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An Abstract of

SENSOR FAILURE ANALYSIS AND MULIIVARIABLE

CONTROL FOR AIRBREATRING PROPULSION SYSTEMS

Khosrow Behbehani
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Doctor of Philosophy Degree

University of Toledo
December 1979

A new sensor/actuator failure analysis technique for turbofan jet
engines is developed. The technique utilizes redundant information em-
bedded in the engine model residual and does not require multiple hard-
ware redundancy.

Three phases of failure analysis, namely detection, isolation, and
accommodation are considered. Failure detection and isolation techniques
are developed by utilizing the concept of Generalized Likelihood Ratio
(GLR) tests. These techniques are applicable to ':oth time-varying and
time-invariant systems. Three GLR detectors are developed for: (1) hard-
ovar sensor failure; (2) hard-over actuator failure; and (3) brief dis-
turbances in the actuators. The probability -istribution of the GLR de-
tectors and the detectability of sensor/actuator failures are established.
Failure type is determined by the maximum of the GLR detectors. Failure
accommodation is accomplished by extending the Multivariable Nyquest Array
(MNA) control design techniques to nonsquare system designs.

The performance and effectiveness of the failure analysis technique
are studied by applying the technique to a turbofan jet engine, namely the
Quiet Clean Short-Haul Experimental Engine (QCSEE). Single and multiple
sensor/actuator failures in the QCSEE are simulated and analyzed and the
effects of model degradation are studied.
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CHAPTER I

INTRODUCTION

1.1 Overview of Dissertation

The objective of this dissertation is to develop a sensor failure

detection, isolation, and accommodation technique for air breathing

propulsion systems. For this purpose a new detection and isolation

technique based on testing the engine model residuals (the difference

between the engine output and an engine model) is developed. The tech-

nique uses the redundant information available in dissimilar output

measurements, thus eliminating the need for hardware redundancy. The

concept of the Generalized Likelihood Ratio (GLR) (Ref. 31) is used to

extract the detection information from the model residuals. Isolation

of a failed sensor is achieved by estimating the direction and magni-

tude of the failure in the output space. Since in the proposed scheme

a model of the engine would be available, the accommodation of a failed

sensor can be achieved in three alternative ways. The first method is

to replace the lost meast, rement with the corresponding measurement from

the model. In the second method the control design configuration is

changed by discarding the lost measurement and substituting a different

measurement from the engine. Finally, as a third alternative, the

failed sensor is discarded and a new design incorporating fewer sensors

is implemented.	 To accomplish the reconfiguration of the control

design a new nonsquare Multivariable Nyquist Array design procedure is

developed. The detection, isolation, and Pccommodation techniques

1
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developed in this dissertation are compatible with an on-board digital

realization if an engine runtrol system.

The remaining sections of this chapter provide a description of

motivations, objectives and the necessary background for the develop-

ment of the failure analysis technique. The organization of these 	 0

sections is as follows. A brief description of the jet engine opera-

tion is presented in the nest section. The engine control requirements

and the future control systems of the jet engine are discussed in

Section 1.3. Since the development of the detection technique is

closely related to the design of the engine control system, the appli-

cations of control design techniques to the problem of engine control

is reviewed in Section 1.4. In Section 1.5 three phases of sensor

failure analysis are discussed. A brief review of the failure analy-

sis techniques is presented in Section 1.6. Finally in Section 1.7 the

objectives of this dissertation are defined and the outline of the

proposed solution is presented.

1.2 Jet Engines

The history of the jet engine goes back to the year 1908. In that

year, Rene Lorin, a French engineer proposed the use of hot gas pulses

that would be expelled through a nozzle to generate propulsive thrust.

However, it was not until the 1940's that the first jet engine was

used to propel an aircraft (Ref. 64).

The main purpose of the jet engine is to generate thrust. To

understand jet engine operation, consider the schematic diagram of a
i

single spool turbojet engine and the corresponding ideal fluid pro-

cesses diagram in Figure 1.1. The engine generates thrust by expelling

high-velocity gases from the exhaust nozzle. This is achieved by the
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following processes (ideal case):

0 - 1 . Large quantities of air are brought into the engine

through the inlet duct. This will either accelerate

or decelerate the air. There is a pressure and

temperature increase associated with this process

while the entropy remains constant (isentropic process).

1 - 2	 The velocity of the air is decreased through the inlet

diffuser while the pressure and temperature continue to

increase. In this process the entropy remains constant.

2 - 3	 The air is compressed in the compressor raising its

pressure to the maximum cycle pressure. The rise in

pressure is accompanied by an increase in air tempera-

ture, but the entropy does not change.

3 - 4	 The compressed air is passed on to the combustion

chamber where the fuel is sprayed into the front of the

chamber. The mixture of the air and fuel is burned,

thus increasing the air temperature to the maximum

cycle temperature. The pressure remains ccnstant and

the entropy increases.

4 - 5 . The hot gases produced in 3 - 4 are expanded through

the turbine blades producing rota*_!.on of the turbine

t	 rotors. During this process the pressure and tempera-

ture drop and the entropy stays.constant.

1	
5 - 6 . The exhaust gases from the turbine are expelled through

the nozzle thus increasing the air velocity.

The ideal turbojet engine cycle in Figure 1.1 corresponds to a tempera-

ture-entropy diagram of a Brayton cycle (Ref. 41).
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To start a jet engine the compressor is turned using a starter

motor.	 Simultaneously,	 fuel is added and spark ignited in the com-

bustion chamber.	 When the compressor is rotating at sufficient speed,

the starter and the ignitors are turned off.	 The engine will continue

operating as long as fuel and air are supplied i:o the engine in prorar

proportions.	 Controlling the proper fuel-air ratio in the mixture is

a must for safe operation of the engine.	 Excessive fuel could result

in exceedingly high rotor speed, high turbine inlet temperature, and

perhaps engine damage by violating its physical constraints. 	 On the

other hand, very lean fuel-air mixture could result in the engine

shutting off.	 The problem of controlling the proper fuel-air ratio

can be divided into two parts. 	 The first part is how to accelerate

the engine without violating its physical constraints and the second

part is how to maintain steady-state operation as disturbances occur.

These control requirements and the increased demand for higher thrust-

weight ratio led jet engine designers to develop engines with more con-

trols in addition to the fuel flow. 	 Variable nozzle area, variable

fan pitch angle, variable compressor vane position, and variable inlet

guide vane are examples of the additional controls which are now avail-

able on the more sophisticated jc,t engines (see, e.g., Ref. 47).

The addition of these input controls to the engine increases the

complexity of the engine control problem. Hence, more sophisticated

control systems are required to fully utilize the benefits of the

additional input controls. A brief discussion of the control systems

used to solve the engine control problem is presented in the next

section.

. i

I
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1.3 Engine Control System

A general configuration of the engine control system is shown in

Figure 1.2. The sensors measure engine output variables such as speed,

pressure, and temperature. A sep--izate set of sensors measure environ-

mental conditions such as altitude, atmospheric pressure and tempera-

ture. The engine output measurements and the environmental conditions

are transferred to the computation apparatus of the control system.

The physical constraints of the engine such as maximum allowable rotor

speed and turbine inlet temperature are normally stored in the comput-

ing element. The computation apparatus utilizes the environmental and

engine measurements to compute the difference between the desired out-

put and the actual engine output. Based on the engine physical con-

straints and the output discrepancies the appropriate input signals

are computed. The input signals are then transferred to the actuators

(e.g., a fuel metering valve and a motor that changes the engine

nozzle area are examples of typical jet engine actuators) (Ref. 45).

At first the main requirement of the engine control was to achl'ove

the desired speed without violating physical constraints. The control

input to the engine was fuel flow and simple hydromechanical devices

were used to achieve this control objective. For example, a simple

flyball speed governor that directly controlled the fuel input was

I	 used to maintain steady-state speed. As the engines became more

sophisticated in order to deliver higher thrust and provide faster

response, more complex hydromechanical control systems evolved.

Today, hydromechanical controls are still the most commonly used

types of control. However, hydromechanical controls will gradually

be giving their place to the electronic controls. This is due to two

I
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major reasons. First, future aircraft engines will have a more com-

Alex structure, thus requiring the controls to manipulate more than

six variables which is the practical limit of the hydromechanical

controls (Ref. 9). The second reason is that high performance air-

crafts require control integration between the engine and the air-

craft. Hence, the future engine control system must be capable of

processing more information and manipulating more inputs.

The physical limitations and complex structure of hydromechanical

controls motivated the designers of jet engine control systems to con-

sider electronic control as an alternative. Initially, the electronic

controls were analog and ~hey are still the most commonly used type

of electronic control. The analog computer, however, is sensitive to

Lime and environmental changes and, hence, it is inherently less

accurate than n digital computer. Furthermore, the modification of

the programs in the analog computers are not easily achieved. Due to

these considerations, the researchers raised the question of analog

and/or digital computers for future engine control in the mid 1960'x.

Predictions since then indicate that futtire engine controls will be

digital. The main reasons for such predictions are the flexibility of

programming and the capability of storing large amounts of data. Also,

the modification of the digital computer after its development is

usually more feasible than the analog computers.

From an economical point of view, the application of digital con-

trols will result in a substantial saving. In their study Sevich and 	
t

Newrith (Ref. 10) indicate that the savings will be in fuel consump-

tion, lower life-cycle cost, and reduced engine maintenance. Accord-

ing to Yafee (Ref. 11) a savings of 1% in fuel consumption results in
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a savings of four (4) billion gallons of fuel pur year for just the

wide-body transports in service (based on 1976 data).

Reliability of the digital electronic controls is still a major

problem in the application of these controls. System reliability can

be improved however in several areas. With the advancement in solid-

state electronics, more logic transfers and circuit hardware can be

incorporated per chip, hence reducing the number of components. The

reduction in the number of components improves the overall reliability

of the control system. Reliability can also be improved by using

redundant components. This is referred to as hardware redundancy.

Recently researchers hdve considered using the redundant information

that is available from dissimilar components to detect a failure. The

redundant information is referred to as analytical redundancy. The

main advantage of using analytical redundancy is that it eliminates the

need for redundant components. This is particularly of interest for

future jet engines as the number of inputs and oLtputs on these engines

will be higher and the use of hardware redundancy might be i.mpracOral.

The sensor failure detection technique developed in this dissertation

utilizes the concept of analytical redundancy.

In summary, the treA in the research and development of the jet

a.	 engine control system indicates that the future control system will be

►	 digital. The major concern about the digital controls is the rel.i-

ability of such systems. Due to the complexity of future aircrafts

r
it is not feasible to use hardware redundancy to improve the reliabil-

ity of the control system. The advent of high speed digital computers

with large storage capability has made it possible to consider the use

of analytical redundancy. The development of failure detection
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techniques which utilize analytical redundancy is affected by the

design of the control system. Therefore, the next section is devoted

to the discussion of modern control dk , sign techniques for jet engines.

1 .4 Design of the Con trol Systemtem

In achieving the desired enp ne performance, the design methodol-

ogy of the engine control system plays do important role. In the past

control laws were designed by classical frequency response techniques.

During this period, techniques were limited to single input-single out-

put linear time-invariant systems. The application of the classical

technique to a multivariable engine resulted in control laws that were

designed for each input independently. When these independently

designed control laws were implemented, severe interaction resulted and

performance degradation occurred. Alternatively, the increase in com-

.oxity of future engines to achieve higher performance (e.g., high

thrust-weight ratio) has also contributed to the need for multivariable

engine controls. The classical control techniques cannot be used to

design these systems unless cross coupled interactions are taken into

consideration. Therefore, researchers have considered the use of

multivariable design techniques in both the frequency and time domain

(Ref. 16).

Some multivariable design techniques utilize all. the relationships

between inputs and outputs to achieve the desired engine response,

hence using input interaction in a favorable manner. One such time-

domain technique is Linear Quadradic Regulator (LQR) theory. Appli-

cations of this theory to jet engine control were studied by Michael

and Farrar (Ref. 13), Merrill (Ref. 6), Beattie and Spook (Ref. 42),

and De Hoff and Hall (Ref. 43). Recently a practical altitude test

,3
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cell demonstration of LQR theory application to a F100 turbofan engine

was reported by Leht.^ncn et at (Ref. 22).

In the area of frequency domain techniques McMorran (Ref. 14)

used the Inverse Nyquist Array to design a controller for a gas

turbine. Other applications of Inverse Nyquist Array to jet engines

has been reported by Leininger (Ref. 19), Spang (Ref. 21), and Sain

et al (Ref. 44). Recently the use of alternative multivariable control

design technique for jet engines has been addressed in numeru,_'s stud-

ies. Ar. excellent collection of these studies can be found in

reference 16. The volt-me of the research and the recent practical

demonstration of the multivariable control techniques indicate that

such techniques will be the design tools of future engine control

systems.

