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SUMMARY

A curve-fitting technique is developed which is useful in the representation of
noise sources. Noise from a given source is tabulated in a spherical coordinate
system at a fixed radius from the origin. The noise, represented by mean-square
pressure or by sound pressure level, is then a function of frequency, polar direc-
tivity angle, and a number of parameters which represent the physical properties of
the source. The dependence of the noise on the freguency and directivity variables
is represented by bicubic splines. A least-squares bicubic spline fit is made to
noise data from each test of the source to find values of the noise data at the
knots, or nodes, of a frequency-angle computational grid. The array of noise values
at these grid points is called noise coordinates. These coordinates are associated
with the parameters which describe the state of the noise source; that is, the coor-
dinates are functions of the test parameters. The functional dependence of the coor-
dinates on the test parameters is represented by a Taylor's series expansion of the
coordinates in terms of the parameters. The coefficients in the Taylor's series,
which are partial derivatives of the coordinates with respect to the various param-
eters, are found by a least-squares fit to data from different tests of the noise
source.

The method is applied to the prediction of coaxial jet noise. The jets are
axisymmetric so that a bicubic spline may be used to represent the frequency and
directivity dependence. The frequency variation is represented by five intervals
with natural (zero-curvature) boundary conditions. The directivity variation is also
represented by five intervals but with zero-slope boundary conditions. This bicubic
spline has 36 degrees of freedom or coordinates. There are five independent param-
eters, or dimensionless groups, which represent the flow state of a coaxial jet.

Each of the 36 coordinates of the bicubic spline is represented by a third-degree
Taylor's series in the 5 jet parameters. These Taylor's series each have 56 inde-
pendent terms, including the constant for the origin of the expansion. Data from
over 540 jet noise tests were collected to solve for the coefficients of the Taylor's
series., This data base supplied over 540 equations in 56 unknowns for each of the

36 coordinates. These sets of equations were solved in the least-squares sense to
produce a seven-dimensional curve fit to the jet noise data base: +two dimensions for
the spline and five dimensions for the Taylor's series.

INTRODUCTION

The purpose of this paper is to develop an empirical method for source noise
predictions. The method is general in the sense that it may be applied to any source
for which measured noise data are available. This method is limited herein to noise
sources with an axis of symmetry. Extending the method to sources without symmetry
is possible with only a small conceptual change, but there will be an increased
requirement for data, data reduction, and computation.

This method was developed for application to aircraft noise prediction. The
NASA Aircraft Noise Prediction Program (ref. 1) contains empirical methods for noise
sources on conventional turbofan aircraft. The principal aircraft noise sources are
the jets, the engine fans, and the engine combustion chambers. The secondary air-
craft noise sources are the engine turbines and the airframe. 'Te aircraft engine



sources are all assumed to be axisymmetric. The airframe noise is probably not axi-
symmetric; however, there are not enough data to define conclusively the directivity
of this source. Since airframe noise is usually less than engine noise, it is fre-
quently assumed that, in the far field, the noise from the entire aircraft is axi-
symmetric., The method given herein can thus be applied either to the aircraft com—
ponent noise sources or to the entire aircraft.

Empirical prediction methods have three principal features: a prediction of the
overall noise, a prediction of the directionality of the noise, and a prediction of
the spectrum of the noise. These features appear in each of the aircraft component
prediction methods given in reference 1. The general similarity of empirical pre-
diction methods for physically different noise sources, such as an aircraft engine
fan and a jet, suggests that a general formula can be given without referring to the
particular physical features of the noise source. The general formula is developed

in this paper.

An empirical prediction method must give an accurate description of the noise
for all possible states of the source. For a particular source, its state is
described by variables such as speed, temperature, and pressure., These state vari-
ables are called parameters to distinguish them from other variables, such as fre-
quency and direction, which are associated with the noise field but not with the
state of the source. Most noise-producing machines operate over a limited range of
state that is not far removed from a common state called the design point. This
limited range makes it possible to develop a general empirical method for source
noise prediction.

An empirical prediction method gives the noise field in terms of the source
parameters, or source state, and tables of constants which are uniquely related to
the noise source. For example, jet noise may be predicted with a set of noise spec-
trum curves (functions). These curves are usually given graphically; however, for
predictions with a digital computer, these graphs are converted to tables which are
interpolated to give the spectrum functions (curves). Reference 1 contains tables of
constants for the turbofan-powered aircraft noise sources. These tables often con-
tain several thousand constants.

The tables used in an empirical prediction method are the end product of a data-
reduction process which begins with measured source state and noise field data. The
data tables used in the prediction method may be regarded as alternate forms of the
original data. Emphasizing the word "reduction" in the data-reduction process
implies that the smallest possible tables are desired as a basis for empirical noise
prediction. One method of achieving the goal of smaller tables is to use higher-
order interpolation schemes. Referring again to the example of jet noise, the tables
given in reference 1 are intended for linear interpolation. By using a higher order
interpolation scheme, such as cubic splines, these tables may be reduced in size;
that is, they may be converted to equivalent tables with fewer entries. The selec-
tion of interpolation rules is the first step in either empirical prediction or data
reduction., Empirical prediction and data reduction are inverse processes with common

interpolation rules.

The goal of empirical source noise prediction is to compute a noise field which
is close to the measured data. A mathematical norm is selected to give objectivity
and precision to the concept of closeness. This objective definition of closeness
may be used to compare different prediction methods such as a theoretical predic-
tion and an empirical prediction. It is used first, however, in the data-reduction
process in computing the tables of constants. The classical norm of distance squared
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is used herein. This norm has the advantage of leading to linear equations in the
data-reduction process., The resulting prediction method is said to be best in the
least-squares sense,

The basic elements of the present empirical method may be summarized now. The
method uses least-squares curve fits to measured data. The interpolation rules are
cubic splines for noise field variables, such as frequency and direction, and Taylor's
series approximations for source parameters. Taylor's series are appropriate for
source parameters since these do not vary far from some standard source state values.
The splines are necessary for field variables since they have a larger range of
values,

The method herein is illustrated with application to the turbulent mixing noise
of static subsonic coaxial jets. The flow state of a coaxial jet is a function of
five source parameters. These source parameters can be chosen from a large group of
interdependent parameters. Many jet noise theories use area ratio (of the outer
nozzle to the inner nozzle) and the velocity and density of each stream. Empirical
formulas (refs. 1, 2, and 3) often use area ratio, velocity, and total temperature of
each stream. A large data base is necessary to empirically define a function of five
variables,

The data base contains 65 single-~jet noise tests from Lockheed-Georgia Company
(work done under Air Force Contract F33615-73-C-2032 from 1972 to 1975), 146 tests of
nozzles with area ratios of 0.75 and 1.2 from Pratt & Whitney Aircraft (ref. 4), and
212 tests from the NASA Lewis Research Center (refs., 5 and 6)., The Lewis tests
included nozzle area ratios of 1.2, 1.5, 2.0, and 3.33. The Pratt & Whitney data are
unique in their coverage of the temperatures of both streams. The Lewis data cover
the broadest range of source parameters, including supersonic flows in both
streams. The National Gas Turbine Establishment in the United Kingdom contributed
three data sets designated as data sets A, B, and C. The NGTE data set C has the
largest range of area ratio, from 1.4 to 8.1, of any data set but has an ambient
temperature outer stream. The Societe Nationale d'Etude et de Construction de
Motuers d'Aviation in France also contributed a subsonic jet data set. This data
base has over 800 separate jet noise tests with around 200 000 individual sound
pressure level (SPL) measurements.

The National Aeronautics and Space Administration (NASA) has a continuing
research program for the development of noise prediction methods. The first jet
noise prediction methods developed under this program were by Stone (ref. 7). Stone
has produced prediction formulas for a wide range of nozzle types - including
rectangular nozzles and thrust reversers - and flow states. Stone's formulas have
served as the best coaxial noise predictions of NASA for over 6 years. They are a
blend of classical theory and keen personal insight derived from a regrettably small
amount of jet noise data.

The inverted-flow nozzle, a concept developed for possible application to
supersonic transport aircraft, was not covered by the 1974 prediction methods of
Stone. Therefore, Stone developed separate formulas for this flow state (ref. 8)
with the Lewis data base (refs. 5 and 6). In this latter method, Stone used the idea
of two spectra, one from the outer premerged stream and one from the merged stream.
Stone's inverted-flow method is similar to Jaeck's method (refs. 2 and 3) in the
application of this idea of two additive spectra. About the same time, Pao (ref. 9)
and Russell (ref. 10) developed a formula for inverted-flow jet mixing noise. Pao
"and Russell used the Pratt & Whitney data set and, like Stone and Jaeck, assumed an
addition of two spectra. The Stone and Pao-Russell methods differ in the following



way: Stone defined the premerged and merged spectra through modifications of the
empirical spectral curves from his 1974 method, whereas Pao and Russell used the
rule that the premerged and merged spectra have similar shapes but different peak
locations and amplitudes., All these methods are included in the NASA Aircraft Noise
Prediction Program (ANOPP) (ref. 1) so that there is some ambiguity in the pre-
dictions of this program for the case of inverted-flow jets. The method developed
herein is intended to replace these present ANOPP methods for coaxial jet noise,

This paper is divided into three major sections. The first section gives some
preliminary definitions and notations which are helpful later. This first section
also gives four strategies for making empirical noise predictions. Data reduction
is discussed in the second section. It is shown how the data-reduction process is
related to the format of the noise prediction method being developed. In the third
section, one of these prediction strategies is applied to the data base for coaxial
jet noise, and an explicit prediction method is derived for the data base. The third
section concludes with a discussion of the concept of an optimum coaxial jet.

