environment. 6:11-26.
Tucker, C. J., Elgin, J. H., Jr., McMurtrey, J. E., III, and Fan, C. J. , 1979a. Monitoring Corn and Soybean Crop Development of Hand-Held Radiometer Spectral Data. Remote Sensing of Environment. 8:237-248.

Tucker, C. J., Elgin, J. H. , Jr., and McMurtrey, J. E. , III. 1979b. Relationship of Red and Photographic Infrared Spectral Radiances to Alfalfa Biomass, Forage Water Content, Percentage Canopy Cover, and Severity of Drought Stress. NASA Technical Memo 80272. April, Greenbelt, Md. Goddard Space Flight Center. 13 pp.
U. S. Dept. of Agriculture 1978. Soil Survey of Steuben County, New York. 120 pp .
U. S. Geclogical Survey. 1979. Landsat Data Users Handbcek.

Von Steen, D. H ${ }^{2}$, Learner, R. W., and Gerberman, A. H., 1969. Relationship of Film Optical Density to Yield Indicators. In Proc. of the 6 th Int'l. Symp. on Remote Sensing of Environment. Held Univ. of Mich., Mich. pp. 115-1122.

Wiegand, C. L., Gausman, H. W., and Allen, W. A., 1971. Physiological Factors and Optical Parameters as Bases of Vegetation Discrimination and Stress Analysis. In Proc. of Seminar on Operational Remote Sensing. Held at Houston, Tex. Falls Church, Va: American Society of Photogrammetry. pp. 82-102.

Wiegand, C. L., Gausman, H. W., Cuellar, J. A., Gerberman, A. H., and Richardson, A. J., 1974. Vegetation Density as Deduced from ERTS-1 MSS Response. In Proc. of the 3rd Earth Resources Technology Satellite-1 Symposium. pp. 93-116.
Wiegand, C. L., Richardson, A. J., and Kanemasu, E. T., 1979. Leaf Area Index Estimates for Wheat from Landsat and Their Implications for Evapotranspiration and Crop Modeling. Agron. Jour. 71:336-342. March-April.

Wildman, W. E., 1979. Color-Infrared: A Valuable Tool in Viney ard Management. In Proceedings of the 7th Biennial Workshop on Color Aerial Photography in the Plant Sciences. Held Davis, Calif. Falls Church, Va. Amer. Society of Photogrammetry. pp. 229-238.

APPENDICES

APPENDIX A

A. 1

Table of vines by row and management practice for Fredonia site.

Row	Vine	Pruning Weight	Nodes/ Vine	Clusters/ Vine	Yield lb/vine	Treatment
409	07	2.0	40	132	24.3	1
	08	1.7	37	98	19.0	1
	09	2.0	40	80	22.0	1
	11	1.5	35 50	170	13.4 30.8	1
	12	3.1	51	157	29.1	1
414	20	3.1	51	183	26.8	2
	21	3.9	59	${ }_{*}^{150}$	25: 2	2
	22	3.4				2
	24	3.4 4.3	64	150	28.4 33.6	2
	25	2.3	43	98	15.8	2
413	33	3.1	51	178	27.4	3
	34	0.7	21	36	7.8	
	35	2.0	40	86	15.5	3
	36	2.8	48	71	16.3	3
	37	1.9	39	123	23.3	3
	38	1.6	36	73	14.0	3
413	01 02	1.2	32 40	72 99	14.4	4
	03	1.1	31	44	8. 2^{*}	4
	04	1.0	30	80	14.8	4
	05	1.3	33	118	24.0	4
	06	0.7	21	52	9.2	4
409	33	1.4	34	89	15.0	5
	34 35 35	3.7	57 35	155	29.2	5
	36	2.4	44	127	27.0	5
	37	1.7	37	098	14.0	5
	38	1.8	38	092	20.3	5
408	14	3.5	55	184	33.2	6
	15	3. 3	53	146	24.7	6
	17	3.4	54	157	28.6	6
	18	2.3	43	129	22.2	6
	19	1.3	33	93	19.4	6

[^4]| Row | Vine | Pruning Weight | Nodes Vine | Clusters/
 Vine | Yield lb/Vine | Treatment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 416 | 33 | 2.6 | 46 | 59 | 11.2 | 7 |
| | 34 | 5.2 | 72 | 174 | 26.5 | 7 |
| | 35 | 5.2 | 72 | 176 | 26.7 | 7 |
| | 36 | 4. 2 | 62 | 92 | 15.9 | 7 |
| | 37 | 5.1 | 71 | 126 | 20.1 | 7 |
| | 38 | 3.8 | 58 | 80 | 17.0 | 7 |
| 428 | 20 | 2.0 | 40 | 103 | 20.8 | 8 |
| | 21 | 1.4 | 34 | 81 | 19.2 | 8 |
| | 22 | 1.4 | 34 | 112 | 21. 4 | 8 |
| | 23 | 1.5 | 35 | 111 | 24.8 | 8 |
| | 24 | 1.6 | 36 | 104 | 26.4 | 8 |
| | 25 | 1.2 | 32 | 73 | 14.8 | 8 |
| 406 | 20 | 2.3 | 43 | 165 | 29.7 | 9 |
| | 21 | 3.1 | 51 | 131 | 21.3 | 9 |
| | 22 | 4.1 | 61 | 197 | 38.9 | 9 |
| | 23 | 3.9 | 59 | 159 | 20.5 | 9 |
| | 24 | 5.5 | 75 | 164 | 20.0 | 9 |
| | 25 | 2.4 | 44 | 134 | 25.5 | 9 |

[^5]
A. 2

Table of vineyard sections and yields for Hammondsport site.

Area II
Section
Area, Acres Yield, tons/acre
11
3.04
4.388

12
5.74
4. 388

13

1. 44
4.388

14
5.14
5.895

15
11.05

4230
16
3.85
4.230

17
4.04
5.100

18
8.93
4.886

APPENDIX B

Correlations between reflectance and agronomic variables in the matrices in this section are represented as follows:
Columns
Spectroradiometric Data 1-30 31-36
Simulated Multispectral Scanner Data 1-9 Agronomic Variables 10-15

B. 1

Percent Reflectance Data
 at 30 Wavelengths
 July 17, 18, 1980

JULY 17 Alle July ie, 1930

116. 400	Ale 425	116. 450	ALE 475	136. 300	WLe 325	ULA 590	WLe 575
2.9030	2.4250	2.6635	2.4505	2.3310	4.2150	6.5165	5.3435
3.0135	2.6960	3.1700	3.0840	3.2590	4.9890	7.4965	6.5145
3.6575	1.9525	2.2570	2.5585	2.5175	4.6125	7.2345	5.5485
3.8960	2.3100	2.6345	2.6325	2.6360	4.5340	7.0880	5.0595
4.7945	2.2905	3.4725	3.6550	3.7465	8.3035	10.1715	9.5595
2.8405	2.6390	2.7590	2.9460	2.9400	4.6705	7.6195	7.4245
3.2015	3.1535	3.1295	3.2655	3.3230	6.6020	11.0230	10.919
3.3425	2.8000	2.9060	3.1300	3.7485	6.5323	10,4325	10.7290
17.1460	2.4510	2.8600	2.9055	3.1525	5.2775	8.9015	0.8600
1.2935	2.2135	2.0495	3.1100	2.3825	4.3210	5.7970	6.7255
17.7900	2.9040	2.9310	3.1945	3.4210	5.7760	9.1340	8.1760
2.5245	2.4690	2.3635	2.4575	2.9140	4.9940	8.1800	7.2995
2.0390	2.9460	2.9395	3.2435	3.4235	6.0885	10.1345	2.52E0
2.5020	2.9500	3.6435	2.9970	3.2240	5.8460	9.6985	7. 7415
3.889	2.8790	3.0850	3.2505	3.4010	6.4190	10.2990	8.1800
4.0005	3.5930	j. 5950	3.7635	4.0030	7.0560	10.8290	0.4745
4.7390	4.2995	4.9250	5.4145	5.8830	9.7320	15.1305	11.9670
4.0050	3.8080	4.1070	4.2135	4.5470	7.8690	12.4815	0.8045
:16. 300	WH: 625	HL= 650	WL= 675	WLe 700	16. 725	UL: 750	Wha
4.3150	3.8990	3.4960	3.0795	7.7505	25.0950	43.8605	
5.1015	4.6090	4.2585	4.0555	8.8340	29.4590	50.8395	
4.7315	3.7750	3.4100	2.8695	8. 4220	26.3435	45.6385	
4.3285	4.2150	3.5870	3.1135	7.9250	25.4500	41.2415	
5.843 C	5.1920	4.3550	4.0345	10.7180	39.2775	74.2105	
4.6280	4.0100	19.2965	3.2965	3.4415	31.8435	63.8770	
5.6545	5.6310	4.4695	3.8005	12.1030	45.6405	71.5450	
6.7515	5.6360	4.5440	4.0405	11.7295	41.6998	64.5855	
5.4395	4.4525	4.0825	3.2575	8.6855	34.4025	52.6380	
4.5425	3.7630	3.1015	2.4130	7.4290	26.7675	39.9735	
5.7230	4.6950	3.9260	3.2445	9.2195	33.3470	56.9640	
4.7865	3.9185	3.1115	2. 5585	8.8125	33.2650	52.6885	
SC. 2720	4.8915	4.3940	3.7405	10.3120	39.3620	64.0550	
5.9525	5.4015	3.6805	3.3490	9.6270	39.4140	62.5150	
6.3030	5.0650	4.0260	3.3520	10.7580	40.5190	66.7770	
6.8300	5.5935	4.6225	4.2285	11.2710	41.4755	69.6200	
10.6675	9.2185	7.674	6.6430	14.7590	46.2200	76.5520	
7.4285	6.4090	11.5350	4.7660	12.4970	45.6505	75.8795	
						-	
Ifte 750	H6: 775	Wha 900	WL" 825	UL: 850	UL= 875	UL= 900	HLE 925
54.9760	63.6905	58.0795	66.5140	66.3685	67.1390	68.1980	66.0690
46.9870	56.2580	55.6855	57.8635	59.0905	53.7370	59.2700	62.7130
40.6450	52.2515	47.6795	50.8190	51.3110°	50.8130	49.5420	45.2700
34.5070	39.0895	40.1405	41.8880	38.5365	42.5260	39.7950	41.0420
C5. 1520	87.0965	38.3255	91.4570	91.0455	90.8720	94.4730	97.3225
52.2665	58.9850	62.3865	62.1025	61.6020	62.3750	66.0315	63.0830
55.3280	60.1295	65.4200	66.0200	66.3595	66.5810	66.5165	69.1870
40.8705	56., 5045	57.3360	50.3560	59.8495	60.4850	61.7865	64.6415
50. 50.40	56.6110	59.3200	80.8360	60.3865	61.8235	62.3950	60.6185
30.7635	45,4425	47.7570	18.7985	48.2835	50.6510	49.9440	49.8600
44.8305	54.3155	56.5875	57.4240	55.7525	58.8360	62.8515	55.1650
42.3350	51.3405	52.3900	53.3655	52.6650	53.2530	52.6915	53.5780
56.6895	65.5485	66.8250	68.6530	68.3725	69.1355	65.7910	65.8420
48.7560	57.3520	59.0160	59.0690	57.6140	58.0085	57.1650	63.4280
45.9265	55.9210	54.8040	56.5265	54.5075	54.7715	50.2050	49.1145
45.2810	49.0685	49.9210	49.4175	47.5310	46.6760	43.3240	41.9280
	48.2750	47.0245		48.1370	48.4325	44.4465	39.9005
$\equiv 9.6835$	46.9045	47.7535	40.4570	47.8390	46.6090	45.4795	42.1300
16: 950	WLe 975	NL=1000	PLa 1025	WL=1050	WLs 1075	: 6×1100	UL:
100.0000	100.0000	41.1455	44.1720	57.8840	53.5420	51.0055	
100.0000	100.0000	46.0145	48.3720	50.6880	45.8610	43.5350	
100.0000	100.0000	29.9275	32.4480	43.0485	39.3970	35.6340	
100.0000	96.7520	31.3830	32.3950	35.3190	32.1120	30.2625	
100.0000	100.0000	93.9770	88.1990	81.7630	73.2115	68.4103	
93.2525	90.2075	62.4095	60.3580	50.4850	49.7445	45.0125	
46.6775	47.3815	63.6405	60.9940	62.2735	52.1835	48.9955	
35.i525	35.7735	33.3175	52.0530	53.0965	47.4030	39.4255	
34.4720	34.7835	48.9635	47.6620	53.5400	45.1745	39.7520	
27.0745	28.5595	35.1670	24.8335	42.6170	37.0685	31,1980	
22.1245	37.2610	45.1985	40.7500	50.3140	56.0405	46.7940	
25.6795	30.8675	33.2714	33.1715	44.7565	EG.0075	33.1505	
54.5325	54.9495	40.9535	44.6215	61.2440	ES.1410	63.0845	
64.1435	62.8145	46.5305	50.3840	60.4340	52.7915	43.6620	
66.2415	59.9170	46.0055	47.6280	53.5435	45.1805	37.7900	
64.2135	62.0545	31.9385	23.3885	45:4620	32.6345	32.1820	
79.9180	$71.50 ¢ 5$	55.6940	E9.2225	45.7340	40.3170	35.7235	
72.0870	74. 4590	70.4510	71.1705	49.2650	23.1255	35.2755	
कTATEIEITTS :	EXECUTEEa	10					

B. 2

Percent Reflectance Data at 30 Wavelengths

August 20, 21, 1980

$=0$			
-	Nocockemon		
	wounoouvminemancyinvo		
			ONovinumognobunuown
		000000000000000000	0000000000000
17			
AEEMNUNNNW以WNNENNWOM			
	תu = NonvundonowsN		NNNNNNNNNNNNNNNNNT
cオu=0nOGmatos-nomun	avanco		
			000000000000000000
 unoundounovoninumumouno ownonninoviononulzawno			
	Wucowncann=N		
			-
	OnOOOMVOUnvinovonom	ovinculoovvoovoondon 0000000000000000000	Ovownovugniogviooboow 0000000000000000000
OOU0uwooounoouvumov			
\qquad 000000000000000000			

B. 3

Percent Refilectance Data at 30 Wavelengths

September 12, 1980

巴EPTE：EEK 12． 1500
Jo wave lel：ctll specinciadiontten in oita

＊L： 400	7L：425	Ut：45c	WL．475	UL＝ 500	HLE 525	1t6－590	I1L－ 375
2.7400	2.9660	2.8045	2.6855	2.6980	4.8305	J． 6655	6.5595
1.4275	1.3590	1.2475	1.9165	1.9665	3.1980	5.5025	4.5420
1.1075	1.83 Cs	1．9385	2.0815	2.0420	4.6260	7.1705	5． 0540
0.8820	1.8640	1.3645	1．5205	1.5355	2.9470	4.4525	3.5475
0.7565	1.9395	1.6845	1.7315	1.7985	3.1055	4.8670	2.9155
1.0265	2.0150	1.6905	1.7045	1.7915	3.8670	5.3445	5．2015
1.0705	1．5040	1.7185	1.8265	1.8400	3.0465	4.6145	3.0590
0.9150	1.9385	1.6015	1．9765	1.7793	3.2290	5.2190	5.0955
1.2565	2，3975	1.9525	1.9460	2.0640	3.8805	5.8090	4.7510
0.7520	1，7．35	1.5205	1.6955	1.7375	3.6100	5.5430	4.7815
0.5355	1.8870	1.7325	1.8130	1.8695	3.3750	6.0905	5.1376
1．1265	1.7835	1.7515	1．8210	1.9310	4.0520	5.3225	5.4860
0.3935	2.2360	2.0730	2.1595	2，2600	3.6395	6.1155	5.1420
1.0765	1．8230	1.8210	1．5580	2.0750	H． 3625	5．5195	5.5060
1.2270	2.1235	1.9375	2.1230	2.1295	4.5435	7.0195	6.6880
0.4350	1.3670	1.8040	2.6635	2.0745	3.5735	5.4255	4.5580
1．1c55	1.5380	1.5095	1.7736	1.9350	3.7380	6.0665	4.9870
9.3245	1．3E75	1.5045	1.6945	1.7520	3.3915	3.3400	4.8980
116． 606	Wh： 625	NL： 530	小L゙ 675	IIL＝ 700	HL＝ 725	WLe 750	WL．
4.2030	3.2615	2.8225	2.3945	6.9870	34．6435	53.1380	
3.5290	3.0265	2.5320	2.1170	6.6135	23.7030	41.3700	
4.4510	3.7225	3.1320	2.7460	3.0415	31.9550	47.1145	
2.7515	2.2355	2.0225	1.8520	5.1560	19.4490	37.4840	
2.0915	2.5050	2.1835	1.8770	5.4515	24.1035	36.5385	
5.4760	2.9410	2.4270	$\hat{1.0850}$	6.0585	25.5080	38.4330	
3.0075	2.6270	2.3660	2.1420	5.3665	22.4270	34.5890	
3.7235	2.6325	2.3645	2.0040	5.9865	24．6045	36.6050	
3． 7175	5．1465	2．7495	2.4725	6.7465	28．4560	42．1935	
2.4030	2.5810	2.2735	1.9155	5.7490	24.6415	41.5490	
3.9685	2.8525	2.4120	2.0060	6．1740	25.3055	39.7080	
3． 7705	3.2020	2.7020	2． 1220	6.3825	25.4090	37.6705	
3.5160	3.0475	2.6955	3． 4.430	6． 4680	23.1150	42.9880	
4．1225，	3.0615	2.5710	2.1660	6.4650	25.8130	40.8465	
5.4370	3.6975	2.7215	2．3810	7.0695	30.9330	44.7485	
3.626 .5	3.0900	2.5390	2.2435	6.5355	26.3575	40.2275	
5.6945	3.0370	2.5980	2.0640	6.2775	20．3100	44.2135	
3.6310	2． 2500	2.6585	2.0295	6.3155	19.9035	34.3110	
ULE 750 $\leqslant 8.0750$	3ty 775	148800 79.8285	$\mathrm{HL}=825$ 78.3530	WLa 78.8170	IL： 875 80.8035	UL $=200$ 79.5700	$\begin{aligned} & U L=925 \\ & 65.5460 \end{aligned}$
68．0750	77． 8305	78.8285	78.3530	78.8170	80.8035	79.5700	65.5460
49.6545	54.3215	59.7330	76.1375	72.6025	75.4325	72.5220	51.5040
04.4450	72.9235	77.0440	75.0565	77.4205	78.9065	79.4500	64.7855
51.6580	56.3170	59.5670	60.1885	61.2235	64.0265	65.1365	61.6295
49.4770	69.9905	72.755 .5	72.8905	75：5180	77.5035	78.7545	61.3580
60.8270	72.2280	72.4670	74.2585	76.9290	79.6135	79.1090	72.5370
45.4655	49.9555	54.0230	52．4990	56.1820	56.6350	59.2780	46.7330
5 C .6230	55.2530	56.9195	58.2170	60.4445	52.2165	61.2225	51.5310
53.2595	58.4100	56.3950	60.6940	62.6150	64.8815	63.2415	64.5535
49.9520	54.2735	55.3130	56.2910	57．1280	59.1945	38.1040	35.3495
51.2915	54.9715	57.2495	50.2070	50.8235	61.6380	60.1615	57.9035
43.0830	46.4940	46.2445	49.2395	50.6510	53.7555	52.2890	52.4650
45.6340	49.7325	50.3070	52.8500	53.5435	55.4970	52.6380	53.1450
45.2435	47.8350	49.3930	50.7440	51.7855	53.3755	52.5190	50.9450
42.4100	50.0005	50.0745	52.3860	52.6700	74.1955	51.8250	$46.2090-$
42.6570	47.4807	49.1520	51.5665	52.5540	53.4890	53.8535	50.8010
40.4115	55.9630	53.0245	60.9535	59.0800	61.4695	60.8950	53.3175
33.7015	35.0370	40.4190	41.9120	41.7400	43.3765	42.3345	39.6205
46． 750	ULa 975	Whal000	$W L=1025$	TLE $=1050$	14．1075		WL：
51.8950	67.8875	67．9130	68.4810	68.1335	71.2915	$76: 8345$	
51.6805	55.9905	59.8580	60.7595	62.5015	63.5605	63.6730	
65.2860	62．9030	60.9395	59.7390	65.9850	67.6925	77.9740	
02.5460	62.1275	57.0580	58.6410	66.6525	65.5985	$=67.6590$	
67.4265	63.5950	51.6115	$63.35 \geq 0$	67.4165	70.2425	73.8640	
67.4675	66.7920	$63.03 E 5$	62.2345	66.5170	69.3530	57.1795	
44.3715	45.9375	43.6595	45.0205	47.6795	49.4605	48.4430	
50．9090	49.6300	45.9930	48.1815	51.4720	55.1790	57.8380	
50.5655	53.5180	49.1940	47.7955	54.0710	55.3200	58.2660	
49.8115	50.1055	55.3675	55.9070	49.6400	54.4865	56.7775	
54．1540	54.5295	52.2835	51.4530	54.7105	62.8450	62．C060	
49.7550	46.4025	43.0080	45.3035	40.5905	51.6475	50.3105	
35.3445	30.5155	45.3870	44.7005	40.9065	53．4485	55.1535	
4． 3135	48.4390	42.3435	43.8255	47.6695	51.1510	50.7355	
51.3585	51.3560	53.5490	52．1635	46.9960	55.5400	53． 9.970	
53．9400	50.4530	46.7065	46.8790	51.367 C	54.7100	55.2095	
61.7525	54.1465	50.704 C	52．8590	57.2475	52.2420	65.4235	
53.1630	43.6950	42.0095	42.9980	46.2600	52.5075	45.1200	
STATEHENTS R：	ExECUTEDa	10					．

B. 4

Correlations of Percent Reflectance Data at 30 Wavelengths
July 17, 18, 1980

IULY 17 AHD JULY 18． 1980

$-\infty, C 22, C 23, C 24, C 25, C 26, C 27, C 2 C, C 29, C 30$

	－ 01	C2	C3	C4	C5	C6	67	CE	C． 9
C2	－0．013								－
63	0.036	0.838							
C4	0.050	C． 390	0.993						
C5	0.055	0.915	0.956	0.976					
$C 6$	0.014	0.912	0.921	0.952	0.980				
67	0.641	C． 380	0.692	0.927	0.964	0.990			
CC	0.144	0.673	0.686	0.731	0.829	0.832	0.873		
${ }_{6} 5$	－0．096	0.150	0.064	0.127	0.114	0.150	0.194	0.143	
$\cdots 10$	－0．0．12	0.898	0.932	0.951	0.977	0.966	0.944	0.804	0.095
こ11	－0．114	0.512	0.289	0.312	0.242	0.173	0.177	0.140	－0．048
E12	－0．041	0.963	0.960	C． 964	0.956	0.907	0.870	0.713	0.127
C13	－0．079	0.867	0.268	0.904	0.952	0.974	0.974	0.875	0.158
C14	－0．013	0.788	0.747	0.775	0.841	0.888	0.92 L	0.891	0.217
C15	－0．057	0.740	0.708	0.815	0.827	0.845	0.875	0.815	0.179
$\because 16$	0.019	－0．214	0.075	0.055	0.025	－0．009	0.043	0.233	0.165
C17	0.001	－0．226	0.025	0.007	－0．014	－0．044	0.012	0.792	0.197
$\because 10$	0.055	－0．229	0.007	－0．015	－0．029	－0．0．66	－0．004	0.210	0.206
C1！	0.057	－0．257	－0．001	－0．014	－0．027	－0．061	0.002	0.223	0.217
420	0.044	－0．250	0.005	－0．007	－0．017	－0．058	0.003	0.225	0.219
－21	0．056	－0．304	－0．049	－0．cs2	－0．069	－0．115	－0．053	0.195	0.219
C．22	0.151	－0．330	－0．091	－0．105	－0．110	－0．169	－0．110	0.163	0.128
CE3	0.007	－0．373	－0．133	－0．162	－0．157	－0．212	－0．147	0.148	0.112
ぐ号	－0．378	－0．0¢0	0.197	0.149	－0．021	－0．082	－0．144	－0．355	－0．122
C65	－0． 059	－0．133	0.156	0.106	－0．067	－0．123	－0．184	－0．397	－0．127
C26	0.042	0.237	0.499	0.484	0.465	0.413	0.453	0.564	－0．078
$\because 27$	－0．037	0.299	0.565	0.543	0.514	0.465	0.502	0.562	－0．028
C2c	0.023	－0．008	0.239	0.214	0.209	0.199	0.265	0.410	0.226
－29	0.072	－0．085	0.029	0.053	0.028	10.027	0.091	0.198	0.712
$5 \pm$	0.052	－0．144	0.067	0.063	0.023	－0．012	0.043	0.173	0.480
C11	$\begin{array}{r} c 90 \\ 0.189 \end{array}$	C11	C 12	C 13	C14	C15	C16	C 17	C18
C12	0.057	0.273							
C13	0.935	0.172	0.879						
©14	0.786	0.187	0.701	0.926				．	
C1E	0.744	0.387	0.723	0.279	0.938				
Cic	－0．057	－0．008	0． 029	0.070	0.184	0.355			
C17	－0．084	－0．043	－0．007	0.056	0.160	0.315	0.970		
C1E	－0．111	0.013	－0．036	0.022	0.159	0.314	0.978	0.986	
619	－0．108	－0．023	－0．033	0.031	0.162	0.312	0.921	0.985	0.994
C 2 C	－0．0．097	－0．012	－0．014	0.039	0.158	0.306	0.973	0.986	0.989
C21	－0．144	－0．041	－0．066	－0．024	0.097	0.240	0.964	0.974	0.986
622	－0．193	0.019	－0．110	－0．081	0.041	C． 198	0.941	0.947	0.971
C2\％	－0．225	0.018	-0.144	－0．106	0.040	0.184	0.926	0.922	0.950
Cく4	0.067	0.259	0.201	－0．077	－0．269	－0．022	0.203	0.197	0.120
C25	－0．048	0.239	0.148	－0．115	－0．292	－0．043	0.221	0.223	0.145
C2G	0.384	0.417	0.432	0.469	0.527	0.680	0.690	0.631	0.656
C27	0.446	0.429	0.503	0.518	0.558	0.710	0.666	0.619	0.630
Cこら	0.147	－0．041	0.179	0.276	0.405	0.514	0.931	0.939	0.935
C29	－0．036	－0．046	0.025	0.075	0.201	0.296	0.745	0.780	0.795
C 30	－0．046	0.000	0.047	0.057	0.150	0.302	0.882	0.914	0.917
C20	$\begin{array}{r} C 19 \\ 0.996 \end{array}$	C20	C21	C22	C 23	C24	625	626	$C 27$
CE1	0.994	0.994							
CE2	0.974	0.975	0.987						
C23	0.957	0.955	0.967	0.972					
$C 24$	0.121	0.129	0.104	0.085	0.105				
C25	C． 147	0.154	0.129	0.194	0.127	0.995			
C26	0.664	0.665	0.638	0.651	0.636	0.175	0.189		
C27	0．638	0.643	0.606	0.604	0.599	0.246	0.247	0.987	
CEE	0.940	0.936	0.915	0.875	0.867	0.090	0.108	0.745	0.750
C29	0.201	0.725	0.802	0.752	0.716	0.006	0.027	0.389	0.395
$c \geq 0$	0.919	0.917	0.021	0.890	0.853	0.190	0.215	0.569	0.566
	C28	C29							
C29	0.776							．	
C 30	0.830	0.941					\cdot	\％	