Among the multivariable frequency domain techniques the Inverse

Nyquist Arra ., (INA), (Ref. 17) and the Direct Nyquist Array (DNA),

(Ref. 18) are the natural extension of the classical frequency

response techniques. In these Multivariable Nyquist Array (MNA)

techniques the cross-coupled system interaction Is reduced by making

the transfer matrix diagonally dominant. After the dominance is

achieved the control loops are designed separately by utilizing the

classical frequency response tools. The use of tools such as Nyquist

'	 and Bode diagrams and Nichols chart is particularly appealing to a

broad range of designers. Designing each control loop separately

provides insight for MNA designers about the input-outrut relations

in the system. Application of the MNA to the jet engine control

problem (Refs. 14,19,20,21) results in a set of simple compensators
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which provide the desired response. These studies conclude that

MNA promises ^o be a viable alternative design method for the ,jet

engine application.

Successful application of the MNA techniques, like any other

design method, depends on the information provided to the control

system by the sensors. Loss of information due to a sensor failure

decreases the control system effectiveness, thus degrading the engine

performance. Therefore, it is essential to identify the failed

sensor and take appropriate corrective action. When multiple redun-

dant sensors for the lost measurement are not available, then a failure

must be accommodated in one of the following ways. The first method

is to synthesize or estimate the lost measurement from the other

measurements. The second approach is to reconfigure the control

system. In rearranging the engine control system, the design meth-

odology plays a significant role. Since in the MNA method each loop

is designed separately, a relative independence exists among the loops

that can be used to reconfigure the controls. It is one objective of

this dissertation to develop this new approach for failure accommoda-

tion.

In summary, the design tools for future engine control systems

will be the multivariable design techniques. Control systems designed

by such techniques rely on sensors for output information. Therefore,

I

in the event of a sensor failure it must be detected and accommodated.

The MNA design technique promises to facilitate the accommodation of 	 i

the failure. In the next section sensor failures and different phases

of senor failure analysis are discussed further.
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A jet engine c::utrol system depends on the engine output informa-

tion to maintain the high level of performance. The output information

is supplied to the control system by temperature, speed, and pressure

'	 sensors. If a sensor in the control loop (see Fig. 1.2) fails, the

control system will be effected directly and hence the performance of

the engine will be degraded. The level of degradation due to a sensor

failure depends on the type of the failed sensor (i.e. temperature,

pressure, or speed sensor) and also on the reaction of the control

system to tl,z failure. Thus, the reliability and safety of the engine

control and ultimately the engine itself is related to the reliability

of the sensors and the actions of the control system after the sensor

failure.

Sensor failures are generally categorized into I„wo groups: soft

and hard failures. For this purpose the sensor output is viewed as a

combination of the true measurement and a random noise. In case of

no failure the mean of the sensor output is the true measurement and

the variance is the same as the variance of the noise. If the mean

of the sensor output deviates from the true measurement by a large

margin, then a hard failure has occurred. Alternatively, when the

variance of the sensor output exceeds a certain tolerable value, a

,	 soft failure is declared.

A complete sensor failure analysis of any system can be divided

into three phases: detection, isolation, and accommodation. In the

detection phase, the concern is to establish the occurrence of the

failure. Ideally, a detection technique should detect both soft and

hard failure. This, however, is not easily accomplished in a dynam'c
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system. After the detection it is necessary to isolate the failed

sensor so 'hat the effect of the failure can be reduced. The task of

isolating a failed sensor becomes more complicated when multiple hard-

ware redundancy does not exist. This is, of course, due to the fact

that the output of redundant sensors cannot he compared with each other.

It is, however, possible to utilize the available redundant information

from dissimilar sensors to isolate a failure. The third phase of sensor

fsilure analysis is to accommodate the failed sensor in the system.

Specifically, the accommodation of a failure is to identify and imple-

ment the necessary changes in the control system to maintain safe

operation with minimal performance loss. The methods of accommodating

a failure when analytical redundancy is used can be divided into two

groups: fixed and variable. If the measurement corresponding to the

failed sensor can be synthesized or estimated, the control configura-

tion call 	 unchanged or fixed and the estimate is used in place

of the failed sensor output. For variable accommodation the control

loops are reconfigured to provide the ^ontrol action without utilizing

the output corresponding to the failed sensor.

Based on the discussion in this section, the main objectives of

any sensor failure analysis are: detection, isolation, and accommoda-

tion. Utilizing analytical redundancy - a must for future complex

engines - requires more sophistJcated failure analysis methods. A

brief review of such techniques is presented in the next section.	
1A

1.6 Failure Analysis Techniques
I

Traditionally, the problem of sensor failure is solved by

utilizing multiple redundant sensors. A simple majority voting system

will determine the failed sensor by comparing the output of the
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redundant sensors. The output of the failed sensor is disregarded

and the output of a similar unfailed sensor is substituted. For the

detection of a failure at least three independent measurements of the	 ,

same variable must be available. Although the voting technique does

not necessarily require that each variable be sensed by three identi-

cal sensors, it does require that a large number of redundant sensors

be added to the system. On the other hand, if one takes advantage of

unlike sensors to compute duplicates of the measurements, the detection

logic becomes complicated. The voting technique has generally been

used for hard failure detection. An application of this method is

reported by Gilmor and McKern (Ref. 25). Pejsa (Ref. 26) developed

an optimum arrangement for redundant sensors. However, the basic

drawback of voting techniques is the requirement of multiple redun-

dancy. Since future engines will require more sensors the multiple

redundancy requirement would make a voting technique too complex to

be useful.

The complexity of future engine control systems dictates the use

of an on-board digital computer for engine control purposes. The

recent advances in solid state electronics allows design of small

comp uters with large storage and high computation speed for on-board

utilization. The storage and speed capabilities of the on-board

computers provide an opportunity for the development of failure

detection techniques which use analytical redundancy. The main idea

behind such techniques is to extract the fr,ilure detection informa-

tion from the output of dissimilar sensors,

In recent years researchers have proposed various analytical

approaches to the problem of sensor failure. One approach is to use

1
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Kalman filters (Ref. 21) to remove the effects of the failure from the

outputs of the engine. For this purpose a set of Kalman filters were

designed that are sensitive to abrupt changes in the system (e.g., see

Jazwinski, Ref. 28). increasing the sensitivity of the filters, how-

ever, may severely degrade the performance of the system under the

normal operation without any failure. Another drawback is that the

failure sensitive filters do not provide any isolation capability. To

add the isolation capability to this method, Kerr (Ref. 29) has inclu-

ded the failure biases as states. Then a large estimate of the bias

state indicates the failure. Inclusion of the failure biases as states

increases the dimension of the system and may degrade the performance

of the system (Ref . 30) . Two successful attempts in the area of

failure-sensitive filters have recently been made by Beard (Ref. 58)

and Jones (Ref. 59) which have an isolation capability. They design

a filter such that its residual carries the detection and isolation

information. The filter, however, is suboptimal and the implementation

logic is considerable.

A more popular approach in the development of the computational

techniques has been to use the innovations of Kalman filters to test

for failure in the system. Montgomery et al (Refs. 12,32) by associa-

ting different hypotheses with each failure mode use the innovation

process to test these hypotheses statistically. A major difficulty

with hypothesis testing is the need for a bank of filters for 	 •

generating the innovations. Tn a similar fashion Wells (Ref. 60)

formulates a Baysian risk function which incorporates the risk

associated with various modes of failure. He selects `.e hypothesis

which minimizes the risk function. Wells h	 studied the application
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of this technique to _let engine sensor failure; however, he indicates

that due to the requirement of a bank of filter the on-line implementa-

Lion if impractical. In a somewhat different approach Mehra and

Peschon (Ref. 33) have developed a chi-squared test for examining the

whiteness of the innovations. The application of this simple tech-

nique by Willsky et al (Ref. 34) has produced mixed results. The

method does not provide any isolation information and only those

failures which significantly effect the innovations are detected.

More subtle failures are difficult to detect with this technique.

In their study of sensor failures in jet engines Corley and

Spang (Ref. 35) have used engine measurement errors and an engine

model to test fou sensor failures. Assuming white Gaussian plant

and measurement noise, they compare the absolute value of the

measurement errors in each sample interval against a threshold to

test for the failure. The major disadvantage of this technique

is that it only utilizes the information contained in one sample

interval for f;.ilure detection.

An alternative way of testing the innovations for failure

detection is to use the concept of Generalized Likelihood Ratio

(GLR). The concept of (LR is described by Sage and Melsa (Ref. 31)

and by Van Trees (Ref. 3f). Willsky ani Jones (Ref. 37) used the

concept of GLR to develop a jump failure detection technique for

linear systems. In their approach they use the innovations of a

Kalman-Bucy type filter to develop the likelihood ratio. Since this

ratio has a known. distribution it can be used to test the hypothesis

of no failure versus failure. The GLR method has been applied to the

detection of cardiac arrhythcnias and the results have been extremely

I

a
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impressive (Ref. 38). The advantage of CLR is that it provides both

an estimate of the size of the jump and the time of the failure. The

CLR is mainly a detection technique, but under additional assumptions

(Ref. 3?) it provides isolation information. However, C!,R does not

accommodate the failure and it has to be complemented with an

accommodation technique.

The preceding techniques are mainly compatible with a control

system designed by a multivariable time domain control technique. On

the other hand, the potential advantages that new multivariable fre-

quency domain control techniques can offer with respect to the sensor

failure detection/accommodation problem are yet to be explored. This

dissertation is an attempt to respond to the need for such explora-

tion. In the next Section the objectives of this dissertation are

defined and the proposed approach is outlined.

1.7 Dissertation Objectives

T'he development of a sensor failure analysis for a jet engine is

highl, , influenced by the design philosophy of the engine control

system. This influence can ultimately effect the speed and accuracy

of the failure detection system. Most of the failure detection tech-

niques are developed to operate with a control system designed by the

multivariable time domain techniques. 'Ihe recent development of the

M►il.tivariable Frequency Domain (MVFD) techniques (e.g., Refs. 18,39)

has opened a new frontier in sensor failure detection analysis. '11ie

Multivariable Nyquist Array (MNA) (Refs. 19,20), a MVFD technique,

is particularly of interest. In the MNA design the estimation of

system states is not required and each input-output is designed

separately. These two characteristics of the MNA design and the



17

successful application of the MNA technique to the .jet engine control

problem (Rof. 16) suggests that MNA is an excellent candidate for

exploring the potential benefits of MVF1) techniques. Specifically,

it is important to determine the logic simplifications and the com-

putational savings that result from the use of MNA design. In

response to this need the objectives of this dissertation are def{ned

as follows:

1 - To introduce the failure accommodation capability in the MNA

design and develop the reconfiguration scheme for on-board

utilization.

2 - To develop a failure detection and isolation technique based

on the MNA design for on-board implementation.

The proposed solutions to the problems corresponding to the above

objectives are presented in the following chapters. In Chapter I. a

new approach for failure detection is proposed and by utilizing the

concept of Generalized Likelihood Ratio (CIA) a failure detection

technique is de veloped. Important statistical properties of this

detection technique are derived in Chapter Iii. Chapter IV is

devoted to the application results of the proposed failure analysis

technique to a Quiet Clean Short-haul Experimental Engine (QCSEE). The

)
problem of failure accommodation is addressed in Chapter V where

r

Y	 a new accommodation technique based oil 	 design methodology is

developed. The application results of the accommodation technique to
r

'	 QCSEE are also presented in Chapter V. Finally, in Chapter VI a

summary of the dissertation and recommendations for future research

are discussed.

t

,....	 -



CHAPTER II

GENERALIZED LIKELIHOOD RATIO DETECTION TECHNIQUE

2.1 Introduction

T1ae value of an on-board digital computer for future jet engine

control was examined in Chapter I. With the availability of low-cost

digital computers and their increased storage and speed capabilities,

more advanced failure detection techniques can be studied in order to

improve overall engine reliability and performance. In this chapter a

sensor-actuator failure detection technique based on the concept of the

Generalized Likelihood Ratio (GLR) (Ref. 36) is developed. The tech-

nique consists of performing hypothesis testing on the difference be-

tween the engine output measurements and the output of an engine model.

The hypotheses correspond to various modes of failure in the system

sensors or actuators. The technique provides a simple decision function

and an estimate of the time of the failure. Also estimates of bias in

the outputs or states due to a sensor or actuator failure can be easily

computed. The technique is developed for linear dynamic systems and,

therefore, its application is not restricted to jet engines. Prioz to

the mathematical development of the technique the configuration of the

detecticn scheme is described in the next section. Then a general for-

mulation of the technique for time-varying systems is presented in Sec-

tion 2.3. In Section 2.4 the special case of failure detectiun in a

time-invariant system is treated and then in Section 2.5 recursion re-

lations for computer implementation of the time-invariant case are de-

18
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)ped. A brief treatment of soft failures in output sensors is pre-

ted in Section 2.6. Finally, a summary and discubsion of the devel-

ants in this chapter are presented in Section 2.7.