SYMBOLS
A area, m2
c speed of sound, m/s
cp specific heat at constant pressure, mz/K—s2
D(0) directivity of power
D2 order of derivative in Taylor's series
D directivity of power in frequency band
4 diameter of jet, m
E cubic spline basis function
£ frequency, Hz
J energy flux
Jd energy flux in frequency band
k,m,m',n,
i3, 2,8 integers
L level
M number of basis functions in spline fit on frequency
m mass-flow rate, kg/s
N number of basis functions in spline fit on direction

P power, W



distinct permutations of independent variables in derivatives in

Taylor's series
power in frequency band, W
pressure, Pa
mean-square acoustic pressure
gas constant, m2/K 52
relative spectrum
spherical radius
spectrum of energy flux
spectrum of energy flux in given direction
temperature, K
velocity, m/s
derivative multiplier
transformed prediction parameter
prediction parameter
ratio of specific heats
noise level coordinate
Kronecker delta function
logarithmic frequency parameter
cubic spline basis function
polar directivity angle, deg
derivative
eigenvalue
Helmholtz number
density, kg/m3
azimuthal directivity angle, deg

solid angle, sr



Subscripts:

e equivalent

ref reference

t total

1 primary stream

2 secondary stream
® ambient

Abbreviations:

GALAC Lockheed—Georgia Company

LeRC NASA Lewis Research Center

NGTE National Gas Turbine Establishment (United Kingdom)
P&wW Pratt & Whitney Aircraft

SNECMA Societe Nationale d'Etude et de Construction de Motuers d'Aviation (France)

SPL sound pressure level

EMPIRICAL SOURCE NOISE EQUATIONS

Preliminary Definitions

2

Noise is typically measured in terms of sound pressure level I<p“> or in terms

of mean-square pressure <p2>. These two variables are related by

2
ref

2 < 2
Ikp > = 10 log10 L2 4B (re pref) (1)

In the following discussion, it is necessary to switch frequently between these
measures, so that a compact notation is desirable. Consequently, levels are usually
given in units of bels (B) rather than in decibels (dB). The factor of 10 in
equation (1) is not used when the level is in bels. Local atmospheric quantities are
used for reference constants to simplify further the data analysis. As an example,
the sound pressure level can be given as

2
2 <p~> 2 4
Ip > = log1 —— B (re pwcw) (2)

0 24
p(DCCD

Spherical coordinates as shown in figure 1 are used to specify the position of the
noise sensor relative to the source, which is nominally at the origin of the
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coordinate system. The surface area of the source A establishes a length scale
which, together with the ambient density Pe and the ambient speed of sound c_s

can be used to form reference variables as required by the analysis. All data are
assumed to be in the far field so that the pressure varies inversely with radius r.
It is also assumed that any atmospheric absorption effects have been removed from the
measured data.

The acoustic intensity, like the mean-square pressure <pz>, varies inversely
with the square of radius; however, the acoustic energy flux per unit solid angle
J is independent of radius in the far field of a nonabsorbing medium., It is
expressed as

2 2
J = r<e > (3)

P e

The energy flux in a frequency band with Helmholtz number v = fﬂiycm is denoted by
d(v) so that the total flux is given by a summation

J =Z d(v) (4)

It is understood that the summation in equation (4) is over a contiguous set of
bands. The acoustic power P is the integral over all directions of the energy flux

P=de9 (5)

where dQ is the differential solid angle. Equation (5) hglds for bands as well as
total quantities. The reference quantity for power is pmch so that the power
level is

_P_
3

c A
©

LP = log, . B (re pwciA) (6)

Equation (5) may be used for the energy flux level since the solid angle, measured in
steradians, is dimensionless.

Prediction Equations

Empirical methods of noise prediction, which predominate in current practice,
are essentially curve fits to measured data for various noise sources. The source
state is characterized by a set of parameters which control the amount of noise
generated. A parameter o could be the throttle position of an engine or the
velocity of a jet. A prediction variable such as the band energy flux Jv) may
depend on the direction in which the noise is emitted from the source as well as a
large number of source parameters.

Purely empirical prediction depends on multidimensional curve fitting. The
curve fits may be made directly to the prediction variable; however, it is sometimes
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useful to define related variables to separate the prediction process into several
steps. Three methods of subdividing an empirical prediction equation for the band
energy flux Jj(v), which is equivalent to the band mean-square pressure, are given
herein. The effects of band number and direction are considered in this section, and
the influence of the parameters is suppressed, The effect of the source parameters
is considered in a subsequent section.

Prediction equations may be based on the following identities:

‘ J(0) I(v,8)
I(v, @) = p 7 T (7)

_ (0 I, 0)
), 0 = p Y 2LVl (8)
Jv,0) = p 3L0) V) P I(v,0) (o)

P P P(v) J(8)

The factor J(6)/P 1is a measure of the distribution of the energy flux over the
spherical directions 6. It is denoted by the symbol D(8); that is

(g = L8O (10)

and, from its definition, satisfies the condition
Q

The directivity level LD is a negative number because of the constraint equation
(egq. (11)). For axisymmetric sources which are assumed here, the solid angle is

d@ = 21t sin 6 46 (12)

The directivity index is a comparison of the directed energy flux to the average
energy flux through the spherical surface around the source. The factor P(v)/P is

the power spectrum denoted by S{v)

stv) =£§:L) (13)

This factor is a measure of the way the acoustic power is distributed over frequency
bands and satisfies the condition

D stw =1 (14)
\Y



The factor J(v,0)/J(8) is the spectrum of the energy flux in a given direction,

_d(v, 8

S(Vre) J(0)

(15)

and the ratio J(v,8)/P(v) is the directivity of the power in a frequency band,

_ 9(\)19)
D(v,0) = (V) (16)

These variables satisfy integral conditions

> 5(v,0) =1 (for all @) (17)
v

and
J.‘D(v,e) aQ = 1 (for all v) (18)
9

The most complicated group in equation (9) is a measure of the difference between the
spectrum and directivity factors,

P 9(\)1 e)

Rv O = Z0y 3(0)

(19)

By associating different variables in equation (19), it follows that

_ D(v,0)

R{v,0) O (20)
and
= 9(v,90)
R(v,0) = sv) (21)

The form chosen in equation (20) shows that R is a measure of the difference
between the directivity of an energy flux band and the directivity of the total
energy flux. The form in equation (21) shows that ® is a measure of the differ-
ence between the energy flux spectrum in a given direcFion and the power spectrum.

In terms of these variables, three possible prediction equations are

J(v, 8) P D(8) &(v,0) (22)

d(v, 8) P S(v) ©(v,0) (23)



d(v,0) = P D(B) s(v) ®(v,0) (24)

It is a matter of individual preference which, if any, of these prediction equations
are used in making curve fits to the data. They have the advantage of separating
effects so that different qualities of the noise source can be studied independently.
It is easier to consider a single integrated measure of noise, such as total power

P, than to look collectively at J(v,8), a variable which is two-dimensional for
fixed values of the source parameters. On the other hand, the total prediction
formula may eventually require all dimensions, such as introduced by

R(v,0) in equation (24).

It is possible that the number of source parameters affecting R(v,8) may be
less than the number affecting the power P; therefore, some savings in the number of
dimensions are possible in the curve~fitting process. The use of the separated terms
in the prediction equation also facilitates approximation. Many empirical formulas
are based on the assumption that QR = 1, The physical interpretation of this
mathematical condition is that directivity effects and spectral effects are

separable.
The constraint conditions on the separate terms in the prediction equation must

always be imposed and can be troublesome, as is seen later. The relative spectrum
R(v,0) satisfies three constraints, not all of which are independent,

f ooy R(v,0) ag = 1 (for all v) (25)
dos(v) R(v,0) =1 (for all 9) (26)

A
(27)

Zfsw) D(6) R(yv,0) dQ = 1
\Y

In terms of a prediction of the sound pressure level in decibels, the prediction
equation (eq. (24)) becomes

YP,,

A
SPL(v,0) = 10 log10 d(v,08) + 10 log10-—5 + 20 log10 —— dB
r pref

(28)

This sound pressure level is corrected easily to standard atmospheric conditions by
using the value 197 for the last term in equation (28). The level LJ in equa-

tion (28) is derived from equation (24) as

LJ(v,8) = log, P + log,, D(O) + log, S(v) + log , R(v,8) B (re o_con) (29)
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DATA REDUCTION

It is assumed that the preliminary steps of removing absorption and reflection
effects from the noise data have been completed and that the measured data are avail-
able as energy flux spectra Jv,08) (re pmcmA) for a number of tests of the noise
source, The data-reduction process involves two further steps. The first step is
to fit smooth curves through the energy flux spectra by using bicubic splines. The
curve fits for each test are defined by a discrete set of coordinates whose values
are established by the curve-fitting process. Each of these coordinates is poten-
tially a function of all the source parameters. The second step in the data-
reduction process is to fit curves, by using multidimensional Taylor's series with
the source parameters as independent variables, to each of the coordinates defined
by the first data-reduction step.

Bicubic Splines

The theory of cubic splines is well developed for one-dimensional functions.
One method of extending this theory to multiple dimensions is to use tensor products
of unidimensional functions. The method used here is fully developed by De Boor
(refs. 11 and 12) for two dimensions and will be described briefly. The source is
assumed to have an axis of symmetry so that the energy flux spectrum is a function of
only two variables: the band Helmholtz number v and polar direction angle 6. If
the data are given in constant-percentage bands, such as 1/3 octave, a logarithmic
frequency variable,

n = 1log v (30)
is useful.

Cubic splines are defined by De Boor in terms of basis functions. A basis func-
tion for the frequency variable mn 1is defined on the interval (no,nM) in terms of
cubic polynomials on subintervals (nm_1,nm), with m =1, 2, cee, M The points
Np are called nodes or knots. The basis functions are of class C“; that is, they
have continuocus derivatives up to and including the second derivative., These
continuity conditions relate the constants of the cubic polynomial for each

subinterval so that, if the slope of the basis function is given at n and 7., the
basis function is defined completely by these slopes and its values at the m + 1
node points., A set of M + 1 basis functions is defined by
E = 1
(n ) =8, (31)

together with the end slope conditions. De Boor uses the end conditions of zero
slope for each basis function Em(n), with m =0, 1, <.+, M, and adds two basis
functions: EM+1(n) which has a unit slope at n = Mo and Eyso which has a unit
slope at n = . Both these additional basis functions have values of zero at each
node., A slightly different definition of the basis functions is used herein. Each
basis function is required to satisfy the same homogeneous boundary condition at each
end of the interval (no,n )+« The boundary condition may involve only the derivatives
of the function but not the function itself. The conditions of zero curvature were
used at the ends of the range of the frequency variable, and conditions of zero slope
were used at the ends of the range of the polar angle variable., When these boundary
conditions are applied to each basis function, there is the same number M + 1 of

1M



basis functions as there are node points. Figure 2 depicts basis functions Em(n)
as defined herein,

Noise Level Coordinates

Since the noise variables such as <p2> and J are positive, the noise vari-
ables such as S(n) must be positive also. This condition is guaranteed if the
curve fit is made with a noise level variable such as I<p“>, LJ, and LS. The
following expressions for the levels of equation (29) are used:

M
LS(n) = 2. E (n) LS, (32)
m=0
N
LD(O) = 3 0O (8) LD (33)
n=0
M N
IR(n,0) = 2 n2=:O E (n) o (8) LR (34)
M N
Ld(n,0) = EO ngo E (n) 6 (0) LY (35)

The level coordinates such as Lémn are the levels at the node points of the splines
as shown in figure 3. Assuming that L3(7n,,0.), with i1 =1, 2,..., I>DM and
j =1, 2,+¢4, I>N, has been measured in a tes , equation (35) can be solved in the

least-squares sense for the band energy flux levels Lémn at standardized node
points (nm,en). The total power level is calculated by

LP = log1o.f z:antilog[Lé(n,e)] dQ (36)
v

Q
where LJ 1is given by equation (35). The power level at each band node point M
is

L¢h = log10 .f antilog[Lé(nm,G)] daQ (37)
Q

and the energy flux at each direction node point 6, is

Ly = log“)%;antilog[Lé(n,en)] (38)

where L}(nm,e) and Ld(n,8,) are given by simplified forms of equation (35) which
hold at the node points.