B. 5

Correlations of Percent Reflectance Data at 30 Wavelengths
August 20, 21, 1980
itucust 20 Allo iucust 21.1980

- $\quad, C 22, C 23, C 24, C 25, C 26, C 27, C 28, C 29, C 30$

	C1	C 2	C3	C 4	C5	66	67	C8	CO
C3	0.748	0.826							
64	0.584	0.838	0.900						
-5	C. 439	0.221	0.739	0.025				,	
C6	0.404	0.660	0.691	0.744	0.896			,	
$C 7$	0.357	0.596	0.643	0.797	0. 544	0.676			
$C 6$	0.389	0.359	0.593	0.631	0.200	0.308	0.773		
-9	0.475	0.696	0.742	0.785	0.758	0.789	0.835	0.619	
C10	0.404	0.421	0.619	0.665	0.279	0.350	0.814	0.053	0.726
C11	0.452	0.762	0.763	0.781	-0.315	0.840	0.785	0.523	0.870
C12	0.545	0.792	0.877	0.097	0.920	0.375	0.729	0.498	6.091
C13	0.549	0.787	0.333	0.831	0.719	0.716	0.719	0.607	0.749
C14	C. 490	0.505	0.645	0.636	0.578	0.612	0.549	0.480	0.678
C15	-0.234	0.056	-0.c02	0.092	0.009	0.061	-0.018	-0.046	-0.255
$\bigcirc 16$	0.041	0.404	0.299	0.545	0.479	0.503	0.565	0.147	0.336
617	0.047	0.396	0.318	0.541	0.416	0.453	0.578	0.213	0.322
CIE	0.035	0.381	0.302	0.531	0.427	0.460	0.560	0.187	0.328
C19	0.043	0.392	0.313	0.535	0.437	0.463	0.550	0.177	0.319
c 20	0.653	0.368	0.335	0.555	0.445	0.461	0.539	0.204	0.323
cal	$0 . c 60$	0.393	0.321	0.537	0.431	0.450	0.548	0.191	0.326
c22	0.638	0.370	0.200	0.524	0.419	0.458	0.585	0.211	0.355
C23	0.002	0.342	0.249	0.429	0.280	0.302	0.484	0.156	0.164
C24	-0.042	0.227	0.157	0.416	0.317	0.412	0.516	0.123	0.220
C 25	c. 065	0.360	0.270	0.522	0.347	0.419	0.585	0.222	c. 221
± 26	0.051	0.366	0.331	0.545	0.428	0.453	0.547	0.201	0.296
cat	-0.009	0.294	0.374	0.500	0.497	0.449	0.317	0.149	0.266
c30	-0.cis	0.325	0.260	0.512	0.362	0.409	0.555	0.234	0.324
cE3	0.015	0.342	0.223	0.456	0.347	0.375	0.523	0.121	c. 245
$0 \geq 0$	0.096	C. 302	$0.25 i$	0.524	0.336	0.342	0.583	0.264	0.376
C11	$\begin{array}{r} 610 \\ 0.659 \end{array}$	C11	C 12	C 13	C14	C 95	C 85	C 17	C18
C 12	0. 595	0.937							
C13	0.590	0.719	0.802						
こ14	c. 492	0.640	0.702	0.838					
C15	-0.122	-0.137	-0.028	0.247	0.141				
CIC	0.178	0.406	0.462	0.366	0.254	0.215			
617	0.238	0.309	0.442	0.381	0.277	0.235	0.087		
C18	0.215	0.354	0.441	0.378	0.295	0.217	0.988	0.996	
C 10	0.204	0.389	0.445	0.377	0.289	0.226	0.987	0.997	0.999
C20	0.227	0.396	0.465	0.387	0.308	0.239	0.981	0.991	0.994
C21	c. 220	0.394	0.449	0.387	0.303	0.276	0.984	0.994	0.998
C22	0.237	0.411	0.443	0.404	0.320	c. 177	0.978	0.088	0.993
c23	0.162	0.231	0.291	0.301	0.125	0.265	0.918	0.946	0.937
C24	0.123	0.276	0.306	0.187	0.110	0.133	0.958	0.950	0.947
625	0.237	0.334	0.370	0.295	0.184	0.218	0.951	0.953	0.943
c 26	0.211	0.366	0.436	0.266	0.260	0.210	0.980	0.990	0.991
C27	0.148	0.375	0.486	0.350	0.275	0.267	0.765	0.767	C. 785
こ28	0.257	0.378	0.422	0.357	0.286	0.197	0.972	0.979	0.085
C29	$0.15 ?$	0.301	0.345	0.318	0.222	0.210	0.972	0.932	0.982
$C \equiv 0$	0.319	0.398	0.399	0.380	0.297	0.156	0.879	0.856	0.866
52 C	$\begin{array}{r} 610 \\ 0 . c \$ 5 \end{array}$	c 20	C21	c 22	C23	624	C 25	c 26	627
cel	0.998	0.996							
C22	C. 990	0.982	0.990						
CE3	0.542	0.923	0.940	0.939					
C24	0.946	0.032	0.933	0.934	0.890				
C25	0.941	0.932	0.931	0.923	0.888	0.960			
C26	0.993	0.691	0.991	0.983	0.947	0.950	0.932		
C 27	0.792	0.832	0.805	0.768	0.689	0.678	0.624	0.899	
C2E	0.902	0.986	0.936	0.984	0.513	0.925	0.911	c. 976	0.807
629	0.982	0.963	0.978	0.981	0.962	0.943	0.931	0.973	0.698
C 30	0.851	0.857	0.869	0.664	0.785	0.796	0.862	0.827	0.587
	C28	czo							
629	0. 860								
C30	0.886	0.851							

$$
\text { B. } 6
$$

Correlations of Percent Reflectance Data at 30 Wavelengths

September 12, 1980

SEPTEHEER 12. 1980
 - $-\mathrm{C} 22, \mathrm{C} 23, \mathrm{C} 24, \mathrm{C} 25, \mathrm{c} 26, \mathrm{c} 27, \mathrm{c} 2 \mathrm{c}, \mathrm{c} 29, \mathrm{c} 30$

C2	$\begin{array}{r} c! \\ -0.221 \end{array}$	C2	C3	c 4	65	C6	C7	cs	c9
C3	0.221	0.823							
c:	-0.049	0.745	0.902						
C5	-0.029	0.720	0.921	0.955					
66	-0.022	c. 428	0.636	0.655	0.719				
6	-0.003	0.558	0.765	0.798	0.781	0.868			
C8	0.057	0.427	0.075	0.728	0.722	0.898	0.973		
c9	0.023	0.207	0.343	0.473	0.448	0.736	0.644	0.748	
C. 16	0.243	0.165	0.507	0.575	0.588	0.732	0.706	0.785	0.784
S11	C. 200	0.650	0.591	0.640	0.878	0.685	0.704	0.736	0.565
C12	-0.026	0.407	0.619	0.719	0.722	0.586	0.595	0.606	0.557
C13	0.092	0.275	0.579	0.644	0.643	0.693	0.741	0.770	0.671
C14	-0.262	0.647	0.745	0.822	0.837	0.794	0.859	0.821	0.625
C15	-0.164	0.639	0.735	0.781	0.811	0.715	0.810	0.732	0.510
C 16	-0.342	0.656	0.563	0.419	0.343	0.264	0.507	0.352	-0.005
C 17	-0.310	0.575	0.480	0.325	0.287	0.214	0.422	0.267	-0.035
	-0.308	0.474	0.443	0.279	0.231	0.069	0.323	0.163	-0. 0.100
C 15	-0.319	0.480	0.449	0.270	0.241	0.066	0.311	0.155	-0.093
c20	-0.356	0.498	0.437	0.255	0.212	0.053	0.296	0.139	-0.115
C21	-12.363	0.548	0.468	0.219	0.269	0.238	0.399	0.289	0.236
C52	-0.35	0.450	0.373	c. 187	0.143	0.009	0.227	0.665	-0.184
C2\%	-0.441	0.517	0.359	0.114	0.136	0.116	0.252	0.111	-0.165
624	-0.008	0.017	0.015	-0.139	-0.154	-0.046	0.074	-0.031	-0.007
625	-0.214	0.391	0.286	0.105	0.074	0.121	0.259	0.110	-0.031
c26	-0.229	0.505	0.419	0.231	0.207	0.138	0.322	0.129	0.050
C27	-0.212	0.450	0.360	0.182	0.152	0.078	0.273	0.130	-0.030
C28	-0,203	0.363	0.263	0.074	0.055	-0.088	0.128	-0.046	-0.258
625	-0.153	0.346	0.303	0.117	0.101	-0.031	0.223	0.078	-0.106
C30	-0.226	0.416	0.339	0.226	0.195	0.046	0.297	0.139	-0.033
C11	$\begin{array}{r} C 10 \\ 0.930 \end{array}$	C11	C 12	C 13	cil	C15	c 16	C17	c 18
C 12	0.806	0.907							
C13	0.932	0.941	0.872		-				
C14	0.603	0.728	0.767	0.766					
C15	0.546	0.620	0.642	0.702	0.900				
C 16	0.059	0.183	0.254	0.297	0.506	0.549			
C 17	0.021	0.113	0.150	0.212	0.509	0.513	0.896		
c10	-0.015	0.071	0.109	0.202	0.399	0.469	0.857	0.946	
C 19	0.001	0.076	0.103	0.221	0.392	0.477	0.818	0.908	0.984
C20	-0.031	0.051	0.102	0.186	0.387	0.428	0.863	0.944	0.991
C21	0.160	0.118	0.176	0.295	0.502	0.512	0.765	0.871	0.909
C22	-0.093	-0.003	0.046	0.119	0.321	0.366	0.847	0.943	0.987
C 23	-0.091	0.009	0.039	0.143	0.331	0.395	0.853	0.852	0.839
C24	-0.040	-0.088	-0.234	0.066	0.063	0.164	0.474	0.681	C. 736
C25	-0.065	-0.069	-0.101	0.095	0.283	0.372	0.762	0.831	0.874
C26	-0.016	-0.016	-0.006	0.164	0.377	0.522	0.774	0.873	0.907
C27	-0.098	-0.0.04	-0.103	0.076	0.304	0.465	0.737	0.860	0.509
C26	-0.172	-0.098	-0.102	0.041	0.186	0.332	0.738	0.863	0.912
C29	-0.056	-0.052	-0.102	0.117	0.245	0.382	0.684	0.831	0.901
C 30	0.003	0.088	0.096	0.240	0.400	0.519	0.767	0.698	0.927
C20	C19 0.987	C20	C21	C 22	C23.	C24	C 25	c 26	C 27
c 21	0.909	0.909							
c 22	0.974	0.993	0.086						
C 23	0.852	0.081	0.783	0.872					
C24	0.737	0.718	0.682	0.750	0.623				
C 25	0.855	0.868	0.842	0.885	0.818	0.894			
626	0.905	0.890	0.907	0.878	0.805	0.761	0.899		
C 27	0.904	0.885	0.880	0.884	0.772	0.799	0.906	0.986	
628	0.907	0.902	0.796	0.921	0.837	0.050	0.923	0.836	0.902
229	c. 912	0.889	0.835	0.885	0.789	0.865	0.902	0.919	0.928
$c: 0$	0.915	0.906	0.827	0.905	0.801	0.799	0.882	0.695	0.896
	C28	629							
C27	0.059								
020	0.949	0.944							

B. 7

Percent Reflectance for SM2S Data

July 17, 18, 1980

JULY 17 AHD JULY 18, 1980
11 ghanmels shes data

B. 8

Percent Reflectance for SM2S Data

August 20, 21, 1980
AUGUST 20 AND AUGUST 21. 198011 CHAHNELS SH2S DATA
6111
2.6483
2.6200
2.5267
2.1017
2.2100
2.5100
2.9133
2.4700
3.2500
2.7933
2.5083
2.3500
2.1133
2.6533
2.4767
2.4817
2.3650
3.0067
$C H 2$
2.9900
2.8600
2.5900
2.1500
2.7100
2.8650
2.7400
2.8350
3.1750
2.8300
2.6500
2.3100
2.2200
2.5750
2.6000
2.4000
2.4000
3.1700
$C H 3$
3.2650
3.7200
4.4550
2.7925
3.5950
4.1650
3.4850
3.8025
4.3250
3.9450
3.4975
3.0075
3.1300
3.6750
3.5950
3.4625
3.1950
4.0325
644
6.6675
7.1150
4.4050
4.8150
6.2700
6.6850
5.5350
6.8125
7.5275
6.9575
6.4525
4.9450
5.5475
5.9075
6.0250
6.2850
5.1850
6.4800
$6 H 5$
4.7600
4.6200
4.5550
3.2400
4.3950
4.5800
4.0550
4.7700
6.0950
4.8100
4.6100
3.4600
3.9400
4.0000
4.2950
4.2650
3.5900
4.2750

$C H 6$	$C H 7$
3.5700	5.7375
3.3800	5.2300
2.6675	5.2900
2.4050	4.2250
3.2625	5.0700
3.3500	5.0325
3.0375	5.0250
3.4750	5.5250
4.1950	5.9075
3.6150	5.8075
3.2725	5.2800
2.6350	4.4025
2.9500	4.4575
2.8950	5.4225
3.3200	5.2200
3.2225	4.9850
2.8925	4.3725
3.1825	5.8425

CH
B. 10Correlations of Percent Reflectancefor SM2S Data
July 17, 18, 19.80
August 20, 21, 1980
September 12, 1980

ORIGINAL PAGE PS OF POOR QUALITY

B. 9

Percent Reflectance for SM2S Data
September 12, 1980

ORIGINAL PAGE IS OF POOR QUALITY

```
CORRELATION COEFEICIEUTS HRTRIX (SM2S)
```

JULY 17 Alid JULY 18,1980

- CORR C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11

	C 1	CL	C?	C 4	$C 5$	C6	C7	C8	C9
C 2	0.200								
$C 3$	0.277	0.966							
C 4	0.308	0.866	0.947						
$C 5$	-0.0.64	0.127	0.137	0.177					
C 6	0.042	0.561	0.467	0.417	-0.015				
Ci	0.177	0.949	0.983	0.941	0.152	0.475			
CO	0.129	0.646	0.665	0.760	0.225	0.381	0.695		
CS	0.014	-0.018	-0.055	0.094	0.213	-0.051	0.006	0.634	
C 10	-0.221	C. 339	0.149	0.034	-0.124	0.408	0.225	0.373	0.415
C11	0.056	0.108	0.075	0.199	0.529	-0.024	0.120	0.662	0.919
C 11	$C 10$ 0.349								

AUGUST 20 AND AUGUST 21. 1980
=- CORR C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11

		C 1	C 2	C3.	C4	C5	C6	67	Cs	C9
$C 2$		0.805								
63		0.661	0.794							
64		0.541	0.755	0.479						
C 5		0.662	0.735	0.797	0.768				-	
CC		0.624	0.779	0.593	0.918	0.902				
C 7		0.789	0.885	0.817	0.715	0.821	0.761			
63		0.219	0.560	0.501	0.360	0.260	0.261	0.562		
$C 9$		0.225	0.541	0.460	0.392	0.324	0.318	0.418	0.836	
C 10	,	0.180	0.521	0.452	0.374	0.279	0.279	0.350	0.805	0.984
C11		0.197	0.520	0.387	0.418	0.335	0.330	0.394	0.802	0.966
		C 10								
611		0.939								

SEPTEMBER 12. 1980

- CORR C1,C2,C3,C4, C5,C6,C7,C8,C9,C10,C11

	C 1	C 2	C3	C4	C 5	66	C7	C8	$C 9$
C 2	0.220								
C	0.193	0.807							
04	0.215	0.773	0.903						
C5	0.113	0.478	0.684	0.694					
C6	0.350	0.612	0.743	0.749	0.706				
C 7	0.209	0.682	0.729	0.735	0.659	0.952			
C8	-0.073	0.703	0.657	0.723	0.221	0.436	0.596		
C9	-0. 0.172	0.297	0.184	0.296	-0.021	0.054	0.208	0.769	
C10	-0.063	0.095	0.073	0.182	-0.029	-0.064	0.044	0.608	0.904
C11	-0.083	0.146	0.029	0.154	-0.150	-0.053	0.096	0.638	0.921
	C 10								
C11	0.946								

B. 11

Correlations between Yield 1977-1980,
Pruning Weight, Clusters and Reflectance
at 30 Wavelengths
July 17, 18, 1980

B. 12

Correlations between Yield 1977-1980, Pruning Weight, Clusters and Reflectance at 30 Wavelengths

August 20, 21, 1980

62
0.
0.8 c $]$ 0.81 oo

008000000000080000090800000000008

4.00000000000000000000000000000

B. 13

Correlations between Yield 1977-1980, Pruning Weight, Clusters and Reflectance at 30 Wavelengths September 12, 1980

G) OT POOR QUALIT									
62	-0.211	c2	63	64	es	cs	c7	68	c)
63 0.011 0.123									
6	-0.0n9	0.745	0.902						
(5) - 4.0490 .780 0.981 0.955									
68	-0.002	0.41	0.636	0.355	0.719				
$67 \quad-0.00900 .4510 .759$ 0.790 0.74100 .461									
61	0.017	0.47	0.475	0.72	0.722	0.311	0.973		
${ }_{6} 10$	0.203	0.155	0.907	0.775	0. 519	0.732	0.708	0.765	0.748
$611 \quad 0.2090 .350$ 0.591 0.640 0.67t 0.68500 .7040 .736									
	-0.096	0.2187 0.275	0.819	0.719	0.722 0.43	0.934	0.954	0.104 0.770	0.537
617	-0. 110	0.575	0.410	0.325	0×24	0.214	0.422	0.267	-0.035
${ }_{6} 19$	-0. 119	0.100	O. 514	0.770	0.211	0.068	0.311	0. 155	-0.013
620	-0. 351	0.498	0.417	0.295	0.212	0.053	0.2%	0.139	-0.115
E21	-0.363	0.514	0.440	0.31\%	0.269	0.231	0.399	0.219	0.236
638	0.381	0.150	0.373	0.17	0.143	0.018	0.237	0.045	-0,184
63	-0.41	0.517	0.359	0.114	0.136	0.116	0.252	0.111	-0.105
c34	-9.004	0.017	0.019	-0,139	-0.154	-0.046	0.974	-0.031	0.097
c8	-0.211	0. 305	0.419	0.211	0.207	0.136	0.322	0.189	0.050
68	- 0.212	0.450	0.360	0.142	0.192	0.074	0.273	0.130	-0.030
623	0.303	0.363	0.263	0.074	0.055	-0.008	0.128	-0.004	-3. 25
630	- 0.215	0.116	0.339	0.236	0.15	0.016	0.297	0.139	-0.003
63	0.278	0.045	0.097	0.242	0.291	0.242	0.101	0.172	0. 141
631	0.114	-0.34	-0.3 31	-0. 371	-0. 136	-0.262	-0.305	-0.24	-0.387
CJ C)	-0. 103	0.400	0.511	0.517	0.43	0.18	0.321	0.270	0.273
		0.0.5	O.014	$\mathrm{Q}_{2} 112$	斩1!	20.54t	9.014	0.274	©. 176
	C10	C11	612	613	614	615	614	619	c18
6110.930									
612 0.00 0.907									
(13 0.932 0.941 0.772									
C14	0.63	0.73	0.767	0.766					
$\begin{array}{lllllll}\text { cis } & 0.946 & 0.60 & 0.412 & 0.702 & 0.900\end{array}$									
61600.059 0.183 0.25400 .2970 .90600 .349									
611	-0.015	0.071	0.109	0.202	0.399	0.469	0.857	0.746	
620	-0.031	0.051	0.102	0.16	0.387	0.428	0.043	0.904	0.991
$6210 \begin{array}{lllllllllll} & 0.160 & 0.118 & 0.176 & 0.295 & 0.502 & 0.512 & 0.745 & 0.871 & 0.901\end{array}$									
62300.091									
626	-0.016	-0.016	-0.006	0.164	0.377	0.582	0.771	0.173	0.907
631	-0.17	-0.1m	0.222	-4.143	-0.241	-0.044	-0. 371	-0. 539	-0.458
$63300.077 \quad 0.061-0.091-0.006-0.340 .0 .715000 .450-0.47000 .460$									
c19 c20 c21 c2 c23 c24 c25 c3t c27									
020	0.27								
C21 0.909 0.909									
C23 0.774 0.943 0.886									
633 0.332 $0.88110 .783 \quad 0.872$									
Cz	0.859	0.86	0.842	0.803	0.816	0.394			
C3	0.905	0.190	0.907	0.878	0.805	0.761	0.899		
c3)	0.912	0.989	0.635	0.315	0.781	0.865	0.902	0.919	0.928
$\begin{array}{llllllllllllll}470 & 0.815 & 0.906 & 0.127 & 0.805 & 0.809 & 0.799 & 0.392 & 0.195 & 0.896\end{array}$		0.906	0.127	0.805	0.801	0.799		0.195	0.8\%
C30	-9. 35	0.307	-0.015	0.270	-0.224	0.018	-0.019	-0.180	2.154
							0.116	0.421	0.102
cje									
		829	630	C3?	c32	633	c34	635	
C39 0.979									
630	0.949	0.908	,						
631	-0.39	-0.236	-0.324						
638	0.3\%	-0.308	-0. 336	0.483					
633	-0.74	-0.265	-0.294	0.290	0.481				
63	-0. 101	-0.117	-0.197	0.247	0.126	0.305			
C35	0.165	0.263	0.231	0. 122	0.256	-0. 308	-. 308		
C36	-0.174	0.039	- 4.120	0.840	0.367	-0.088	-0.148	0.713	

B. 14

Correlations between Yield 1977-1980,
Pruning Weight, Clusters and SM2S Reflectance Data