Generalized Likelihood Ratio Detection Scheme

The idea of using a Generalized Likelihood Ratio MR) test for

lure detection in dynamic systems has been investigated by Willsky and

as (Ref. 1). Figure 2.1 illusErates their proposed detection scheme.

ar this scheme, a Keiman-Bucy filter is used to estimate the output

tie plant. The estimated output is then subtracted from the actual

at output. The difference between the estimated and actual measure-

t, referred to as the residual, is used to test for failure occur-

ce in the plan. The development of tt , z technique is based on the

umption that under no-failure operation each residual is a zero mean

...._te a-ussian noise process. If a component fails, however, the resi-

duals will no longer have zero mean. Eased on these assumptions the

detection of a failure is equivalent to testing the mean of the resi-

duals for deviation from zero. Testing the mean of the residuals can

be achieved statistically by testing the hypotheses corresponding to

failure and no-failure modes. Specifically

H0 : No failure occurred

(i.e., the mean of the residuals is zero)

H l : A failure occurred

(i.e., the mean of the residual is nonzero)

To test the above hypotheses the GLR method is used. For this purpose

the likelihood funct-on corresponding to hypothesis H 1 is divided in-

to the liklihood function for H0 . Based on the desired degree of con-

fidence in the detection results, a threshold can be selected as the
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upper limit of the value of the likelihood ratio under no failure.

failure is declared if the likelihood ratio exceeds this threshold

This is called the decision rule.

To --sti.mate the outputs, a Kalman-Bucy filter must estimate ti

states. State estimates from the Kalman-Bucy filter (Fig. 2.1) cat

the same time, be used for the purpose of controlling the plant.

of course, would be the case only if state estimates are required in

the design of the control system. Such is the case in standard linear

quadratic state regulator designs. Alternatively, if the control de-

sign of the plant is based on a technique which does not require state

estimates (e.g., as in the case of the Multivariable Nyquist .Array

technique) then the Kalman-Bucy filter will oily serve the purpose of

generating residuals for failure detection. in this case alternative

means for generating the residuals can be considered. The motivation

for such consideration is as follows. The output estimates from the

Kalman-Bucy filter are dependent on the plant output measurements.

Thus a failure in either sensors or actuators would not only affect the

output of Elie plant but also the state ertimates and hence the output

estimates. The dependence of the output estimates on plant measure-

ments excludes the option of replacing the lost measurement, in case of

a failure, with its estimate. In addition, since the state estimates

(and, consequently, the residuals) are affected by sensor output, then

even brief and scattered sensor disturbances have to be considered in

the failure detection. This increases the number of failure modes and

hence reduces the speed of detection, isolation, and accommodation of a

failure. Therefore, it is important to consider alternative means of

generating residuals.
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One possible alternative for generating the residuals is to use e

model of the plant that follows the dynamics of the plant closely and at
,k

the same time depends only on the input to the plant. In Figure 2.2 the

Kalman-Bucy filter is replaced by a plant model. The model is required

to follow the engine dynamics so that under a no-failure condition the

difference tetween the actual plant output and the model output will be

a zero mean white Gaussian noise process. Comparing Figures 2.1 and 2.2

reveals that while the output estimate from the Kalman-Bucy filter de-

pends on both the input and output of the system, the model outputs are

only functions of the input and plant dynamics. Thus, ii a sensor fails

the model output will not be affected and could replace the lost mea-

surement. Also the detection of brief disturbances in the sensors is no

longer essential. This eliminates one mode of failure from considera-

tion. AE will be shown later the mathematical formulation of the GLR

detection will be simpler when a model is used to generate the resi-

duals. This -odification in the failure detection scheme requires that

the likelihood ratio decision function be rederived for residuals com-

puted by subtracting model outputs from plaiiL measurements. In the next

_	 section the preliminary concepts and definitions for the development of

the new detection technique are discussed and then the general formula-

X

tion of the technique for linear time-varying systems is presented.

2.3 Generalized Likelihood Ratio for Time-Varying Systema

In the previous section an overview of the proposed Generalized

Likelihood Ratio (GLR) detection scheme was presented. In this section

the mathematical development of the GLR technique for the proposed de-

tection plan (see Fig. 2.2) will be discussed. For this purpose it is

first necessary to develop the system model.
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2.3.1 The System Model

The development of the failure detection technique in this section

is based on the assumption that the dynamics of the system under study

can be represented by the following linear time-varying discrete equa-

tions:

X(k + 1) - O(Q X(k) + B(k)U(k) + F a (k,t)	 (2-1)

c(k) - H(k)X(k) + J(k)U(k) + Y(k) + F s (k,t)	 (2-2)

where the symbols in the above equations are defined as:

X(k)	 n x 1 State column vector

^(k)	 n x n System matrix

B(k)	 n x m Input matrix

U(k)	 m x 1 Input column vector

Fa(k,t): n x 1 Actuator failure function vector

H(k)	 g x n Output matrix

J(k)	 g x m Matrix (relating inputs to outputs)

Y(k)	 g x 1 Zero mean Gaussian white noise process with the

covariance matrix VW
Fs(k,t): g x 1 Sensor failure function vector

k	 Number of observations

L	 Time of failure occurrence.

The functions Fa (k,t) and F s (k,t) are used to model the failure

modes of interest. Such failure modes are hard-over actuator, a brief

disturbance in the actuator, and hard-over sensor failures which are of

main interest in a jet engine application. It should be ment;oned that 	 '
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even if only tale detection of a sensor failure is of interest it may

still be necessary to consider the other modes of failure because the

effect of other failures on the residuals may resemble the effect of a

sensor failure. Typically, hard-over failures in actuators and sensors

are modeled as step changes in the outputs of actuators or sensors. For

brief disturbances in the actuator, a jump function is used to model the

failure. In the following a hard-over actuator and sensor failure will

often be referred to as state-step and sensor-step failure, respec-

tively. The brief disturbances in the actuator will be referred to as a

state-dump failure. These three modes of failure are modeled as fol-

lows.

1. Hard-Over Actuator

l'or this type of failure the function Fjl (k,t) has the following

f o rm

Fja(k,t) - v)ok+l,t
	

(2-3)

where v is a n 4 1 column vector that denotes tt ►e unknown magnitude

and direction O f the tailure and o ij is the unit step function de-

fined as

Q i .I

1 t ,j

(2-4)

Setting the first subscript to k + 1 in (2-3)assures that the effect of

the actuator failure will be reflected in the output without any delay.

2. Actuator Brief Disturbances Jump Failure)

The function Fa(k,t) for this type of failure is

l`.i(k,t) _ `'Sk+l,t 	 (2-5)
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where v is defined in the same way as above and 6 i,j is the

Kronecker delta function rEpresenting a pulse at i - j, i.e.,

0	 i	 j

6 1 j -	 (2-6)

1	 1 - j

3. Hard-Over Sensor Failure

The failure function Fs(k,t) for this type of failure can be

written as:

Fs(k,t) - vak,t	 (2-7)

where v is a g X 1 column vector that represents the unknown mag-

nitude and direction of the failure in the output space and o ij is

the unit step function as was defined in equation (2-4).

With the completion of modeling the system dynamics and different

modes of failure, the next step is to model the residuals for the three

failure modes.

2.3.2 Tile Residual Model

.n the proposed GLR detection plan (see Fig. 2.2) the residuals

are defined as the difference between the actual output of the plant

and the output of the plant model. The main assLmption here is that

under no failure, the residuals are a zero-mean white Gaussian noise

process. Let r(k) denote the residuals and let r l (k) represent the

residuals under no failure operation then

r(k) = r 
1 
W	 (2-8)

where r l (k)cRg and is a zero mean white Gaussian noise process with

known covariance matrix V(k). When one of the three types of hard

failure (explained above) occurs the residuals will no longer remain
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equal to r. l (k). In fact the residuals will reflect the deviation that

the failure induces in the plant output from the model output. There-

fore, when a failure occurs the residuals will have the following form:

r 	 - rI (k) + r 2 (k)	 (2-9)

where r 2 (k) is the unknown but nonrandom effect of the failure on the

residuals. The term r 2 (k) not only signals the occurrence of the fail-

ure but it also carries the information concerning the type of the fail-

ure. To extract this information from r 2 (k), the effect of each fail-

ure mode on the residuals must be studied. Hence, for each type of

failure the form of r 2 (k) will be determined.

1. Hard-Over Actuator (State Step) Failure

To calculate the effect of hard-over (state step) failure on the

residuals, consider the following equations

Xp (k + 1) = ^(k)Xp (k) + B(k),J(k)	 (2-10)

X  (k + 1) = m (k)X f (k) + B(k)U(i, ) + o
k+l, tv	

(2-11)

where Xf (k) is the value of the plant state due to failed conditions

and X	 is the state value for unfail.ed conditions. The effect of the
p

failure on the states can be calculated by subtracting equation (2-11)
,t

from (2-10) and the result can be written as:

X 2 (k + 1)	 (k)X2(k) + ok+l,tv 	
(2-12)

where

X 2 (k) = X  (k) - XP (k)	 (2-7.3)

is the change in the value of the states due to the failure. Note that

X2 (V) = 0 for k < t and for k > t X 2 (k) is calculated from equa-

tion (2-12) where t is the tia.e of the failure.

1

f
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The closed form solution for equation (2-12) can be written as

k
F, Q(k V j)	 k > t
imt

X 2 (k) -	 (2-14)

0	 k < t

where Q(k,j) is the discrete transition matrix obtained from solution

of equation (2-12) as

Q(k,j)	 ^(k - 1)^(k - 2) . . . ^ (j

where

QUIP

The effect of hard-over failure r 2 (k) on the residuals in equation

(2-9) can be written as

k
H(k) E Q(k,j V	 k > t

[J=t	 I
r 

2 
(k, t) =
	

(2-16)

0	 k < 0

since r (k) = H(k)X (k), which follows from insertion of equation (2-14)
2	 2

into equation (2-2). For ease of reference equation (2-16) can be re-

written as

r 2 (k,t) = G 
I 
(k,t)v	 (2-17)

where

k
H W E Q (k, i	 k > t

G (k, t)	 (2-18)

0	 k < t
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the subscript	 1 of G (k,t) refers to the type of failure (I.e., hard-

over actuator failure).

2. Actuator Disturbance (Jump) Failure

The effect of a brief disturbance on the value of the states can be

)
computed by following the same approach as in the case of hard-over ac-

tuator failure. In this case the change in the value of the states can 	
1

be obtained by replaring 0
k+1 ,t 

with 5
k+1 t 

in equations (2.11) and

(2.12) yielding

X 2 (k + 1) = ^( 4 )X2 (k) + dk+l,tv	
(2-19)

where X2 (k) is the change in the value of the states due to the jump

failure alone and m(k), 6 k+1, t, and v are the system matrix, Kronecker

delta function, and failure vector, respectively. Note that X2(k) - 0

for k < t and the solution to equation (2-19) can be written as

Q(k,t)v	 k ? t

X 2 (k) _	 (2-20)

0	 k < t

where Q(k,t) is the discrete transition matrix as defined in equat:Cn

(2-15). Therefore, the effect of this type of failure on the residuals

can be calculated by multiplying X 2 (k) in equation (2-20) by the output

matrix H(k)

ti(k)Q(k,t)v	 k > t

r,,(k,t) =	 (2-21)

0	 k < t

The above equation for r 2 (k,t) call 	 rewritten as

r ,) (k. 	 = G 2 (k,t)v	 (2-22)

where

4
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c	
II(k)Q(k,L)	 k >_ t

(1?(k,t)
	

(2-23)

O	 k < t

Hio stil,:trrlhl	 7	 411	
G 

(k,l ) ref,-r:: to (hi- lype „I	 kil lur,- (I.e., ;W

tuator jump failure).

3. Hard-Over (Step) Sensor Failure

A hard-over sensor failure affects the residuals directly (see

Fig. 2.2). Therefore, the corresponding r 2 (k,t) can be written as:

r 2 (k,t) = a k,t )
	 (2-24)

where J
k,t 

and v are the unit step function and the failure vector

defined in equations (2-4) and (2-7), respectively. Then equation (2-24)

can be written as:

r 2 (k,t) = G 3 (k,t)v	 (2-25)

where G 3 (k,t) is ,a null matrix for k < t and a g x g identity ma-

trix for k > t. This completes the calculation of the effect of fail-

ures on the residuals.