12



The node point levels for each of the variables in the prediction equations are
then computed by simple algebraic formulas as follows:

LD, = LJ, - LP (39)
Ls = LP - LP (40)
L, = Ly, - LP (41)
o = Ly, - LS, - LP (42)
IR, = La'mn - b, - LS - LP (43)

Coordinate Constraints

The set of coordinates gmn contains (M + 1)(N 4+ 1) elements which completely
describe the noise field for a given test through equation (35)., The additional
coordinates given by equations (39) through (43) offer alternate means of represent-
ing the noise field by the prediction equations (22), (23), and (24); however, the
elements of these alternate coordinates are not all independent. They must satisfy
the integral constraints of equations (11), (14), (17), (18), (25), and (26). If
methods were developed for predicting these alternate coordinates, there would he no
guarantee that the predicted values would satisfy the constraint equations. "An
independent subset of each set of alternate coordinates must be selected and the
constraint equations must be used to define the remaining elements of the set.

Each of the summation expressions (egs. (32) to (35)) for the level variables

can be given as a product expression for the variables by taking antilogs of the
equations as follows:

M Em(n)
S(n) = s (44)
=0
N en(e)
p(ey = [ D (45)
n=0
M N Em('n) en(e)
®me = T 1 * (46)
m=0 n=0
M N Em(n) en(e)
st = T s, (47)
m=0 n=0
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The product forms should not be used for computation because repeated exponen-
tiation and multiplication is much slower than the multiplications and additions in
the summation forms for the levels. The product forms facilitate some proofs of
identities which are needed in the process of satisfying the constraints on the main
variable coordinates. Since the sum of the basis functions is a curve fit to the
constant 1 (ref. 12, p. 110),

2 B (n) =1 (48)

it follows that

M Em(n)
s(n) = 8, '|-|'1 CIVERN (49)
m:

The function S(1n) satisfies a summation constraint (eq. (14)) so that the M + 1
coordinates S, are not independent. The spectrum value S, can be designated as
the dependent variable with the M variables (Sm/So) being independent. The value
of S5 1is found from

M S

. m
LS, = —log102n:antllog mg Em(n) L 5, (50)

The independent coordinates L(Sm/SO) may be used for tabulation and curve fitting
of empirical data. Equation (50) gives the dependent coordinate LS, which in turn
allows evaluation of all spectrum levels by the identity

S

LS =L — + LS (m = 1,2, 004,M) (51)
S0 0

A similar procedure is used to find the directivity coordinate LDg

T N D
. . n
LD0 = —log10 2n./; sin 6 antilog ég% en(e) L Eg-de (52)

The spectrum constraints on the coordinates an may be satisfied along each
line of nodes where n is constant by using gOn as the dependent coordinate and
solving for gOn in terms of an/gon. A similar procedure applies for the direc-

tivity coordinates Dpn along each line of nodes where m is constant.

This direct solution process is not possible for the dependent coordinates of
the relative spectrum. However, if MN values of the array Rmn are stored, then
the constraint equations (eqgs. (25), (26), and (27)) give M + N + 1 nonlinear equa-
tions for the missing values of the (M + 1){(N + 1) array Rin® The disadvantage of
these nonlinear equations must be weighed against the advantages of the symmetric
prediction equation (24) as compared with the prediction equations (22) and (23).

Figure 4 shows four schemes for saving independent noise level coordinates for
a single test. The set which is used depends on the desired prediction equation;
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however, each set is only an alternate scheme for representing the enerqgy flux
spectrum level LJj(n,0).

Taylor's Series

Fach of the noise level coordinates is a function of the noise source param-
eters. An empirical approximation to these level coordinate functions may be found
by testing the noise source with a matrix of source parameters and fitting curves
through the reduced data. A Taylor's series is a convenient multidimensional
function for this curve fit because a noise source typically operates with source
parameter values which are not far removed from some standard source condition. This
standard condition is the origin of the Taylor's series expansion. Since the noise
levels are measured on a logarithmic scale, the source parameters may also be given
logarithmically. A factor of 100 for a source parameter range, say from 0.1 to 10,
translates to the logarithmic range (-1,1) of this same parameter used as an argu-
ment of the Taylor's series.

The symbol A is used to denote any noise level coordinate. This level can
be relative to a reference constant or can be relative to this same coordinate from
another experiment or theory. The use of a level coordinate relative to a theoret-
ically predicted value is a useful technigue for evaluating the theory. If the
theory correctly predicts the experimental data, then the relative coordinate A
should have a value of 0 and the Taylor's series fit to these data will have null
values for the constant and all derivatives.

The independent source parameters are given by the following equation:

o,
i
X, = 10910 (= ) (53)
ref i
so that the Taylor's series for A 1is
N N. r
ro i 3
A= 3 —| 2 =, A (54)
r!\ . 1 dx,
r=0 i=1 i

The approximate equation (54) will be applied later to an empirical study of coaxial
jet noise which has five independent source parameters. A third-degree approximation
(N, = 3) has 55 independent derivatives in the Taylor's series as shown in table I.
The approximate series (eqg. (54)) is expanded into a linear sum as

)
A= D, AKX (55)
=1 *A
where
Py
Xy = D! *31%5% (56)
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In equation (55), A stands for the constant term in the Taylor's series;

A2, A3, cosy A6 stand for the first derivatives with respect to each of the five
parameters; and N is 56 to allow for the constant and all derivatives. The param-
eter subscripts i, Jj, and k are functions of £ as given in table II. The order
of the derivative D is a count of the nonzero occurrence of the subscripts i, 3,
and k. The integer  function PR is the number of permutations of the distinct
subscripts. These functions are given in table II., In computing Xg by equation
(56), the convention is used that Xy = 1 and X, with i =1, 2, Tee, 5, is
defined by equation (53). Given a number of experiments where a noise coordinate and
the source parameters a are measured, equation (55) may be solved, usually in the
least-squares sense, for the derivatives A,. This solution, repeated for each noise
coordinate, gives a prediction method for the coordinates and hence for the noise

field.

COAXIAL JET MIXING NOISE

A large data base has been collected to develop an empirical prediction method
for coaxial jet mixing noise. This method is intended to replace the methods for jet
mixing noise. The noise prediction method for a single jet is based primarily on the
GALAC data. The noise prediction method for a coaxial jet is based on these GALAC
data as well as the added data sets from LeRC (refs, 5 and 6), PgW (ref. 4), NGTE,
and SNECMA, These data sets are briefly summarized in table III, and an indication
is given of the amount of data used in this analysis., There are 842 jet noise tests
in this data base; however, only the subsonic tests, 540 in all, were used herein.

Organization of Data

The data sets, as received, are organized in several different ways. The NGTE
data set A has a test matrix with primary jet velocity V and velocity ratio
v,/V as independent test parameters. The primary jet total temperature Tt q was
held fixed at about 700K for most tests and the secondary temperature was equal to
ambient., Area ratios A2/A1 of 2, 4, and 6 were tested by NGTE. The NGTE data
set C tests have the same independent variables with area ratios of 1.5, 2.0, 4.0,
and 8,0, The NGTE data set C includes inverted-flow cases where V2/V1 ranged up
to 1.4 but the secondary stream was still at ambient temperature.

The P&W and LeRC data are organized around nozzle pressure ratios and total
temperatures. P&W used two area ratios, 0,75 and 1.2; LeRC used area ratios of 1.2,
1.5, 2.0, and 3.33. In these tests, the pressure ratio ranged from 1 to over 4.0 and
the temperature ranged from 1 to over 3 times ambient temperature.

The SNECMA data are organized around nozzle pressure ratio and total temperature
with a single area ratio of 3.5. The GALAC single jet data also have nozzle pressure

ratio and total temperature as test parameters.

The way in which the test matrices are organized is to some degree arbitrary;
however, there is a tendency for the data to be grouped according to area ratio,
nozzle pressure ratio, and total temperature. The other geometric variable which
appears is primary plug size, AO/A1’ where AO is the plug area. The pressure and
temperature variables are natural because they are easily monitored during experi-
ments. The variables more often used for acoustic correlations, V'/cm and V2/V1,
are of course functions of the experimental variables. Based on a review of the
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available data sets, an organization of the data based on the actual experimental
variables - A2/A1, pt/pm, and 'I‘t/T°° - appears to be more convenient,

A review of the data base also suggests that the test variabhles are arranged in
roughly geometric proportions such that they will appear evenly spaced on a logarith-
mic scale. For example, the NGTE data set C used area ratios of 1.5, 2.0, 4.0,
and 8.0. The number 1.5 is near ﬁ: The LeRC area ratios were 1.2, 1.5, 2,0,
and 3.3. These ratios may be associated with 21/4, 22/4, 24/4, and 27/4. In both
cases, the area ratios are fractional powers of 2, that is, oM/ %, gimilar trends are
apparent in the pressure ratio and total temperature. IeRC used pressure ratios of
1.0, 1.2, 1.4, 1.6, 1.8, 2.2, and 3.0, with total temperature of 1, 2, 3, and 4 times
ambient, The total pressure ratios tend to be grouped in either a subsonic range,
0< p,./pP,< 1.863, or in a supersonic range, 1.863 < pt/pOD < 3,470, There are
usualfy far fewer variations of temperature than of pressure ratio. Usually only 1
or 2 temperatures are examined at each pressure ratio. For example, the LeRC data
contain mostly temperatures of 3 and 4 times ambient with relatively few tests having
ambient or 2 times ambient temperature., These observations suggest that jet noise
tests may be conveniently classified by the following procedure.

Area ratio.- Area ratios A2/A1 should be assigned to a group with nominal
value of 2n—Z, where n =10, 1, 2, ..., 7. The symbol U indicates undefined
and is used to designate a single-stream jet; U can be thought of as -« if the
single-stream jet is considered to have an area ratio of zero. However, it is
equally valid to regard the single-stream jet as representing all area ratios as
long as the two streams are identical in pressure ratio and temperature. The
geometric mean limits of each area ratio group are shown in table IV. The classi-
fication scheme for area ratio can also be used for plug size if the plug size is
given as AO/A1' where A is the plug area. No plug is designated by 0, a small
Plug by 1, and so on up to a high-radius-ratio case where AO/A1 = 8, Because of the
smaller number of tests available for this variable, it may be best to use only even-
value indices for plug size.