July 17, 18, 1980
August 20, 21, 1980
September 12, 1980

	${ }_{0}{ }^{\text {c }}$	${ }^{\text {c2 }}$	63	${ }^{4}$	${ }_{65}$	${ }_{6}$	${ }^{6} 7$	©	,
${ }^{6}$	0. ${ }^{\text {m }}$	0.86							
${ }_{6}$	-0.04	0.127	0.137	0.17					
${ }_{6}^{60}$	\%:174	0.451,	0.047	0,477	0.018				
\%	0. 129	0.N6	0.66s	0,780	- 2.23	0,3i			
${ }_{6}$	8:014	-0.0119	0	0,044	- 0.1213	-0,051	${ }^{0.006}$	0.617	
eif	0. 014	-:100	\%	-19	-	-0,04	-1730	-:M2	0:914
${ }^{6} 18$	-0.041	-0:0792	20,290	-0.235	-0, 20	0.04	-0.035	-0:1727	0.100
cis	-110	-2,215	0.23	-176	0.00	-200	-0.29	-i.51	-0, 81
¢19		- 017	$-2,304$	2.203	-0.035				-. 216
C^{11}	O. 310	61			64				
${ }_{612}^{812}$	9.313	0.004							
${ }_{6}$	8	- 0.207		0.484	0.005				

t ounh out

	c 1	62	63	C	C5	c6	67	cs	c9
62	0.695								
63	0.41	0.794							
6	0.541	0.735	0.479						
65	0.45	0.783	0.777	0.76s					
6	0.19	0.779	0.593	0.918	0.902				
69	0.74	0, 405	0,117	0.715	0.0 .101	0.761			
C)	0.219	0.560	0.501	0.360	0.280	0.261	0.542		
c)	0.229	0.14	0.460	0.388	0,324	0.318	0.411	0.536	
E10	0.10	0.81	0. 452	0.374	0.275	0.279	0.350	0.003	0.964
611	0.17	0.920°	0.317	0.418	0.335	0.338	0.394	0.802	0.966
612	0.531	0.463	0.417	0.070	0.206	0.154	0.149	0.269	0.176
613	0.771	0.546	0.430	0.104	0.481	0.509	0.567	0.005	-0.080
615	0.924	0.294	0.314	0.067	0.364	0.397	0.261	-2.307	-0.339
615	0.344	0.103	0.137	-0.006	0.191	0.082	0.004	-0.332	-.371
	¢ 10	c11	612	613	614				
611	0.939				,				
612	0.178	0.097							
613	$0 \cdot 002$	-0.049	0.443						
C18	-0.349	-2. 200	0.290	0.011					
615	-0.400	-0.373	0.297	0.426	0.108				

	${ }_{6} 1$	62	63	64	65	c6	67	68	69
c3	0.220								
63	0.193	0.807							
c	0.215	0.773	0.903						
65	0.113	0.478	0.684	0.694					
6	0.350	0.612	0.743	0.749	0.706				
67	0.209	0.682	0.729	0.735	0.651	0.982			
C8	-0.073	0.703	0.657	0.723	0.321	0.436	0.5\%		
c)	-0.17	0.297	0.184	0.29	-0.001	0.054	0.208	0.769	
C 10	-0.063	0.095	0.078	0.142	20.029	-0.064	0.044	0.601	0.204
611	-0.003	0.146	0.029	0.154	-0.150	-0.033	0.0\%	0.631	0.981
612	0.033	-0.071	-0.175	-0. 085	-0.076	-0.100	-0.169	-0. 303	-0.448
613	0.27	0.212	0.776	0.132	0.341	0.113	0.042	-0.157	-0.45
614	0. 211	0.214	-0.261	0.230	-0.117	0.072	0.030	-0. 435	-0. 233
615	0.209	-0. 317	-0. 306	-0. 304	-0. 337	-0.371	-0,432	-0.363	-0.333
	$\epsilon 10$	611	642	C13	614				
${ }_{6} 12$									
E13	-0. 213	-0.383	0.483						
614	-0.29	-0.279	0.290	0.401		-			
615	-0.074	-0.14x	0.247	0.426	0.605				

B. 15-20

Correlations between Yield 1977-1980, Pruning Weight, Clusters and Reflectance Stratified by Method of

Weed Control

July 17, 18, 1980

Group 1

B. 16

July 17, 18, 1980

Group 2

B. 17
 August 20, 21, 1980

Group 1

B. 18

August 20, 21, 1980

Group 2

B. 19

September 12, 1980

Group 1

ORIGINAL PAGE IS OF POOR QUALITY

B. 20

September 12, 1980

Group 2

$$
\text { B. } 21-29
$$

Correlations Between Yield 1977-1980,
Pruning Weight, Clusters and Reflectance
Stratified by Time of Day
B. 21

July 17, 18, 1980

Group 1

	61	62	63	c*	65	66	67	ct	c)
62	-0.635								
C3	0.367	0.470							
58	0.507	0.240	0.910						
63	0.594	0.311	0.948	0.991					
cs	0.201	-0.056	0.816	0.952	0.928				
67	0.407	-0.08j	0.766	0.940	0.897	0.986			
c)	0.619	0.349	0.809	0.983	0.910	0.922	0.987		
c)	0.719	-0.071	0.797	0.915	0.903	0.976	0.933	0.849	
610	0.58	0.211	0.946	0.926	0.947	0.917	0.857	0.832	0.936
611	-0.401	0.449	-0.015	0.119	0.065	-0.096	0.003	0.265	-0.205
C12	0.291	0.500	0.954	0.877	0.932	0.765	0.687	0.709	0.785
613	0.79	-9.061	0.792	0.948	0.923	0.909	0.941	0.913	0.946
C14	0.122	0.147	0.808	0.964	0.926	0.927	0.938	0.985	0.842
615	0.501	0.208	0.718	0.894	0.845	0.822	0.838	0.972	0.703
616	0.611	0.052	0.751	0.790	0.769	0.795	0.886	0.816	0.659
619	0.532	0.046	0.666	0.685	0.674	0.616	0.714	0.669	0,535
cis	0.479	0.148	0.717	0.724	0.711	0.695	0.731	0.747	0.539
619	0.561	0.094	0.743	0.776	0.761	0.765	0.794	0.789	0.822
680	0.539	0.107	0.734	0.768	0.757	0.730	0.775	0.764	0.607
C21	0.538	0.127	0.762	0.781	0.771	0.761	0.785	0.783	0.621
628	0.500	0.160	0.746	0.775	0.760	0.739	0.774	0.790	0.590
623	0.471	0.250	0.828	0.839	0.831	0.779	0.805	0.844	0.645
624	0.426	-0.470	0.017	-0.058	-0.002	0.150	0.027	-0.213	0.261
68	0.151	0.423	0.151	0.090	0.100	0.222	0.105	-0.144	0.269
C25	0.537	0.225	0.823	0.914	0.881	0.858	0.901	0.960	0.740
627	0.527	0.238	0.833	0.913	0.885	0.853	0.892	0.946	0.733
624	0.595	0.065	0.763	0.780	0.771	0.784	0.800	0.774	0.655
C39	0.533	0.118	0.741	0.765	0.751	0.746	0.777	0.778	0.600
630	0.519	0.136	0.760	0.756	0.730	0.737	0.758	0.757	0.597
631	0.779	-0.290	0.633	0.824	0.797	0.930	0.904	0.763	0.913
c 3	-0.053	0.125	0.219	0.008	0.115	0.001	-0. 126	0.260	0.081
c 33	0.004	-0. 379	-0.400	-0.279	-0.23m	-0. 171	0.24	-0.442	-0.088
634	-0. 109	-0.068	-0.371	0.192	-0.187	-0.212	0.272	-0.301	-0.089
C35	0.138	0.244	0.590	0.344	0.375	0.238	0.303	0.387	0.149
c3	0.619	0.216	0.775	0.663	0.673	0.637	0.810	0.453	0.515
611	$\begin{array}{r} 610 \\ -0.171 \end{array}$	611	C12	C13	614	615	616	617	618
C12	0.909	-0.042							
613	0.874	-0.056	0.756						
c14	0.814	0.258	0.734	0.942					
6 \%	0.678	0.418	0¢ 233	0.854	0.975				
c16	0.703	0.022	0.490	0.826	0.852	0.830			
617	0.585	-0.008	C. 333	0.742	0.757	0.751	0.976		
618	0.617	0.094	0.565	0.740	0.797	0.802	0.985	0.988	
619	0.673	0.049	0.605	0.808	0.340	0.827	0.995	0.988	0.994
C20	0.655	0.048	0.616	0.803	0.828	0.819	0.984	0.992	0.989
621	0.643	0.045	0.630	0.804	0.836	0.821	0.992	0.988	0.994
628	0.653	0.122	0.511	0.786	0.843	0.845	0.967	0.983	0.996
623	0.732	0.158	0.699	0.812	0.883	0.877	0.976	0.948	0.978
624	0.247	-0.998	0.107	0.110	-0.205	-4. 399	0.018	0.042	-0.058
C25	0.270	-0.937	0.203	0.227	-0.082	-0.251	0. 183	0.258	0.138
626	0.776	0.285	0.695	0.872	0.969	0.984	0.924	0.842	0.895
67	0.775	0.267	0.719	0.873	0.964	0.959	0.936	0.866	0.914
C2a	0.708	-0. 012	0.635	0.822	0.825	0.792	0.993	0. 986	0.984 0.997
629	0.659	0.066	0.602	0.790	0.830	0.823	0.992	C.969	0.997 0.995
630	0.676	0.017	0.619	0.776	0.807	0.790	0.990	0.969 0.650	0.995 0.605
631	0.766	-0.234	0.634	0.954	0.813	0.704 0.241	0.707 0.005	0.850 0.226	0.605 0.130
632	0.155	-0.601	0.363	0.055	0.145	20.241	0.005	0.226	0.130 -0.625
C33	-0. 232	-0. 392	-0.139	0.151	-0. 379	-0.458	-0.574	-0.582	0.625 0.661
634	-0.273	0.110	0.100	-0. 181	-0.255	-0.236	0.636	-0.61	0.661
C35	0.340	-2.088	0.364	0.341	0.304	0.354	0.780	0.836	0.83
63	0.671	-0.094	0.605	0.650	0.677	0.612	0.935	0.930	0.94
	C19	C20	C31	62	c33	624	c23	C26	c27
629	0.976								
621	0.999	0.997							
432	0.996	0.995	0.997						
623	0.981	0.976	0.985	0.989					
C24	-0. 010	-0.008	-0.004	0.082	-0.112				
625	0.163	0.206	0.192	0.119	0.067	0.914			
626	0.913	0.895	0.910	0.921	0.955	0.237	-0. 109		
c27	0.930	0.917	0.929	0.939	0.969	-0.218	-0.075	0.998 0.893	
628	0.995	0.992	0.996	0.986	0.971	0.083	0.268 0.170	0.893 0.909	0.912 0.928
639	0.999	0.997	0.999	0.998	0.983	-0.027	0.170 0.213	0.909 0.893	0.928 0.914
630 631	0.996	0.993	0.998	0.993	0.980 0.653	0.023 0.280	0. 213	- 0.700	0.914 0.705
631 63	0.691	0.697	0.683 0.169	0.654 0.123	0.653 0.093	0.260 0.616	0.778	-0.147	0.705 -0.091
63	0.139	0.197	0.169 -0.953	0.123 -0.582	0.093 -0.604	0. 316	0. 386	-0. 582	-0.0.512
633 634	-0.556	0.508 -0.562	0.963 -0.604	-0.582	-0.6019	-0.384	0.818 -0.111	-0.588	-0.5429
C35	0.805	0.809	0.816	0.810	0.779	0.106	0.290	0.564	0.599
636	0.934	0.920	0.941	0.928	0.926	0.131	0.270	0.807	0.328
	621	629	630	c37	632	633.	634	635	
C29	0.993								
630	6.995	0.997							
C31	0.718	0.668	0.652						
63	0.198	0.143	0.188	0.162					
633	-0. 517	0.572	-0. 578	0.107	0.379				
63	-0.612	-0. 817	-0. 646	-0.019	0.056	0.860			
635	0.809	0.820	0.846	0.217	0.389	0.654	-0.802		
C36	0.945	0.938	0.539	0.499	0.241	-0.677	-0.792	0.912	

B. 22
July 17, 18, 1980

Group 2

B. 23

July 17, 18, 1980

Group 3

ORIGINAL PAGE IS OF POOR QUALITY

B. 24

August 20, 21, 1980

Group 1

gonnonon	 	そ以	
			00660000060000000000000000000000000
ooobooo 			0006000000000000000000000000000000
	00！600000000000 	000600000000000000000000 	000600000000000000000000000000000
	00060000000000 	00060000000000000000000 	00060000000000000000090000000000
	0068000000000 	 	00000000．0000000000000000080800
$\begin{aligned} & 660 \\ & \text { SER } \end{aligned}$	000b00000000 	0．0b！0000000000000000 분	000000000000000000000000000080
$$	00060000000 	00060000000000000000 	00080000000000000000000000000
	0066000000 	0006．00000000008000 W్ర \％	6068660．00000000000000000000
	008660000 	000600000000000000 与gios inn or	000600900006000000000000090

B. 25

August 20, 21, 1980

Group 2

ORIGINAL PAGE ! OF POOR QUALITY

61	P2	63	c:	C5	0	c7	ct	9
0.630								
0.631	0.733							
0.510	0.845	0.939						
0.729	0.838	0.965	0.987					
0.411	0.634	0.865	0.920	0.870				
0.330	0.604	0.787	0.805	0.818	0.979			
0. 334	0.647	0.756	0.871	0.322	0.970	0.996		
0.503	0.718	0.900	0.941	0.919	0.932	0.940	0.949	
0.448	0.699	0.886	0.950	0.908	0.986	C. 982	0.902	0.978
0.622	0.706	0.943	0.950	0.938	0.947	0.929	0.931	0.991
0.076	0.730	0.949	0.973	0.976	0.928	0.890	0.886	C. 966
0.334	0.685	0.747	0.859	0. 775	0.963	0.960	0.911	0.857
0.29	0.355	0.649	0.681	0.618	0.873	0.910	0.906	0.836
-0.795	-0.450	-0.651	-0.502	-0.616	-0. 278	-0.236	0.251	-0.544
0.437	0.19	0.610	0.474	0.442	0.700	0.665	0.858	0.633
0.374	0.154	0.518	0.383	0.344	0.692	0.397	0.597	9.575
0.77	0.136	0.949	0.417	0.360	0.657	0.635	0.631	0. 596
0.33	0.144	0.542	0.403	0.360	0.642	0.616	0.612	0.581
0.357	0.133	0.531	0.378	0.349	0.610	0.584	0.541	0.562
0.405	0.147	0.553	0.405	0.376	0.636	0.610	0.606	0.586
0.404	0.141	0.588	0.417	0.418	0.685	0.656	0.645	0.623
0.193	0.110	0.401	0.203	0.235	0.603	0.535	0.516	0.4085
0.228	-0.020	0.415	0.245	0.228	0.483	0.184	0.481	0. 149
0.305	0.161	0.337	0.191	0.151	0.414	0.397	0.413	0.369
0.414	0.103	0.577	C. 41	0.397	0.662	0.623	0.608	0.590
0.441	0.183	0.604	0.468	0.437	0.700	0.637	0.647	0.615
0. 31	0.09\%	0.559	0.416	0.379	0.649	0.661	0.650	0.619
0.369	0.054	0.596	0.350	0.317	0.616	0.567	0.551	0.500
0.40	0.405	0.767	0.726	0.678	0.908	0.492	0.843	0.846
0.754	0.732	0.740	0.738	0.795	0.494	0.370	0.367	0.492
0.136	0.600	0.890	0.777	0.83	0.706	0.535	$0.53{ }^{\circ}$	0.620
0.618	0.806	C. 563	0.612	0.673	0.24	0.142	0.216	0.373
0.607	0.410	0.266	0.309	0.341	0. 0.075	-0.069	0.020	0.204
0.453	-0.035	0.449	0.256	0.251	0.475	0.331	0.294	0.241
0.536	0.207	0.673	0.538	0.958	0.716	0.505	0.538	0.453
cto	Сi!	C 12	613	614	Cis	616	619	618
0.971								
0.957	0.985							
0.936	0.857	0.819						
0.817	0.848	0.756	0.639					
-0, 315	-0.560	-0.599	-0.066	-0. 233				
0.455	0.678	0.582	Q. 556	0.864	0.206			
0.574	0.597	0.484	0.604	0.828	$\infty .139$	0.990		
0.615	0.634	0.586	0.626	0.857	-0.167	0.996	0.997	
0.599	0.822	0.51 A	0.608	0.845	0.172	0.996	0.998	1.000
0.571	0.603	0.494	0.512	0.825	-0.19	0.991	0.997	0.997
0.597	0.828	0.521	0.595	0.811	-0.201	0.995	0. 996	0.999
0.641	0.667	0.570	0.698	0.870	-0. 215	0.997	0.9814.	0.994
0.499	0.472	0.399	0.569	0.741	C. 102	0.894	0.874	0.807
0.463	0.517	0.396	0.419	0.789	-0.248	0.940	0.953	0.757
0.377	0, 1109	0.270	0.443	0.671	-0.047	0.907	0.955	0.931
0.611	0.641	0.550	0.598	0.842	-0.210	0.993	0.978	0.985
0.647	0.667	0.576	0.657	0.849	-0.182	0.995	0.986	0.992
0.632	0.651	0.543	0.617	0.891	-0.190	0.985	0.977	0.909
0.545	0.559	0.466	0.579	0.789	-0.085	0.983	0.979	0.981
0.8180	0.872	0.799	9.852	0.965	-0.257	0.929	0.885	0.909
0.507	0.545	9.669	0.409	0.041	-0.497	-0.009	0.110	-0.086
0.669	0.720	0.794	0.589	0.3\%	-0.406	0.484	0.385	0.408
- 0.337	0.386	0.502	0.218	0. 144	-0.538	-0.245	-0.337	-0. 327
0.055.	0.162	0.233	-0.133	-0.274	-0.633	-0.440	-0.464	-0.465
0.348*	0.354	0.347	0.418	0.440	0.031	0.762	0.707	0.710
0.607	6. 5%	0.620	0.631	0.535	-0.003	0.684	0.619	0.642
c19	c20	621	62	623	624	625	c36	c27
0.999								
0.999	0.999							
0.974	0. 999	0.995						
0.895	0.870	0.877	0.903					
0.961	0.970	0.966	0.535	0.814				
0.936	0.945	0.933	0.891	0.754	0.911			
0.989	0.986	0.990	0.998	0.920	0.951	0.883		
0.492	0.976	0.991	0.994	0.918	0.928	0.899	0.994	
0.986	0.983	0.987	0.994	0.897	0.9*7	0.803	0.908	0.979
0.903	0.978	0.980	0.982	0.947	0.926	0.905	0. 809	0.989
0.900	0.801	0.897	0.925	6.820	0.203	0.727	0.909	0.926
-0.094	-0.108	0.005	-0.045	0.193	-0.268	-0.247	-0.014	0.607
0. 107	0.393	0.414	0.455	0.415	0.233	0.215	0.471	0.506
-0. 333	-0. 336	-0.321	0.309	-0.471	40.456	-0.397	-0. 322	0.267
-0.466	0.448	-2. 445	-0. 463	-0.736	-0,439	-0.440	-0.490	-0.468
0.716	0.704	0.711	0.734	0.813	0.592	0.609	0.771	0.778
0.640	0.615	0.635	0.686	0.81 ?	0.471	0.436	0.713	0.731
c28	C29	C30	c31	c 32	C33	634	635	
0.98								
0.919	0.873				1			
-0. 126	-0.080	0.19						
0.373	0.449	0.587	0.843					
-0. 372	-0. 373	-0.059	0.911	0.582				
-0.484	-0. 576	-0. 302	0.535	0.125	0.817			
0.678	0.825	0.631	0.197	0.653	-0.199	-0,623		
0.679	0.736	0.730	0.459	0.828	0.060	-0.448	0.923	

B. 26

August 20, 21, 1980

Group 3

ORIGINAL PAGE IS' OF POOR QUALITY

	61	62	63	C!	65	66	E7	ct	c)
c2	0.697								
c3	0.707	0.956							
G	0.792	0.948	0.978						
cs	0.733	0.948	0.984	0.995					
65	0.143	0.803	0.893	0.841	0.890				
69	0.44	0.765	0.815	0.677	0.715	0.420			
¢	0.539	0.705	0.747	0.635	0.696	0.872	0.886		
69	0.251	0.522	0.650	0.490	0.537	0.731	0.914	0.043	
610	-0.030	0.340	0.485	0.325	0.331	0.424	0.774	0.491	0.818
611	0.008	0.056	0.606	0.453	0.445	0.560	0.748	0.630	0.894
612	0.723	0.834	0.950	0.909	0.924	0.911	0.113	0.644	0.649
(1)	0.310	0.602	0.878	0.041	0.490	0.919	0.770	0.887	0.706
614	0.74	0.342	0.921	0.558	0.599	0.749	0.313	0.449	0.329
615	0.647	0.736	0.860	0.647	0.881	0.741	0.521	0. 391	0.343
C16	- 674	0.983	0.924	0.924	0.910	0.717	0.713	0.541	0.422
c 49	0.10	0.906	0.914	0.920	0.899	0.645	0.607	0.494	0.394
cis	0.145	0.949.	0.910	0.935	0.910	0.669	0.632	0. 469	0.345
6.9	0.65	0.941	0.894	0.922	0.897	0.650	0.610	0.441	0.310
ceo	0.146	0.936	0.899	0.934	0.908	0.660	0.595	0.434	0.302
621	0. ${ }^{4}$	0.939	0.802	0.909	0.845	0.643	0.611	0.437	0.299
62	0.181	0.990	0.961	0.952	0.904	0.771	0.762	0.643	0.513
623	0.501	0.195	0.774	0.777	0.750	0.497	0.607	0.402	0.267
c84	0.101	0.945	0.492	0.906	0.882	0.645	0.650	0.464	0.349
635	0.103	0.876	0.880	0.916	0.873	0.540	0.562	0.398	0.337
636	0.645	0.955	0.900	0.922	0.897	0.660	0.636	0.477	0.337
c31	0.101	0.987	0.860	0.847	0.857	0.592	0.591	0.403	0.271
c3	0.481	0.982	0.847	0.913	0.895	0.664	0.624	0.497	0.312
(2)	0.64	0.933	0.871	0.391	0.870	0.612	0.624	0.138	0.301
630	0.984	0.980	0.904	0.325	0.894	0.649	0.641	0.194	0.359
631	0.92	0.134	0.545	0.65	0.61	0.559	0.109	0.302	0.159
c3	0.614	0.943	0.706	0.761	0.763	0.634	0.29	0.254	0.239
633	0.014	0.066	0.051	0.049	0.134	0.425	0.083	0.324	0.027
63	0.324	-0. 341	-0.178	-0. 125	- 0.101	0.057	-0. 311	4. 311	-0.293
635	-0.951	c. 4×4	0.696	0.736	0.731	0.64	0.367	0.336	0.401
63%	0.46	0.557	0,363	0.761	0.740	0.657	0.208	0.350	0.281
	610	611	C12	C13	614	C15	c 16	617	618
611	$0.51{ }^{3}$								
612	0.59	0.694							
613	0.376	0.47	0.80						
els	0.038	0.161	0.645	0.733					
E 15	0.37	0.477	0.914	0.701	0.674				
616	0.380	0.470	0.843	0.643	0.281	0.793			
C 17	0.604	0.478	0.840	0.647	0.255	0.814	0.997		
E14	0.38	0.411	0.817	0.645	0.260	0.820	0.990	0.994	
619	0.302	0.311	0.800	0.624	0.267	0.810	0.989	0.993	0.999
ce	0.24	0.372	0.811	0.636	0.303	0.834	0.984	0.990	C. 999
621	0.293	0.369	0.768	0.614	0.248	0.790	0.991	0.993	0.996
62	0.110	0.510	0.859	0.734	0.31 m	0.795	0.946	0.978	0.977
623	0. 29	0.384	0.634	0.168	-0.0.3	0.584	0.946	0.944	0.931
629	0.351	0.424	0.796	0.614	0.216	0.710	0.994	0.997	0.996
cas	0.370	0.450	0.783	0.267	0.236	0.838	0.929	0.948	0.964
c26	0.309	0.391	0.795	0.637	0.246	0.705	0.993	0.993	0.991
67	0.295	0.354	0.733	0.563	0.179	0.762	0.983	0.988	0.993
631	0.246	0.333	0.769	6.650	0.249	0.730	0.907	0.942	0.909
639	0.303	0.373	0.784	0.606	0.233	0.772	0.991	0.991	0. 989
630	0.319	0.406	0.782	0.636	0.218	0.770	0.984	0.986	0.994
631	-0. 100	0.014	0.548	0.625	0.781	0.715	0.353	0. 362	0.126
63	0.202	0.301	0.717	0.623	0.75	0.904	0.578	0.603	0.632
633	-0. 353	-0.26	0.111	0.434	0.571	-0.013	-0.094	-0.084	0.091
634	-0. 163	-0. 187	0.082	-0.nom	0.608	0.243	-0.242	-0.230	-0.23n
C35	0.31	0.427	0.793	0.679	0.121	0.902	0.492	0.512	0.531
636	-0.04	0.055	0.631	0.718	0.805	0.769	0.475	0.476	0.536
		c20	C21	62	c23	624	c25	C31	687
$\begin{gathered} 60 \\ c 21 \end{gathered}$		0.996							
ct	0.989	0.865	0.866						
C23	0.945	0.928	0.955	0.918					
624	0.997	0.992	0.997	0.974	0.962				
cas	0.956	0.961	0.942	0.931	0.870	0.950	-		
636	0.998	0.995	0.998	0.978	0.976	0.998	0.951		
67	0.986	0.991	0.997	0.958	0.968	0.997	0.950	0.996	
625	0.981	0.986	0.994	0.973	0.959	0.990	0.923	0.995	
63)	0.974	0.809	0.998	-0.900	0.952	0.995	0.922	0.994	0.994
630	0.981	0.9\%	0.988	0.912	0.952	0.993	0.965	0.996	0.940
C31	0.404	0.448	0.370	0.419	0.118	0.345	0.510	0.366	0.338
63	0.619	0.656	0.549	0.585	2.330	0.568	0.692	0.585	0.586
633	0.071	-0.072	0.056	-0.029	-1.157	0.100	-0.308	-0.072	-0. 123
634	-0.225	-0.193	-0.288	-0.319	-1.421	0.275	0.203	-0. 273	-0.212
¢3	0.509	0.547	0.475	0.593	0.209	0.466	0.606	0.480	0.488
-36	0.519	0.557	0.485	0.535	0.246	0.461	0.513	0.502	0.458
	- 628	c29	c30	631	638	633	634	C35	
c2)	0.971								
C30	0.929	0.980							
631	0.373	0.322	0.404			.			
C32	0.540	0.558	0.576	0.871					
631	-0.001	-0.029	-0. 127	0.102	0.009				
630	-0.282	0.219	-0.339	0.347	0.396	0.457			
C35	0.436	0.143	0.360	0.872	0.972	0.017	0.389		
636	0.498	0.466	0.514	0.986	0.881	0.186	0.215	0.866	