In summary, to develop the GLR decision function it is necessary

to determine how each type of failure affects the residuals. To achieve

this, the hard-over failures and the brief disturbances were modeled as

step and jump functions (see eqs. (2-3), (2-5), and (2-7)). Using these

models, it was shown that (eqs. (2-17), (2-22), and (2-25)) the effect

of the actuator and sensor failures on the residuals can be expressed in

the general. form of:

r 2 (k) = G i (k,t)v	 for	 i = 1,2,3	 (2-26)

where G i (k,t) for i = 1,2,3 corresponds to hard-over actuator, brief

disturbance in the actuator, and hard-over sensor failure, respectively.
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The formulation in equation (2-26) proves to he particularly helpful in

the mathematical development of GLR which will be discussed next.

2.3.3 The Generalized Likelihood Ratio

Application of CLR concept to the problem of failure detection

rests on two basic assumptions. The first assumption is that for a no-

s	 failure mode the residuals are zero mean white Gaussian noise processes.

-t	
Under the second assumption when a hard failure (any of the three types

discussed in Section 2.3.1) occurs the residuals will no longer have

zero moan but their Gaussian property is retained. Based on these as-

sumptions, testing the hypothesis regarding the detection of a failure

is equivalent to testing the hypothesis concerning the zero mean of the

residuals. The null and the alternative hypotheses can be written as:

H
0
: No failure occurred

(i.e., the mean of the residuals is zero)

Hi : Failure of type i has occurred

(i.e., the residuals mean is nonzero)

The type i = 1,2,3 refers to hard-over actuator, brief disturbances

in the actuator, and hard-over sensor failures, respectively. The null

and the alternative hypotheses can be expressed in terms of r(k) as:

H0 : r(k) = r1(k)	

(2-27)

Hi : r(k) = r 1 (k) + r,i(k,t)v

where r1 (k) is defined in equation (2-9) and G i (k,t)v for i = 1,2,3

are defined in equations (2-18), (2-23), and (2-25), respectively. The

likelihood function for the above hypotheses can be established by con-

sidering a sample of k residuals

FO = Prob. (r(1). r(2), . . ., r(k)/H 0 )	 (2-28)
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A(k) = F
0

(2-32)
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F i = Prob. (r(1), r(2), ..., r(k)/H i )	 (2-29)

where F0 is the likelihood function for null hypothesis H09 and r(j)

denotes the ,jth residual and t and v are the failure time and fail-

ure vector, respectively, and F  is the likelihood function for the hy-

pothesis corresponding to ith type of failure. The likelihood func-

tion F 	 depends on both time of the failure, t, and the failure vector

v which are unknown. Since the probability distribution of the resid-

uals is Gaussian the likelihood functions F0 and F 	 can be written

as:

k	
1l

F O	 Ij(2n) g "[Det v(3)' 
-11 2 

exp - 2 rr ( j )^ 1 (.) ) r ( j )
J	

(2-30)

j=1
C

k
1	

[r(j )
T

Fi 
=T

(2n)g /2[Det 
V(j)J-1/2 

exp - 2 	 - G 1 d, t ) v] V 1())

i=1

x [r ( j ) - G i (,),t) v]	 (2-31)

where V(J) is the covariance matrix of the residuals. Based on the

Neymann-Pearson lemma (Ref. 46), the ratio of the likelihood functions

is formed to test the occurrence of a type i failure:

If A(k) exceeds the threshold limit e then a failure is declared.

Since F 	 is a function of t and v, the likelihood ratio A(k) is

also a function of these variables. Both t and v are unknown and
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they must be estimated before the Neymann-Pearson test can be applied.

To estimate t and v the likelihood ratio A(k) is maximized with re-

spect to these var'ables. The algebra of maximization can be simplified

if the logarithm of A(k) is maximized instead of the A(k). Consider

the natural logarithm of A(k):

k

In A(k) = In F i - In FO	
2	

rT(j)V 1(j)r(j)

j.I.

i
".	 k

Ir	
T

M - a (J.t)v] V-1 O) Pj) - C i 0^0vl	 (2-33)

j s l	 J

It can be shown (Ref. 51) that maximizing In A(k) is equivalent to max-

imizing A(k) with respect to t and v, because the logarithmic func-

tion is monotonic. Thus the values of v,t which maximize In A(k)

will also maximize A(k). Taking the partial derivative of In A(k)

with respect to v and equating the derivative to zero, yields

-1

V =	 Ci(j.t)V-1(.))C10,0	 Ci0,t)V-
1(J)r(j)	 (2-34)

To simplify the notation tiie following terms are defined:

k

C i (k,t) _	 Ci(j,t)V 1 (j)G i (i.t)	 (2-35)

'	 j =1

and
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k	 01

D i (k,t)	 G1(J.t'V-1(J)r(J)

J-1

therefore, v can be expressed in terse of C

V - Cil(k,t)Di(k,t).

Substituting the equations C i (k,t) and Di(k

and (2-36), respectively, into equation (2-33

In AM becomes

In A M2IvTD i (k,t) + Di( k,t)v - vTCi(

Substituting v from equation (2-37) for v

yields:

2 In A(k) - vTDi(k,t)

or alternatively

2 In A(k) = Di(k,t)Ci1(k,t)Di(k,t)

In equation (2-40) the time of the failu

it must be estimated. Usl.ng equation (2-40) in place of equation (2-33)

the maximum likelihood estimate of t can be obtained by maximizing the

likelihood ratii with respect to t. Therefore, the Generalized Like-

lihood Ratio for testing the occurrence of the ith type of failure

can be expressed as

L i (k,t) = 2 In A(k) = Max D (k,t)C i l (k,t)D i (k,t)	 (2-41)

t

where Li (k,t) represents the likelihood ratio for the ith type of

failure and it is referred to as GLR index.
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In order to calculate L i (k,t) f rom equation (2-41) the term

the right-hand side of equuticn (2-40) must be computed for all pi

bible t (i.e., 0 < t < k) and the maximum value of these terms i

L i (k,t). The corresponding t is the estimate of the failure tL

Thus, to compute L i (k,t) and estimate t more of the terms of e

tion (2-40) must be computed as k, the number of observations, ii

creases.

To make the estimation of t more feasible Wilsky and Jones

(Ref. 1) sugbest using a finite size window to restrict the range of t

to the interval k - M < t < k - N where M and N denote the window

limits. Further suggestions in reference 1 include:

1. Restricting the direction of failure vector, v, to a set of

known directions in the state and output space. The GLR formu-

lation resulting from this simplification is referred to as

constrained GLR (CLLR).

2. Selecting only one direction for the failure vector (e.g., the

direction corresponding to the failure of a component with the

highest probability of failure). The GLR formulaticn corre-

sponding to this type of simplification is called the Simplified

GLR (SGI.R) .

The developmen t_ of constrained GLR (CGLR) follows directly from

equation (2-40). Substituting af t for v in equation (2-33), where

a is an unknown scalar and f 	 is the jth vector of the preselected

•	 directions, and maximizing with respect to a yields:

2

2 In AM	

fiCi(k,t)fi
	 (2-42)
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The nu ► ximum I IkvI11 ►nu ►► voi1 ( mntc oil	 a co rrvi4poiAlnR Lo v(platJon (2-41)

In

fj Di(k,t)

`^	 a	 (2-43)

IF Ci(k,t)fj

In equation (2-42) the time of the failure, t, and the direction of the

'

	

	 failure, j, are unknown. Thus the expression on the right-hand side

has to be maximized with respect to t and J. The maximization can

be expressed as:

2

f1Di(k,t)
11 (k,t,j) - Max

i	 jet	 fjCk(k't)fj

(2-44)

The development of the Simplified CLR (SGLR) is based on the as-

sumption that the failure vector, v, can only assume a known direction

and value. This asriumptJon elbninate,i the need for estimation of v.

Substttuting v - v o w wh ► -re v0 Is Llic known vecLur, In equaLlon (2-38)

results in

k

2 In A(k) = 2v"'0 Z c.i(_f,t)V_- 1(j)r(j) - v0

j. l

k

x	 Ci(j't)V-1Ci(j , t ) v0 	 (2-45)

j- 1

or

2 In AM = 2 vTD i (k,t) - vTC i (k,t)v 0 .	 (2-46)

The time of the failure, t, in equation (2-46) is unknown and it must

be estimated. Maximization of 2 In A(k) in equation (2-46) with re-
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specs to L can be expressed as

Li(k,t) - Max 12v^D i (k,t) - v'C i (k,t)v
01
	 (2-47)

t L

•	 The restrictions imposed on failure directions will make the detection

scheme mp:e responsive to the predetermined directions and less sensi-

tive to the nonspectfied directions. As a result, these restrictions

may only be useful if sufficient information about the nature of the

failures in the system is available. The development of the GLR for the

two simplifications suggested in reference 1 concludes the study of GLR

for time-varying system.

In summary, three types of failures, namely the hard-over actua-

tor failure, brief disturbance in the actuator, and the hard-over sen-

sor failure, were considered. Examination of the results generated for

these failures i;,d..cates that the Generalized Likelihood Ratio indices

for the three types of failure can be expressed in a common form as:

L l (k,t) - Di(k,t)Ci l (k,t)D i (k,t)	 for i - 1,2,3	 (2-48)

where D i (k,t) and C i (k,t) are defined in equations (2-35) and (2-36),

respectively. The source of distinction. between Di (k,t)'s and

C i (k,t)'s for the three types of failure is the different G i (k,t) ma-

trices. The matrix G i (k,t) reflects the effect of type i failure on

the residuals. Therefore, the successful detection and isolation of a

failure depends on how well the G i (k,t) matrix represents the true ef-

fect of type i failure on the residuals. A summary of the GLR form-

ulation for the three types of failures is given in Table 2.1. A de.-

sign regarding the occurrence and the type of a failure is made as

l



€f

36	
ORll ^.f

OF POOR ^ r^ ^`QUALITY
TABLE 2.1

SUMMARY OF GLR FORMULATION FOR TIME -VARYING SYSTEMS

GLR Index	 Li(k,t) - D (k,t)C-I(k,t)Di(k,t)

k

D i (k,t)	 G Q,t)V-1Q)r(j)

J-1

k

C i (k,t)	 _ Ci(,j,t)V-1MGiQ,t)

J-1

For	 1 1,2,3

Hard-Over Actuator k

(state step) Ei 
Z 

Q(k,t) k >	 t

J-t

G1 (k,t)	 -

0 k <	 t

Brief Disturbance HQ(k,t) k >	 t
G2(k,t)

foin the Actuator k <	 t

(state jump)

Hard-Over Sensor i k >	 t

fo(sensor step) k <	 t

i
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follows. The Li(k,t) from equation (2-41) is compared with a threshold

c and if L I (k,t) exceeds a then the occurrence of a failure of type

•	 i at time t is declared. When more than one type of failure is

considered then the selection of the failure type is achieved by maxi-
.

mizing Li (k,t) over i, the type of the failure. The procedure for

selecting a is given in the next chapter. Due to the imp(,rtance of

time-invariant systems in practical applications, the next section is de-

voted to the discussion of the GLR failure detection for these systems.

2.4 AnDlication of GLR to Time-Invariant Systems

The development of GLR detection technique for time-invariant sy6-

tems is indeed a special case of the time-varying formulation of the

technique. The importance of studying failure detection for time-

invariant systems stems from the fact that in most practical applica-

tions the systems are assumed to be time-invariant. As in the time-

varying case, the first step is to develop the system model.

2.4.1 The System Model

The state and output equations for a time-invariant system can be

written as:

X(k + 1) = ¢X(k) + BU(k) + Fa(k,t)
	

(2-49)

Z(k) - HX(k) + JU(k) + Y(k) + Fa(k,t)
	

(2-50)

where all the symbols are defined in the same way as in equations (2-1)

and (2-2) except that Q, B, H, and J are not functions of k any

longer. The failure functions F a (k,t) and Fs (k,t) are used to model

the three types of failure in exactly the same manner as in equations

(2-3) through (2-7). The next step is to model the effect of the fail-

ures on the residuals of the timie-invariant system.
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2.4.2 The Residual Model

The definitions and the assumptions of Section 2.3.2 regarding the

modeling of the residuals also apply to time-invariant systems. How-

ever, the matrices ^ and H are constant and this simplifies the for-

mulation of the G i (k,t) matrix. The effect of each Hype of failure on

the residuals of time-invariant systems will be developed as follows.