Total pressure ratio py/p,.— The total pressure ratio may be grouped in rela-
tion to the critical pressure ratio of the nozzle. If a typical value of y is
assumed to be 1.35, the critical pressure ratio is 1.863. It is proposed to separate
the subsonic range into four subranges which are geometrically related to the criti-
cal pressure ratio. The boundaries of these subranges are given by fractional power
n/4 of the critical pressure ratio and the geometric means are fractional powers
(2n-1)/8, where n =1, 2, .... The classification scheme is shown in table V,

Note that a pressure ratio of 1.000 is excluded from the classification since a jet
with pressure ratio of 1 does not exist. If a coaxial jet is operated with a pres-
sure ratio of 1 in one stream, then it is regarded as a single jet with pressure
ratio and temperature ratio equal to the values in the active stream. The area ratio
is undefined and, if the active stream is the outer stream, the central nozzle is
regarded as a plug.

Total temperature ratio T./Ty.— Typical values of the total temperature are 1,
2, and 3 times the ambient temperature. Some data, such as the ILeRC data set, have
temperatures to nearly 4 times ambient. In general, there are fewer temperature
variations in the data base than in other variables; this suggests that fewer groups
may be used in classifying the temperature. A geometrically related set of three
groups is proposed as shown in table VI. The index indicates a geometric mean
temperature Tt/T°° = 2n—1. No symbol is needed for graphic display, as is shown
later.
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Classification code.- The indices for geometry and stream conditions may be
used to form a six-digit classification code for a noise test as follows:

A_/A A /A T T T
(L2/ 17 B/ U) (P, 1/Pyr t’1/1‘00) épt’z/pm, e, 2’ w)J
~""
Geometry Primary Secondary

The first two symbols are geometries, the next two are for the primary stream, and
the last two represent the secondary, that is the outer, stream. B2An example of a
single-stream jet code would be

U13232

This code begins with the undefined symbol U which indicates a single-stream jet
with identical inner and outer stream conditions. The second symbol indicates a plug
with area between 0.088 and 0.177 of the jet area. The last four digits must have
the repeating pattern since there is only a single stream or two identical streams.
The digit 3 indicates a total pressure ratio between 1,365 and 1.594, and the digit 2
indicates a total temperature between 1.414 and 2.828 times ambient.

It is possible to use the digit 0 to represent the undefined number. This may
be more convenient for computer sorting of data. The example code would then appear
as

013232

and is interpreted in exactly the same manner as long as it is recognized that O
means undefined.

This code could be extended to include wind-~tunnel or flight data by appending a
digit for the free-stream Mach number, Let the Mach number be 1/10 of the last
digit. Then the example jet code with a flight Mach number of 0.3 would be seven

digits as follows:

0132323

Discussion of Data

GALAC data.— The test points for the GALAC circular jet are classified graphi-
cally in figure 5. Circular symbols are used to indicate a circular jet or a jet
with identical streams. The number inside of the symbol shows the number of times
that this nominal condition is repeated. Since the streams are identical, the test
points fall on the diagonal of the figure., The majority of the 65 test points are
in the subsonic region. Within each pressure ratio category, there are test points
within each of the temperature categories. These data are adequate to define a
function which is cubic in pressure ratio and quadratic in temperature.

NGTE data sets.- The test points for NGTE data set A are shown in figure 6.
These test points are predominantly subsonic. The outer stream is always cold and
the inner stream always has a moderate temperature. There is a good distribution of
area ratio shown by the multiple symbols in figure 6. The test points include
circular jets which fall on the diagonal as well as dissimilar stream test points.
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In general, the test matrix forms a banded pattern around the diagonal. The distance
of the test point away from the diagonal is a measure of the difference between the
pressure ratios of the streams. This difference variable is actually the ratio of
the stream total pressures Dy 2/pt 1 since the coordinate system is on a geometric
scale. The banded pattern of these'data may be adequate to define a function which
is cubic in geometric mean pressure ratio and quadratic in the ratio of pressure
ratios. The pattern of test points is repeated at area ratios of 4.0 and 6.0. These
three area ratios may be used to define a quadratic function of area ratio. The NGTE
data set B (fig. 7) contains test points off the diagonal which will better define
the effect of different pressure ratios; however, only one area ratio is represented.
The NGTE data set C (fig. 8) data have a good distribution of area ratios from about
1.5 to 8.0. These test points define a function which is cubic in both pressure
ratios and in area ratio. The temperatures are essentially fixed, however, with a
moderate temperature primary stream and a cold secondary stream.

P&W data.~ The test points for the P&W data are displayed in figure 9. These
data are unique because temperature effects were studied in detail., These points
define quadratic variation in temperature for both streams. The four groups of tem-
perature points at different pressure ratios may bhe used to define linear variations
(in two dimensions) of the temperature effects with pressure ratio. Unfortunately,
the effect of area ratio variation cannot be determined from these data.

LeRC data.- The test points for the IeRC data in figure 10 show a distribution
in all variables. The four area ratios could be used to define a cubic polynominal,
although it may be better to limit this variable to second degree since the range of
area ratio is only from about 1 to 3. At an area ratio of 1.2, three temperature
test points are located at each of several pressure ratios; these three points define
linear variations in the two temperatures. A pattern of three temperature points is
also found at an area ratio of 3.3 so that a linear variation of the temperature
effect with area ratio may be defined by these data.

SNECMA data.—- The test points for the SNECMA data are displayed in fiqure 11.
This comparatively small data set could generate a function which is quadratic in
geometric mean pressure ratio and linear in the temperature without coupling between
the two effects. BAn independent variation in the quotient of pressure ratio could
also be obtained from these data.

Coaxial Jet Noise Prediction

The form of the prediction equation selected for coaxial jet noise is obtained
by combining equations (28) to (30) as

SPL(1,9) = 10 1og10 P + 10 log10 D(B}) + 10 log10 S(n) + 10 log1O<Q(n,9)

YP
0p

oo

+ 10 log 2 42 log dB (57)
10 2 1
r ref
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The functions P, D, S, and ®R are defined by equations (5), (10), (13), and (19)
with the assumption of an axisymmetric noise field, The reference area A for the
coaxial jet is defined as

e (58)

where ﬁe is the total mass-flow rate of the jet., The source to observer distance
is r and the frequency variable 13 is the logarithm of the Strouhal number defined

as

£a_
n = 10944 v (59)

where d, and V, are the diameter and velocity of the equivalent jet.

The single equivalent jet has the same mass flow, energy flow, and thrust as the
coaxial jet. The mass flow of the single equivalent jet is

1 (60)

where

m = pAV (61)

The conditions of equivalence of mass flow and thrust give

11 12 (62)

Since the gas constant for air is not significantly changed by the addition of a
small amount of combustion products, the equivalent temperature can be defined from

the total energy flow as

mo [y, /v, - D]+ n v,y - D]
1 1 1 1 212 2 2 (63)

T =
e

l'[."1|:'Y1/('Y1 - 1)] + ﬁz[Yz/(Yz - 1)]
where

7‘§‘T = (64)

w}uo
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The equivalent ratio of specific heats is defined from the mixing of the gases of

each stream as

o (v, /v, - ]+ n [y, /v, - 1]
1[ 1 1 ] 212 2 (65)

Because the fully expanded jet static pressure is equal to the ambient static
pressure, the equivalent jet density is

-1
Te Ye -1 Ve 2
Pe = Pl ~ 3 \c (66)
o] [oe]
The equivalent area is
r[.]e
e e

and the equivalent jet diameter is

a =|—
e

4Ae 1/2
()

T

The process for developing a coaxial jet noise prediction based on equation (57)
for the data base is as follows:

1. Compute the band energy flux in a given direction J(£,0) from the mean-
square acoustic pressure data <p“ (£,8)> €for each subsonic test by using

equation (3).
2. Convert the fregquency values f to frequency parameter values n with

equation (59),

3. Determine the energy flux coordinates g . for standard values of Ny and
Gn to express J(n,9) in the bicubic spline form of equation (35). The standard
node point values of 1 and 6 are shown in figure 3, These coordinates are
found by solving equatign (35) ifl a least-squares sense for the coordinates Jmn
from the given values of 1, 6, and J(n,0) for each test.
4, Compute the power level LP from equation (36), the directivity coordinate

levels LD from equation (39), the spectrum coordinate levels LSrn from equa-
L@%n from equation (43).

tion (40), and the relative spectrum coordinate levels

5. Apply the coordinate constraints for LSm and LDn as presented in

equations (50) and (52).
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6. From the tabulated values of the nozzle pressure ratios pt 1/p and
pt 2/pm, total temperature ratios /T and T, , /T, and area ratio A /A ’
build a Taylor's series expansion for each of the 36 noise level coordlnates (P,
5 values of Dn’ S values of S m’ and 25 wvalues of ‘Q ). Each series has the form
of equation (55), with the source parameters X. deflned as

i
™y
x, = log10(pt’1/1 .365p_)
X, = 1og1o(pt’2/1.3659w)
Xy = log10 £, 1/2T ) > 6o)
X, = 1og1o(Tt,2/2Tm)
Xg = log1o(A2/A1)

The derivative terms to be included in the series are selected based on the
classification codes for each independent variable. For example, it takes values
of X4 in three class%ficat%on intervals with values of X,, esee, Xg in the same
interval to compute 9 A/bx1 . A subset of the 56 possible derivatives is selected
in this manner. The Taylor's series expansion is then determined by solving equa-
tion (55) with this subset of derivatives in a least-squares sense for each of the
36 noise coordinates,

Once the process of building the noise prediction method is completed, the fol-
lowing steps are required to make a prediction with this method:

1. Calculate the source parameters given by equation (69),
2. Calculate the 36 noise coordinates using equation (55},

3. Compute the values of S, D, and R for the desired values of 7 and 0
from the noise coordinates by using equations (32), (33), and (34).

4, Compute the SPL from equation (57).