B. 27

September 12, 1980

Group 1

B. 28

September 12, 1980

Group 2
$6-3$

ORIGINAL PAGE IS OF POOR QUALITY

B. 29

September 12, 1980

Group 3

nonnonon 	nonnonnompaindixi 	 	
	00886800000000000 	 	860000888\&880888686868868po88868686
bb6b660 		oobdoobb6oosb6bobb8b6oooo 	006b0006bogbbo0000000000000000000\%
	006606000000000 		
$\begin{aligned} & 00009 \\ & 8=0.90 \end{aligned}$	0bb6b600000000 	oobbob6b60oobobooopooop 	oobboobb8006b0000000000090000000
$\begin{array}{ll} 0090 & \\ \text { ingy } & n \\ \text { and } \end{array}$	006b60000000d 	006b060000006000000000 응	006b0006!0068000000000000000000
	680066000000 	008686000000600000000 	0086\$6\$880008000000000.0000000 5N5
	68060600000 	ood8doodooobdoogoopo 	00860800800060000000000000000
$\begin{aligned} & 0 \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & 0086000000 \\ & 0 \text { og No ocw } \\ & \text { own ond } \end{aligned}$	0008860090909000900 	0066 6\$6660008000000000000000
	oobboboop B त्ञात	006868009000000090 	008806808000066000000000000

APPENDIX C

C. 1

Percent reflectance versus wavelength for
Treatments 1.2 and 3(a) and
Treatments 4, 5 and 6(b) at Fredonia, N. Y
July 1980

Original pagie is OF POOR QUALITY

C. 2

Percent reflectance versus wavelength for Treatments 1, 2 and 3(a) and

Treatments 4, 5 and 6(b) at Fredonia, N. Y. August 1980

ORIGINAL PAGEA :S
OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

C. 3

Percent reflectance versus wavelength for
Treatments 1, 2 and 3(a) and
Treatments 4, 5 and 6(b) at Fredonia, N. Y.
September 1980

```
    C1
80.4
M,
"-- 3
20.t
```



```
0.+ 33 333
```


(a)

APPENDIX B

NATURAL GAS EXPLORATION

ORIGINAL PAGE IS OF POOR QUALITY

RELATIONSHIPS BETWEEN LINEARS AND NATURAL GAS OCCURRENCES IN THE SOUTHERN TIER OF NEW YORK State

Remote Sensing Program Cornell University

Hollister Hall
Ithaca, New York 14853

October 1982

PREFACE

This study was conducted by Elien J. Weeks, at the request of the Southern Tier Central Regional Planning and Development Board, Corning, New York. David A. Wilcos performed the lineament mapping. The work was supported in part by NASA Grant NGL 33-010-171.

Warren R. Philipson Principal Investigator Remote Sensing Program

ABSTRACT

This study relates linears identified from aerial photographs, Landsat images and geologic maps with gas well locations in Chemung, Schuyler and Steuben counties, New York. Correlations between dominant regional linear trends and gas field boundaries and trends were found. This study recommends exploration along these linear trends.

INTRODUCTION

Geological linears are generally surface expressions of subsurface fault and fracture zones. These zones of rock weaknesses can augment oil and gas reservoir permeability by increasing the interconnections between pore spaces trapping hydrocarbons. Conversely, they can seal reservoir rocks, forming structural traps. Recent studies have indicated that-linear analysis can be used in hydrocarbon exploration (Howard, 1979; Wescott and Simith, 1979; Fussell, 1980; Blodget', 1981). This study is a preliminary analysis of the ralationship between linears identified from aerial photographs and satellite images and natural gas occurrences in Chemung, Schuyler and Steuben counties, New York (Fig. 1).

GEOLOGY OF STUDY AREA

The Southern Tier counties of New York are located within the Appalacian basin, the primary natural gas producing region of the Eastern United States. This area of the Appalachian basin, the Allegheny Plateau Province, is composed prinarily of sandstones, siltstones, shales and carbonates-sedimentary rocks deposited in tectonically controlled periods of marine and nonmarine transgression and regression. Structural geology in the Allegheny Plateau Province is characterized by gentle anticlines, synclines and brittle fractures (faults and joints). In this region both stratigraphic and structural components of the regionai geology create traps for hydrocarbons migrating through permeable rock units.

Natural gas production in New York State dates from 1821; gas production in the Southern Tier counties dates from 1890 (Kreidler, 1959). Table 1 lists the mijjor oil and gas producing horizons in New York State. Current and historical gas production in the Southern Tier is derived principally from the Lower Devonian Oriskany sandstone. Structural traps in the Oriskany are associated with faulted anticlines. Stratigraphic traps in this formation are commonly associated with sand pinchouts. Examples of both types of traps are present in Steuben County gas fields (Harding, 1966; Harris, 1978).

Natural gas production in the Southern Tier is al so associated with the Middle Devonian Onondaga limestone arid with various Devonian black shales. Figure 2 shows the detailed relationships between these rock units. Pinnacle reefs form the principal stratigraphic traps in the Onondaga limestone. The Wycoff gas field in Steuben County is an example of this kind of trap. Additional reef field discoveries in western New York and Pennsylvania suggest a reef trend through this region (Mesolella and Weaver, 1975).
original pree is OF POOR QUALITY

TABLE 1. Main ail and gas producing horizons in New York State (from Weaver, 1965a).

ORIGINAL PAOE IS OF POOR QUALITY

\begin{tabular}{|c|c|c|c|c|}
\hline SYSTEM \& \& NEW YORK \& OIL \& GAS

\hline \multirow{2}{*}{Mississippian} \& M \& \multirow[b]{2}{*}{Absent} \& \&

\hline \& L \& \& \&

\hline \multirow{3}{*}{Devonian} \& U \& Venango sds. Bradford 1st sd. Chipmunk sd. Bradford 3rd sd. (Richburg sd.) \& $$
\begin{aligned}
& x \\
& \hat{x} \\
& x \\
& x
\end{aligned}
$$ \& $$
\begin{aligned}
& x \\
& x \\
& x \\
& x
\end{aligned}
$$

\hline \& M \& Hamilton sh. Onondaga Is. (Dundee Is. of Ontario) \& \& X
\times

\hline \& L \& Oriskany sd. \& \& X

\hline \multirow{3}{*}{Silurian} \& U \& Salina group \& \&

\hline \& M \& Lockport dol. Herkimer sd. Oneida sd. \& \& X
\times

X

\hline \& L \& Medina sd. \& \& X

\hline \multirow{3}{*}{Ordovician} \& U \& Queenston sds. \& \& X

\hline \& M \& Trenton dol. Black River Is. \& \& x

X

\hline \& L \& Beekmantown dol. \& \& X

\hline Cambrian \& U \& TrempealeauLittle Falls dol. Theresa-Gatesburg sd. Potsdam sd. \& \& | x |
| :--- |
| χ |
| χ |
| X |

\hline
\end{tabular}

ORIGINAL PRCE fU OF POOR QUALITY

FIGURE 2. Stratigraphic chart of middle and upper Devonian rocks of New York (Van Tyne and Peterson, 1978).

Devonian black shales in the Appalachian basin are currently the focus of private and federal gas exploration programs. Black shales differ from other reservoir rocks in that the hydrocarbons they contain have remained trapped between grains since the time of sediment deposition. Thus, although black shales may contain large quantities of natural gas, it can only be obtained in commercial quantities when the shales are naturally fractured or are artificially fractured during the drilling process. These fractures increase permeability in the shales sufficiently to allow gas to flow. Many gas shows in Devonian black shales in the Southern Tier and western New York counties have been correlated with faulted anticlines trending in a NE/SW direction (Van Tyne and Peterson, 1978). Shales with the greatest potential for development in the Southern Tier are the Rhinestreet, the Geneseo and the Marcellus (Tetra Tech, Inc., 1981). In Steuben County, gas production in the Rathbone Field is derived from the Rhinestreet shale.

Other formations showing potential for natural gas development in the Southern Tier counties are Silurian, Cambrian and Ordovician sands and sandy dolomites. In particular, the Cambro-Ordovician formations are upturned into the Post-Knox unconformity. The combination of this feature and rapid facies changes within these formations creates favorable environments for gas entrapment (Weaver, 1965b).

METHODS AND MATERIALS

The base map used for this study is the $1: 250,000$ scale, U.S. Geological Survey topographic map, "Elmira, New York." All maps produced were adjusted to this scale.

Linears

Linears in the three counties were identified using three sources of information: seasonal Landsat images at a scale of $1: 1,000,000$, spirng 1968 panchromatic aerial photographs at a scale of 1:24,000, and the "Brittie Structures Map of the Niagara-Finger Lakes Region" produced by the New York State Museum and Science Service at a scale of $1: 250,000$. Maps of linears identified from individual sources and a composite map (Fig. 3) were produced.

Linears were identified through visual analysis of the aerial photographs and satellite images. Topographic features used to identify linears were long, steep linear hillsides and steep, narrow linear river valleys. Interpretation required a comparative examination of identified linears and the topographic map. In most cases, if a linear feature could not be identified on more than one image source, it was not designatf, as a linear for the purposes of this study.

Images from Landsat bands 4, 5 and 7 were examined. Band 7 proved the most useful for linear identification because streams and rivers were clearly visible. Also, the November coverage proved nost useful, apparently because of the relatively low sun angle and the lack of snow or foliage which obscured features in coverage from other, dates. An acetate overlay of linears was made froin the Landsat images. This overlay was placed on an overhead projector and projected onto the $1: 250,000$ base map. Most linears derived from the Landsat images are between 3 and 6 kilometers in length (Fig. 3).

Aerial photographs of the three counties were examined stereoscopically. Linear features were transferred directly to an acetate overlay of the base map. Because linears fron the Brittle Structures Map had already been transferred to this overlay, only extensions to these linears were delineated. Most linears identified from these photos are between 1 and 3 kilometers in length (Fig. 3).

The Brittle Structures Map shows linear surface and subsurface features. Surface linear features shown on the map were identified using topographic maps, Landsat and Skylab satellite imagery and high altitude aerial photographs. Subsurface features were derived from geologic maps.

The trend of all linears was measured and is recorded in 10 degree intervals in Table 2.

Natural Gas Occurrences

Two maps were produced to depict the locations of natural gas occurcences in the three counties. One map depicts producing wells and field locations (Fig. 4). The ocher map adds shows of oil, gas and salt water to this information (Fig. 5). This second map was compiled because shows of gas, oil or salt water in wells are indications of good reservoir rocks and possible nearby gas or oil traps. An additional map of dry wells was also produced to show the extent of drilling coverage in the counties (Fig. 6). The information in these maps was derived from U.S. Departinent of Energy and New York State Museum and Science Service maps. Data not available at a scals of $1: 250,000$ were adjusted to this scale by means of a take-off grid.

Well data were available for this study through January 1978 for wells testing Middle and Upper Devonian black shales, and through December 1956 for deep wells testing the Lower Devonian Oriskany sandstone and older formations. Post-1956 deep well data were not included due to the small scale of available maps (AAPG Bulletin, 1956-1981). This omission does not substantially detract from this analysis since relatively few deep wellis were drilled in the Southern Tier during this time period.

Comparative Analysis

The positions of identified linears and wells were examined visually for locational relationships. The composite linear map overlay was used. The focus in this analysis was on: (1) the trend of linears and the trend of gas fields, (2) the proximity of gas wells to linears, (3) the relative concentration of linears in gas fields, and (4) linear intersections and gas fields and wells.

RESULTS AND DISCUSSION
This section outlines results obtained from the comparative analysis of linear and gas well locations.

1) There are identifiable relationships between gas field orientation and linear orientation. Linears in the three counties have two dominant

TABLE 2. Linear orientations: Chemung, Schuyler and Steuben counties, N.Y.

DEGREE RANGE ($0^{\circ}=$ NORTH)	NO. LINEARS	\% OF TOTAL
0-9/180-189	11	4.9
10-19/190-199	10	4.5
20-29/200-209	9	4.0
30-39/210-219	18	8.1
40-49/220-229	16	7.2
50-59/230-239	23	10.3
60-69/240-249	30	13.5
70-79/250-259	14	6.3
80-89/260-269	13	5.8
90-99/270-279	14	6.3
100-109/280-289	4	1.8
110-119/290-299	3	1.3
120-129/300-309	12	5.4
130-139/310-319	2	0.9
140-149/320-329	10	4.5
150-159/330-339	14	6.3
160-169/340-349	8	3.6
170-179/350-359	11	4.9
	222	

Dominant Linear Trends:

55-80/235-260 degree range chntained 25.6% of observed linears. 55-90/235-270 degree range contained 31.5% of observed 1 inears. 145-165/325-345 degree range contained 11.2% of observed linears.

URIGINAL PAGE IS OF POOR QUALITY
KEY

ORIGINAL PAGE IS
OF POOR QUALITY

orientations which are nearly orthogonal to each other, NN-SE or ENE-WSN (Table 1). These directions are parallel to major faults and joint sets in the region (Engelder and Geiser, 1980). Most gas fields in the region trend ENE-WSW. These relationships indicate that the regional fracture system is clearly linked to the structural control of gas reservoirs in the Southern Tier.
2) There are observable relationships between gas field location and linear location. Many fields are bounded on at least one side by linears Mason, Bath, Harysville, Howard, Adrian Reef, Van Etten, Rathbone, and WayneDundee). of twelve such linears, four trend in a NW-SE direction and five trend in an ENE-WSW direction, paralleling the dominant linear trends in the region. There are also definite locationai associations between the subsurface faults identified on the Brittle Structures Map and six major gas fields (Andover Pool, Beech Hill-Independence, West Union, East Harrison, Woodhull, and Jasper). These faults trend ENE-WSW.

Because of problens with map accuracy due to the use of different information sources at different scales, it is more difficult to deterinine if similar relationships exist between individual non-field wells and wells with gas or salt water shows.
3) There is no increase in the relative concentration of linears in producing, gas show or salt water areas relative to those in areas containing only dry holes or for shich drilling data were unavalládle.
4) There is no significant relationship between the location of gas fields, individual gas wells, or wells showing gas or salt water with linear intersections. Only two gas fields (Van Etten and Rathbone) of 23 in the region are located at linear intersections, Individual gas wells and wells with gas or salt water shows are located no nearer to linear intersections than they are to single linears or to areas with no linears. This suggests that linear intersection is not a controlling factor in gas reservoir location in the region.

RECOMMENDATIONS

From the results of this analysis it is recommended that future gas exploration efforts in Chemung, Schuyler and Steuben counties should give considerable attention to undrilled areas in close proximity to linears trending NN-SE and ENE-WSW. Analyses of the type performed here should be integrated with detailed geological studies. Suggestions for additional research are:

1) Compiling more accurate and up-to-date maps. In particular, this would involve obtaining detailed locational information for wells from drilling records assembled by the 0 il and Gas Section of the New York Geological Survey,
2) Correlating the proximity of gas wells to linears with well production data. A study of a Kentucky gas field demonstrated that cumulative production was higher in wells closely associated with linears (Howard et al., 1979); and,
3) Correlating geologic analyses of subsurface structural and stratigraphic relationships with linear and well location relationships. Such analyses could include the use of:
a) Electric well logs (gamma ray and temperature) to indicate the relative carbon content of black shales and to provide subsurface stratigraphic information;
b) Seismic reflection data to provide information on subsurface stratigraphy and structural geology;
c) Facies analysis to provide insight into the location and characteristics of reservoir rocks and possible stratigraphic traps;
d) Analysis of fracture (fault and joint) density and orientation in black shales and other reservoir rocks, its effect on rock porosity and permeability, and the extent of its surface expression as linears; and,
e) Petrologic studies of the thermal maturity of regional black shales.

Blodget, H.W. "Landsat in the Search for Appalachain Hydrocarbons" in Proceedings of the 47 th Annual Meeting of the American Society of Photogrammetry. Falls Church, Virginia: American Society of Photogrammetry, 1981.
"Developinents in New York State" (annual oil and gas drilling summary), AAPG Bulletin (1956-1981).

Engelder, T. and P. Geiser. "On the Use of Regional Joint Sets as Trajectories of Paleostress Fields During the Development of the Appalachain Plateau, New York, " Journal of Geophysical Research, Vol. 85, No. B11 (1980), pp. 6319-6341.

Fussell, J. "Lineaments Lead to 0 il in Wyoming," Geotimes, Vol. 25 (1980), pp. 19-20.

Harding, R. W. "New York's Oriskany," 0il and Gas Journal, Vol. 64, No. 12 (1966), pp. 130-136.

Harris, L. D. and G. W. Colton. "What are Possible Stratigraphic Controls for Gas Fields in Eastern Gas Shales?" 0il and Gas Journal, Vol. 76, No. 14 (1978), pp. 162-165.

Howard, J. F. et al. Gas Production of Devonian Shale Wells Relative to Photo Lineament Locations: A Statistical Analysis. Springfield, Virginia: National Technical Inforination Service (METC./CR-79/28), 1979.

Kreidler, W. L. Selected Deep Wells and Areas of Gas Production in Eastern and Central New York. New York Museum and Science Service BulTetin No. 373. Albany, New York: University of the State of New York, State Education Departinent, 1959.

McCaslin, J. C. "Appalachian Basin's Deep Potential Due Look," Oil and Gas Journal, Vol. 77, No. 21 (1979), pp. 95.

Mesolella, K. J. and 0. D. Weaver. "What is the Overall Significance of Appalachia's Devonian Pinnacle Reefs?" Oil and Gas Journal, Vol. 73, No. 8 (1975), pp. 98-103.

Peterson, J. C. and A. M. Van Tyne. Oil and Gas Fields in New Yory -As of July 1978. Springfield, Virginia: National Technical Information service (METC/EGSP-102), 1979.

Peterson, J. C. and A. M. Van Tyne. Oil and Gas Shows in Devonian Black Shales and Interbedded Units--As of January 1978. Springfield, Virginia: National Technical Inforination Service (METC/EGSP-101), 1979.

Peterson, J. C. and A. M. Van Tyne. Wells Penetrating Middle and Upper Devonian Black Shales in New York--As of January 1978. Springfield, Virinia: National Technical Inforination Service (METC/EGSP-100), 1979.

Tetra Tech, Inc. Evaluation of Devonian Shale Potential in New York. Springfield, Virginia: National Technical Information Service (DOE/METC-118), 1981.

Van Tyne, A. M. and J. C. Peterson. "Thickness, Extent of and Gas Occurrences in Upper and Middle Devonian Black Shales of New York" in Second Eastern Gas Shales Symposium: Preprints. Springfield, Virginia: National Technical Information Service (METC/SP-78/6 [Vol. 1]), 1973.

Weaver, 0. D. "North Flank of Appalachian Testing," Oil and Gas Journal, Vol. 63, No. 36 (1965a), pp. 216-219.

Weaver, O. D. "New York Offers Multiple Strat-Trap Potential in Cambro-Ordovician Sedinents," Oil and Gas Journal, Vol. 63, No. 37 (1965b), pp. 166-170.

Neaver, O. D., W. L. Calvert and W. H. McGuire. "A New Look at the Gas and Oil Potential of the Appalachian Basin," 0il and Gas Journal, Vol. 70, No. 3 (1972a), pp. 126-130.

Weaver, O. D., W. L. Caivert and W. H. McGuire. "Here Are the Principal Exploratory Objectives of the Appalachian Basin," Oil and Gas Journal, Vol. 70, No. 4 (1972b), pp. 100-103.

Wescott, T. F. and A. F. Sinith. "Digital Image Processing and Enhancement of Landsat Data for Lineament Mapping and Natural Gas Exploration in Appalachian Region" in Proceedings Third Enstern Gas Shales Symposium, H. Barlow, ed. Springfield, Virginia: Nationa Technical Information Service, 1980.

APPENDIX C

RECENT PUBLICATIONS

Eighth International Symposium

Machine Processing of Remotely Sensed Data

with special emphasis on

Crop lnventory arnd Monitoring

July 7-9, 1982

Purdue University
Laboratory for Applications of Remote Sensing West Lafayette, Indiana 47907 USA

GRAPEVINE CANOPY REFLECTANCE AND YIELD

Y, A. MIHDEN, W. R. PHILIPSON
Cornell University
Ithaed, New York

ORIGINAL PAGE IS OF POOR QUALITY

ABSTRACT

Field spectroradiometric and afrborne multispectral scanner data were applied in a study of Concord grapevines. Spectroradiometric measurements of 18 experimental vines were collected on three dates during one yrowing season. spectral reflectance, determined at 30 intervals from 0.4 to 1.1 un, was correlated with vine yield, pruning weight, clusters/vine, and nitrogen input. One date of airborne multispectral scanner tata (ll channels) was collected over comnercial vineyards, and the average radiance y'ises far eight vineyard sections were correlifed with the corresponding average yielus. dithouan some correlacions were significant, they were inadequate for developing a reliable yield prediction model.

1. INTRODUCTION

Remote sensing has become a major tool for assessing crop condition and yield. Ten years ago, remote sensing research was primarily devoted to evaluating losses in crop vigor due to stress (Colwell, 1970). vore recent studies have also explored the relationship of the spectral characteristics of vegetation to agronomic variables (ldso et al., 1977). These variables include biomass. leaf area index. disease, percent green. percent ground cover, nutritional status and yield.

Remote sensing of vineyards has been applifd to several mansgement problems, inclating drainage; soll depth, compaction and lextere: and crop health and vigor filloman, 1979; Philipson et al., 1980). il: imately, these factors all affect crop yiold, the focus of vineyard manapoment deGistons. In large vineyards, detalled observations of crop status are time consumtatand, consequently, 1 imited to a small number of plants. A cost-effective method of predscting yield, at the earliest possible stage of crop growth, would be very
valuable to viticulturalists.
The intent of this research was to examine relationships between agronomic vari. ables and spectral properties of the vine canopy. The main objective was to define the optimum wavelength(s) for yield predic. tinn modeling.