1. Hard-Over Actuator (State Step) Failure

The change in the value of the states due to a hard-over actuator

failure can be calculated from the following equaLion:

X2 (k + 1) - ^X2 (k) + ok+l,tv
	

(2-51)

X2 (k) = 0	 for k < *_

where ^, a ij , v, and X 2 (k) are defined in the same way as in equa-

tions (2-1), (2-3), and (2-10), respectively. The closed form solution

for equation. (2-51) is as follows:

k

Fa Q(k,t)v	 k > t

j=t

X2 (k)	 (2-52)

0	 k < t

where Q(k,t) is the discrete tran , tion matrix obtained by solving

equation (2-51). Specifically

Q(k,j)	
k-j.	 (2-53)

The equation (2-52) can also be derived directly from equation (2-15)

by substituting ¢ for ^(k), m(k - 1), ... etc. The effect of the

failure on the residuals can be calculated by multiplying X2 (k) by H:

1
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k

H 1: m k-j v 	 k ? t

,)-t
^) a

0	 k < t

notation introduced in equation (2-26):

k

H 
Z 

m
k-j	

k ? t

JMt
cat)

0	 k < t

(2-55)

The equation (2-55) indicates that G 1 is only a function of d = k - t

which allows equation (2-55) to be rewritten as:

d
ti E ^d- s	 d > 0

SgAo
G 1 (d) -	 (--56)

0	 d < 0

2. Brief Disturbance in Actuator

The effect of a brief disturbance in the actuator on the states is

evaluated from the following equation.

X 2 (k + 1) = ^X2 (k) + dk+l,t"
	 (2-57)

The closed form solution for the above equation can be Jerived as:
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Q (k, t)	 k	 t	 CjF pOdH (^UALi'f°ti

(2_58)
2	 • <

l0	 k < t

where

Q(k,t) . 
^k-t,	

(2-59)

Therefore, the effect of the failure on the residuals can be written

as:

HOk-tv 	
k > t

r 2 (k) =	 (2-60)

0	 k < t

The G 2 (k,t) corresponding to r 2 (k) = G 2 (k,t)v is

HQ k- t	 k > t

G2(k,t) _	 (2-61.)

0	 k < t

It is easily seen that G 2 (k,t) may be written as a function of

d = k - t:

H^ d	 d > 0

G 7 (d) _	 (2-62)

0	 d < 0

3. Hard-Over Sensor (Sensor Step) Failure

Consider the effect of a hard-over sensor failure on the residuals

in equation (3-21):

r 2 (k,t) = a k,ty	 (2-53)

It can easily be seen that the effect of a hard-over sensor failure on

the residual is independent of the system equations. That is, the ef-

fect of a sensor step failure on the residuals is the same for both



41

time-invariant and time-varying system. Therefore, G 3 (k,t) correspond-

ing to r 2 (k)	 G I (k,t)v can be written as:

1	 k > t	 ORiG{i4," yr ', : 	 r
G 3 (k, t )	 OF P00';:	 (2-64)

0	 k < t

or, alternatively, it can be expressed as

1	 d > 0

G 3 (d) _	 (2-65)

0	 d < 0

where d - k - t. With the completion of modeling the residuals, the

GUrt for the time-invariant system will be derived.

2.4. 3 The Generalized Likelihood Ratio

Consider the derivation of the GLR for time-varying systems in

equations (2-27) through (2-41). Direct substitution of G i (d) (from

eqs. (2-56), (2-62), and (2-65)) into equations (2-27) through (2-41)

,_elds the corresponding GLR relationships for time-invariant system.

A summary of these relationships for time-invariant systems is given in

Table 2.2. Since G 's for the time-invariant system are functiuc:s of
,

d - k - t, C i 's will also be functions of d only. This in true since

the covariance matrix of the residuals is constant (i.e., V(J) = V).

'therefore, the C 	 for time-invariant systems can be derived from

equation (2-35) by direct substitution of Gi(d):

d

C i ( d ) _	 Gi(j)V 1GiU)
	

(2-66)

J=O

Although DI (k,t) remains a function of both k,t, it may be expressed

in terms of d and t as follows. Consider the equation

'k

I
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TABIJI 2. 2

SUMMARY OF GLR FORMULATION FOR TIME-INVARIANT SYSTEMS

GLR Index	 L (d,t) = D 
T 
(d,t)C- I (d)D(d,t)

d

D (d,t) -	 G T WV_ 1 r(j + t)

J-0

d

C
1
 (d)	 G T (J)V- 

I G
1 W2: 1 

J-0

d - k	 t

Hard-Over Actuator	 d

(state step)	
H 

E	
d 0
-

j=0
G1(d)

	

0	 d < 0

Brief Disturbance	 Hi	 d > 0

2
in the Actuator 
	

0	 d < 0

(state jump)

Hard-Over SensL	 I	 d > 0
G3(d)

(sensor step) 
	 f.0	 d < 0

nn
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Di (k,t)	 Gi(j - r)V Ir(j).

J-1

(2-67)

Since

G (j - t) - 0	 for j < t

d

Di (d,t) -	 Gi:j)v-lr(j + t)

J-0

then

(2-68)

where d - k - t.

The derivation of GLR relationships for time-invariant systems is

of considerable sib..lficance for practical implemetitation of the tech-

nique. In a typical jet engine application the relationships in Table

2.2 will be implemented on a digital computer. Two observations can be

made in this regard. The first observation is that for time-invariant

systems Gi (d) and C i (d) (see Table 2.2) are only functions of

d = k - t (where k is the number of the current observation and t is

the time of the failure), therefore, they can be computed off line for

on-board utilization. This property is important when storage and com-

putation cycle time are critical. The second observation that can be

made is that the GLR relationships resulting from the proposed detection

scheme (Fig. 2.2) can easily be written in a recursive format. The re-

cursion relationships yield a simple procedure for computing GLR indi-

ces. The development of these recursion relationships is the subject

of the next section.

2.5 Recursion GLR Relationships for Time-Invariant Systems

In this section a set of recursion relationships for calculatic
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of the GLR detection index for the time -invariant systems is developed.

The main utility of these relations is to facilitate the computer pro-

&ramming of the proposed GLR detection scheme. Consider the GLR equa-

tions for time-invariant systems in Table 2.2. In order to calculate

the GLR index, L i (d,t), it is essential to compute Ci (d) and Di(d,t)

first. The matrix C i (d) is the summation of the matrices GT (J)V 1Gi(,^),

for	 - 1,2,...,d, hence, it can be written in the recursion format by

inspection as follows:

C i (d) - C i (d - 1) + Gi (d) 
V-1Gi 

(d) .	 (2-69)

Simularly the column vector D i (d,t) zan be written as

Di(d,t) . D
i
 (d- l,t) + GT (d)V 1r(t + d).
	

(2-70)

A

It follows from equations (2-69) and (2-70) that the compu

Ci (d) and Di (d,t) depends directly on the Gi (d) matrix.

the derivation of recursion relations for Gi (d) is necess^

lations for each of the three types of failure will be devi

1. Hard-Over Actuator Failure

For the hard-over actuator the G 1 (d) was derived in

(2-50) as:

r d
H 
2 

^d-s	 d > 0

s=0

G1(d)

0	 d < 0

From equation (2-71), for d > 0 the G i (d) can be writte

Gl(d) = HIf d + ^d-1 + ... + I



or

G 1) (d) - 
H¢ d = G2 (d - 1)0.
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G 1 (d) - H1I + m + . . . + md,

thus

d

G 1 (d) - .4

	

	 ^s .

S-0

It follows from equation (2-74) that
1

H	 d 0

C
1
 (d)G^ I'd - 1) + Hid	 d > 0

F,	 0	 d < 0

2. Brief Disturbance in Actuator

Examination of the form of G 2 (d) in equatioi

G2 (d) can be written as:

H	 d - 0

G 2 (d) =	 G 2 (d - 1)m	 d > 0

L0	 d<0

The derivation of equation (2-76) is achieved in

G 2 (0)	 H

G2 (1) = Ho	 G2(0)0

G2(2) 
HO 	

G2 W1 (2-77)
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Equations (2-75) and (2-76) can be combined into one equation for calcu-

lation of G1 (d) as follows:

G 1 (d) - G1 (d - 1) + G 2 (d)	 d > 0.	 (2-78)

Equation (2-78) implies that G1 (d) is the cumulative sum of G2(d).

This is, of course, expected because tLe C 1 (d) reflects the effect of

a persistent actuator failure while G 2 (d) reflects the effect of the

actuator failure over one sample interval. Another implication of equa-

tion (2-78) is that after the G 2 (d) matrix is calculated the G 1 (d) ma-

trices can be computed by simple matrix addition.

3. Hard-Over Sensor

Consider G 3 (d) in equation (2-65), this matrix is simply a g x g

identity matrix for d > 0, i.e., G 3 (d) is a constant matrix for d > ' O.

Since G3 (d) is a constant matrix C 3 (d) rakes a simple form as

d

C 3 (d) = 2: V 1	 (d + 1)V-1	d > 0	 (2-79)

J-0

A summary of the recursion relationships for G i (d) is given in Table

2.3.

The development of the detection technique for hard failure is con-

eluded at this point. The study of statistical properties of the detec-

tion technique will be discussed in the next chapter. Prior to exami-

nation of the statistical properties of GLR, a brief discussion of soft

failures in sensors is presented in the next section.

2.6 Sensor Soft Failure

In this Section a failure detection technique for sensor soft fail-

ures in time-invariant systems using the proposed detection scheme

(Fig. 2.2) will be presented. The objective is to demonstrate the
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TABLE 2.3

ASSIMARY OF RECURSION FORMULAS FOR G M

(Time-invariant Cane)

Hard-Over Actuator H d	 0

G	 (d) G (d 1) + fle
d
	d > 0

r.	 (state step)
0 d< 0

Brief Disturbance

in the Actuator

(state jump)

Hard-Over Sensor

(sensor step)

or

H	 d - 0

G	 G 
1 
(d	 1) + G2 (d)	 d > 0

0	 d < 0

H	 d - 0

G 2 (d) 	 G 
2 
(d	 1)f	 d > 0

0	 d < 0

0	 d < 0
G3(d)
 I	 d > rl
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ility of the proposed detection technique to the problem of soft

ensor soft failure can be defined as an increase in the known

variance of the sensor output. Figure 2.3 illustrates the definition of

a sensor soft failure. In order to test a sensor for soft failure two

hypotheses are set up

H0 : No failure has occurred	

(2-80)
H l : A sensor soft failure has occurred

Testing of the above hypotheses is accomplished by utilizing the model

residual. Several assumptions regarding the model residual are made.

It is assumed that under no-failure hypothesis, H 0 , the model residuals

are zero mean white Gaussian noise with known constant variance, V.

The second assumption is that when a failure occurs the variance matrix

changes to some unknown matrix V* while the mean remains the same and

the Gaussian and whiteness properties are retained.

Based on the above assumptions the hypotheses in equation (2-80)

can be expressed in terms of the variance of the residuals as

H0 : Residual variance V (known) 	

(2-81)

H1 : Residual variance V* (unknown)

Both V and V* are diagonal and positive definite. The matrix V*

has at least one element larger than the corresponding elements in V.

To test the hypothesis in equation (2-81) the method of Generalized

Likelihood patio will be used. For this purpose consider the likelihood

function for hypothesis H0:

110 M Prob. Ir (l),r(2),...,r(k)/H 
01
	 (2-82)

or

t
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k

11 0 	(2Tr)-gk/2 ( V I -k/2 exp -	 r  
(J)V- 1 r(j)	 (2-83)

2 Fa
J-1

where L0 is the probability that the k observations of the model re-

siduals are from a population with Ga ,m Sian distribution and covariance

matrix V, and g is the dimension of the residual vector r(j). Sim-

ilarly the likelihood function for alternate hypothesis, H1 , can be

written as

L1 - Prob. 
I
r (l),r(2),-.. . r(k)/H 11
	

(2-84)

or

k

L1 - 
(2Tr)-gk/21V*I-k/2 exp - 2	 rT(j)V* 1 r(j)	 (2-85)

J- 1

where L1 is the probability that k model residuals, r(j), are from

a population with Gaussian distribution and unknown variance V*. The

likelihood ratio for H0 and H1 can be written as

L = 
LL1	

(2-86)

0

taking the logarithm of both sides of equation ( 2-76) yields:

log L = log L1 - log L0 .	 (2-87)

Before substituting for L1 and L0 from equations (2-83) and (2-85)

into equation ( 2-87), the following definitions are adopted.

S 1 -A V 1	 (2-88)

and
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S 2 ° V*-1 .

Using the above definitions the determinants of S 1 and S 2 ca

pressed in terms of IVI and IV*I as follows

ISII - IVI
-1

and

is 21` I V* I -1 .

Now using equations (2-83) through (2-91), equation (2-87) can b

written as:

k

Log L	
k 

logl S2I - 2	 r  (j) S 2 r ( j ) - 2 k 1 ogj S l I

J-1

k+ 2	
r.,.MSlr(j)•

j=i

Since V* is unknown, then it. must be estimated before log 1

evaluated. This is accomplished by maximizing log L with r

S 2 (see Appendix C). This results in

k	 -1

S2 = k Fa r(j)rTM

j 

Prior to substitution of equation (2-93) into equation (2-92)

vantageous to use the following equivalent form:

k	 k

ya r T, (j)S 2r(j) = Tr S2 Z r(j)rT(j)
J-1	 j-1



k

L(k) - 2 log L - -k logIS 1 J -k log 
ya 

r(j)rT(j)

j-1
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in equation (2-92) and then substitute S 2 for S 2 , this yields

k

	

+ TrSl 
Z 

r (1) rT (j ) - kg + k log k	 (2-95)

J-1

Anderson (Ref. 5) shows that under null hypothesis the ratio in equa-

tion (2-93) follows an asymptotic central chi-square distribution with

g(g 4. 1)/2 degrees of freedom. That is, as k -► - the distribution

of L(k) approachec a chi-squared with g(g + 1)12 degrees of freedom.