Single jet validation.- This prediction method was first applied to the GALAC
single jet data set as a test and validation of the method. Taylor's series
expansions of the 36 noise coordinates for the subsonic cases were made by using the
jet pressure ratio pt/pOo and total temperature ratio Tt/Tm' The following table
is a summary of the standard deviations of the third-order Taylor's series fit to the
data:

Acoustic power, TOLP, AB ccccvcccosscscccscccsscssssss 0,8
Directivity level coordinates, 1OLDn, AR ssesseseses 0,6
Power spectrum coordinates, 10LS_, dB eeseccecccesece 0,6
Relative spectrum coordinates, 10L an’ dB seecesssces 1.5

Average standard deviation, dB .ecesccessscccacccess 1,1

Based on these Taylor's series expansions, predictions were made of the SPL for
selected tests in the GALAC data base. In addition, predictions were made with the
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single jet method (ref. 1) for comparison. The proposed prediction method should
provide accuracy comparable to the prediction method of reference 1 for it to be a
feasible method to apply to coaxial jets.

A sample of the results of the single jet validation of the prediction method is
shown in figure 12. Results are shown for directivity angles 0 of 120° and 150°
and nominal total temperature ratios Tt/Too of 1.0 and 3.5 for various values of
velocity ratio V/cm. It can be seen from the figures that the accuracy of the two
prediction methods is comparable. With this successful completion of the validation
of the prediction method, the formulation of a coaxial jet prediction method was
pursued,

Coaxial jet validation.- The empirical source noise prediction method was
applied to the entire subsonic coaxial jet noise data base and to each of the six
data sets separately. First-, second-, and third-order Taylor's series expansions
were made to compare the effect of order on prediction accuracy. A summary of the
standard deviations for each of the coordinate fits for the Taylor's series
expansions is given in table VII. Missing entries in the table correspond to cases
where insufficient parameter variation exists in the data base to evaluate a series
of that order. It can be seen from the table that the third-order fit provides a
significant gain in accuracy over the first- and second-order fits. 1In addition, the
error comparison indicates that there is a consistency of quality of fit among data
sets.,

The prediction method based on the third-order Taylor's series expansion to all
data sets is recommended for use at this time. The data base provided sufficient
data to evaluate 43 terms of the Taylor's series for the 36 noise coordinates as
given by equation (55). Table VIII gives the definition of the terms for all
Taylor's series and table IX gives the derivative values for each of the
36 coordinates.

Test cases for the validation of the noise prediction method for the subsonic
coaxial jet were selected from each data set. Comparisons were made between the
third-order prediction based on all data sets and the third-order prediction based on
the single data set from which the test case was selected to compare the error within
data sets to the error among data sets. Test cases were selected to isolate the
effects of various parameters on the noise prediction.

The effect of primary jet temperature on the sound pressure level, with data
from the NGTE data set A, is shown in figure 13. The data show a minor effect of
primary jet temperature over a range of total temperature from 1.0 to 3.1, Neither
the absolute level nor the spectral shape is significantly affected by primary jet
total temperature. The agreement between data and predictions is good and indicates
that these data are self-consistent and that the NGTE data set A is consistent with
the entire data base.

The effect of primary jet velocity on the sound pressure level, with data from
the NGTE data set B, is shown in figure 14. The data show a significant effect of
primary jet velocity over a range of velocity ratio from 0.7 to 1.4. The absolute
noise level increases with primary jet velocity as expected. In addition, the
spectral shape has a sharper peak as the primary jet velocity increases. The data
and the individual set prediction agree guite well; this indicates a consistency with
the data set. The difference between the prediction based on the NGTE data set B and
the prediction based on all data sets indicates that the NGTE data set B tends to be
lower in sound pressure level than the data base as a whole.
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The effect of area ratio on the sound pressure level, with data from the NGTE
data set C, is shown in figure 15. The data show a significant decrease in the sound
pressure level as the area ratio increases from 2.0 to 8.0. This decrease is to be
expected since the outer stream is slower than the inner stream. In addition, the
frequency at which the peak sound pressure level occurs decreases with increasing
area ratio; this is due to the changing equivalent jet diameter in the Strouhal
number scaling. Agreement between the data and predictions is very good in this
case.

The ability of this empirical method to accurately predict noise for a wide
range of test conditions is demonstrated in figure 16 with the LeRC data set, A
near-circular jet is compared to two coaxial jets, one with a hot and fast inner
stream and the other with a hot and fast outer stream. It is easily seen that the
prediction method accurately predicts the sound pressure level over this wide range
of test conditions,

The effect of secondary jet temperature on the sound pressure level is shown in
figure 17 by using data from the P&W data set. For a variation of total temperature
ratio from 1.4 to 3.1, with other parameters held constant, little variation in the
sound pressure level is seen, Note that the agreement between data and predictions

is excellent in this figure.,

The effect of changing thrust on the sound pressure level is shown in figure 18
by using the SNECMA data set. The prediction method provides accurate estimates in
all three cases even though the noise level varies by more than 20 d4B.

The results in figures 12 to 18 show that the empirical source noise prediction
method can be accurately and efficiently used to predict subsonic jet noise., Its
applicability to other noise sources is yet to be determined. Furthermore, the
Taylor's series form for the noise coordinate curve fit can be useful for further
research into the noise problem, such as the optimum coaxial jet analysis discussed
in the next section,

Optimum Coaxial Jet

Expressing noise coordinates, such as acoustic power, in a Taylor's series form
facilitates design studies of the effect of the jet flow state parameters on the
noise. In particular, a study of the coaxial benefit, defined herein as the
difference in acoustic power produced by a coaxial jet and an equivalent circular
jet, can be performed readily. The equivalent circular jet is one which has the same
mass flow, momentum flow (thrust), and total enthalpy flow as the coaxial jet.

A second-order Taylor's series expansion was used for the acoustic power P of
the entire subsonic data base in terms of the equivalent jet wvelocity Vé and total
temperature T and the coaxial jet velocity ratio V2/V1, total temperature ratio
T2/T1, and area ratio A,/A,. There are two types of terms in this series
expansion. The sum of terms including only V., or T, or both is the acoustic
power of the equivalent circular jet. The negative sum of all remaining terms is the
coaxial jet benefit defined by the relation

ALP = LP_ - LP = -y Ay Xy, (70)
1|
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where the summation over Q'

includes all coefficients X as defined by equa-
tion (56) which contain the parameters V2/V1, T2/T1, and A2/A1. The resulting
expression is written in guadratic form as

1
P = = .. .
AL [Xi]{A,i} + Z[Xi][A,lj]{xj} (71)
where
X, = 1og1O(Ve/cm) (72a)
X, = log1o(Te/2Tm) (72b)
Xy = 1oq10(V2/V1) (72c)
X, = 1og1O(T2/T1) (72a)
Xg = log1O(A2/A1) (72e)
The particular values of A i and A i3 for this data base are
I’ r
0]
-9
{A.}=¢11.25 (73)
! 0.65
-4,23
and
0 o] 1 4.26 -2.43 -4.23
20 O ___ . _Z1.16 -36.32 ._3.52
(a1 =] 4.26 =7.76" | 733078 =34,01 19,32 (74)
1] -2,43 -36.32 1 —34.01 -15.44 -10.34
-4,23 3.52 ¢ 19.32 ~10.34 14.79

The matrices in equations (73) and (74) are partitioned to separate the equivalent
jet terms x and X, from the coaxial jet ratio terms Xar Xy and Xce.

Coefficients of only X, or
definition of coaxial benefit.

Stationary values of ALP

respect to Xy equal to =zero,

AALP
{}x. :} = {0}
i

X2

or both are identically zero because of the

are found by setting the partial derivatives with

that is

(75)
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This condition results in a set of simultaneous linear equations for the stationary
point {xg} as follows:

0
[A,ij]{xi} =-{2;} (76)

This stationary point may give an optimum (maximum) value for the coaxial benefit
ALP,

The characteristics of the stationary point of the coaxial henefit function are
obtained by solving for the eigenvalues of the matrix [A ,,]. These eigenvalues and
J

their eigenvectors are defined by 1

(A, 1Ix, 1 =[x, 1[X] (77)
r1i] Ja Ja o4

With the data in equation (74), the eigenvalues are

-55,.83 0 0 0 0
0 -1.34 -0 0 0
(AN] = 0 0 5,50 0 0] (78)
@ 0 0 0 20.84 0
0 0 0 0 64.05
and the eigenvectors are
0.01 -0.92 0.39 ~0,.03 0.07
0.54 -0,02 -0.02 0.81 0.21
[x. ] = 0.34 0.21 0.34 -0,40 0.75 (79)
Ja 0.77 -0.07 -0.15 -0.40 -0.47
-0.01 -0.33 -0.84 -0.12 0.41
The matrix of eigenvectors 1is orthonormal so that its transpose is equal to its
inverse
T -1
[x, 17 =[x, 1 (80)

where the superscript T indicates transpose. The properties of the stationary
point are found by introducing generalized coordinates {a }, which are amplitudes of
the eigenvectors, by the transformation a

{xj} = [Xja]{aa} (81)

This transformation allows an explicit solution for the stationary point {ao} in
generalized coordinates as a

0 -1 T
fa b =-In a][xia] {a ) (82)
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In the present case, this solution is

0.08
o 2.79
{aa} ={-1.32 (83)
0.21
<0.10

and the transformation (eg. (81)) gives the stationary point in the original
coordinates {x?} as

Z3.09

o 0.16
{x;} =< o0.02 (84)

J 0.01

0.14

This stationary point is well outside the range of the present data base. The
coordinate x, = -3.09 corresponds to an equivalent jet velocity Ve of about
107 c_+ The quadratic form for the coaxial benefit may be written in generalized
coordinates as

2 2

1 = 0 1 > 0
CEE D VRN CEEIRE P RN 05

The value of the benefit at the stationary point is the second term in equation (85).
If the stationary point is an optimum, or maximum value, then all eigenvalues A
must be negative. The data of equation (78) indicate that only two of the five
eigenvalues are negative so that the stationary point is a five-dimensional saddle
point. Since the stationary point of the quadratic approximation is a saddle point
outside the range of the data base, there appears to be no generally optimum coaxial
jet.

Figure 19 shows a contour plot of the coaxial benefit ALP as a function of
velocity ratio and temperature ratio for nominal values of the equivalent velocity,
equivalent total temperature, and area ratio. This contour shows a saddle point in
the velocity ratio and temperature ratio. Contour plots at other values of equiv-
alent velocity, equivalent temperature, and area ratio have similar saddle charac-
teristics. The figqure shows the general trend that if the velocity ratio increases,
the coaxial benefit increases. Similarly, it shows that keeping the temperature
ratio near 1 increases the coaxial benefit.