Id. PREVIOUS STUDIES

Factors which afiect loaf and cancoy reflectance have been defined in severa: stutes (4yery z. A Allen, 1968; Wieyand et al., 1972; Bausr, 1975). Radiometer have been the main tool for in situ crc canopy spectral reflectance measurements (Kanemasu. 1974; Casey and Burgess, 1979), While the Landsat Multispectral Scanner has provided most of the aerial data for spectral studies of crops (Heilman et al., 1977; Colwell, 1979). For both, statistically significant relationships have been found between reflectance and some dgronomic variables for grass, wheat, sorghum, soybean and other crops. Generally, researchers found that crop parameters corre. late best with reflectance in the red and near-infrared wavelengths, and with ratios of reflectance in these wavelengths. Linear combinations of two wavelengths are often used to coinpensate for sun angle and atmosoheric effects (Tucker et al., 1979).

Studies of vineyard reflectance and crop condition using color-infrared aerial photography and airborne multispectral scanner data were performed by Philipson et al. (1980). They concluded that differences in vine vigor could be assessed visually with the color-infrared photographs, and that yie:d-reflectance repationshifs appear to exist for at least two grape varieties, Delaware and Concord.

ORIGINAL PAGE IS OF POOR QUALITY

I!. RETHODS quU MATERLALS
Field spectroradumetric neasuraments of ts Concord vines were collecten on three datas. at the Vfneyard laboratory of the for Yors state Agricultural Station, in Frenenia, N.Y. The experimental yfreyards are part of the chatauqua County grapebelt, iocated aight kilemeters southeast of lake Erie. Replicated vines had been subjected to nine agronomic treatments involving level: of nitrogen, weed control, pruning and tiaining.

One major prodem in past crop reflectance studies is developing relationships which are applicable to more than just the sraining data (Stuff and Earnett, 1079; Ougqin, 1980). This is caused, at least in oart, by not accounting for the effects of solar zentth angle, azimuth angle and look angle. In order to provide accurate re. flectance data and account for these effects, three portable spectroradiometers (ISCO model SR) were caliorated using a Mocedure developed by Duggin (1980) and noutfied by ouggin and philipson (1981).

The fiber optic probe of each instrument was equippod with a 30° cone receptor to linit the field-of-view. The instruments were mounted on a grape harvesting tractor, with the probes of two spectroradiometers yewing the vineyard canopy and the prolie onf the tinird spectroradiometer viewing a , wite, Lanbertian standard reflector. Raafance from the vines and standard was measured sinultaneousiy, taking readings at intervais of $0.25 \mu \mathrm{~m}$ from 0.40 to $1.1 \mathrm{\mu m}$. The data were transformed into percent ncmispherical-conical reflectance (Duggin and Philipson, 1981). This procedure was reprated on three dates during the 1980 graving season, July 9 or 10 , August 21 or 22 , ind September 12.

For general analysis and screening, the reflectance data were plutted versus wavelength for each plant, for each cate. Gorrelations were computed between yield and spectral reflectance of each vine on each date. Relationships betwecn vine reflectance and pruning weight, clusters, niirogen input, and weed control were also evaluuted.

As an extension of the field prugram, atrborne multispectral scemmer data (M2S, 11 chamels) were flown by wasa on Sopterber 3, 1930, over the vineyards of the Tator Whom Company, Inc., in uamyngincrt, i.Y. The nitsion was flown in miu-astertoon with high liaze and approxinaleiy som cloud cover. Sufficient derial ato were collected to analyez eight constry vinevard soctions. The spectral radiate values for each section were correlated with average section yield. Severd
ratlos of average reflectance were also cormatated oith average yield.

IV. RESULTS

Correlations between yield and reflec. tance of 18 plants saliciled during the 1980 growing sason were generally poor, with most values being below the $\overline{5}$ pirnbability level. Yields from 1980 (and 1979) were not , ignifirantly correlated with July reflectance data. For August data, reflec. tance in the visible range was positively and significantly related to yield, while for September data, yield and reflectance were negatively correlated, with the most significant correlations occurring in the near-infrared range.

The level of nitrogen and lethod of weed control, which together detirmine the avallable nitugen, were found to significantly affect yield. clusters and pruning weight. Because avallable nitrogen affects chlorophyll levels. 12 of the sampled vines were stratiffed into two groups of six vines: Group 1 used between-row cultivation for weed control, while Group 2 used mowed soc with herbicides. An analysis of variance showed that the effect of nitrogen on the 12 plants sampled was not as signiflcant as the effect on all plants which received the same treatments at the experimental site. However, correlations between yield and reflectance improved for each group relative to correlations based on all 18 plants.

Pruning weight and the number of clus. ters per vine were also related to reflectance. Pruning weight was significantly correlated with reflectance when all 18 plants were used, but there was no significant correlation with the plant groups stratified by method of weed control. In contrast, when the number of clusters per vine was correlated with reflectance, the opposite occurred. There were no significant correlations when all 18 plants were used, but when yields from the smaller groups were correlated with reflectance, the resulting coefficients were highly significant. As expected, the number of clusters was highly correlated with yield.

Plants were also stratified into groups based on the time of day in which reflectance measurements were made. Correlations between yield and reflectance for these groups was better than for all 18 vines sampled.

Correlations between the airborne multispectral scanner data and averaged yield were not significant.

ORIGINAL PAGE IS OF POOR QUALITY

V. DISCUSSION AND CONCLUY:ONS

Mos: correlations between stectral refleatance and yield were generally not siggifisant at the 5% probability level. nugust refleciance data showed better correlation with yield than did july or september reflectance data.

Clusters per vine were highly correlated with yield, and more highly correlated with reflectance than yield. A yield prediction model based on spectral reflectance might atiempt to incorporato some measure of clusters. It is also apparent that a successful model might have to stratify the vines by avaliable nitrogen.

The effect of time of day oll reflectance correlations with yield mint relate to leaf-layer shadowing, leaf orientation or a systematic instrument error.

Future sampling should be performed on d larger sample. In addition, dava collection could be limited to certain wavelengths depending on growth stage. In July, the highest correlations occurred in different visible and near-infrared wavelengths. August data collection, however,
 dupending on the wead control method: the vistibe range for cultivated rows, and the infrared for those with sod and herbicide application. In september, the data colletifon could generally be limitied to the infrared range. Át any time, the pain visithe wavelengtis to be considered are $0.4100-0.475 \mathrm{Hm}$ and $0.625-0.675$ uाi .

The lack of correlation between the airborne multispectral scanner duta and yleld was likely due to a combination of factors. Which are still under investiga. tion.

VI. SUMMARY

Some correlations between viliz spectral reflectance and both yield and elus. ters per vine are statistically significant, however they are inadequate for developing a reliable yiald prediction model. Cinupy reflectance was strongly influenced by available nitrogen and stage of crop growth. Future sampling can emphasize specific wavelength regions, but these aepend on several factors. including stane of growth and agrononic treatment.

V11. ACKYOWLEDGMEIT
This study was supported by dish Grant ngt 33-010-171. Eooperation and assistance
were provided by researchers at the state Agricultural Experiment Station, in Geneva, N.Y., the Vineyard Laboratory, in Fredonia, N.Y., the Taylor Wine Company, Inc., in Hammondsport, N.Y.. Michael Duggin, of the
College of Environmental Science and Foresiry, at syracuse, and by chain-Chin Yen and other staff of Cornell's Remote Sensing Progran.

VIII. REFERENCES

1. Baver, M.E., 1975. The Role of Bemote Sensing in Determining the Distribution and Yield of Crops. In Advances in Agronomy, Vol. 27, N. C. Brady, ed. New York: Academic Press. PD. 271-304.
2. Casey, P.S., and Burgess, L.W., 1979. The Relationship of Soybean Rust and Yield to Refectance properties. In Pros, of Bth Annual Remote Sensing of Earth Resources Conference. Held in Tullahoma, Tenn. pp. 315-322.
3. Colwell, J.E., 1979, Possible Future Directions in crop yield Farecasting. In Proc. of 13th International Symposium on Remote Sensing of Environment. Held in Ann Arbor, Michican. PD. 1781-:1788.
4. Colwell. R.N., 1970. Applications of Remote Sensing in Agriculture and Forestry. In Remote Sensing with Special peference to Agriculture and Forestr. Washington, D.C.: National Academ: \because Sctences. pp. 164-223.
5. Duggin, M.J., 1980. The Field Measurement of Reflectance Factors. Photogrammetric Engineering and Remote Sensing, 46:643-647.
6. Duggin, M.J., and Phlipson, W.R., 1981. Field Measurement of Spectral Reflectance. In Proc. of 47 th Annual Meeting American Society of Photogrammetry. Held in Washington, D.C. pp. 342-4350.
7. Heilman, J.L., Kanemasu, E.T., Bagley, d.O. and Rasmussen, V.P., 1977 . Evaluating Soil Molsture and yield of Winter Weat in the Great Plains Using Landsat Data. Remote Sensing of Environment. 6:315-326.
8. Idso, S.B., Jackson, R.D. and Reginato, R.J., 1977. Pemote Sensing of Crop Yielas. Science. 196:19-25.
9. Kanemasu, E.T., 1974. Seasonal Canopy Reflectance Patterns of Wheat, Sorghum and Soybean. Remote Sensing of Environment. 3:43-47.

1C. "yers, V.t. and Allen, A.A., 1963. Glec:-ooptical Remote Sensing Methods as Mondestructive Testing and Messuring Techntques in Agriculture. Applied Opcics. 7:1819-1838.
\therefore Philipson, W.R., Erb, T.L., Fernandez, O. and McLeester, J.N., 1980. Remote Sensing for Vineyard Management. In Proc. Of the 46 th Annual Meeting amertcan Society of Photogrammetry. Held St. Louis, Mo. po. 371-378.
12. Stuff, R.G. and Barnett, T.L., 1979. The Use of Spectral Data in Wheat Yield Estimation - An Assessment of Tech inques Explored in LACIE. In Proc. of 13th International symposiuin on Remote Sensing of Environment. Held in Ann Arbor, Michigan. pp. 645-651.
13. Tucker, C.J., Elgin, J.H., and *c:"urtrey, J.E., 1979. Relationships of Red and Phetographic Infrared Spec. :ral Radiances to Alfalfa Stomass, Forage water Content, Percentage Canopy Cover, and Severity of Drought Stress. NASA Technical Memo 30272. Greenbelt, Md.: Goddard Space Flight Center. 13 pp.
14. Wiegand, C.L., Gausman, H.W. and Allen, W.A., 1972. Physiological Factors and ODtical Parameters as Bases of Vegetation jiscrimination and Stress Analy. sis. In Proc. of Seminar on Operation3) Remote Sensing. Helo at Houston, Tex. Falls, Church, Va.: American Society of Photogrammetry. PD. 82-102.
: 5. Wildman, W.E., 1979. Color-Infrared: A Valuable Tool in Vineyard Management. In Proceedings of the 7th 3iennial Workshop on Color Aerial Photography in the Plant Sciences. Held Oavis, Calif. falls Church, Va.: American Society of Photogrammetry. pp. 229-238.

Katherine A. Minden received her B.S. in Natural Resource Development from Michigan State University, in 1978, and she is presently completing her M.S. in Aerial Photographic Studies and Remote Sensing, at the Cornell University School of Civil and Environmental Engineering. Before entering graduate school, she anrked at the U.S.G.S. EROS Program office in Reston, Virginia, as a physical scientist, specia'izing in Landsat studies of Antarctica. She has at tended graduate school since january 1980 , participating in both teaching and research activities in remote sensing.

Warren R. Philipson received his

 B.C.E., M.S. in Civil Engineering, and Ph.D. in Soil science (Agronomy) from Cornell. Since 1965, he has taught, conducted research and participated in remote sensing projects in various parts of the world. An associate professor, he has co-directed Cornell's Remote Sensing Program since 1972.
Field measurement of reflectance: some major considerations

ORIGINAL PACE IS
OF POOR QUALITY

Abstract

Success in determining when, whether, and in what conditions to acquire remote sensing data for describing a given target (e.g., vegetation) is contingent $\cdot a$ understanding the reflectance properties of the target and its surroundings. Unfortunately, relatively little information on the reflectance properties of the earth's surface exists in the literature. rieid measurements of a target's reflectance are usually made with single-beam instruments by sequentially viewing the target and a white standard reflector, which is assumed to be Lambertian. Because varictions in atmospheric transmission can occur between the times of measuring the tatget and reflector, substantial errors in reflectance calculated from these measurements may result. To avoid these errors the irradiance on and radiance from the target must be measured simultaneously. Measurements of the spectral hemispherical-conical reflectance of vegetative canopies were made by simultaneously measuring irradiance and radiance with pairs of portable spectroradiometers. The procedures for calibrat ing the instruments and for collecting and analyzing spectral reflectance data are described. Major instrumental sources of error and their magnitude are discussed as are problems involved in making such measure. ments.

I. Introduction

The spectral reflectance indicatrix is normally asymmetrical and dependent on target and wavelength. ${ }^{1-17}$ Moreover, the variability of target reflectance (blur of the indicatrix), atmospheric transmission. and path radiance for any set of angular conditions between the sun, target, and sensor will limit discriminability (see, e.g., Figs. 1 and 2). Therefore, the bandpasses, overflight conditions and sensor geometry (field of view and maximum look angles) that will provide optimum target discrimination can be determined only from spectral reflectance measurements made for various sun-target-sensor geometries supplemented by model calculations which can be checked against field data. ${ }^{3,4,15-22}$

The accurate measurement of ground reflectance properties is critical to the design of future sensors and to the determination of imaging conditions. At present ground reflectance data to satisfy these needs are scanty

[^6]and in some cases of uncertain accuracy. While there have been many measurements of the reflectance properties of the earth's surface, ${ }^{23}$ there are considerable differences in the methods used to obtain these measurements. Most were made with single-beam instruments by sequentially measuring the target of interest and a reference, usually a white spectrally flat Lambertian standard reflector. This method is subject to error due to irradiance variations that can occur between the times of target and reference reflector me surements.
An attempt to simultaneously measure radiance and irradiance using two portable spectroradiometers is reviewed in this paper. The problems encountered are described to point out the difficulties of making such measurements and to show that data in the literature must be viewed with an understanding of the limitations of the methods available to experimenters. Recommendations are given for improved procedures and instrumentation.

II. Measurement Techniques

A. Sequential Measurements of Radiance and Irradiance

As noted, most reflectance measurements in the literature were derived with a single radiometer, obtaining sequential measurements of the spectral or fixed band radiance from a target and from a spectrally flat (e.g., barium sulfate) standard reflector. ${ }^{2+4.5 \cdot 15.16 .24-27}$ The

ORIGINAL PACE IS OF POOR QUALITY

Fig. 1. Sun-target-sensot geometry

Fig. 2. Variation of reflectance ratio MSS $7 / 5$ with solar zenith angle for nadir pointing sensor viewing various pasture targets.
reflectance may be calculated using a formula such as

$$
\begin{equation*}
R_{r}=\left(\frac{V_{t r}-D_{r}}{V_{r,}-D_{r}}\right) \times K_{r} \tag{1}
\end{equation*}
$$

where $V_{t r}=$ reading obtained in bandpass r when recording radiance from the target,
$V_{s r}=$ reading obtained in bandpass r when recording radiance from the standard panel.
$D_{r}=$ dark current (detector noise) in bandpass r.
$K_{r}=$ measured reflectance of standard reflector in bandpass r, and
$R_{r}=$ hemispherical-conical reflectance factor ${ }^{28}$ in bandpass r.
A radiometer which uses an optical chopper has an output measured relative to the dark current $V_{t r}=\left(V_{t r}\right.$ $\left.-D_{r}\right)$ or $V_{\mathrm{s} r}=\left(V_{\mathrm{sr}}-D_{r}\right)$;

$$
\begin{equation*}
R_{r}=\left(\frac{V_{n}}{V_{t r}}\right) \times K . \tag{2}
\end{equation*}
$$

The assumption with the sequential measurement procedure is that the intensity and spectral distribution
of irradiance on the target is invariant during readings of the target and standard reflectors. When a scanning spectroradiometer is used, for example, the length of time taken to scar the spectrum from 400 to 1100 nm at $10-\mathrm{nm}$ intervals is typically 3 min . This is obviously a problem when clouds are present: however, irradiance variations also occur on clear days.

A typical rate of diurnal variation in irradiance with solar zenith angle measured for a clear sky is shown in Fig. 3. In addition to this predictable variation, random variations of at least $\dot{j}-10 \%$ can also occur, even on apparently ciear days. ${ }^{29}$ The relative shift in spectral composition of irradiance (i.e., irradiance in a selected bandpass divided by the sum of the irradiances in all bandpasses) with solar zenith angle is shown in Fig. 4. Although methods have been proposed to monitor the total global irradiance (broadband) to detect and possibly correct for such fluctuations while collecting data from which the reflectance is calculated. these methods only show where the data may contain artifacts; they do not collect data with which to exclude the artifacts.

Fig. 3. Solar zenith angle dependence of spectral global irradiance

Fig. 4. Solar zenith angle dependence of spectral composition of global irradiance.

B. Simultaneous Measurements of Radiance and

 IrradianceDuggini0 ${ }^{* 1}$ reported a method of calibrating two 4 -band radiometers (Exotech type GTR-100) with the same nominal bandpasses. One radiometer measured radiance reflected from a white Lambertian standard reflector, while the other measured irradiance. The calibration factor C, in bandpass r was

$$
\begin{equation*}
C,=\left(\frac{V_{2}-D_{2}}{V_{1},-D_{1 r}}\right)_{c a l} \tag{3}
\end{equation*}
$$

where V_{1} = voltage from the downlooking radiometer (measuring reflected radiance from standard reflector),
$V_{2 r}^{\prime}=$ voltage from the uplooking radiometer (measuring irradiance),
$D_{1}=$ dark current from radiometer 1 , and
$D_{2 r}=$ dark current from radiometer 2.
The reflectance factor in bandpass R, was obtained from

$$
\begin{equation*}
R_{r}=\left(\frac{V_{1}-D_{1}}{V_{2}-D_{2}}\right) \times C, \times K . \tag{4}
\end{equation*}
$$

where $V_{1 r}=$ voltage measured from radiometer recording radiance reflected from the target.
$V_{2 r}=$ voltage measured from radiometer recording irradiance.
$C_{r}=$ estimate of the calibration factor from a regression fit of $C_{\text {r }}$ (from successive measurements made at different times of day) against a function of solar zenith angle, and
$K_{r}=$ reflectance of a standard reflector determined in the laboratory with a spectrophotometer.
For the work reported here the authors used three portable spectroradiometers manufactured by the Instrument Specialty Co. (ISCO model SR). Two of the instruments were used to measure radiance from different targets or different areas of the same target, while the third instrument was used to obtain measurements of irradiance. Because the cosine receptors supplied with the instruments were known to give rise to considerable sun-angle dependence, ${ }^{29}$ measurements of irradiance were obtained indirectly by measuring radiance reflected from a field-portable white Lambertian reflectance target.

The fiber-optic probes of all instruments were modified to receive radiance via 30° cone receptors. The instrument used for measuring the standard reflector had a $90-\mathrm{cm}(3-\mathrm{ft})$ long fiber probe, while those used for viewing the targets had $180-\mathrm{cm}(6-\mathrm{ft})$ probes.

Measurements from the three spectroradiometers were made by three operators taking readings as close to simultaneously as possible at each wavelength setting. The instruments covered the $400-1150-\mathrm{rm}$ spectral range, with a bandpass of $\sim 25 \mathrm{~nm}$ in the visible range ($400-750 \mathrm{~nm}$) and 50 nm in the reflected infrared $(750-1150 \mathrm{~nm})$. Readings were, therefore, taken at
$25-\mathrm{nm}$ intervals over the $400-750-\mathrm{nm}$ wavelength range and at $50-\mathrm{nm}$ intervals over the $750-1150-\mathrm{nm}$ range.

For calibration all instruments view the standard reflector. In calculating the calibration factors for the ISCO spectroradiometers no correction is required for the dark currents. The instruments have optical choppers and give output readings for the detector recording radiance compared with the detector recording no radiance (i.e., when covered by the chopper). Therefore, if spectroradiometer 1 is the reference instrument and spectroradiometers 2 and 3 are the target instruments, Eq. (3) becomes, for each wavelength setting (λ), for the two radiometer pairs

$$
\begin{align*}
& C_{1}(\lambda)=\left[\frac{V_{1}(\lambda)}{V_{2}(\lambda)}\right]_{\mathrm{cal}} . \tag{5}\\
& C_{2}(\lambda)=\left[\frac{V_{1}(\lambda)}{V_{3}(\lambda)}\right]_{\mathrm{cal}} . \tag{6}
\end{align*}
$$

The calibration factors $C_{1}(\lambda)$ and $C_{2}(\lambda)$ were found to vary with the time elapsed since the instruments were switched on, presumably due to different instrumental drift rates. Because all three instruments view the same standard reflector during calibration, it is not surprising that there was no apparent dependence of $C_{1}(\lambda)$ or $C_{2}(\lambda)$ on solar zenith angle as would be expected if one of the instruments had a cosine receptoz.

Calibration measurements were made repeatedly over two days with three instruments simultaneously viewing the standard white reflector placed horizontally. Regression equations developed to predict the calibration factors at each wavelength were of the form

$$
C(\lambda)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}
$$

where t is time in minutes since switch on.
For determining the spectral reflectance of any target simultaneous measurements were obtained of the standard reflector (with spectroradiometer 1) and the target of interest (with spectroradiometer 2 or 3 or both). The spectral reflectance of a target measured with spectroradiometer 2 was calculated using the expression

$$
\begin{equation*}
R_{1}(\lambda)=C_{1}(\lambda) \times\left[\frac{V_{2}(\lambda)}{V_{1}(\lambda)}\right] \times K(\lambda) . \tag{8}
\end{equation*}
$$

and target reflectances measured with spectroradiometer 3 were calculated with the expression

$$
\begin{equation*}
R_{2}(\lambda)=C_{2}(\lambda) \times\left[\frac{V_{3}(\lambda)}{V_{1}(\lambda)}\right] \times K(\lambda) \tag{9}
\end{equation*}
$$

$K(\lambda)$ is the spectral reflectance of the standard reflector measured in the laboratory with a spectrophotometer. (We wish to acknowledge with gratitude the courtesy of E. Whitemen and F. Grum of the Eastman Kodak Research Laboratories, Rochester, N.Y., in making the spectrophotometric measurements.)

As a regular check on the instruments a series of calibration measurements with the standard reflector was made before and after any field-target measurements. That is, all instruments used to collect target reflectance data were checked against the standard re-

PAGE IS
 QUALITY

Fig. 5. Calibration data for one day from which estimates of $C_{1}(\lambda)$ and $C_{2}(\lambda)$ may be made using regression Eq. (7) for the calibration factors given in Eqs. (5) and (6).
flector and their calibration factor reexamined. In addition, as one means of assessing the accuracy of the field measurement technique, simultaneous radiance and irradiance measurements were made of a standard target whose optical properties approximate those of vegetation as determined in the laboratory. ${ }^{31}$

III. Resuits

Values of $C(\lambda)$ calculated from Eqs. (5) and (6) were based on measurements made at different times after switch on for one day as shown in Fig. 5. The wavelength shown is 800 nm , although thirty other determinations of $C_{1}(\lambda)$ and $C_{2}(\lambda)$ were made for other wavelengths.

Estimates of the calibration factors $C_{1}(\lambda)$ and $C_{2}(\lambda)$ obtained using regression equations of the form of Eq. (7) provided reliable calibration of target reflectance data as long as calibration measurements made before and after the target measurements gave values consistent with the estimates. Variability in the calibration data showed that 10% was a realistic criterion for agreement between estimated calibration factors and values calculated from field data.

It was found necessary to measure the battery voltages of each of the ten batteries in each instrument before and after measurement sessions. There was no other way to be aware of instrumental errors caused by day-to-day or during-day variations in battery voltage.

During measurements the fiber-optic probe on spectroradiometer 1 , the instrument used to measure the standard reflector, was damaged. This problem was found when ambiguities appeared in the calculated reflectance factors. The infrared reflectances $R_{1}(\lambda)$ and $R_{2}(\lambda)$ exceeded 100% due to the decreased readings obtained from spectroradiometer 1. Replacement of the damaged probe required all calibrations to be redone. Following this difficulty a problem arose in the amplifier of one of the instruments. Rather than invest several more days in collecting measurements from which new values of $C_{1}(\lambda)$ and $C_{2}(\lambda)$ would be determined, it was decided to recalculate $\mathcal{C}_{1}(\lambda)$ and $C_{2}(\lambda)$ from each day's measurements. As noted. because all three instruments view the same standard reflector during calibration, there is no apparent dependence of

Fig. 6. Typical spectra obtained for two crop canopies using the calibration and measurement methods described.
$C_{1}(\lambda)$ or $C_{2}(\lambda)$ on solar zenith angle. Consequently the calibration measurements obtained from the standard reflector before and after each measurement session were used as input to a simple linear regression equation against time since switch on.