Based on the knowledge of the distribution of L(k) a threshold c can

be selected and if L(k) exceeds this threshold then a soft failure is

declared. The selection of E is acccmplished by assigning a small

probability a to the event of rejecting the true null hypothesis

(type I error) .

The above development does not provide any information regarding

the failure time. If the knowledge of the failure tivie is needed, the

formulation in equation (2-92) can be modified to furnish such infor-

mation. For this purpose, note that V* - V before a failure occurs

at time t then equation (2-92) ran be modified as

k

log L ° (k 2 Q log J S Z I 	 t 2 k log J S I 1 - 2	 r(j)S2rIf (j)
,j=t

k

+2	 r(j)Slr(j)	 (2-96)

j=t
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The a sLimaLv of S 2 in this case becomes

k	
-1

S2 = (k - 1)

	

	 Fa r(j )rT (j )• 	 (2-97)

Jot

Utilizing equation (2-94) and substituting S 2 for S2 (from eq. (2-97))

in equation (2-96) yields

k

L(k) - 2 log L - (-k + t)logIS 1 1 - (k - t)log 
2: 

r(j)rT(j)
Jot

k

+ TrSl 
YJ 

r(j)r j (j) - (k - t)g + (k - t)log(k - t).	 (2-98)

j=t

In equation (2-98) the time of the failure, t, is unknown, hence, it has

to be estimated before L(k) can be computed. Again, by maximizing

L(k) with respect to t, an estimate of failure time is calculated that

can be used in calculation of L(k). Maximization of L(k) with respect

to t requires computation of L(k) in equation (2-98) for each pos-

sible value of t. It follows then that the burden of computation will

grow rapidly as the number of observations grows. To circumvent this,

an interval can be selected to restrict t as k - M < t < k - N

where M,N are the limits of the interval. In selecting these limits,

consideration should be given to the fact that only the asymptotic dis-

tribution of L(k) is known. Hence, M should be selected such that the

number of observations used in computing L(k) will be sufficiently

large.

The brief development of a soft failure detection procedure in

this Section indicates that the proposed detection scheme (illustrated
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in Fig. 2.2) can also be utilized for soft failure detection. A full

treatment of soft failure analysis is beyond the scope of this disserta-

tion, however, the development in this section can serve as a basis for

future research in this area. To conclude this chapter, a summary and

discussion of the results developed in this chapter is given in the next

section.

2.7 Summary and Discussion

The problem of detecting a hard failure in a linear dynamic system

was addressed in this chapter. A new failure detection scheme was pro-

posed (Section 2.2) that is applicable to both linear time-varying and

time-invariant systems. The proposed method is based on testing the re-

siduals of a system model. The basic underlying assumptions of the pro-

posed method are that when no failure exists in the system the model re-

sidual is zero mean white Gaussian noise process and when a failure

occurs the mean of the residual will deviate from zero while the Gaussian

property is retained. Therefore, detecting a deviation in the mean value

of the residuals is equivalent to detecting a failure in the system. To

test the residuals, three modes of failure, namely hard-over actuator,

brief disturbance in the actuator, and hard-over sensor failures are con-

sidered. Three pairs of hypotheses corresponding to these modes of fail-

ure are formed and in each case the null and the alternate hypotheses are

assigned to a no-failure and a failure mode, respectively. The null hy-

pothesis is tested against the alternate hypothesis by forming the ratio

of the corresponding likelihood functions (eq. (2-32)). This yields a

scalar function (referred to as GLR index). A decision regarding the

occurrence of a failure is made by comparing the GLR index with a thres-
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hold c. If the GLR index exceeds a then a failure is decl.at

type of the failure can be identified by selecting the type coi

to the maximum value of the GLR indices. The estimate of the t

failure is chosen as the failure time resulting in the maximum

GLR indices. The failure vector. v, can be estimated (eq. (2

utilizing the C i (k,t) and D i (k,t) matrices corresponding to

ted type of failure i and the estimated time of failure t.

The computation of the GLx indices is simplitied by assuming tnat

the linear system under study is time-invariant. This is the case in

most of the practical applications. The simplifications are due to the

fact that for time-invariant systems C i (d) is dependent on d = k - t

only and, hence, C I (d) is also a function of d only. This property

of Gi (d) and C i (d) also allows the off-line computation of these ma-

trices. In situations, such as a jet engine application, where the

computation time is critical, G i (d) and C i (d) can be computed off-line

and stored for on-board utilization. In those cases where on-line cal-

culation is possible the recursion relations for calculation of Gi(d)

simplify the computation of C i (d) and ultimately Li (d,t) (see Table

2.3).

It follows from the above discussion that the proper detection of

a failure depends on the value of the threshold e. The procedure for

selection of e will be discussed in the next chapter. Also in the

next chapter various statistical and computational properties of the

proposed detection plan will be discussed. This will include topics

such as the probability of correct detection, false alarm, wrong-time

detection, and detectability of a failure.
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The concept of GLR can also be applieJ to the problem of soft fail-

ure detection in time-invariant sybtems. Similar to the case of hard

failure, the GLR decision rule is comnr l ;ed of comparing th •s likelihood

ratio with a threshold, c. The threshold c is selected based on the

probability of type I error. In conclusion, the derivation of the GLR

technique using model residuals for sensor soft failure in this chapter

demonstrates the applicability of the proposed detection plan (Fig. 2.2)

to the problem of soft failure. Further development in this area is

needed and the results of this chapter can serve as a basis for such

efforts.

,1

LA_.r



STATISTICA

3.1 Introduction

The proposed Generalized Likelihood Ratio (GLR) failure detection

decision rule, developed in Chapter II, requires a comparison of the

GLR index (eq. (2-41)) with a threshold e. In order to select a

proper threshold e, various detection probabilities such as proba-

bility of correct failure, false alarm, etc. should be determined.

In this chapter these probabilities are developed. The derivation

of these probabilities parallels the work of Chow in reference 3.

The main difference between the results in this chapter and those of

reference 3 is that the derivations in this chapter are based on using

a plant model rather than the Kalman-Busy filter in the detection

scheme.

The organization of the materials presented in this chapter is

as follows. The probability distribution of the GLR index is

developed in the next section. After the probability distribution of

GLR index is identifies', the proper level of threshold e can be

established by examining the detection probabilities. These include

the probability of correct detection, false alarm, cross detection,

and wrong time which are derived in Sections 3.3 and 3.4. Following

the derivation of the detection probabilities the question of failure

detestability is addressed in Section 3.5. In Section 3.6 the asymptot-

ic behavior of C i (d) (eq. (2-66)) is studied to determine the effect

56
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of the number of observations on the detectability of failures.

Finally, in Section 4.6 a summary and discussion of the results of this

chapter is presented.

.	 3.2 Probability Distribution of GLR

in the first part of this section the probability distribution for

the GLR is derived without restricting the direction of the failure

vector, V. In Section 3.2.1, the failure vector is restricted to a

single vector v 0 and the distribution of the simplified GLR is

derived. To develop the GLR distribution in a general form, assume

that a GLR detector hypothesizes the occurrence of a type i failure

at time ti while actually a type j failure has occurred at time tj.

Since a type j failure has occurred the residuals are given by

r(k) - r l (k) + Gj (k,tj )v	 (3-1)

where k is the observation number, t 	 is the time of the failure,

r 1 (k) is a Nero mean white Gaussian noise process, G j (k,t j ) reflects

the effect of type j failure on the residual, and v is the failure

vector. The GLR index was given in equation (2-48) as

L(k,ti)	
Di/j(k,ti)C-1(k,ti)Di/j(k,ti)	

(3-2)

where C i (k,t i ) is the same as in equation (2-35) and Di/j (k,t i ) is
,g

given by

k

L)	 (k, ti)	 E Ci(m,t t )V 1 (m)r(m)	 (3-3)

i/jm-ti

in equation (3-3) V(m) is the covariance matrix of the residual of

equation (3-1) and the subscript of D i/j (k,t i) denotes the occurrence

of type j failure while type i is hypothesized. To simplify the

a
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presentation of mathematical relations in this chapter the following

notation is adopted

k

Ci/j(k,ti/t j)	 Z G  (m, t i )v-1 (m)G
j (

m , t
j 

)
	

(3-4)

m-ti

Hence, for i = j and r i ¢ tj:

k

Ci/i(k,ti/ti)
	 C i (k,t i )	 Gi(

m,ti)V-1(m)Gi(m,ti)

m-ti

which is the same as (2-35).

(3-5)

Consider C i (k,t i) in (3-5). Since V -1 (m) is positive definite and

symmetric then C i (k,t i) is also symmetric and positive semidefinite.

Therefore, C i (k,t i) can be transformed to a diagonal matrix by a

similarity transformation as follows:

Ai/i(k,ti/ti) = S-1C i (k,t i )S	 (3-6)

where S is an orthonormal matrix and A i/i (k,t i/t i) is a diagonal

matrix with eigenvalues of C i (k,t i) as its elements. Utilizing

equation (3-6) the GLR index in equation (3-2) can be written as

Li (k,t i) = hi/j(k,ti)A-1(k,ti/ti)hi/j(k,ti)
	

(3-7)

where

T
hi/j (k,ti)	 SDi/j(k,t1	

(3-8)

In order to determine the distribution of L i (k,t i) it is necessary to

identify the distribution of the random vector h i/j (k,t i). The

vector hi/j (k,t i) in (3-8) is a Gaussian random vector and it can

be completely identified by its mean and variance. The mean of
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h i/j (k,t i) can be computed as: 	
OF POOR QUALITY

E [hi/j (k,td M ST E[Di/j(k,td	 (3-9)

substituting for D i/j (k,t i) from (3-3) and taking the expectation

yields

k

E[hi/j
(k,ti)^ W ST 

Z 
Gi(m,t i ) V-1 (m)Gj (m,t j )v	 (3-10)

m-ti

Now using the notation introduced in (3-4), equation (3-10) can be

written as

F Chi/ 
j (k, td M STC i/ j (k, t i /t j )v	 (3-11)

The covariance of hi/j (k,t i) can be calculated in the following

manner:

k

E 
[hi/ j 

(k, ti) hi/j (k, t i )	 ST 	 Gi(m,ti)
m-ti

T
k

X V-1(m)r(m)	 G  (m,t i )V 1 (m) r (m )	 S	 (3-12)

Substituting for r (m) from (3-1) and taking the expected value

results in

E I 
h
i/j (k,ti)hi/j(k,ti)] 

= STCi(k,ti)S

,'A

+ E [hi/j (k, t i)] E [hi/ j (k,ti)1	
(3-13)
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The firat term on the right-hand side of equation (3-13) is

A i/1. (k,t i/t i ) (see eq. (3-6)), hence the variance of hi/j(k,ti)

is equal to A i/i (k,t i/t i). Since A i/i (k,t i/ t i) is a diagonal matrix

it follows that the elements of h i/j (k,t i) are independent of one

another.

Consider the GLR index in equation (3-7), the expression for

GLR index can be written as:

g h2(k,t)
Li(k,ti)	 q	 i

x	 ^

qw 1	 q

(3-14)

where hq (k,t i) and X 	 are qth elements of hi/j (k,t i) vector and

A i/i (k,t i/t i) matrix respectively, and g is the number of system

outputs. Examination of (3-14) reveals that L i (k,t i) is the sum of

sque.res of the Gaussian random variables with mean of

hq(k,ti)/^, where hq (k,t i) is the mean of the qth element of the

hi/j (k,t i) vector. The variance of hq (k,t iVV X 	 is unity because

X is the variance of hq (k,t i). Since the elements of hi/j(k,ti)

are independent of one another with a Gaussian distribution, then the

GLR index has a noncentral chi-squared distribution with g degrees

of freedom and noncentrality parameter 6 2 given by

62	

g hq(k,ti)
	

(3-15)
X

q=1	 q

(Ref. 61). It is useful to write d 2 in matrix form for the calcula-

1

	 tion of detection probabilities which will be presented later.