Although a general search for an optimum point fails, the search technique is
still useful for design. The jet state parameters are subject to design constraints
which reduce the number of dimensions in the optimization problem. If certain param-
eters are prescribed, then a stationary point may exist in the space of the remaining
parameters. Pao (ref. 9) has estimated contours of equal coaxial benefit by plotting
values derived from the P&W data base (ref. 4) in the space of equivalent velocity
and velocity ratio. Pao estimated a maximum benefit of about 4 dB at an equivalent
velocity Ve of about 1.8c, and a velocity ratio of V2/V1 near 2.0, The area
ratio of the P&W data is near 1 and the jets were heated so that, for purposes of a
simple comparison with Pao's result, X, and xg may be set to 0 in the present
analysis. Pao did not consider temperature ratio so that X4 1is set to 0 also. The
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quadratic form (eqg. (71)) then contains only X, and X3+ A fit to the P&W data set
using only these two parameters yields

{8 ;)= {-4(.)70} (86)

0 68.11
= 87
[a ;4] [—68.11 -73.77] (87)
and it is understood that i and 3j take on values of 1 and 3 only.

The eigenvalues and eigenvectors of the matrix in equation (87) are

-114.30 0
(A = [ 0 40.57] (88)
and
-0.51 0.86
x;d = [ 0.86 0.51} (89)

The eigenvalues in equation (87) indicate a saddle point rather than a maximum. The
generalized coordinates of this stationary point are

0 0.03
{aa} - {—0.06 (50)

and the actual coordinates are
-0.07
3 = { 0.00 (91)

The value of the benefit at this stationary point is 0.

The plot of the coaxial benefit contours from Pao (ref. 9) is reproduced in
figure 20. Note that insufficient data exist to determine whether the contours
actually close. Pao used the dashed lines to indicate that existence of an extremum
was speculative. The location of the stationary point given in equation (91)
corresponds to V_ = 290 m/s and V2/V1 = 1.0, which is at the lower left edge of
figure 20. A contour of the Taylor's series expansion for these data is shown in
figure 21. By comparing the two figures, it can be seen that the contours in fig-
ure 20 can be interpreted to represent the positive lobe of the saddle shown in
figure 21. The results of both Pao and this paper clearly show that a significant
coaxial benefit occurs for the higher values of both equivalent velocity V., and
velocity ratio V,/V,. This analysis shows however that there is no maximum coaxial
benefit within the range of the data. A maximum can only be defined by the addition
of design constraints which limit the jet state parameters to some region of the
contour plane. Since the coaxial benefit function is a saddle, the maximum benefit
must lie on the boundary of this design region.
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CONCLUDING REMARKS

An unbiased representation of a noise data base is important for empirical noise
prediction and for validation of theoretical prediction methods. The method given in
the present paper is one objective approach to the development of empirical
predictions. The application of this method to the prediction of coaxial jet noise
shows that it is a powerful and efficient technique which can represent a large
number of physical effects.

The combination of bicubic splines for acoustic field variables and Taylor's
series for flow state parameters provides an economical scheme for reducing a large
noise data base to a reasonably small table of constants. In the case of jet noise,
a large data base with over 100 000 data elements was reduced to a table of slightly
over 1000 constants. The data were reduced literally by a factor of 100.

This method of data reduction and prediction requires a large data base. The
data base must result from tests which are well distributed in the space of state
parameters. This means that each state parameter must be independently varied in the
test program which generates the data base. If the proper combination of state
parameters is not available, then it will not be possible to find all derivatives in
the Taylor's series. This was the case in the analysis of coaxial jet noise where
only 43 of the 56 possible terms could be found out of a data base which contained
540 tests., A carefully planned test program would have required only 56 tests, but
the data used were gathered from independent laboratories in different nations so
that many cf the points in the parameter space were essentially repeated while others
were overlooked.

The methods used here are self-evaluating in the sense that the standard
deviation of the curve fits to the data is found at the same time as the curve fit.
The least-squares norm used in the curve fitting process is a classical measure of
agreement which results in linear equations for the constants in the curve fits. 1In
applying this method to coaxial jet noise, a standard deviation of 1.2 4B was found
for the curve fit to the data base of 540 tests.

The Taylor's series representation of state parameters facilitates optimization
studies such as the search for a minimum noise jet given as an example herein. The
second-order Taylor's series defines stationary points and their properties through
classical eigenvalue analysis. Although the search for an optimum coaxial jet failed
in the general case because the stationary point was a saddle, it still defined
optimum directions in the state space for the reduction of coaxial jet noise, The
minimum noise jet depends on design constraints on the jet state parameters.

The analysis of this data set confirms the concept that inverted-flow jets are
less noisy than equivalent single-stream jets at the higher equivalent velocities.
Within the range of data used here, there can be as much as 6 dB henefit from the
high~speed inverted-flow jet. On the other hand, there is a low velocity region
where conventional coaxial Jjets are guieter than their equivalent single jets. The
low speed benefit in the range of the data is limited to about 2 4B.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

September 22, 1982
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TABLE I.- INDEPENDENT DERIVATIVES OF FIVE-DIMENSIONAL
TAYLOR'S SERIES

First derivatives

A'1 A’2 A,3 , A,4 A,S

Second derivatives

A
,11
A,21 A,22
A A A
A,31 A,32 A,33 A
A,41 A,42 A,43 A,44 A
;51 52 ,53 , 54 ;55
Third derivatives
2,111 A
A,211 A,221 A
A,311 A,321 A,331 A
A,411 A,421 A,431 A,441 A
,511 521 ,531 ,541 551
A
2
A'z 2 A
A,322 A,332 A
A,422 A,432 A,442 A
;522 ;532 ;542 , 552
2,333 A
A,433 A,443 A
/533 ,543 ,553
2,444 A
544 ,554
_______ A




TABLE II.~ LINEAR INDEX TO DERIVATIVES

kﬂrlFDX!/PR]

3

i

29
30
31

32
33
34
35
36
37
38
39
40
41

42

43

44

45

46
47

48
49

50
51

52
53

54
55
56

[Dkl/Px?"

k

10

11

12
13
14
15
16
17
18
19
20

21

22

23

24

25
26
27

28

32



Area
ratio

*

U

TABLE III.- COAXIAL JET NOISE DATA BASE

Source | Tests | Folar 1/3-octave | opy
angles bands
GALAC 65 19 24 456
NGTE A 29 7 23 161
NGTE B 3 8 24 192
NGTE C 55 8 27 216
P&W 25 8 30 240
LeRC 21 8 30 240
SNECMA 4 15 28 420
P&W 58 9 30 270
P&W 11 9 30 270
LeRC 35 8 30 240
NGTE C 74 8 27 216
LeRC 22 8 30 240
NGTE A 50 7 23 161
NGTE C 82 8 27 216
LeRC 33 8 30 240
LeRC 35 8 30 240
SNECMA 31 15 28 420
NGTE A 50 7 23 161
NGTE B 13 8 24 192
NGTE C 56 8 27 216
NGTE A 50 7 23 161
NGTE C 40 8 27 216
Total 842
*U indicates undefined.
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TABLE IV.- AREA RATIO A2/A1 CLASSIFICATION
Ao/
Index
Lower limit Geometric mean Upper limit
U 0 Undefined ®
1 0.088 1/8 0.177
2 0.177 1/4 0.354
3 0.354 1/2 0.707
4 0.707 1 1.414
5 1.414 2 2.828
6 2.828 4 5.657
7 5.657 8 11.314
CLASSIFICATION

TABLE V.- TOTAL PRESSURE RATIO pt/p°°

[y = 1.35]
P+/Py,
Index -

Lower limit Geometric mean Upper limit

1 >1.000 1.081 1.168

2 1.168 1.263 1.365

3 1.365 1.475 1.594

4 1.594 1.723 1.863

5 1.863 2.013 2.176

6 2.176 2.352 2,542

7 2.542 2.748 2,970

8 2,970 3.210 3.470
CLASSIFICATION

TABLE VI,- TOTAL TEMPERATURE RATIO Tt/T°°

T, /T,

Index
Lower limit
1 0.707
2 1.414
3 2.828

Geometric mean

Upper limit

1.414
2.828
5.657




TABLE VII.- STANDARD DEVIATIONS OF TAYLOR'S SERIES EXPANSIONS

Description all LeRC NGTE NGTE NGTE P&W SNECMA
data sets data set data set A data set B data set C data set data set
Third-order fit:
Acoustic power 1.6 1. 1.0 1.2 1.5 0.7
Overall directivity 0.9 1. 0.5 0.3 0.6 0.8
Power spectrum 1.1 0.5 1.1 0.8
Relative spectrum 1.2 0.5 0.9 1.1
Total 1.2 1.5 0.5 0.5 0.9 1.0
Second~order fit:
Acoustic power 2.2 1.7 1.5 1.4 2.4 0.8 0.7
Overall directivity 1.0 1. 0.6 0.3 0.7 1.1 0.2
Power spectrum 1.3 1.3 0.6 1.1 1.0 0.4
Relative spectrum 1.4 1.6 0.5 1.0 1.3 0.3
Total 1.3 1.5 0.6 0.6 1.1 1.2 0.3
First~order fit:
Acoustic power 3.5 2.4 2.8 3.1 3.9 1.6 0.8
Overall directivity 1.4 1.3 0.9 0.5 0.8 2.0 0.2
Power spectrum 2.0 1.5 0.9 1.6 1.5 0.4
Relative spectrum 1.7 1.7 0.7 1.3 1.6 0.3
Total 1.8 1.6 0.9 1.3 1.5 1.7 0.4
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TABLE VIII.- DERIVATIVE MULTIPLIERS

Definitions:

*

l°g10(Pt,1/1'365Pm)

= log1o(pt,2/1.365pm)

2
Ry = 10910(Tt,1/(2Tm))
X, = 10910(Tt,2/(2Tm))
%5 = 109,45 (B,/R)
Derivative Derivative<__
index, & multiplier, x2
1 1 -
2 Xy
3 X,
4 Xg
5 X,
6 Xg
7 x1x1/2
8 X Xy
9 XqXy
10 X%y
11 Xy ¥g
12 x2x2/2
13 2%3
14 XyXy
15 X,Xg
16 x3x3/2
17 X3X,
18 AyXg
19 x4x4/2
20 XyXe
21 x5x5/2
22 1x1x1/6
23 x1x1x2/2
24 x1x1x3/2
25 x1x1x4/2
26 1x1x5/2
27 x1x2x2/2
28 XiKyX3