Typical spectra obtained using these methods are shown in Fig. 6 for the crop canopies measured. Errors in these spectra would arise from parallax in reading the wavelength scale, from time-dependent variations in calibration between the instruments, and from errors in calibrating the instruments. As described one method of finding the error in measurements of the spectral reflectance of surfaces using field targets is to measure the spectral reflectance properties of a standard target whose optical properties approximate that of the target of interest. Table I shows the reflectance properties of a standard target whose spectral reflectance properties approximate those of vegetation as measured in the laboratory ${ }^{31}$ and as measured by a pair of scanning field protable spectroradiometers (ISCO) simultaneously measuring radiance and irradiance. Errors for the spectroradiometer pair are $<4 \%$ in the visible part of the spectrum and $<8 \%$ in the infrared part of the spectrum. An overall estimate of error in a spectral reflectance value is approximately $\pm 10 \%$.

IV. Discussion

The above procedure may be employed to obtain in situ spectral reflectance values with portable batterypowered spectroradiometers of the ISCO type. These

peciroraiomeiers					
Wavelength (nm)	Lab measurement	isco spectroradiometers	Wavelength (nm)	Lab. Dvasurement	Isco spectroradiometers
450	0.057	0.065	770	0.491	
460	0.063		775		0.505
470	0.071		780	0.508	
475		0.082	790	0.522	
480	0.08		800	0.538	0.548
490	0.091		810	$0.54 i$	
500	0.103	0.10%	820	0.546	
510	0.113		825		0.570
520	0.117		830	0.552	
525		0.120	840	0.569	
530	0.109		850	0.561	0.600
540	0.093		860	0.565	
550	0.076	0.084	870	0.566	
560	0.063		875		0.642
570	0.054		880	0.569	
575		0.053	890	0.571	
580	0.052		900	0.571	0.615
590	0.049		910	0.571	
600	0.046	0.048	920	0.572	
610	0.04 .3		925		0.538
620	0.042		930	0.573	
625		0.044	940	0.572	
630	0.044		950	0.568	0.574
640	0.044		960	0.567	
660	0.045	0.047	970	0.563	
660	0.044		975		0.601
670	0.045		980	0.56	
675		0.047	990	0.557	
680	0.049		1000	0.504	0.90
690	0.059		1010	0.348	
700	0.077	0.074	1020	0.54	
710	0.126		1025		0.57
720	0.188		1030	0.5383	
725		0.180	1040	0.527	
730	0.264		1050	0.524	0.367
740	0.349		1060	0.518	
750	0.422	0.401	1070	0.514	
760	0.464		1075		0.330
			1080	0.509	

may be used in support of or in feasibility studies preceding remote sensing surveys. The intercalibration of the spectroadiometers to obtain $C_{1}(\lambda)$ and $C_{2}(\lambda)$ may be achieved through a simple linear regression of calibration measurements (y) made at the start and finish of each measurement day against time (x) since switch on of the instruments. A more accurate calibration method was used initially but abandoned when instrumental problems caused changes in the calibration. Although the method is complex and time-consuming, the accuracy of such measurements should be within approximately $\pm 10 \%$ provided that care is exercised in all the procedures outlined above. Each instrument is subject to mechanical and electronic problems. and the use of two instruments necessitates the employment of at least two operators, producing errors or biases in reading and recording. The manual recording of data from an analog meter is clearly potentially less accurate and more time-consuming than automated digital recording.

It is worth noting that Milton ${ }^{27}$ is critical of the two-radiometer method proposed by Duggin ${ }^{30}$ for the simultaneous measurement of irradiance and radiance. He performs some very simple hypothetical calculations for a scene and concludes that there is a 25% change in the reflectance factor of a scene under clear sky compared with cloudy conditions. This is at variance with the observations of Duggin et al who found only a 10 c change in the reflectance factors of pasture in the Landsat bandpasses for up to a factor of 3 change in the incident light level. It is also at variance with the reflectance data obtained in the Landsat bandpasses for a uniform bariey field one month before harvest shown in Table II. A two-radiometer method (e.g., Duggin ${ }^{\text {º }}$) was used. Table II (see also Ref. 33) shows the output of the radiometer measuring irradiance. It is seen that changes in irradiance to over a factor of 3 affect the reflectance factor generally by <10 \% in the infrared bandpasses (MSS 6 and 7) and by $<20 \%$ in the visible part of the spectrum (MSS 4 and 5). In fact, for a

ORIGINAL PAGE IS OF POOR QUALITY

Table II. Reflectance and Irradiance Spectra in the Landsat Bandpasses tor Varying liumination Conditions ${ }^{33}$

Solar zenith angle	$\begin{aligned} & \text { Reflectance } \\ & \text { MSS } 4 \end{aligned}$	Irradiance MSS 4^{a}	$\begin{aligned} & \text { Reflectance } \\ & \text { MSS } 5 \end{aligned}$	Irradiance MSS 5^{4}	$\begin{aligned} & \text { Reflectance } \\ & \text { MSSis } 6 \end{aligned}$	$\begin{aligned} & \text { Irradiance } \\ & \text { MS.S } 6^{\circ} \end{aligned}$	$\begin{aligned} & \text { Reflectance } \\ & \text { MSS } 7 \end{aligned}$	$\begin{aligned} & \text { Irradiance } \\ & \text { MSS } 7^{\circ} \end{aligned}$
42.08	0.0717	1.140	0.0812	1.796	0.220	1.642	0.291	2.15
41.67	0.0637	1.179	0.0754	1.861	0.245	1.692	0.343	2.23
40.86	0.0569	0.328	0.0662	0.453	0.223	0.455	0.723	0.592
40.65	0.0761	0.364	0.0842	0.5199	0.297	0.561	0.413	0.647
40.45	0.0706	1.207	0.0788	1.906	0.262	1.747	0.350	2.18
40.04	0.0694	1.146	0.0775	1.805	0.263	1.654	0.358	2.18
39.84	0.0689	1.223	0.0756	1.941	0.251	1.785	0.338	2.37
39.44	0.0667	0.338	0.0730	0.471	0.280	0.477	0.396	0.621
39.23	0.0603	0.631	0.0676	0.942	0.229	0.876	0.314	1.139
35.24	0.0555	0.288	0.0597				0.346	0.583
34.85	0.0719	0.280	0.0816	0.375	0.271	0.387	0.371	0.508
34.65	0.0721	0.276	0.0785	0.368	0.259	0.378	0.353	0.493
34.46	0.0551	0.303	0.0626	0.411	0.209	0.415	0.288	0.541
34.07	0.0681	0.765	0.17738	1.167	0.269	1.075	0.374	1.397
33.87	0.0648	1.296	0.6734	2.063	0.235	1.878	0.323	2.49
33.49	0.0639	1.334	0.0684	2.133	0.219	1.945	0.303	2.58
33.10	0.0599	0.907	0.0687	1.402	0.221	1.302	0.312	1.694
32.71	0.0684	0.434	0.0765	0.631	0.245	0.630	0.331	0.830
32.52	0.0739	0.396	0.0825	0.569	0.261	0.578	0.354	0762
32.33	0.0640	0.392	0.0724	0.563	0.241	0.572	0.341	0.763
Mean	0.0661	0.7114	0.0739	1.088	0.247			
S_{x}^{b}	0.00615	0.4157	0.00670	0.689	0.0233	0.6086	0.0325	0.806
CV (\%)	9.3	58.4	9.1	63.4	9.4	59.7	9.5	60.1

a These values are voltage output from the radiometer measuring global hemispherical irradiance in the 1 andsat bandpasses.
${ }^{b} S_{x}$, sample standard deviation using $n-1$.
${ }^{\text {c }}$ (CV, coefficient of variation; standard deviation/mean value expressed as a percentage.

coefficient of variation (standard deviation divided by the mean) of 45% in the global irradiance for a series of spectra, the coefficient of variation of the reflectance factor is 10% or less in the visible bands and in the reflected infrared bandpasses.

For an apparently uniform target viewed from nadir the coefficient of variation in reflectance factor values was rarely $<6 \%$ even on apparently clear days. Thus the coefficient of variation in the reflectance factor caused by substantial irradiance changes is likely to be $<10 \%$ when the two-radiometer method is used.

In general spectroradiometric measurements, high instrumental stability, and accurate monochromation are needed to minimize errors due to calibration between the instruments. Monochromation should be the same for each spectroradiometer (i.e., the effective bandpass at each wavelength setting should be the same for the two units).

For fixed bandpass radiometers it is also necessary that both the standard (measures irradiance) and target radiometers have the same spectral response function for any given nominal bandpass. This is especially important because of the interaction between the spectral response of the target and that of the sensor. ${ }^{34-36}$ This point may be best appreciated by considering the equation

where $N S(\lambda)=$ the normalized signal recorded by the sensor,
$I(\lambda)=$ instrument response,
$R(\lambda)=$ spectral directional reflectance factor of the target,
$E(\lambda)=$ spectral global irradiance at the target.
$\tau(\lambda)=$ spectral atmospheric transmission. and
$L_{\text {path }}(\lambda)=$ spectral atmospheric path radiance.

The wavelength dependence of the above functions is shown in Fig. 7. For ground measurements $L_{\text {path }}(\lambda)$ will be negligible. For different sensors with the same nominal bandpass but different instrument responses (e.g., A and B in Fig. 7) NS (λ) can vary from channel to channe: if $R(\lambda)$ varies across the sensor bandpass. In those cases where the half-power bandwidth of the sensor's response is relatively wide, say, 30 nm or more. the interaction of the spectral responses of the sensor and target significantly affects the recorded signal. It is imperative in these cases to calibrate with standards whose reflectance properties approximate those of the targets of interest, which are seldom spectrally flat. With the Landsat multispectral scanner (MSS), for example, differences between detectors in band 5 $(600-700 \mathrm{~nm})$ can be up to 18% for a vegetation target ${ }^{31}$ but mas be only 6% or less for a spectrally flat target
such as barium sulfate. In other words, for fixed bandpass radiometers the two-beam method is reliable only when the instrument response functions of the two instruments are the same. This can be determined only by measuring the spectral response of the sensor and calculating or measuring its interaction with the spectral response of the target across the sensor bandpass using 8. method such as that proposed by Duggin et al. ${ }^{31}$

One further consideration which affects all reflectance measurements is the sun-target-sensor geometry. ${ }^{1-5,8-15,21.22}$ Duggin, ${ }^{9}$ for example, found changes in the reflectance of wheat of the order of 50%, with a 30° change in solar zenith angle. Similarly, unless the diameter of the viewed area is : m or more, variation in the targets viewed can produce large variations in the collected reflectance data. ${ }^{37}$ The field of view and look angle of instruments used to obtain spectral reflectance measurements are often not stated, making it difficult to estimate the effect of sun-target-sensor geometry on the reported data.

v. Conclusion

The ground reflectance varies with surface conditions and depends on the angular geometry between the sun, target, and sensor. When reasuring ground reflectance it is essential that the angle dependence be determined for each wave band and that the surface variability be assessed. This will produce the best chance of finding the dependence of the reflectance factor on wavelength (λ), look angle (θ^{\prime}), solar zenith angle (θ), and solar azimuth (ϕ) (Fig. 1). Studies of the sun-target-sensor geometry dependence of target discriminability will lead to optimization of data acquisition conditions.

If measurements are to be made of the variation in the reflectance factors of surface features, it is essential that errors due to atmospheric and irradiance fluctuations be excluded. This necessitates a two-beam measurement. That is, the irradiance on the target and the radiance reflected from the target must be recorded simultaneously. From such measurements optimum sensor bandpasses and overflight conditions isun elevation, look angle, azimuth) may be determined, taking into account the natural limitations on target discrimination posed by surface variability.

Major difficulties with present equipment are either that the problems of stability, calibration, and robustness are complex or that the equipment operates excellently in a laboratory but is not sufficiently portable to be transported to field sites (mobile laboratories are restricted for reasons of access to a fraction of those sites which are of interest). The technology exists to fabricate novel small rugged portable two-beam field spectroradiometers with a variable field-of-view and digital data logging. Calibration procedures could be easily shown in instruction manuals so that users who have little time to learn the complexities of electrical engineering or optics could use the equipment and obtain repeatable data. Data reduction could be simply achieved by reading the digital cassette or floppy disk on a computer terminal following simple procedures

ORIGINAL PAGE IS OF POOR QUALITY

which could be detailed in a manual supplied with the instrument.

Until this step is taken ground reflectance data cannot easily or even reliably be compared. Therefore, until this step is taken there will be inadequate data to refine sensor design, plan optimum overflight times and ground track, determine spacecraft ephemeris, or place limits on sensor-look angle. Without these data the effect of surface reflectance variability on target discriminability for various sun-target-sensor angles will not be knowi. Most important, without these data it will not be possible (except in an ad hoc manner, using possibly nonoptimal imagery) to determine whether and which remote sensing variables are so correlated to resource variables of interest that they can be used as predictors of those variables.

In all cases the field measurement of a calibrated spectrally varying standard reflector is recommended as a means of assessing field reflectance factor measurement errors.

We wish to acknowledge partial support from NASA grant NGL 33-010-171 to the Corne!! University School of Civil and Environmental Engineering, from NASA grant 9-16331 to the College of Environmental Science \& Forestry, SUNY, Syracuse, N.Y., and from the McIntire-Stennis Fund, U.S. Department of Agriculture. Thanks are due the following for their cheerful cooperation in field measurements: Lisa Balliett, William Hafker, Karen Jahn, Katsutoshi Kozai, Sandra Matulonis. David Smith, John Stanturf, William Teng, and especially Katherine Minden and Thomas Erb. Special acknowledgements are also due Chain-Chin Yen for her efficient help with the reduction of the data, and John Yost and Glenn Darling for their efforts in preparing the standard reflector and fiber-optic receptors. The authors would like to acknowledge Ronald Clayton of Cornell's Department of Agronomy, Donald Warholic of Cornell's Department of Vegetable Crops, and Richard Mandl of the Boyce Thompson Plant Research. Institute at Cornell for their cooperation in making the spectroradiometers available. We would also like to thank Melanie Johnson for typing assistance and Maggie Duggin for drafting.

References

1. N. J. J. Bunnik and W. Verhoef. NIWARS publication 23 (Delft, Netheriands, 1974).
. J. E. Chance and E. W. LeMaster. Appl. Opt. 16, 407 (1977).
J. E. Chance and E. W. LeMaster. Appl. Opt. 17, 2629 (1978).
J. E. Colwell. in Proceedings. Vinth Symposium on Remote Sensing of the Entironment (Environmental Research Institute of Michigan. Ann Arbor. 1974). pp. 1061-1085
2. J. E. Colwell. Remote Sensing Environ. 3, 175 (1974).
3. K. L. Coulson. Appl. Opt. 5, 905 (1966).
K. L. Coulson. G. M. Bouricius. and E. L. Gray. J. Geophys. Res. 70. +601 (1965)
4. D. W. Deering, Earth Survey Applications Division Research Report-1979, L. Carpenter. Ed.. NASA Tech. Memo. 80642 (1980), pp. 8-20-8-24
5. M. J. Duggin. Appl. Opt. 16, 521 (197\%).
6. M. J. Duggin, in Proceedings, ASP Forty-sixth Annual Meeting. St. Louis, Mo. (American Society of Photogrammetry, Falls Church. Va., 1980), pp. 239-251.
7. D. D. Egbert and F. T. Ulaby, Photogramm. Eng. 38, 556 (1972).
8. K. T. Kriebel, Remote Sensing Environ. 4, 256 (1976).
9. K. T. Kriebel, Remote Sensing Environ. 7, 81 (1978).
10. K. T. Kriebel. Appl. Opt. 17, 253 (1978).
11. J. A. Smith and R. E. Oliver. in Proceedings. Eighth International Simposium on Remote Sensing of the Entironment (Environmental Research Institute of Michigs.1. Ann Arbor. 1972), pp. 1333-1353.
12. G. H. Suits and G. R. Safir. Remote Sensing Environ. 2, 183 (1972).
13. G. H. Suits, G. R. Safir. and A. Ellingboe, in Proceedings, Fourth Annual Earth Resources Program Revtew. 2, 11972).
14. J. K. Berry and J. A. Smith. in Proceedings. Fourth Annual Symposium un. Machine Processing of Remotely Sensed Data. 194 (197).
15. W. A. Malila. R. C. Cicone, and J. M. Gleason. Final Report. ERIM 109600-66-F Environmental Research Institute of Michigan. Ann Arbor. 19761
16. R. E. Oliver and J. A. Smith. Final Report. DAHCO4 i4 G0001 (U.S. Army Research Office. Durham. N.C.. 1974).
17. G. H. Suits, Remote Sensing Environ. 2. 117 (1972).
18. G. H. Suits. Remote Sensing Environ. 2. 175 (19:2),
19. V. Leeman. D. Earing. R. K. Vincent. and S. Ladd. "The NASA Earth Resource Spectral Information System: A Data Compilation." NASA CR-31650-24-T (1971).
20. B. F. Rubinson and L. L. Biehl. Proc. Soc. Photo-Opt. Instrum. Eng. 196, 16 (1979).
21. C. J. Tucker NASA Tech. Memo. 80273 (1979)
22. E. J. Milton. Int. J. Remote Sensing 1.2.153, (1580).
23. E. J. Milton. Photogramm. Eng. Remote Sensing 47, 1223 (1981).
24. F. E. Nicodemus. J. C. Richmond. J. J. Hsia. J. W. Ginsbert, and T. Limperis. "Geometrical Considerations and Nomenclature for Reflectance." U.S. Department of Commerce Report NBSMN-160 (1977).
25. M. J. Duggin, in Proceedings, . Vinth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan. Ann Arbor. 1974). pp. 499-516.
26. M. J. Duggin. Photogramm. Eng. Remote Sensing 46, 643 (1980).
27. M. J. Duggin. P. N. Slater, and S. L. Somers. in Proceedings, AlAA Sensor Systems for the 80s Conference. Colorado Springs. $2-4$ Dec. (1980). pp. 7o-83.
28. M. J. Duggin. C. C. Curtain. N. Anderson. and C. Yuan. in Kemule Sensing of Earth Resources, F. Shahrokhi Ed. (U. Tennessee Space Institute. Tullahoma, 1975), pp. 301-316.
29. M. J. Duggin. Appl. Opt. 20, 3816 (1981).
30. M. J. Duggin. Appl. Opt. 19, 2081 (1980)
31. M. J. Duggin and P. J. Ellis, in Proceedings ASP Fall Technical Meeting. Niagara Falls, N.Y. (American Society of Photogrammetry, Falls Church, Va., 1980), pp. RS-1-G-1-10.
32. M. J. Duggin and P. N. Slater, in Proceedings ASP Fall Technical Meeting, Niagara Falls, N.Y. (American Society of Photogrammetry, Falls Church, Va., 1980), pp. RS-2-C-1-12.
33. C. S. T. Daughtry, V. C. Vanderbilt, and V. J. Polling, "AGRISTARS Supporting Research." Technical Report SR-P1-04191. NASA Document NAS9-15466 (1981).

American Congress
Gurveying and Mapping

fehture	CLASS III		CLASS IV	
	No.	\pm	No.	1
Straight valley	6	19	24	16
Straight shoreline	3	10	15	10
Scary	13	42	36	24
Dark-tone line	0	0	0	0
Rïdge offset	0	0	0	0
Faceted spur	7	23	23	16
Pass	1	3	36	24
Elongated lake	1	3	14	9
Linears identified Zinears sampled	$\frac{20}{40}$	501	$\frac{54}{50}$	901

This study was supported in part by Grant NGL 33-nlo-171
from NASA to the Corneli University School of Civil and
Environmental Engineeriny.

class	LINEAR RECORDED ON MAP?	Linear observed on imagery?	TOTAL NUMBER	$\begin{aligned} & \text { POTAL } \\ & \text { LENGTH } \\ & (\mathrm{km}) \end{aligned}$
1	yes	yes, without checking map	213	1,719
Ir	yes	YES, after checking map	286	1.625
III	yes	no	115	826
Iv	no	yes	630	6,851

- Photographic prints, of seasat synthetic aperture radar in-
agery approx.
Map, $1: 5050,000$.
checked with high altitude aerial photographs, and 908 vere
"confirmed" (Table 2). In contrast, an derial photographic
check could locate only 50 of the class IIt Iinears-mapped linears which were not detectable on the SAR imagery. Those
class HI IIIears that could be located were defined on the
aerial photographs by scarps. faceted spurs. straight valaerial photographs by scarps, face ted spurs, straight val-
leys or orther fatures wich were judged to be too short or too low in relief to be observed, or associated with a 1 ine-
ar on the Seasat sar imagery some of these teatures could
also have veen oriented paraliel or nearly parallet to the also have been oriented parallel or nearly paralie1 to the
SNR look direetion, causing them to be less amenabe to de-
overall, however, rela-

 Lastly, the features relied on for detecting innears with
seasat' SAR imagery are categorized in Table 3. As with the features used with the aerial photographs, the sat magery indicators included - 1 ine- reatures (straight valleys;
straight shorelines, searps, dark inear tones) and point features tridge offsets, tace ted spivs, passes. elongated
lakes). the diticrence boing derined by imayes scale. The numbers in rables 2 oth 3 reter to the occurrence on a spe-
citic type or feature with in inest. ed when tle detection of a 1 inear relind on one or more of
the same feature fe.g., a linear defined ty thiree passes would te t.illied as one pass). If two tifferent teatures.
were dusociated with, the same 1 inear, both would be counted. In conciusion, the volue of suasiot SAR imagery is apparent.
Continuing stuly is examininy the thysical tasis tor class

Fagery but not on the map. Toyether, class I, II and III
Inears include at linears recorded on the geologice map. hile class It II and IV linears include all 1 inears ob-
served on the imacery--hough class It linears were not observed on the first look.
served on
 Inears was conducted by randony in each class were numbered
aerial thotolyaphs. Linnears
consecutively. A random number generator was used to define

 acrial photographic tereoscope and light table (Tabie 2).

The imagery and geologice may were then examined to catego$1 z e$ the types of indineat Trable 3). In addition, rose dia-
y detecting each in class of ii prear ined to deple 15 in increment of direction (Fig. 2).
These were compared to the SAR look direction, approximately These
$\times 13^{\circ} \mathrm{M}$
Results amp discussion

As reported in Table 1, A, 170 ke of linears were recorded on
and
 Of further significance in Table 1 is that nearly 6.900 km
af Hinames detected on the SAR imagery were not recorded on
the map. A random sample of these class IV linears was he map. A rawd smple af,

437

Fisher, D.W. Y. W. Isachsen, and L.v. Rickard, 1970. Geologie map of Heu York, Nudson-Mohawk Sheet ($1: 250,000$).
N. Y . State Musepm and science Service Map and Chatt Series

Ford. J.P. 1980 . Seasat orbital radar imagery for geologic
mapping: Tennessee-kentucky-virginia. The Amer. Assoc.
 geologic mappiny in the Appalachian valley and ridge prov-
ince, TTennessee-kentueky-Virginia. p. $75-113$. In Radar

Isachsen, Y.W., 1973. Spectral geological content of erts-1

 Seience service shly und
tion Dept.. Albany. M.y.

6

APPENDIX D

NEWSLETTER RECIPIENTS (June 1982)
CORNELL REMOTE SENSING MENSLETTER
LIST OF RECIPIENTS

CAMPUS GROUPS AND INDIVIDUALS ${ }^{*}$

ORIGINAL PAGE IS
OF POOR QUALITY

*Nowsletters are sent to the main office of each department listed as well as to variuus individuals within the department. In ade $\begin{aligned} & \text { Newsletters are provided to graduate and undergraduate students, upon }\end{aligned}$ request.