Specifically,
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,S ` d	
I

1: 11' 1/` (k,t 
1
/t ' ) S Ai/7(k,tt/^^) h 1 C 1/I (k,t 

1
/t^)

Using the orthonormal property of matrix S, i.e., S %- 's -1 eqt

(3-16) can be written as

52	 v TCT

i/) (k,t t /t ^ ) C i/i (k,t i
/t i ) Ci

/)(k•ti
/t^ ) v

This concludes the derivation of the probability distribution for the

GLR index. Since no assumption regarding i ,J, t i , t j and v was made,

various probabilities regarding failure detection can be computed as

special cases of the general derivation of this Section. One special

case of interest is to restrict the failu.,-e vector to a single known

vector, v o , i.e., the case of Simplified GLR. For this case the

distribution of the SCLR index is a Gaussian distribution "nd its

derivation is presented in the next Section.

3.2.1 Probability Distribution of Simplified GLR

Consider the Simplified Generalized Likelihood Ratio (SCLR)

index in equation (2-46). If an SGLR detector hypothesizes the

occurrence of to Lype i failure at time ti while a type j

failure has actually occurred at time t 	 the equation (2-46) can

be rewritten as

k	 k

L ( k , t i )	 2vT Z C i (m,t i )V-l (m)r l (m) + 2J	 CT(m,ti)V-1(m)

m-1	 m-1

k

v - v0	 Gi(m,ti)V IGi (m,t i ) v 0	 (3-18)

M-1-



The equation ( 3-18) follows directly from (2-46) by eubstituting for

r(m) from equation (3-1). Since r l(m) in (3-18) 1s a white Gaussian

noise process then L(k,t i) is a sum of independent Gaussian random

variables. Thus, the probability distribution of L(k , t i ) for SGLR is

Gaussian. The mean of L(k,t i) is given by

rk
E IL(k,t i)] - 2v0 1:GT (m,t i )V-1 (m)G j (m,t j ) v

L	 m-1

k

- V  2: GT (m,ti)V-1G1(m,ti) v0

M-1

Using the notation introduced in (3-4), equation (3-19) becomes

EI L(k,t 1 	2v0Ci/ j (k, 
ti/t.^ 

)v - v0C I (k,t1)v0

The variance of L(k,t i) can be calculated as follows:

(3-19)

(3-20)

2

E 
^

L(k,	 l t	
IL

) - E 	(k, ti)] 1
k

4 v T	 'E G i (m, ti )V 1.(m)

m-1

x Gi(m'ti) v0 (3-21)

4^

or

(	 r	
2

E ( L(k, t i ) - E) L(k, t i )]	 = 4vT C  (k, ti)v0
(3-22)

This concludes the derivation of the distribution of the SGLR index.

Next, the distribution of the GLR and the SGLR indicies will. be

utilized to determine four important detection probabilities, namely,

the probability of correct detection, false alarm, cross detection,

and wrong time failure.

L-
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3.3 Detection Probabilities

Based on the GLR decision rule, established in Section 2.3.3, if

a (:l.R index corresponding to a type i failure exceeds a selected

threshold i	 tlien a failure is declared. It is possible, however,

that the GLR index corresponding to a failure of type i exceeds

the threshold E while a failure of type j has actually occurred.

It is, therefore, essential to establish the probability for various

detection modes. Four important detection modes are correct

detection, false alarm, cross detection, and wrong time.

Probability of Correct Detection

The probability of correct detection is a measure of reliability

of the detection technique. It can be defined as:

PD (k,i,t,v) Q Prob.(Li (k,t) > e/i,t,v)	 (3-23)

that is the probability that the GLR index, Li (k,t), for a type i

failure at time t exceeds the threshold a given that a failure v

of type i has actually occurred at time t. This probability can

be computed f •-um the distribution of the GLR index which was

developed in Section 3.2. For the case of correct detection the

noncentrality parameter d 2 (eq. (2-17)) for the GLR distribu-

tion is given by

d 2 = v TC i (k,t)v.	 (3-24)

Equation (3-24) is derived from equation (3-17) by substituting

i	 j and t i = t i and using the notation defined in (3-5).

False Alarm

The false alarm probability indicates the consistency of the

detector. It is the probability that the GLR index exceeds a

4 f
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threshold c given that no failure has occurred. Expressing this

definlC t, n in symbols yields:

PF (k,i,t)i- Prob.(L i (k,t) >e/v-0)	 (3-25)

The noncentrality parameter 6 2 (eq. (3-17)) for this case is zero

because v-0. Thus, the distribution of the GLR index for this case

is a central chi-squared with g degrees of freedom.

Cross Detection

The probability of cross detection provides a measure of the

capability of the GLR technique in selecting the true type of failure.

The probability of cross-detection can be defined as:

PCD (k,i,j,t,v)^ Prob. (LI(k,t)>c/j,t,v) 	 (3-26)

which is the probability that GLR index for type i failure will

exceed the threshold c while a failure v of type j has actually

occurred. The noncentrality parameter for probability distribution of

L I (k,t) for this case (from eq. (3-17)) If, given by

6 2 e vrCi/j(k,t/t)Ci1(k,t)Gi/j(k,t/t)v 	 (3-27)

since i4j and ti=tj=t.

Wrong Time

Correct estimation of the failure time is important for two rea-

sons. First, the estimate of the failure vector is directly dependent

on the estimate of the failure time. The second reason is that the es-

timate of failure time is often required when using the variable ac-

commodation technique. The probability of wrong time detection is de-

fined as the probability that the GLR index of type i failure at

time t exceeds the threshold c given that the failure has actually
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occurred at tlme t
c
 . This can be expressed in mathematical symbols

a4:

1) W'r (k,1,t 1 v 9 t c ) A Prob. (LI(k,t) > e/1,tc,v)	 (3-2H)

Using equation (3-25) the noncentrality parameter for GLR probability

distribution in this case is given by

62 ' \" I C 1/i
(k,t /tdci l (k.t) G i/i (k.t / t (,)v	 (3-29)

since i-J and tAt
c
	A summary of the above results for the four

detection probabilities is presented in Table 3.1.

Derivation of the four detection probabilities for simrlified GLR

follows the same procedure as above. In the case of SGLR, hoe^ever,

the distrtbuti oti of the SGLR index is Gaussian and instead of the non-

centrality parameter, Lite mean and the variance of the distribution

should be determined for each of the four cases. The variance of

the Gaussian distribution for all four modes remains constant (see

eq. (3-22)) while the mean varies. In the case of correct detection

i-J , Li=t f and vw
0
 Lite mean becomes

E C
11 (k, t i)J - ^' 0C (k. t l )v p	 (3-'3U)

The above procedure repeats for the remaining three modes and a

summary of the corresponding means is given in Table 3.2. The

development of the detection probabilities in this section has been

for time varying systems. In the next section the detection lroba-

hilit Les for the special case of tine-invariant systems will be

discussed.

3.4 Failure Det ection Probabilities for 'rime-Invariant Systems

In many practical applications of control theory the :system
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TABLE 3.1

SUMMARY OF NONCENTRALITY PARAMETERS

FOR FOUR DETECTION MODES

Correct Detection:

d 2 - v  Ci(k,ti)v

Remarks: i-j and tint i

False Alarm:

a2 - 0

Remarks: v-0 and i- j

Central chi-squared distribution for GLR

Cross Detection:

d 2 - vTCi/j(k,t/t)Cil(k,t)Ci/j(k,t/t)v

Remarks: t in t j=t

Wrong Time:

d2	
vTCi/i(k,t/tc)Cil(k,t)Ci/i(k,t/tc)v

Remarks: i= j and tOtc

Also t< t < k or t< t< k
C	 c
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TABLE 3.2

SUMMARY OF SGLR GAUSSIAN DISTRIBUTION MEANS

FOR FOUR MODES OF DETECTION

Correct Detection:

.	 Mean - vTCi(k,Ci)v0

Remarks: i-j and v-v0

False Alarm:

Mean - - vQCi(k,ti)v0

Remarks: i-j and v-0

Cross Detection:

Mean = 2vpC i/j (k,t i /t i )v - v 1 Ci(k,ti)v0

Remarks: i0j, v0v 0 and ti-ii

Wrong Time:

Mean - 2v TC i/i (k,t i /ic )v 0 - vTCi(k,t)v0

Remarks: Otc , i-j, and v-v0

Also t<t <k or t <t<k
c	 c

^a



tion (2-56) in the expression for C i (d) in equation (2-66). Now by

substituting equation ( 3-31) in equation (3-24) the noncentrality para-

meter 6 2 fc
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under study is assumed to be time-invariant. It is, therefore, i

tant to study the probability of various modes of detection, name

correct detection, false alarm, cross detection, and wrong time f

systems. In this section detection probabilities are developed f

three types of failure which were discussed in Chapter 2. The ke

ments in establishing these probabilities are the corresponding n

centrality parameters. Therefore 6 2 of the four detection prob

ties are derived for each of the three failure types. Before pro

with the derivation, it should be noted that in case of false ala

probability distribution of the GLR index reduces to central chi-

squared,, thus the corresponding noncentrality parameter is zero f

three failure types.

3.4.1 State- Step Failure

Consider the general formulation of the noncentrality parameter

for correct detection, given in equation (3-24). The C i (k,t) for a

state-step failure for the time - invariant system is given by

d

m
T

C i (k. 
t)	 H v , (nrx)

X-0

M=O

m
V 1 H 
	

^ (n-x)

x=O

(3-31)

where d = k - t. The equation ( 3-31) is derived by substituting equa-
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d

m	 T	 m

6 2	 v l	 (m-x) (HTV-1H) C` (m-x) v	 (3-32)

X-0	 x-0

M-0

The noncentrality parameter for cross detection is given in its

general form in equation (3-27). The C i/j (k,t/t) for state-step fail-

ure Is given by

d

m
T

C i/ j (k, t/t) -	 ya ^
(W_ X) HTV 1G^ (m)	

(3-33)

X-0

m-

where d - k - t. Equation (3-33) is the direct result of substituting

equation (2-55) into equation (..•4). The matrix Ci (k,t) is given by

equation (3-31). Hence the 6 2 for cross detection can be written as

d	 .^ T
m

T

5 2 - v T	
2: 

0 
(m- X)

HTV 1G mL	 j( )
0

M=O

d	
-1

m	
T	

m

X	 (M-x) (HTV_ 1H) ['^ (M-x)

x=0	 x=0

n=0

d

m	
T

X	 2 ` 0 (M-x) HTV 1G (m)
(J	 j
x-0

ma0

(3-34)
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the noneentrality parameter for wren+; time detrct ion vau hr alt -Jvv41

from the generA equaLJon for this modu o  I a I lure lu otlu,it I 1i

Utilizing equation (2-55), C i/j (k,t/t c ) for HLate-step tailure yields

k

m	 T	 m

C
i/j	 c

(k, t/t )	 H Z , (m-q)
	

V-1 H 2:
m 

(m q)	 (3-35)

q t	 q'tc

m=t

and C i (k,t) remains the same as in equation (3-31). Thus d 2 for

wrong time detection for state -step failure becomes

T

m

(HTV 1H) Ya (m- X)

xat
c

td

T
 m

d 2 vT	
Z 

0 
(m- x)

xst

m=t

d	 T

(- m

Lx=0

M-0

-1

m

(HTV_ 1
H) 

	

^(M-x)

X-0

k
m	 T

X	 c` (m-x)

x=t

tm=t

m

(H '1,V 1H) 2 (M- X)v

X- t
c

(3-36)

This concludes th:; derivation of noncentrality parameter for state-step

failures. The equations ( 3-32), (3-34), and (3-36) provide the necessary

information for evaluating the performance of a GLR detector set to de-

tect state -step failures in a time-invariant system. Specifically,
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equation (3-32) provides a measure of detectability of failures as for

a constant threshold c, larger d 2 results in higher probability of

correct detection. Similarly, the equations (3-34) and (3-36) for d2

enable one to compute the probabilities of cross detection and wrong

time detection, respectively. Next the noncentrality parameters for

state-jump failure will be developed.

3.4.2 State-Jump Failure

The noncentrality parameter for correct detection of this failure

mode can be calculated from the general form of d 2 in equation (3-24).

The Ci (k,t) in equation (3-24) for state-jump failure becomes

a

d ((

Ci(k't) -	
\^m  

T (

H
TV- 

1H)mm

M-0

(3-37)

where d - k - t. Equation (3-37) is derived by substitution from equa-

tion (2-62) into the equation for C i (d) given in equation (2-66). Now

substituting equation (3-37) in equation (3-24) yields d 2 for state-

jump failure as:

d	 T

d 2 ° V 	
!gym ) (H

TV 1H )^m v

m-0

(3-38)

1y

The derivation of the

of state-jump failures can

sponding expressions for

failure in equation (3-27)

equation (3-37) and Ci/j(

Gi (m) from equation (2-62)

noncentrality parameter for cross detection

be accomplished by substituting the corre-

Ci/j (k,t/t) and C i (k,t) for this mode of

The expression for C i (k,t) is given in

k,t/t) can be calculated by substituting

into equation (3-4) which yields
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d	 'r
G i/j (d) _	

(^ml 
H 
T 

V_ IHG
i
 (m)

M-0

Hence 
62 

for cross detection can be written as

d	
T	

d	
-1

6 2 - 
V  Z 

(

m

M)T 
H 

T 
V_ 1HG j (m)	

E 

(mM)T

 IH
TV- 

1H)Om

M-0	 m-0

	d 	
T

x
IE `gy m\ H T V_ 1 H j (m) v

m-0

7?