Derivative
index, 2L

Derivative
multiplier,

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

7 Xy KyXy
X, XyXg
x1x3x3/2
X Xg%y
X X3Xg
x1x4x4/2
X X4Xg
x1x5x5/2
x2x2x2/6
x2x2x3/2
x2x2x4/2
x2x2x5/2
x2x3x3/2
XyX3X,
X5X3Xg
x2x4x4/2
XX g X5
x2x5x5/2
x3x3x3/6
x3x3x4/2
x3x3x5/2
x3x4x4/2
X3X4%g
x3x5x5/2
x4x4x4/6
x4x4x5/2
x4x5x5/2

x5x5x5/6

X




TABLE IX.- DERIVATIVE VALUES

Derivatives values, A,

for 10 10910 of -

Index, & 2
P D(30) D(60) D(90) D(120) D(150) | s(~-1.0) | s(-0.5) | s(0.0)
1 -44.7 -19.6 -17.7 -15.1 -10.1 -5.6 -14.1 -9.5 -15.8
2 64.9 -85.2 -72.3 -44.9 =-27.7 11.5 9.7 4.5 8.0
3 52.8 -11.6 -10.4 ~9.3 -6.4 (¢} 8.3 -8.8 -2.4
4 27.9 -18.8 ~19.6 ~20.9 ~16.5 -4,5 1.7 5.6 -7.1
5 14.4 -2.0] -10.2 -13.1 -13.1 -9.8 2.9 -2.9 -1.8
6 -1.4 -12.3 -12.0 -12.6 =-11.7 -7.5 -7.2 0.2 5.5
7 -211.3 83.4 132.3 264.7 214.7 | -183.5 -12.7 =-291.7 333.1
8 -409.9 | -134.8 | -114.7 -81.9 -13.5 38.7 106.2 155.5 8.3
9 135.8 | -136.9 -96.2 -13.2 35.9 2.6 -40.6 -48.5 110.0
10 -80.9 -94,2 -62.6 13.0 11.9 13.4 63.5 -3.2 45.0
1 -43 .1 44 .4 25.5 3.2 7.5 -23.2 -12.2 -13.2 13.1
12 134.6 135.5 119.3 105.2 25.1 | -108.5 7.6 -222.2 51.8
13 -135.6 ~2.5 -6.3 -16.8 -23.8 -11.2 32.2 17.9 =-15.7
14 75.3 -21.6 -13.7 -3.9 13.1 -28.8 -14.1 4.4 -8.1
15 5t .4 ~29.4 -20.7 -7.0 -3.7 ~23.0 43.5 20.0 -15.2
16 23.6 114.1 76.8 15.0 19.1 ~35.4 -55.4 -31.0 12.8
17 ~19 .1 13.7 4.3 -12.6 -18.2 ~-17.5 17.0 9.8 -13.4
18 1.0 -28.5 -22.9 -10.0 ~0.7 -31.3 -1.8 -1.1 -1.9
19 44.5 -63.9 -63.1 -51.6 =-51.0 10.2 -69.0 ~-28.3 33.2
20 0 o] 0 o] o] o] o] 0 0
21 -13.3 -0.8 -2.9 -4.2 -9.0 ~-19.9 14.4 -3.0 -7.0
22 -1 326.3 | 2524,2 | 2825.1 2446.1 3722.3 }1574.2 | -5289.4 2337.2 | -1131.7
23 5 145.7 | -263.4 | -131.5 198.1 77.3 | -302.6 | -2658.9 | -1077.2 288 .4
24 -2 052,9 | 1370.9 839.6 -354.7 -807.3 | -355.7 290.5 186.0 |-1144 .1
25 o] o] o] o] o] o] 0 o] ]
26 406.0 -23.9 -49.3 -97.4 -114.0 51.6 -329.0 -87.6 ~-88.0
27 806.5 518.1 564 .1 535.4 185.1 40.5 1294.9 1190 .1 ~705.5
28 844.6 -63.7 -28.9 40,6 50.9 -65.3 108.4 -96.2 117.7
29 o] 0 o] 0o o] 0 0 o] 0
30 -388.0 247.5 187.9 82.2 -43.3 -30.0 -15.6 -108.7 -12.7
31 -223.,4 | -101.6 | -106.8 -168.5 -277.0 -99 .4 233 .1 274.6 -212.41
32 0 [¢] 0 o] o] o] o] o] o]
33 85.5 10.0 2.5 -13.9 -27.8 -29.1 -56.2 -23.4 -65.7
34 0 o] 0 o] o] o] o] o o]
35 0 0 o] o] o] 0 0 o] o]
36 ~-28.8 -73.5 -46.4 -17.5 -41.9 10.5 o] o] o]
37 -15 062.4 |-974.4 | -989.6 [-1102.3 | ~1502.9 348.0 | -5794.5 | ~1153.7 1770.6
38 116.1 138,1 152,2 161.4 -18.9 166.4 177.7 402,3 -82.5
39 0 o] o] o] 0 0 o] 0 o
40 609.1 | -225.9 | -212.0 -193.3 -73.0 112.5 -173.8 275.3 -135.0
41 221.6 | -235.0 | -206.2 -184.3 7.6 25.3 17.1 81.8 -27 .4
42 -193.2 152.9 122.3 76.9 -33.3 -21.9 111.2 -96,7 64.6
43 -214.3 100.5 69.6 22.7 -31.5 8.9 -0.5 8.4 23.8
44 -51.9 520.5 423.5 274.5 148.5 | ~244.1 368.3 168.4 -179.8
45 0 o] o] Q o] o] 0 o] 0
46 18.9 -11.5 -18.0 -27.4 -34.8 17.8 0 o] o]
47 0 0 o] o] o] 0 0 0 o]
48 58.7 64.6 44.8 -0.6 -1.6 -26.9 -197.9 -1.0 -31.4
49 33.2 1-159.1 | -111.8 -34.9 ~23.8 2.6 51.4 -14.2 -31.7
50 18.0 100.6 68.6 3.6 32.5 -25.7 -132.7 7.0 92.4
51 84.5 =79 .1 -60.7 -33.,7 -15.0 -1.3 -23.7 22.6 -17 .4
52 -6.6 ~-15.4 -15.6 -23.9 -37.4 40.1 o] 0 [4]
53 o] o] 0] o] o] o] 4] o] [4]
54 o] o 0 o o] o] o] o] [oF
55 o] o] [¢] 0 o o 0 0] 0
56 0 0 0o o [0 o] 0 0] o]
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TABLE IX.,- Continued

Derivatives values, Al'

Index, &

5(0.5) S(1.0)
1 -18.7 ~24.5
2 -12.7 ~53.1
3 26.6 3.0
4 -14.8 ~16,3
5 0.7 6.9
6 5.6 1.6
7 517.2 250.6
8 -176.4 | -347.1
9 84,2 13.3
10 30.1 ~60.4
11 36.9 ~32.6
12 220.9 281,2
13 -27.5 ~38.7
14 41.7 ~38.4
15 =5.2 ~55.6
16 46,1 95.4
17 -26.4 2.2
18 12.1 ~21.8
19 0.6 64.5
20 ] 0
21 -3.7 ~12.6
22 -154.,8 | 4728.,9
23 1462,1 | 1999.7
24 -203,6 | -118.3
25 o] o]
26 -650.5 | 1014.7
27 -443,6 | -394.3
28 -123.8 ~94,7
29 0 [o]
30 62,5 320.2
31 -161.9 | -158.0
32 o] 0
33 -90,2 126.0
34 9] o]
35 0 0
36 0 o]
37 -2005,7 | 3561.4
38 49.6 426.7
39 o o
40 -348.,7 240,0
41 ~542,2 ] -443.6
42 142.9 228.5
43 16.8 89,2
44 -42.7 288.3
45 0 o]
46 0 o]
47 0 [o]
48 -53.3 -3.5
49 -12.4 ~46.9
50 22.8 203.5
51 -1.4 -75.5
52 o] 0
53 o] o
5S4 o] 0
55 0 0
56 0 0

R(-1.0,30)

11.0
37.2

-7.7

14 897.0
-714.3
-418.6

-1 030.2
~319.3
169.2

-130.2
-663.7

-199.0

4 723.1
58.7

-90.1
331.5
-18.7
-44.5
-422.3

-77.8
67.4
-193 .1
5.1

[eNeNeol oo}

®(-0.5,30)

-10.6
15.6
-4.,2

0
-3.0
-1466.0
-1230.3
425.6

¢}
-710.1
-371.6
-115.3

0
-114.6
56.1

0
-119.0

0

0

0
2228.6
-261.0

-423.0
-219.9
90.7
-97.9
-332.2

42.1
38.1
-111.4

cocooco-
b

®(0.0,30)

U
N
vt n

CQVWO-_20VWOoOO0OVLUNWODOUONONBDW
.
NDHENOLONINNN 2 DOoOVD =S OO W

11
o -
o« e e

1
NN
D)

|
W

13.1

-63.7
9.9
-83.0
33.5

[« NeNalNel

for 10 1og10 of -

R(0.5,30)

3.1
12.2
-12,9
9.3
=2.1
-4.8
-247.9
68.9
35.0
-8.3
-47,2
-209.4
-22,1
-45,4
3.5
-25.1
17.1
-11.6
35.8

0
1.0
~2710.2
-79.3
-1625.4

[¢]
806,.4
-178.1
348.7

0
-76.1
193.1

0
126.1

0

0

0
2159.2
280,1

560.9
175.3
-128,5
-22.5
-131.4

W ®
.
NN O

COO0O0ONMOONOOO
.

®(1.0,30)

4.9
50.9
-9.0
18.6
~6.1
~2.2
-212.7
128.5
-63.8
1.0
-9.4
-340.2
16.8
-18.3
14.8
65.9
11.0
~2.5
-11.9
0
0.8
~5637.2
285.6
-1209.4 -
0
236.9
-341.6
-153.0
o]
-57.2
-682,2

30.1
40,3

[= e NoleNe

®(-1.0,60)

67.5

-11.6
-31.7
-11.6
1.9
11,2

0
-0.2
12 303.9
-1 191.5
-215,0

o
-1 394.5
211.2
-11.0

0
-94,2
-477.1

0
-196.2

0

[¢]

0
2 028.6
~118.5

~-441.7
435.9
-95.3
-11.5
~-294.,2

-42.4
-0.9
~125.9
5.4

(oo lelNo)

R(-0.5,60)

nN
o =

I
AN=2NNO B W
.

.
POV NWONDOUHRMNO=2OVUNNAORONOB

-
N -
P .