ORIGINAL PAGE IE OF POOR QUALITY

15. Civil and Environmental Engineering (Cont.)

C.C. Yen (Data Analyst, Remote Sensing Progran)
16. College of Agriculture and Life Sciences
(Dean)
(Dean)

D.L. Call
18. Computer Graphics
D.P. Greenberg
Computer Science
20. Computer Services
D. Gale 21. Design and Environmental Analysis
22. Ecology and Systematics

25. Entomology
26. Fintonology Extenston
(a) Ir. E. Waes
(b) J.L. van Gend (b) J.L. Yan Genderen
Jan P. Eerger Sulpet ro Zesources, Inc.
Vallas, Texas
Dr. Joseph K. Eerry
School of Eorestry and
Schinol of Eorestry and Envirommental Scudies
Yaite Hnivers
Hew Haven, C
dew Haver:, Connecticut
J.l. Eessis
Service Argo
Toulouse, France
ORIGINAL PAGE IS OF POOR QUALITY

OEF-CARIPUS CRSUPS AHD IRUYYIDLALS

Agency for Int 1 . Dcyelopment Departaent of State
Hashington, D.C.
(a) C.K. Raul
(b) U.U. Roseborough Dennis Albacgh LCI Ceonericis
Laconia, Ner Haphitire Alberta Rewote Sensing Center
Idrionton, ilberta, Canada Simon E. Anaricba
Department of Plysics Ahmadu Bello Universicy Zaria, Nigeria Sally ipplebaun
New York, New York Dr. Robert H. Arnold Dept. of Cedgraphy
Salen State College Saler, Hass.
leila Baroudy leila Baroudy
Lakeville, Connecticut
Dr. Uavid J. Barr
nept. Hining Hetroleura Eng'g.
University of Missomei
Rolla, Missouri tobert katchelder
Universicy of Calgary University of Calgary
Calgary, Canam
Thomat F. lanueon
Juxionville ficte Uatversity U.partasent of Geograply Jacksonville, Alabana
Mational Space Tech. Intb.
uSTL Station, Mississippi
Riopoqzed zuetd * 6ε
41. Public Information
M.B. Stiles (Staff Writer)
42. Resource Information laboratory
E.E. Hardy (Dir.) E.E. Hardy
E.M. Harnaba
R. Senykoff 43. Rural Sociology H.R. Capener 44. Sociology (Prof.)
40. Pomology
40. Pomology
41. Public Information E.E. Hardy
E.M. Barnaba
(Manager, Tech. Service) (Sr. Exi. Assoc.)

 R. Senykofe (Sr. Exi. Assoc.) Rural Sociology
45. Sponsored Prograns
Sponsored Programs T.R. Rogers (Dir.)
46. Theoretical and Applied Mechanics
47. University Archives
G.P. Colian (Libratian)
48. U.S. Plant, Soll and Nutrition Laboratory (Assoc. Prof.) 49. Vegetable Crops h.c. Hien

Defense Mapping agency	Eros isata Center
Washington, D.C.	Sioux Ealls, Soutil Dakota 0
(ia) J.C. Mamack	(a) J. Cowserc o
	(b) T.M. Holm
G. De Man	(c) Library Framer
Walihot S.a.	(d) D. Woore
Seraing, Belgiun	
	Euratom C.C.R.
Morris Deutsch	Ispe: (Vh), Italy
Falls Church, Vizginia	(a) M. Exaysse G.
Dr. Adam D. Devir	
Technion-Israel Institate of	Dr. Murray felsker
Technology	Wasiningron tewace Sersinmathetter
Haita, Is rael	Washington, D.C.
Dr. Cazl Diegert Doncan G. Ferns	
Samia National Lab	Imperini Callege of Setence ard
Albiquerque, New Mexico	Technolugy London, Faglanci
Eastern Kentucky University	
Richmond, Kentucky	Rita C. Flshtr
(a) D.1V. Howes	Orion Scieace 8 Eng"s- Library
(b) D.R. Monsebroten	Whshingtoia State Caiversity
	Pollman, Washington
Eastman Kodak Coupany	
Rochester, New york	Elizabath n. Fleains
1(a) J.J. Craham	Topo. Surveg Ditectarnte
(b) C.P. McCabe	SuEveys \& Mapplaz Eranch
(c) H.R. Specht	Octawa, Oucario, Camada
(d) K.N. Vizy	
	GIlbert W. Fraga
Dr. A.J. Egyenberger	State Water Rescuseet Control manrd
D'Appolonia Consulting Engineers, Inc.	Sacramento, Callforata
Pittsburg, Penasylvania	W114.as 4. Frexsh
	Amer. Soclexy Photogramatery
Dr. Farouk El-iaz	Falls Church, Vixetinat
Saltheonian Inseftution	
W.ushington, D.C.	Varmin L. Felte
EncIronachtal Peaste Sensing Lab	
Oregron state Linlversity	
Corvallis, Or-gon	
EnIM	Oxford, Firlnad
Ana Arbur, Machiman	
(a) 1.S. ${ }^{\text {(b) 1,0-0 }}$	
(b) K.ll. Rusiers	

Cornell Field Station
Cornelport, New York
(a) D.M Green
(b) E. Mills

Commonealth Forestry Bureau
Oxford, England
 Organization
Deniliquin, Australia

Merrill Conitz Regional Remote Sensing Facility James F. Connors James F. Connors
State House Augusta, Maine Robert Crowder N.Y.s. Cominerce Dept.

Dr. Paul Curran
Dr. Paul Curran University of
Uniced Kingdom

Dr. Bruce Currey
Dr. Brace of Geograpiy
Dept. of Geograpiyy
Flinders Univesity, South Australia
Bedford Park, South Australia Prof. LeRoy A. Daugherty
Dept. of Agronomy
 Las Cruces, Hew lexico

Dr. Donald U. Davis Micholls State UniversIty
Dept. of Earth Sciences Dept. of Earth Sciences
Thibodaux, Loulsiana

Antonto Marelnez de Ardyon Instituto Geografico Macional
Madrid, Spain

Ucefense Mapping Agency
St. Loals, Missourl
St. Louts, Missuurl
Robert Brower Caywga Co. Planning Dept. Auburn, New York
Dr. Peter Burbridge
Midlothian, Scocland
Jo Ans Burginard Easin Electric Power Bismark, North Dakota Canada Centre for Remote Sensing
ottawa, Ontario, Canada ottan, Onerios
(a) R.J. Brown
(c) D.G. Goodenough
(c) is.o. MicGurrin
(f) R.A. O'Neil
(g) R.K. Raney
(g) R.K. Raney Ginadian Aeronautics \& Space
Institute
Octava, Ontar:
Capleal District Regional flanning Cormission
Albany, New York Center for Remste Sensing Studies
Fakultas Gcograli Universitas Gadjah inda

Central Intelligence agency

hashington, D.C.
Stury Chou Chen
Institur tesquisas Espactas Instient resquisas espacias Br. T.S. Choulan Mali-\&a;or1;a-ka-llas
Joolhpur, India

[^7]clinsis: quito, For Pieale Jasacnypipatzat mept. of Mighays
Panzok, Thailland Denais Jaques Canada

U. Jayaraman
 Tullahrax, Tennessec

Williaz Johnston
Essex County Planaing ufitice
Essex County Planains Gifice
Elizabethtow, Ne- York
Elizabethtow, ne- York
Dr. Michasl A. Earterls Dept. of Forestry
Aristotelian Vaversity Thessaloniki, Gresce Kober: Kaswinsky
Acton, Zassachuserts

Irof. willian C. Remary Dept- Renemble hat. Kesources University of Conemecticut Prof. Ralph H. Mefer Unvlersity of Ulisconsin
Mdison, Hisconsin Dr. Thomas C. Kind Hid-America Renote Seas I Hurray State liniversity
Hurray, Kencucky Jesuph : M. Kimen Joswph s. Kirwn
Gweuicy of zimation Edmaneon, Aberta, Cinasan
 College or turine Stuties
Ealversity of Thelinare

Prof. F.M. henderson
tept. of Geography tiept- of Geography
suiry ac Albany Albany, thew York Mr. G. Daniel Hickman Applied Scitace Technology
Arlington, Virginia Prof. Jotan M. Hill Civil Engiaeeriag Dept. Loulsiana State Unfversity
Eaton Rouge, Louisfana Henry R. Hofmann Elarnes Engineering Conpany
Scamford, Conmecticut Dir. Janes P. Hollinger haval Research Laboratory
hashington, D.C. R. Michael Hord General Research CorpWashingeon Operations
Nčisizn, Virginia flarry Howansky, Director כomosoy jo neang coxpl Albany, New York Prof. Shin-yi Hsu Dept. of Geography
SUNY at Binghazton Binghamton, New Yoriz Indian Phetninterpretation Institute (Siesa)
Dehra Dun, India Dr. Yngyar W. Isachsen
\%.Y.S. Gcolugical Eurvey Albany, Hew York Karen Jahn Blackwood, New Jerses Dr. Suresh C. JaIn Concord, Ont.arto, Canada
Norman M. Gutlove
Fairchild Camera \& Instrucent Syosset, New York Prof. Barry \%. Haack Dept. of Geography
Ball State University Muncle, Indiana
R.E. Haberman, Director
Human Education Research \& Developgent
Foundation Foundation
Portland, Oregon
Willuan häfker
Willian Hifker
Exxon Res. $\&$ Engr. Co. Air Quality Control Group
Florham Park, New Jersey R.J. Hall Edeonton, Alta., Canad Dr. R.S. Hamerersclilag Ecological Service lab.
National Park Service Washington, D.C.
Dr. Norman E. Hardy
University of Toronto Mississauga, Ontario, D. Brook HaEr Alberta Agriculture
Lethbridge, Alberta, Dr. Vern hirnapp
Dept. of Geotraphy Dept. of Geography
University of Akron Akron, ohio John A. Harringron, Jr. bept. of Geosraphy Horman, Oklahoma Willism Harcing Tri-State Rerional Plaming Conafssion fiew York, Hew York
Dr. Hassan M. Hassan Dept. of Civil Eugtneerfing Faculty of Engincering
Riyadh, Saudi Arabta

Dr. Stan Horain
University of New Nexico
Albuquerque, Hew Sexico
David L. Horz3n
Nova Scotia Jand Surcey Instsenter inimeaceiohia, Nova Scoita Jaws borton albany, Hew York Jaxes R. Muller
biv. of Land Resourses :Thiol Raleigh, Boith Carolina Prox̃. Peter A. Marthas Facuity of Forestry Vancouver, virginia
Dr. Robert Mayler System Planaluy Corp.
Arlington, Virginia
aisa Goddard Spate flight center Greenbelt, Maryland (a) L.J. Allisoun
(b) B.G. Bly III
(c) B.J. Cre:sy, Jr.
(e) B.L. Markhaz

(h) D.L. TMLI
Nas. Masemrzers
Wastinctea, b.c.
(a) tom cal.brese
(h) P.C. Thow:
(c) M. Serxil.
(d) A.J. Tay.tiow

 latitan, Vir-iat
(a) D. B.art10:t
(b) J.R. A2II
(c) R.L. Jutainn
Nemeth H1. Kayhea
N.Y.S. Board of̃ Hufsoa River-black River Regul. District
Hatertown, Few York
Ja* HeCartiny School of Natural Reso turlington, Vermont
Ral:h MeClurg
O Brien and Gere
Syracuse, New York Dr. Roger M. :lcCoy
чеап эо катsдалғй Salt Lake City, Utah Prof. Jerry N. : tcDonald Dept. of Ceography Radford, Virginia \qquad Bausch and Lomb, Inc.
Rochester, New York Jay Mcleester Mentar-on-the-Irake, Chio Prof, Arthur J. Mcllair Civil Engineeriag Dept. Texas a a haniversity Michtigan State Untversity Eas: ízunsing, Mrchǐsun (a) N. Enshan
(b) G. Schutinik Dr. Senen H. Mramda Philipplex Counctl for site s los Hanos, PhHippines Harcy : ilissirian Torralns County Dept. Plamains

Dr. Richard J. Kramer
Hest Chester, Rennsylvania
R.A. Kreig \& Associates
Anchorage, Alaska
Florian Dept. Transportation Tallahassee, Florida
Wine D. Lanigeraar
Arohem, Holland
Dr. Germain LaRochz Com. U.S. Nucleaz Regulatory Com.
Washington, D.G.
nore
Ecosjotems Int'1.
Gabbrills, Maryland
Frederick Lavery
National Netlands Inventory St. Petersburg, Florida
Geology Departuent
Grand Valley State Colleges
Allendale, Michigan
PAR Technology Corp.
Roine, New York
Leonerd A. LeSchack LeSchact, Assuc., Ltd.
Long rey, Ylorla
Davis S. Linden
Tuchaicolor Graphic Services
LIu
mr. Calan J. Liu
lept. of Forestry
Unifeisity of Kentueky
lexlagton, Hentucky

[^8]| | |
| :---: | :---: |
| | E＊＊ |
| （ay Gou．Warcs | ＊＊S |
| | |
| （c）E．3．Tamex | |
| | |
| Frabit Perchalski | E．S．Cepze Transpuexatiol |
| THE | Warditacos，H．C． |
| Crattansoza，Teutessee | |
| | |
| Er．－xtanck | |
| Scient | St．Dican dxtmersery |
| EnEfuto，Sea Yoric | |
| Gr．Thesas D．Potter | Etran |
| Engircmaneal Dase ix InEormatica Cエズジ | |
| Hashicetos，D．C． | |
| | Sutmas， |
| M．A．E．Zramatix | |
| Stapas | すござ2 25 |
| 3ncea，2trgiasest． |
 |
| Or．\＃ixcomse zuczz | |
| | |
| Lars Rescorce Sctence | |
| Guelph，Ontarlo，Camafe | |
| Purdue Cotpers：${ }^{\text {ch }}$ | |
| Wesc lafayerte，Inさiana （a）E．M．MExhail | Ryz crece |
| | |
| Pardue Coutuersity L．E．Z．S． | Ga\％E．A．Eutuers |
| West Leñyctte，IrJtawz | （b）E．E．WİCu |
| （a）R．M．EDEEer | |
| （b）D．z．\＃orrsen | |
| | Ged 5utu Repatican＊ |
| | |
| | |
| Waterionat Teum Tose | |
| | |
| 3r．Cisurge A－Etsuntivy | |
| U．S．Porchar of＊ifies | |
| Wishtogecn，D．C． | Exinctuch |
| | |
| Urete of ficosrajo．j | |
| Hatule State Untwersity | |
| Digytua，Ghio | |
| | |
| Chtiscitu 5ecrlame | |
| Seame Cateosmataters afince | |
| Minutser，Hiscensin | |

Mst Lenis nesearcu Center Clevelatit bifo
 Techical libraty
 （Iyzaraza，Intiz
 Mathenax beance Sensfag Abency Sexticterzbat，Tuiza （2）S．SEEM 3：0．EAEss a．c． （a）E．2．Hor ma （b）wiz．vectinis，

 Sifver Spriag，Margland
 Ravbecsis，wer uart （b）R．E．C An ran

H．Y．S．Bmptre of Envirotwencal
Cusservation
abdor，tiex Yort
（a）5．Guscti
（c）J．Garam
（d）D．Salith

Training Centez for Rezote Sersino Universitas Gajjoh Mada Yogyakarta, Inconesia	U.S.D.A. Wesiaco, Texis (a) H.W. Gacsana
Earl J. Tullcws, Jr.	L.s.0.a. Ess
Cotton Incorporazed	Des Molnes, Ibua
Raleigh, North Carolina	(a) S.J. Moss
Prof. Joseph J. Uiliman	U.S.d.t. fas
University of Ydaho	Heaston, Texas
College of Forestry, Wildirie \& Range Sciences	(a) P. 大whiurn
Moscow, Idaho	U.S.D.A. SEA
	Fiydrology lat
United Bations	Beltsville, Naryiand
Hew York, New Yors (a) Zarl-tieinz Szehielaz	(a) E.t. Entar
	U.S. Depmerecat of chargy
United Nations Development Programe	Wesiningeon, ग.c.
Maputo, Mozambique	(a) J.J. Gutzica
(a) A.F. Castro	(b) A.a. Surmers
(b) E. Spiers	
	U.S. EPR
United Natioris F.A.O.	Washangtor, D.C.
Rone, Italy	(a) R.F. Rulos
(a) J.W Hieklema	
(b) Z.D. Kaleisky	U.S. ERaficust
U.S. Atny Crial	Las Vegas, Hevada
Hanover, New Hanpshire (a) L.W. Gatto (b) G.A. Shelto	
	U.S. bpajhat
U.S. Arzy Corps of Engincers	Harrenton, Virginda
Buffalo, New York -	
(a) J.A. Adzes	USS. Forest Sirvice
(b) K. Wade	atlanta, Georgia
U.S. Army Engineer Topographic La	
Fort belvoir, Virginia U.S. Futest Semice	
(a) 3.E. Lutes	Brour 11, peensyluari
(b) :九b. Sateralite (a) R. Talutior	
Heserch Trianale ixth, s.c. (a) S.J. Mack	Wasingmixer, Bor. (a) 7 . illised
	U.s.d.a.
(a) J.i. Mercerson	Boultre, Coturato
(b) C. Soulare	
(c) R. Sipmaz	
(d) \%.hi. Higcon	

Martin Schildkret M.S. Neus Service Brooklyn, New York

Dr. John Schost Rochester Institute Tech.
Roclester, New York

Dr. D.A. Scogings Dept. of Land Surveying еכfay yonos jo כtiqnday

Dr. Carlos O. Scoppa Dr. Carlos 0. Scoppa
Buenos Aires, Argentina Dr. Barry Siegal
Ebasco Sarvices, Inc.
Gzeensboro, North Car
Gzeensboro, North Carolina Vernon R. Slaney
Geclogical Survey of Canada
Ortaka, Ontario, Canada Ortawa, Ontario, Canada
Harry E. Smail Battelle, Coluabus Labs.
Cclumbus, Ohio

Williara L. Saith Spectral Data Corp.
Arlington, Virginia

Anthony J. Smyth Overseas Development Admin.
Surrey, England Overseas Development Admin.
Surrey, England

Pichard I. Solonion
 Energy Resources Group
Tulia, 0 latioma Tulisa, Oilahoma
M.J. Spamber Surrey, England
Richard I. Solorion M.J. Spangiter
Westaghouse Electric Corp.
Balrimore, Maryland
G. Willizan s_{p} ana Atlanta, Georzia

Rhole Speer
Rhate Speer State Legislatures
dat' Conf.
Denver, Colorado

 Dept. of Geography University of GeorgIa athens, Georgia Greps R. Wheeler Helena, Montana

Dr. Gary Whiterozd
University of New B University of New Brunswick
Faculty of Education
Fredericton, H.E., Canada
David R. Whitman
Cooperative Extension
Warren County
Warrensburg, New York University of New Brunswick
Faculty of Education
Fredericton, H.E., Canada
David R. Whitman
Cooperative Extension
Warren County
Warrensburg, New York University of New Brunswick
Faculty of Education
Fredericton, H.E., Canada
David R. Whitman
Cooperative Extension
Warren County
Warrensburg, New York University of New Brunswick
Faculty of Education
Fredericton, H.E., Canada
David R. Whitman
Cooperative Extension
Warren County
Warrensburg, New York University of New Brunswick
Faculty of Education
Fredericton, H.E., Canada
David R. Whitman
Cooperative Extension
Warren County
Warrensburg, New York Warrensburg, New York
G.N Wíckware
Lands Directorate
Burlington, Ont., Canada Prof. Andrew Wilson Prof. Andrew Wilson
University of Rochester Rochester, New York Rochester, New York
J. \& L. Winkle San Diego, California Joseph A. Winsly
Van Mys, California

Dennis HInters
Tompkins County Dennis Winters
Tompkins County planning
Ithaca, New York Prof. Kan b. Nona Newark Civil Engineering Lab. Newark Civil Engineering Lab.
Urbina, Illinois Woodward-Clyde Consultants Woodward-Clyde Consultants
Santa ana, California (a) J J. Lovegreen Hoodsard-Clyde Consultants Sain Francisco, California (a) C.A. Ritcho
(b) K.T. MaO (b) K.T. MaO Hoodwars-Clyile Consultants
St. Louis, Missouri St. Louis, Missouri
(a) h. Proser

University of massachusetts Amherst, Massachusetts
(a) M.L. Allison
(b) Remote Sensing Center
(b) Remote Sensing
(c) K.A. Richardson
ejoseauth ined•IS
eqosauth jo Kıtsiantun
St. Paul, Minnesota
(a) W. Johnson
(b) T.M. Lillesand

University of Nebraska
Lincoln, Nebrasf;s
(a) M.D. Ferial
(a) M.D. Ferris
(B) D. Rundquist Hniversity of New South Hales
Kensington, N.S.U., Australia (a) A.K. Milne

University of Nev South Wales (a) B. Forster Fred Voigt Fred Voigt
Herndon, Vi Herndon, Virginia Dr. Stephen J. Walsh
Center for Applications of Remote Sensing
Oklahoma St Oklahoma State University
Stillwate:, Oklahoma

Jim Waters
St. Regis Paper Company St. Regis Paper Company
Defier, Hew York

Ur. Douglas s. Way Ur. Douglas S. Way
Dept. Landscape Architecture Dept, Landscape Arcinzecture
Harvard University
Cambridge, Massachusetts Cambridge, Massachusetts

Dr. Richard Webster
Rothamsted Experimental Station Rothamsted Expert inertial Station
Herts, England范 Rinstin, Texas Carolyn c. Weiss Statistics Canada
Ottava, Ontario; Canada

U.S. Soil Conservation Service Brociall, Pennsylvania
(a) H. Saith
U.S. Soil Conservation Service
Canton, Hew York (a) K. Wheeler
U.S. Soil Conservation Service Washington, D.C.
(a) R.V. Arnold

University of California
Berkeley, California Berkeley, California
(a) J.M. Anderson
(b) S. Aronoff

University of California
Santa Barbara, California (a) 1.. Carver (b) J.L. Estes
(c) K. Slivers

University of florida
Gainesville, florida Gainesville, Florida (b) R.L. Watkins

Unifersfly of kansas
Lawrence, Kansas (a) E.A. Mirtint:o (a) E.A. Martini:
(b) J.H. Merchant

APPENDIK E
RECENT NEWSGETTERS remote sensing, is sent to members of the Cornell community who have an interest in sensors and their applications.

THE REMOTE SENSING PROGRAM

The Remote Sensing Program began in June 1972 with a grant from the National Aeronautics and Space Administration to the Cornell University School of Civil and Environmental Engineering. Although funding sources have broadened over the years, NASA is still a primary sponsor. Since the Program's inception, its staff has endeavored to strengthen: instruction and perforin research in remote sensing, building on Cornel1's 30 years of experience in aerial photographic studies; to establish communication links among persons interested or active in remote sensing; and to conduct applied researcin projects. Certain projects, that involve unique benefit- or action-producing applications of aircraft or satellite remote sensing in New York or the Northeast are performed under the NASA grant with littie or no charge to the user.
Topics being examined under the NASA grant include vineyard yield estimation, vegetable crop acreage in mucklands, plant spectral response to sulfur dioxide, and natural gas exploration. In addition. the National Science Foundation is sponsoring a study of radiative transfer in non-homogeneous waters, and the Environmental Protection Agency is sponsoring work on remote sensing methods for characterizing the contents of chemical storage drums. (Continued, p2).

AN OPERATIONAL LANDSAT

Landsat-4 was launched successfully on 16 July 1982. In contrast to the first three experimental Landsats, launched in 1972; 1975 and 1978, Landsat-4 is intended to provide an operational Earth-sensing capability. This will be achieved with a second generation sensor system, the thematic mapper; a multispectral scanner system similar to those on previous Landsats; and improved ground processing.
The sun-synchronous; near-polar orbit of dandsat-4 is similar to, but lower than, that of earlier Landsats, 705 km (431 mi) versus 920 km $(570 \mathrm{mi})$. From the lower orbit, the spacecraft covers the entire Earth (except poles) in 233 oxbits every 16 days instead of 18 days, and the orbital cycle is incompatible with the 251 -orbit path/row scheme used with the other Landsats. Consecutive orbits of Landsat-4 are $2,752 \mathrm{~km}$ apart, and the adjacent swath to the west is covered seven days later instead of one. (Continued, p2).

FALL SEMESTER COURSES

Courses in Aerial Photographic Studies and Remote Sensing that will be offered during the fall by Cornell's School of Civil and Environmental Engineering include: "Remote Sensing--Fundamentals" (Philipson). "Image Analysis I--Landforms" (Liang), and "Image Analysis II--Physicai Environments" (Liang). All are 3-credit hour courses. Three variable credit hour courses, "Project,""Research," and "Thesis," wili also be. offered on demand. In addition to these regularly schedulea courses, William Philpot will offer a new, 3-credit hour course, "Special TopicsIntroduction to Digital Image processing." This course will emphasize image processing techniques that are widely used in remote sensing applications. Approximately half of the course will consist of lectures on image enhancement, pattern recognition, image analysis and classification, using a largely non-mathematical approach. The remainder of: the course will be devoted to gaining image processing experience with batch and interactive systems. Each student will complete several: projects. For information about these courses, contact profs. Philpot or Philipson, 464 Hollistex Hall, tel. 256-4330, or Prof. Liang, 453 Hollister Hall. tel. 256-5074.

Service Argos, representing CNES (Centre National d'Etudes Spatiales), NASA and NOAA, is organizing an Argos users' conference at Annapolis, Maxyland, 14-15 December 1982. The conference is open to anyone, including those interested in but unfamiliar with the Argos satellitebased data collection and platform location system. A call for papers requested contributions in seven areas: meteorology, oceanography, offshore, glaciology, hydrology, biology or equipment. Abstracts of 200300 words were due by 6 . September at Service Argos, Centre Spatial de Toulouse, 18, avenue Edouard-Belin, 31055 Toulouse Cedex, France.
Cornell Remote Sensing, cont'd.
During the summer, members of the program staff were involved in three international projects. Ta Liang spent five weeks on a soil mapping project in the Northwest Province, Zambia, where he was a consultant to the Spectral Data Corporation, working through the Regional Remote Sensing Facility in Nairobi, Kenya. Warren Philipson spent one month in the Xinjiang Region of the People's Republic of China, providing remote sensing consultations to a livestock development project; and he also spent one month in Syria, coordinating a project on developing remote sensing applications for agriculture. Both of Philipson's projects were conducted for the Food and Agricultural Organization of the United Nations, and both are continuing.
The staff of the Remote Sensing Program includes Warren Philipson, principal investigator, Ta Liang and William Philpot, co-investigators, William Teng, research specialist, and Chain-Chin Yen, computer data analyst. Donald Belcher, Arthur McNair and Ernest Hardy are general consultants to the Program, and for specific projects, assistance has been provided by many Cornell and non-Cornell personnel. Students who contributed to the Program efforts over the summer include Katherine Minden and Ellen Weeks.

LARS CALL FOR PAPERS

The 9th International Symposium on Machine Processing of Remotely Sensed Data, with special emphasis on resource evaluation, will be held at Purdue University, 21-23 June 1983. Authors interested in contributing papers should submit four copies of a $500-1000$ word summary to D.B. Morrison, Purdue Univ./LARS, 1220 Potter Dr., W. Lafayette, in 47906 (tel. 317-494-6305) by 17 December. Opportunities for reporting more recent research results will be available via one-page abstracts of poster papers, due by 25 February 1983.
Landsat-4, cont'd.
Both the thematic mapper (TM) and the multispectral scammer (MSS) scan $185-\mathrm{km}$ swaths. The TM is a seven-band scanner whose spectral ranges were selected for specific applications: band $1(0.45-0.52 \mu \mathrm{~m})$, bluegreen for water penetration, soil versus vegetation, and deciduous versus coniferous flora; band $2(0.52-0.60 \mu \mathrm{~m})$, green peak reflectance for vegetative vigor; band $3(0.63-0.69 \mu \mathrm{~m})$, chlorophyll absorption in the red for vegetation discrimination; band $4(0.76-0.90 \mu \mathrm{~m})$, infrared for biomass and water body delineation; band $5(1.55-1.75 \mu \mathrm{~m})$, infrared for vegetation moisture content, soil moisture, and snow versus clouds; band $6(10.4-12.5 \mu \mathrm{~m})$, thermal infrared for vegetation stress, soil moisture and thermal mapping; band 7 (2.08-2.35 $\mu \mathrm{m}$), rock type discrimination and hydrothermal mapping. Compared to the MSS, the TM has a higher radiometric sensitivity and a higher spatial resolution-- 30 m in all but band 6 which is 120 m .
The MSS is essentially the same as those on previous Landsats, however, the optics have been modified to maintain a pixel size of approximately 80 m from the lower altitude. Although spectrally unchanged, bands 4, 5, 6 and 7 have been redesignated bands $1,2,3$ and 4, respectively.

ORIGINAL PAGE IS
 OF POOR QUALITY

Purdue University announces the availability of a set of five tutorial videotapes under the overall title, "Introduction to Quantitative Analysis of Remote Sensing Data." Authored and presented by staff associated with the Laboratory for Applications of Remote Sensing, the tapes rum for just under 30 minutes each, with individual presentations on: The Remote Sensing Information System, The Role of Pattern Recognition in Remote Sensing, Correction and Enhancement of Digital Image Data, Spectral Properties of Soils, and The Role of Numerical Analysis in Forest Management. Accompanying each tape is a printed Viewing Notes which contains key illustrations and quotations from the tapes, as well as self-administered tests, with answers. To obtain an 8-page descriptive brochure or borrow the 10 -minute preview tape, "Keep Pace with Remote Sensing," contact Mr. G.W. O'Brien, 116 Stewart Center, Purdue Univ., W. Lafayette, IN 47907 (tel. 317-474-7231).

CONFERENCES AND SYMPOSIA
Operational Interpretation of Remote Sensing Data and Outlook for Use of Future Satelidte Systems (Int'1. Soc. Photogrammetry \& Remote Sensing, Commission VII); 13-17 Sept; in Toulouse, France; Contact: GDIA, 18, avenue Edouard-Belin, 31055 Toulouse Cedex, France.
Fall Technical Mtg., Amer. Soc. Photogrametry; 19-23 Sept; in Fort Lauderdale-Hollywood, Fla.; Contact: 1982 ACSM-ASP Fall Convention, 3152 Coral Way, Miami, Fla 33145 (tel. 305-446-3511).
-Thermosense V, An Int'l. Conf. on Thermal Infrared Sensing Diagnostics; 25-27 Oct; in Detroit; Contact: SPIE/Thermosense V, P.O. Box 10, Bellingham, WA 98227.
3rd Asian Conf. on Remote Sensing; 4-7 Dec; in Dacca, Bangladesh; Contact: Dr. Shunji Murai, Inst. of Industrial Science, Univ. of Tokyo, 7-22, Roppongi, Minatoku, Tokyo, Japan.
Remote Sensing for Exploration Geology (ERIM 2nd Thematic Conf.); 6-10 Dec; in Fort Worth, Tex.; Contact: Remote Sensing Center, ERIM, P.O. Box 8618, Ann Arbor, Mich. 48107 (tel. 313-994-1200).

SELECTED ARTICLES AND PUBLICATIONS
Amer. Soc. Photogrammetry. 1983. Manual of remote sensing. 2nd Ed., 2 vols., 36 chaps., approx. 2400 p. Amer. Soc. Photogrammetry, 210 Little Falls St. , Falls Church, VA 22046 (Prepublication prices through 15 Oct: $\$ 57.50$, member; $\$ 42$, student member; $\$ 77.50$ nonmember; postage/handing: $\$ 3$ in U.S., $\$ 6$ in Canada, $\$ 10$ elsewhere).
Johannsen, C.J. ed. 1982. Remote sensing for resource management. Soil Conservation Soc. of Amer., 7515 N.E. Ankeny Rd., Ankeny, Iowa 50021. approx. 688 p. (\$45).

Mengers, P.E. 1982. Recent developments in medical imaging. ElectroOptical Systems Design 14:4:27-38,
Newitt, J. H. 1982. Why use a logarithmic signal processor in a TV camera? Electro-Optical Systems Design 14:7:45-48.
Whitbook, M. 1982. Optical radar-Why the CO_{2} laser? Electro-optical Systems Design 14:6:35-42.
Applied Optics. 1982. v. 21,n.7
-Wolfe \& Byer. Model studies of laser absorption computed tomography for remote air pollution measurement.
-Kollenkark et al. Influence of solar illumination angle on soybean canopy reflectance.
Applied Optics. 1982. v. 21, n. 9
-Russell et al. Orbiting lidar simulations. 1: Aerosol and cloud measurements by an independent-wavelength technique.
-Russell \& Morley. Orbiting lidar simulations. 2: Density, temperature, aerosol, and cloud measurements by a wavelength-combining technique.
-Spinhirne et al. Cloud top remote sensing by airborne lidar.

4 Selected Articles, contid.
Electro-Optical Systems Design. 1982. v.14,n.i
-Tebo, A. R. Sensing with optical fibers: An emerging technology.
-Green, W.B. Introduction to image display architecture.
IEEE Transac. Geoscience \& Remote Sensine. 1981. V. GE-19, n. 3.
-Balick et al. Inclusion of a simple vegetation layer in terrain temperature models for thermal ir signature prediction.
-Shanmugan et al. Textural features for radar image analysis.
IEEE Transac. Geoscience \& Remote Sensing. 1981. V.GE-19, 1.4
-Hofer \& Njoku. Regression techniques for oceanographic parameter retrieval using space-borne microwave radiometry.
-Hall et al. Freshwater ice thickness observations using passive microwave sensors.
-Martin, P.J. Direct determination of the two-dimensional image spectrum from raw synthetic aperture radar data.
-Hill \& Wait. HF radio wave transmission over sea ice and remote sensing possibilities.
Int'l Jour. of Remote Sensing. 1982, v.3,n.l (Jan-Mar)
-Hughes \& Henderson-Sellers. System albedo as sensed by satellites: Its definition and variability.
-Labovitz ot al. Preliminary evidence for the influence of physiography and scale upon the autocorrelation function of remotely sensed data.
-Chittineni, C.B. Dependent feature trees for density approximation. I. Optimal construction and classification results.
-Nelson \& Grebowsky. Evaluation of temporal registration of Landsat scenes.
-Gurney, C.M. The use of contextual information to detect cumulus clouds and cloud shadows in Landsat data.
-Thomas, M.H.B. The estimation of wave height from digitally processed SAR imagery.
-Hung \& Smith, Remote sensing of tornadic storms from geosynchronous satellite infrared digital data.
ITC Jour. 1981. v. 2
-Malingreau, J. Remoté sensing and technology txansfer in a developing society.
-Soeters \& Rengers. An engineering geological map from large scale aerial photography.
-Doyle, F. Satellite systems for cartography.
-d'Audretisch et al. Education and training in remote sensing applications.
Remote Sensing of Environment. 1982. v.12, n. 12 (May)
-Ormsby, J.p. The use of Landsat-3 thermal data to help differentiate land covers.
-Hong \& Iisaka. Coástal environment change analysis by Landsat MSS data.
-Heilman \& Moore. Evaluating near-surface soil moisture using Heat Capacity Mapping Mission data.
-Hixson et al. An assessment of Landsat data acquisition history on identification and area estimation of corn and soybeans.
-Churchill \& McNabb. Processing of line-scan radiometric data at recoxding speeds.
-Kimes \& Kirchner. Irradiance measurement errors due to the assumption of a Lambertian reference panel.
-Whitlock et al. Criteria for the use of regression analysis for remote sensing of sediments and pollutants.
-Burke et al. Detection of rainfall rates utilizing spaceborne microwave radiometers.

The Newsletter is made possible by a grant from the National Aeronautics and Space Administration to Cornell's School of Civil and Environmental Engineering. Address comments to Dr..W. R. Philipson, Cornell University, Hollister Hall, Ithaca, N.Y. 14853 (tel. 607-256-4330).

The Newsletfer, a bimonthly report of articles and events in remote sensing, is sent to members of the Cornell community who have an interest in sensors and their applications.

LANDSAT FOR MONITORING VEGETABLES IN NEW YORK MUCKLANDS Nucklands are important vegetable-groving areas in New York State. The Eeasibility of applying Landsat multiscectral scanner data for inventorying vegetable acreage in these variably shaped and variably sized fields is being tested by the Cornell Remote Sensing program in a study with the inew York Crop Reporting Service.
An 11 July 1981 Landsat computer-compatible tape for central New York was selected on the basis of a crop calendar and the available Landsat scenes. This tape-provided by the USDA/SRS-was analyzed using a 1977 version of ORSER, modified and supplemented for operation on Cornell's IBM $370 / 168$ computer. The remotely sensed data were related to field crop records supplied by the cooperator. The pilot area encompaysed 26 fields in Madison County, N.Y. (Continued p2).

LAND USE AND COVER INVENTORY IN NORTH YEMEN

The Resource Information Laboratory of the N.Y.S. College of Agriculture and Life Sciences is continuing its land use/cover project in the Yemen Arab Republic (Newsletter, Nov 1980). The objectives are to inventory and map the country's agricultural land use, develop institutional capabilities for using the resource information, demonstrate the general value of satellite remoter sensing for lesser developed countries, and refine low-cost photographic image enhancement techniques.
Landsat color composites were prepared using diazo and a masking technique. The imagery included at least two dates of each of the ten scenes required to cover the country. Visually interpreted land use and cultural data from other sources were recorded in a 1:250,000 scale geographic reference system, based on the U.T.M. projection. In developing the map series, a regional geographic analysis approach was adopted, with mapping efforts phanned, coordinated and executed at the national level. (Continued p2).

SIR-A DATA

Data from the Shuttle Imaging Radar-A, Iaunched on NASA's second space shuttle on 12 November 1981, are now available. The SIR-A was a synthetic aperture, I-band ($1278 \mathrm{MHz}, 23 \mathrm{~cm}$) system, which imaged a 50-km swath width with a 50° incidence angle and a resolution of approximately 40 m . Imagery was acquired at selected locations-approx. 10 million sq. km.-between $36^{\circ} \mathrm{S}$ and $41^{\circ} \mathrm{N}$ latitudes. The data were optically correlated onto 13 cm film at a scale of $1: 500,000$. Inquiries regarding specific data availability should be directed to: NSSDC Request Coordination. Code 601, NASA/GSFC, Greenbelt, MD 20771 (tel. 301-344-6695). For general information, contact: Annie L. Holmes or Don L. Harrison, SIR-A Data Center, MS 183-701, Jet Propulsion Lab., Pasadena; CA 91109 (tel. 213-354-2386).

LATE CALL FOR POSTER PAPERS
The 17 th International Symposium on Remote Sensing of Environment will be held in Ann Arbor, Mich., 9-13 May 1983. Conventional sessions and multidisciplinary poster sessions will address: new or innovative techniques; advanced sensor and data acquisition system design; advanced data processing and analysis capabilities; earth resources, environmental monitoring and information system requirements; and discipline or mission oriented projects. persons interested in contributing a paper for a poster presentation should submit 20 copies of a 300-1000 word summary to Dr. J.J. Cook, ERIM, P.O. Box 8618, Ann Arbor, Mich. 48107 (tel. 313-994-1200), before 1 November.

The 8th Canadian CALL FOR PAPERS
3-6 Men Canadian Symposium on kemote Sensing will be held in Montreal. in may 1983. The general theme is the integration of remote sensing in resources management. In addition, a special session will be devoted : to simulation of data from future satelilite programs, guch as SPOT or Radarsat, Contributors should send a 600 -word abstract to Dr. F. J. Bonn, Laboratoire de Teledetection, Dept. de Geographie, Universite de Sherbrooke, Sherbrooke, Quebec, Canada Jik 2RI (tel. 919-565-4523), before 15 November.
Vegetable Monitor, cont'd.
Supervised classification was performed using a Euclidean distance classifier ("CLASS"). Four fields each of corn, potato and onion were used for training, and two fields of each crop were used for testing! In addition, six abandoned fields were included as training data and two abandoneri fields were used for testing. The best results were obtained by treating the training data for corn, potato and onion as representing two categories of each crop (i.e., bimodal distributions), with two fields each. Abandoned fields were treated as representing three categories with two fields each. The resulting accuracies ranged from 60 to 100% for the training data and 54 to 898 for the testing data. In an effort to improve these results, the spectral data were subjected to principal component and canonical transformations prior to classification; however, these transformations produced no increase in accuracy.
The work to date has been conducted by Min-hui zhu, Shou-yong Yan and Chain-chin Yen, under the direstion of Warren philipson. partial support has been provided by NASA grant NGL 33-010-171. For further

CONFERENCES/SHORT COURSES
"Remote Sensing for Exploration Geology," thematic confexence; 6-10 Dec.; in Fort Worth, Tex.; $\$ 275$; Contact: Remote Sensing Center, ERIM, F.O. Box 8618, Ann Arbor, Mich. 48107.
"Remote Sensing and the Atmosphere," annual technical conference of Remote Sensing Society; 15-17 Dec.; in Liverpool, England; contact: Dr. A. Anderson-Sellers, Geography Dept., Univ. of Liverpool, P.O. Box 147, Liverpool L69 3BX, England (tel. 051-709-6022 x2707/ telex 627095).
11th Alberta Remote Sensing Course; 21-25 Feb. 1983; \$175; course is intended to develop practical expertise in using remote sensing for earth resource surveys and management; Contact: Alberta Remote Sensing Center, 1lth Floor, 9820-106 St., Edmonton, Alberta; Canada T5K 2J6 (tel. 403-427-2381).
"The Application of Remote Sensing rechniques to Aid Range Management," international conference of Remote Sensing Society; 21-23 Sept. 1983; Contact: Mrs. Pam Cook, Short Course Secretary, National College of Agricultural Engineering, Silsoe, Bedford, England MK45 4DT.
Landsat in yemen, cont'd.
A special training program oriented to technology identification and transfer was implemented along with, and as an integral part of, the project. Early in 1983, the Resource Information Laboratory will be conducting several workshops in Yemen. These will focus on the Landsat project as a means for collecting baseline data, while demonstrating the utility of land resource data for national planning.
Project support has been provided through the Near East Bureau of the U.S. Agency for International Development, in cooperation with the Yemen Ministry of Agriculture. For details, contact Dr. Ernest E. Hardy, Director/Principal Investigator, or Dr. Donald Senykoff, Yemen Program Manager, Box 22 Róberts Hall, Cornell Univ.; Ithaca, NY 14853 (tel. 607-256-6520).

ORIGINAL PAGE IS OF POOR QUALITY

CALL FOR POSTER PAPERS
A Symposium on the Application of Remote Sensing to Resource Management will be held in Seattle, Washington, 22-27 May 1983. Sponsored by the American Society of Photogrammetry in cooperation with the Renewable Natural Resources Foundation and its member societies, the symposium is intencad to bring remote gensing technology to the resource manager or technician. Poster papers addressing case applications of remote sensing to natural resource management are solicited. proposals should include a title, the author's name and affiliation, and a 100 -word paragraph describing the application, time Erame in which the application was applied, and its current status. proposals should also include the general topic of interest (forestry, wildilife, vegetation damage, etc.). Submit proposals to Dr. Peter A. Murtha, Faculty of Forestry, Univ. of British Columbia, Vancouver, B.C. V6T IW5 Canada.

SELECTED ARTICLES AND PUBLICATIONS

Heat Capacity Mapping Mission user's guide q data availability catalogs. Requests from U.S.: NSSDC, Code 601, NASA/GSFC, Greenbelt, MD 20771 (tel. 301-344-6695): foreign requests: World Data Center A for Rockets \& Satellites, same address.
Hung, R.J. 1982. Sensing severe storms. Photonics Spectra 16:9:61-64. Morgan, D. A. 1982. Dry silver imaging: New advances and applications. Electro-Optical Systems Design 14:9:41-44.
proc. 7th Canadian Sympos. on Remote Sensing. Held Winnipeg, Sept. 1981. \$52. Canada, $\$ 54$ elsewhere. Canadian Aeronautics \& Space Inst., Saxe Bldg., 60-75 Sparks St., Ottawa, Ont., Canada Klp5A5.
Short, N.M. 1982. The Landsat tutorial workbook: Basics of satellite
 Gov't. Print. Office, N. Capital St., Washington, D.C. 20052)558p,\$55.
Staff. 1982. The coming of age of color photography. Functional photog. 17:5:27-29,41.
Applied Optics. 1982. 'v.21, n. 12
Prole, L. R. Computed laser backscattering from turbid liquids: Comparison with laboratory results.
-Heaps et al. Stratospheric ozone and hydroxyl radical measurements by balloon-borne lidar.
-Menyuk et al. Laser remote sensing of hydrazine, MMH, and UDMH using a differential absorption CO_{2} lidar.
Canadian Jour.- Remote Sensing. 1982. v.8, n.l (July)
-Guindon etal. The role of digital terrain models in the remote sensing of forests.
-Pitblado \& Amiro. Landsat mapping of the industrially disturbed vegetation communities of Sudbury, Canada.
-Langham, E.J. RADARSAT-Canada's proyram for operational remote sensing.

- Bukata et al. The futility of using remotely determined chlorophyll concentration to infer acid stress in lakes.
Electro-Optical Systems Design. 1982. v.l4,n.8 (Aug)
-Morgan, D.A. Dry silver process for imaging.
-Green, W.B. Digital image display glossary.
IEEE Trans. On Geoscience \& Remote Sensing. 1982. v.GE-20, n. 2
-Omatu \& Seinfeld. Estimation of atmospheric species concentrations from remote sensing data.
-Burke, H.K. Detection of regional air pollution episodes utilizing satellite digital data in the visual range.
-Hodgson et al. A system design for a multispectral sensor using twodimensional solid-state imaging arrays.
-Stiles et al. The recognition of extended targets: SAR images for level and hilly terrain.
-Engheta \& Elachi. Radar scattering from a diffuse vegetation layer over a smooth surface.
-Chang \& Milman. Retrieval of ocean surface and atmospheric parameters from multichannel microwave radiometric measurements.

4. TEEE Trans Geoscience \& Remote Sensing, 1982. v.GE-20, n. 3 Special issue on the 198\% Int'. Geoscience and Remote Sensing Symp. (IgARSS'81): Recent'advances in remote sensing.
Int'1. Jour. of Remote Sensing. 1982. v.3, n. 2 (Apr-June)
-Cracknell et al. Remote sensing in Scotland using data received from satellites. A study of the Tay Estuary region using Landsat multispectral scanning imagery.
-Welch. R. Spatial resolution requirements for urban studies.
-Budd \& Milton. Remote sensing of salt marsh vegetation in the first four proposed Thematic Mapper bands.
-Chittineni, C.B. Dependent feature trees for density approximation. Ir. Maximum likelihood clustering.
-Valerio \& Llebaria. A quantitative multispectral analysis system for aerial photographs applied to coastal planning.
ITC Journal. 1981. n. 3
-Mulder, N.J. Spectral correlation filters and natural colour coding.
$-d^{x}$ Audretsch \& Gelens. Rural development in the humid tropics.
-Trustrum et al. Colour composite printing of multispectral aerial photographs.
Photogram. Eng'g. \& Remote Sensing. 1982. v.48, n. 3 (Mar)
-Schwarz, P.G. A test for personal stereoscopic measuring precision.
-Bryan, M.L. Analysis of two Seasat Synthetic Aperture Radar images of an urban scene.
-Hardaway et al. Cardinal effect on Seasat images of urban areas.
-Ric.ci, M. Dip determinations in photogeology.
-Ehlers, M. Increase in correlation accuracy of remote sensing imagery by digital filtering,
-Billingsley, F.C. Modeling misregistration and related effects on multispectral classification.
-Card, D.H. Using known map category marginal frequencies to improve estimates of thematic map accuracy.
-McDaniel \& Haas. Assessing mesquite-grass vegetation condition from Landsat.
Photogram. Eng'g. \& Remote Sensing. 1982. v.48, n. 4 (Apr)
-Junkin, B.G. Development of three-dimensional spatial displays using a geographically based information system.
-Aronoff \& Ross. Detection of environmental disturbance using color aerial photography and thermal infrared imagery.
-Jupp \& Mayo. The use of residual images in Landsat image analysis.
-Marsh et al. An instrument for measuring thermal inertia in the field.
-Vlcek, J. A field method for determination of emissivity with imaging radiometers.
-Jenson \& Toil. Detecting residential land-use development at the urban tringe.
-Ulaby et al. A simulation study of soil moisture estimation by a space SAR.
Remote Sensing of Environment. 1982, v.12, n. 3 (July)
-Bernard et al. C-band radar for determining surface soil moisture.
-Zheng \& Klemas. Determination of winter temperature patterns, fronts and surface currents in the Yellow Sea and East China Sea from satellite imagery.
-Aoki \& Inoue. Estimation of the precipitable water from the ir channel of the Geostationary Satellite.
-Nellis, M.D. Application of thermal infrared imagery to canal leakage detection.
-Scillag, F. Significance of tectonics in linear feature detection and interpretation on satellite images.

The Newsletter is made possible by a grant from the National Aeronautics and Space Administration to Cornell's School of Civil and Environmental Engineering. Address comments to Dr. W. R. Philipson, Cornell University, Hollister Hall, Ithaca, N.Y. 14853 (tel. 607-256-4330).

[^0]: ${ }^{1}$ These represent the high and low extremes of treatment.
 ${ }^{2}$ HRU is the Hudson River Umbrella.
 ${ }^{3}$ GDC is the Geneval Double Curtain

[^1]: *B = band

[^2]: *Groups 1, 2 and 3 are defined in Table 4.16

[^3]: *Groups 1, 2 and 3 are defined in Table 4.16

[^4]: *Vines that were severely affected by disease or pests, and were not used in analyses.

[^5]: *Vines that were severely affected by disease or pests, and were not used in analyses.

[^6]: M. J. Duggin is with SUNY College of Environmental Science \& Forestry, Syracuse. New York 13210, and W. R. Philipson is with Cornell University. Holliston Hall. Ithaca. New York 14853.

 Received 6 October 1981
 0003-6935/82/152833-08\$01.00/0.
 c 1982 Optical Society of America.

[^7]: Gratate Scluml of Geography W, reester, Missachusetts

[^8]: Prof. Waller k. Long Cuyuz,
 nuburn, fica York