R
QOB YTWWNWOLR JwWn
D

.
w

-1938.7
-1015.2
302.9

-401.4
-229.8
-161.5

-47.8
91.9

-53.2

2186.2
-167.7

-282.6
-213.7
61.2
-63.3
-217.4

39.5

30.3
~79.1

-1.2

[« NeNNe)




TABLE IX.- Continued

Derivatives values, A, for 10 log of -
2 10
Index, &
P(0.0,60) |®R(0.5,60) | R(1.0,60) |R(~-1.0,90) | ®(~0.5,90) | ®(0.0,90) | ®(0.5,90) | R(1.0,90) | R(-1.0,120)
1 3.7 3.6 5.7 -4.6 -2.4 3.5 4.1 6.6 -4.9
2 5.0 13.7 45.2 -12.9 -5.6 4.3 19.0 39.2 -18.7
3 1.0 -13.5 -6.1 -13.7 0.3 -0.9 -15.9 0.9 -9.6
4 2.6 9.6 13.7 4.1 1.4 6.1 9.7 4.9 4.9
5 1.0 -1.4 -6.1 -2.1 0.8 -0.,7 -0.2 -6.0 -1.2
6 -1.9 -4.1 2.1 4.2 -1.4 -3.0 -3.4 6.0 1.4
7 -257.8 -278.0 -93.8 73.7 129.8 -257.9 -333.8 4.3 34.7
8 71.6 74.1 124.5 130.9 37.8 105.5 76.5 90.5 62.7
9 -22.9 18.6 -9.4 -11.8 -30.4 -49.2 -0.5 83.9 -67 .2
10 6.5 -9.0 29.5 -28.1 12.6 14.0 -4.0 61.7 -26.2
11 -16.5 ~-40.2 26.6 31.1 13.8 -13.5 -35.1 46.7 10.3
12 ~114.2 -164.6 -234.2 -130.1 58.8 -136.2 -114.3 -166.9 -122.2
13 2.4 -16.2 18.9 -4.4 19.4 8.2 -10.3 5.3 -6.8
14 17.1 ~39.0 3.0 -0.5 -2.2 9.7 -26.6 52.3 -4.1
15 24.1 3.3 21.7 -13.3 0.2 18.1 ~0.4 23.4 -16.2
16 -52.6 -38.0 17.1 19.4 =7.2 -45.0 -64.1 -64.3 66.2
17 5.3 16.2 0.5 6.3 8.9 1.8 13.3 -19.2 6.3
18 5.8 -11.0 10.4 4.2 ~5.5 -1.3 -9.8 27.5 -5.7
19 -35.9 26.0 -42.9 5.4 -17.6 -35.6 18.0 -66 .1 1.4
20 0 0 (o} 0 (o} 0 [o] [o] [o]
21 1.0 1.5 -1.1 -1.1 7.3 4.2 -0.3 ~13.3 =2.7
22 -656.7 -1986.1 =3945.2 5555.3 -1375.2 326.5 -1426.6 -3274.7 9914.3
23 -67.0 110.9 49.7 -940.5 -862,2 -536.3 619.9 400.3 -982.9
24 470.4 -1134.5 -753.2 324.6 276.7 328.0 -451.2 -200.4 153.6
25 0 0 [o} 0 0 (o] [o] o] [o]
26 81.0 626.9 -513.1 ~545.6 -298.1 -109.3 538.3 ~-748.4 -189.2
27 553.4 -165.0 -40.2 104.6 345.2 831.9 -348.2 -275.2 228.2
28 -98.8 351.1 =-11.7 -319.1 -266.2 -105.7 356.6 226.6 -58.7
29 0 [o] [} [o] [} [o] [o} [¢] 0
30 -88.1 -94.1 -107.8 -25.3 58.7 -84.4 -114.7 -176.4 52.6
31 428.8 202.8 -528.5 ~13.5 119.1 394.9 224.9 -183.1 -491.3
32 0 0 0 0 0 o} 0 o] o}
33 -46.4 98.2 -39.7 -31.6 15.2 ~2.1 58.0 ~212.2 61.3
34 0 [¢] [o] [¢] 0 0 o] o] 0
35 [] 0 0 [¢] 0 [o] 0 ¢ 0
36 4] o] 4] o] o] 0 [o] o] [}
37 -1671.6 1699.6 -4729.8 2504.9 742.4 ~1871.0 2056.9 -3170.8 2800.4
38 170.4 81.2 -132.7 86.9 ~106.1 183.0 -154.5 -317.1 348.6
39 0 0 0] 0 o] o] o] o] o]
40 143.9 447.4 64.0 ~91.6 -298.8 139.5 395.8 115.9 163.3
41 -33.8 253.0 350.8 246.5 -152.5 29.3 328 .1 292.1 -50.8
42 -58.0 ~97.9 -220.8 -229.3 10.5 ~89.4 ~52.0 -90.1 -88.5
43 ~14.5 -10.7 -43.2 13.8 ~2.0 4.4 5.7 =31.1 -14.4
44 44,9 ~115.2 -0.4 -170.9 =-1.7 94.8 -76.7 158.4 35.3
45 0 [ 0 0 o} 0 0 [} 0
46 [o} o [o] [ 0 o} [} 0 o}
47 0 0 0 o} 0 0 o} [} 0
48 -41.5 47.7 135.1 111.3 16.9 ~14.0 -19.6 -68.9 140.5
49 17.6 30.4 -4.8 -59.8 4.4 25.2 29.6 19.8 -40.6
50 ~73.0 -16.9 -52.5 29.5 -32.4 -60.3 -52.9 -181.4 72.5
51 25.2 2.6 42.6 28.6 -19.8 10.4 -3.0 59.5 24.9
52 0 [ o] 0 [] 0 [ 0 0
53 0 (o} o} [o] o} 0 0 0 [}
54 (o} o (o} [ 0 (o} (o} [} 0
55 0 o} o] [} ] o] 0 (o} 0
56 0 [o] 8] [o] [¢] (¢} o] 0 (o}
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Derivatives values, Al'

TABLE IX.- Concluded

Index, A&
R(-0.5,120) § ®(0.0,120) |R(0.5,120)
1 -2.2 4.5 3.6
2 2.0 -2.2 15.1
3 -3.5 -0.7 -15.5
4 0.5 7.0 6.8
5 -1.6 -0.2 0.5
6 -2.5 -4,0 -2,8
7 244 .1 -257.1 ~449,0
8 14,2 63.4 47.0
9 1.2 -42,8 -21.0
10 57.9 -9.4 -47.9
11 10.8 -9.6 -36.7
12 59.6 -96.0 -49.5
13 13.0 6.1 4.3
14 -9.4 4.9 -21.3
15 -6.5 13.6 1.9
16 17.4 -38.5 -59.6
17 4.4 10.1 8.3
18 -3.6 0,1 -9.7
19 -26.0 -38.7 23.9
20 o] 0 0
21 4.7 5.3 3.6
22 1688.2 1181,.3 -2335.8
23 -1396.8 -761.1 967.1
24 -221.3 188.9 ~146.9
25 o] o] [}
26 -372.0 -65.1 736.9
27 890,3 938,5 ~977.5
28 -147.4 ~-85,1 394,3
29 0 o] o]
30 81.6 -12,0 -88,5
31 -363.9 233.6 257.6
32 o] 0 o]
33 -24.0 15.3 90.5
34 0 0 Q
35 0 0 o]
36 4] 0 o]
37 ~-802,9 -2492.2 3110.6
38 107.4 78.1 ~357.7
39 0 [¢] o]
40 -209.2 117.6 241.6
41 -1.9 184.,2 392.7
42 46.7 -96.5 -28.9
43 4.7 2.8 -3.0
44 265,0 164,9 ~195.1
45 o 0 o]
46 0 0 (4]
47 4] 0 o]
48 46,1 -5,9 5.1
49 29.7 24,2 -2.8
50 -27.0 -80.1 -16.0
51 -18.6 11.3 7.3
52 o] 0 0
53 o] o] 4]
54 0 0 o]
55 o] o] 0
56 0 o] 0
40

R(1.0,120)
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-7.7
22.4
-11.6

-6.8
-6456,1
648.8
698,3

-630.6
-783.3
-73.3

-137.8
359,5

[¢]
-97.7

0

0

0
-1708.,1
-173.4

0
58.9
-226,7
-4.1
-39.6
-332.8

0

0

0
19.8
17.0
-229,5
52.8

OO OO0

R(-1.0,150)

42.0

162,.8

107.0

100.5
-9.2
127.5
30.9

[oNeNeNe)

®(-0.5,150)

~24.8
=7.7
39.1
-12.6
~3.1
-4.3

0
-1.7
2015.2
221.3
-1147.2

0
307.3
-327.3
307.9

]
46.9
-438.6

[¢]
47.4

(¢}

0

0
-254.6
-160.6

-14,8
26.1
123.1
20.6
-14.1

-28.1
-17.3
17 .1

[ NeNelNe)

for 10 log,q of -

R(0.0,150) | R(0.5,150)

-4,2 ~9.3
7.8 -19.4
2.6 24.8
-7.4 -14.1
-4.4 -2.3
5.3 ~1.1
400.9 686.0
-9.7 -113.8
€60.5 113.9
25,0 30.3
30.3 17.1
-23.7 139.2
19.7 9.2
29.9 51.5
-1.1 -13.8
14.4 -20.5
-8.5 2.5
15.9 4.0
21.5 57.5

0 6]
-1.6 8.9
-3440.0 -369.1
201.2 -629.5
163.9 -227.3

0 0
-757.4 ~-260.4
-462.8 -1007,2
-181.6 -430,7

0 0
3.0 26.9
-8.7 264.9

0 0o
-167.6 -55.8

o 0

0 0

0 0
581.6 92.3
-75.1 122,3

0 0
-33.8 -170.8
-106.0 =27.1
-2.1 48,9
-9.0 2.8
81.1 =5.3

0 0

0 0

0 0
37.2 -16.9
-83.7 -45.4
-12.6 12.6
26.4 -10.3

0 0

o} 0

[o] 0

0 0

o] 0

LIl mae i

“R(1.0,150)

-6.6
-53.0
39.0
-11.,8

142.5

-1.0
24.8
27.7
-84.,2

16.1
3865.9
-3362.3
311.6

-2224.6
5478.0
-1200.9

226.6
687.3

~270.3

-8360.8
1253.1

-381.2
-476.4
-308.7
78.6
905.6

1.4
-13.5
29.2
14.6

o000




Direction
of flight

x A

Spherical coordinates Cartesian coordinates

2

= sz + yz +2z X =1r cos 0
= arccos x/r = r sin 6 sin ¢
¢ = arctan y/z z =r sin 6 cos ¢

Figure 1.- Spherical coordinate system used for empirical noise prediction.
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Figure 2.- Basis functions En for cubic spline.
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Fiqure 3.- Node points for bicubic spline fit to jet noise data.
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Figure 4.- Alternate sets of independent noise level coordinates.
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Figure 5.- Jet noise test points for GALAC data.
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Figure 6.- Continued.
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Figure 6.- Concluded.
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Figure 9.- Jet noise test points for P&W data.
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Figure 10.- Jet noise test points for LeRC data.
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