(3-39)

(3-40)

The calculation of 6 2 for wrong- time detection is accomplished

by substituting proper values of C i/i (k,t/t c ) and Ci (k,t) in equa-

tion (3-29). The expression for C i (k,t) is given in equation (3-37)

and Ci/i (k,t/t c ) can be derived by substituting for G i (m,t) and

Gi (m,t c ) in equation (3-4) from equation (2-61). Thus

k	
T	 m- t \

C 	 (k, t/tc) = E (
gy m-tl (HTV- 1 H) (

O
	

c)

m=t	 f

(3-41)

therefore

	

k	 T

d 2 - 
V  2: (f n,-

	

M_ t	 J

T
( m-

(HTV 1H) \^ t c)

d-1
T

X Z (gym) (HTV 1H) (0m)
M=O

k

X 
k (

gy m-t1T (HTV 
1H) v-tc) v

m= t \	 ) 

(3-42)
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is the derivation of the noncentrality parameters for state-

pYp

P.

p^

Y

jump failure. Equation (3-38) provides the essential information for

calculation of the probability of correct detection when a failure has

actually occurred. Sivilarly equations (3-40) and (3-42) give the nec-

essary information for evaluating probabilities of cross detection and

wrong- time detection, respectively. In the next section the noncen-

trality parameters for sensor -step failure will be calculated.

3.4.3 Sensor-Step Failure

The calculation of 6 2 for correct detection can be achieved by

	

substituting for	 Ci (k,t) in equation (3-24) from equation (2-79),

which yields

6 2 - (1 + d)vTV- 1v
	

(3-43)

where d - k - t.

For cross detection, 6 2 is calculated from equation (3-27) by sub-

stituting for Ci/j (k,t/t) from the following expression

d

Ci/j (k,t/t) - 2: V-1Gj (m)	 (3-44)

m-0

Equation (3-44) is derived by substituting equation (2-64) in equation

(3-4). Hence 6 2 is given by

	

d	 T	
l	

d
6 2 - V  Z V 'G 	 \1 + d/	

V_
 1Gj (m)	 (3-45)

M-0	 m-0

Finally 6 2 for wrong time failure can be derived from equation

(3-29) by substituting the following expression for Ci / i(k,t/tc)
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k

	

C
i/i (k,t/t

c )	
2: V la Mgt	

(3-46)

	

(M-t	 c

where v	 is a unit step function defined in equation (2-4). Equa-
Mgt 
	 .

tion (3-46) is derived by substituting equation (2-64) into equation

(3-4). The expression for C i (k,t) is the same as in equation ( 2-79).

Then d2 can be written as:

	

k	 ^	 k

	

8 2 vT 
Z 

V l(T.^t	
\d + 1)	

V 
lom,t v	

(3-47)

	

m-t	
c	 ^t	 c

This concludes the derivation of the noncentrality parameters for the

three modes of failure. The main utility of the relations developed in

this section is to provide the necessary information for evaluation of

reliability (correct detection) and consistency (false alarm) of the GLR

detector, capability of selecting the true failure type, and correct es-

timation of the failure time. To continue the study of the characteris-

tics of the GLR detectors, the next section is devoted to the detecta-

bility of failures.

3.5 Failure Detectability

In the course of development of any failure detection technique,

it is essential to

technique utilizes

case of a failure,

failure which does

tected. It follow

system under study

determine what failures can not be detected. The GLR

the deviation of the residual mean from zero, in

to detect various modes of failure. Therefore any

not effect the mean of the residuals can not be de-

s that any failure in the unobservable space of the

can not be detected. An important question can be

En



raised Immediately: is it possible to establish dutectability condi-

L 1011.; for Lite proposed GLR technique?

TO InoestigaLe the answer to Lhlr; (1ucsLIun consLdvr the genrrrnl

expression for the GLR index at kth observation

L i (k,t) - Di (k,t)C i l (k,t)D i (k,t)	 (3-48)

It can be seen from equation (3-48) that the calculation of Li(k,t)

depends on the invertibility of C i (k,t) matrix. Although it is diffi-

cult to establish the conditions for invertibility of C 1 (k,t) in case

of actuator failures, it is possible to show that C I (k,t) is always in-

vertible for sensor failures.

In order to establish invertibility of C i (k,t) for sensor fail-

ures consider C i (k,t) for a sensor-step failure

k

Ci(k,t)	 Fa V 10
	

(3-49)

J-1

where V(j) is the covariance matrix of the model residual. According

to the assumption that model residuals are white Gaussian noise pro-

cesses them the matrix V(j) is a positive definite diagonal matrix.

Therefore, V 1 (j) is also positive definite. It can be shown that

Ci (k,t) in equation (3-49) is also positive definite (see the proof in

Appendix B). Hence, C i (k,t) is always invertible which proves th;-: all

sensor step failures are detectable. In the case of time-invariant

systems the condi+ .O ts of invertibility of C i (k,t) matrix can be es-

tablished for actuator failures. Before proceeding to develop these

conditions it should be mentioned that the proof of the invertibility
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of CI (k,t) for sensor failures is general, thud it is also valid for

time-invariant systems.

3.5.1 Detestability of State-Step Failure in Time-Invariant Systems

It was shown in Chapter 2, Section 2.4, that for the time- invariant

system CI (k,t) matrix becomes a function of d - k - t where k is

the number of observations and t is the failure time. Consider the

general formulation of C I (d) for time- invariant systems

d

C i (d)	 G'1(J)V 1610
	

(3-50)

j-0

where V is the covariance matrix of the residuals and G I (J) for

i - 1,2,3 is given in Table 2.2. Equation (3-50) can also be written

in th(, following form

I	 I	 I

	

C i (d) - G1(0) GIM	 I	 i Gild)
I	 I	 I

V_
1

X 

Gi(0)

V-1	
0	 Gi (1)

0

v-1	 G  (d)

or

(3-51)

C i (d)	 y Qy i	 (3-52)

The matrix st is composed of V 1 matrices as diagonal blocks. Since
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V 1 is positive definite then for C i (d) to be invertible, the matrix

Y i must be also positive definite. Before proceeding to establish the

conditions for invertibility of C I (d), it should be stated that equa-

tion (3-52) is valid for all failure modes in time - invariant systems be-

cause no restriction was imposed on I. the type of the failure.

For state-step failure the Y I (d) matrix is given by

I	 I	 I	 d
Y 1 (d) - H I H+ Hm I	 I H^ TjI	 !	 I

J-0

(3-53)

Equation (3-53) is derived by substituting equation (2-56). For C
1 0)

for j - 0.1.,,,.d. Equation ( 3-53) can be written as

Y 1 (d) -I

I H
r

I I 0 Hm

0

n rs.1 4)	 (3-54)

1	 11 L Hm d.

The lower block triangular matrix on the right-hand side of equation

(3-54) is of full rank. Thus if B(d) matrix is of full rank then

Y 1 
(d)will be positive definite and C 1 (d) will be invertible. The

^(d) matrix is identical to the matrix used to test the observability of

a system. Thus a detectability test resulting from the above discussion

.

	

	 can be stated as: a state-step failure is detectable if R(d) is of full

rank. Furthermore if 6(d) is not invertible in n - 1 stem!+, wlir , r(- n

i

is the dimension of the system, it will never be invertible. This fol-
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Iowa from a property of linear constant systems that if an n dimen-

sional linear constant system is not completely observable in n - 1

steps it will never be completely observable.

As a result of this finite-step detectability property a guideline

may be established for selecting the observation window size that was

introduced In Section 2.3.3. In that section the range of the failure

time was restricted to k - M < t < k - N where t is the estimate of

the failure time and N and M are window limits. The window of ob-

servation can be written as N < k - t < M, which is suitable for es-

tablishing the limits on d . k - t. Since the invertibility of CI(d)

will not be effected by d > n - 1 then N may be selected to be

N < n - 1. in summation the invertibility of C i (d) for state-step fail-

ures is related to the observability of the system under study. Hence,

if the n dimensional system is not completely observable in n - 1

steps then the state-step failure in that system is not detectable

either. The derivation of these conditions corms a balls for establish-

ing the detectability criterion for state-jump failure in the next

section.

3.5.1 Uetectability of State-Jump Failure in Time-Invariant Systems

The general form of the C I (d) matrix In equation (3-52) is also

valid for state-jump failure. In this case, however, the matrix Y,)(d)

is given by

1

1
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i

C	 0

Y (d)

0

I

I I

Hf

(3-55)
	

4

The block diagonal matrix on the right-hand side of equation (3-55) is

of full rank and the wecond matrix is identical to the one derived for

state-step failure in equation (3-54). Thus the conclusions of the pre-

vious section are also applicable to state- ,jump failure case as well.

It follows from the discussions in Sections 3.3 through 3.5 that

the C i (d) matrix (see Table 2-2) has an important effect on the suc-

cessful detection of a failure. The effect of the C I (d) matrix can be

summarized as follows. Fizst, to calculate the GLR index, equation

(3-48), it is necessary that C 1 1 (d) be invertible. The second effect

of C i (d) is that the noncentrality parameter, d 2 , of correct detec-

tion is a function of C i (d) (see eq. (3-24)). Since the larger d2

is the higher the probability of correct detection will be then Ci(d)

has a direct influence over the probability of correct detection. Fi-

nally it can be shown that C i (d) is the covariance matrix of the fail-

ure vector estimate, v(proof is presented in Appendix D). Hence, the

accuracy of the failure vector estimate depends on C i (d). Therefore,

it is important to study the behavior of Ci (d) as the number of obser-

vations increases. For this purpose the next section is dedicated to

the discussion of the asymptotic behavior of the C i (d) matrix.
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3.6 Asymptotic Behavior of C-Matrix in Time-Invariant Systems

In this section the behavior of C  (k,t) (defined in eq. (2-35)) for

time-invariant systems as the number of observations, k, increases will

be studied. It was shown in Section 2.4 that for time-invariant systems

the matrix Ci (k,t) becomes a function of d - k - t, i.e., C i (d). Since

t, the failure time, is constant, then the study of the behavior of

Ci (d) as a function of d is equivalent to studying the behavior of

C i (d) as a function of k. The behavior of C i (d) for each of the three

modes will be considered separately.

1. State-Step Failure

Consider the general form of the C i (d) for time-invariant systems

d

C i (d) -

	

	 G  Q )V lG (j )
	

(1-56)

J.0

Since V, the covariance matrix of the residuals, is constant then the

asymptotic behavior of C i (d) depends on Gi (j). For a state-step fail-

ure

j

G1 (j) = H L ^j-s
	

(3-57)

s=0

Equation (3-57) was initially derived in equation (2-56). Expanding the

matrix series in equation (3-57) results in

H +	 +
G (j)	 ^j	 ¢ j _1 j -2 +	 + I^	 (3-58)
1	 [

or
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post multiplication of equation (3-59) by ^ yields

j
C1 (J)^	 H	

s+l

su°0

(3-60)

Subtracting equation (3-60) from equation (3-59) and rearranging terms

results in

C 1 (J) = H (I - mJ
+1) (I 

_ 0- 1
	

(3-61)

The C 1 (d) matrix can then be written as

d
T

C 1 (d) °	 [H (I 	
J+1) (I _ 0-1

l 
V-1 

[H(I _ 
m J+l ) (I

J 

J- 0

(3-62)

Rearranging the terms inside the summation yields

d
T

C 1 (d) _ (I - ¢)-T L ( 
\
I - ^ J+l J (HT

V_ 
1H)(I - ^J+1)

j°o	 /

(3-63)

Since only the terms inside the brackets are functions of d, the behav-

ior of these terms will effect C 1 (d). Thus consider

d	
\T

	 2

B (d) _	 I - ^
J
+11 V1(I	 j+1)	 (3-64)

J -0 b

z

where V 	 is defined as
a

i



82

ORIGINAL P,

OF POOR QI
V 1 - HTV 1H

Equation (3-64) can be written

d	 d

B (d ) -	 V1 +	 (^J+111 Vl J+1

J -0	 J=0 `	
J/

_	 d	 j+lIl2: (0 > V1+ZV]
J-0	 J °0

The last two terms in equation (3-66) can be written in closed form by

following the same procedure used to derive equation (3-61); thus equa-

tion (3-66) can be rewritten as

d	 T	 T
B(d) _ (1 + d)V 1 + Z (o j+l) V10 J+1 - (I - 0) -T (I - mj+l

j=0

r A TV - V^ (I - ^d+1) (I - 0 -1	 (3-67)

Now as d -* - then 0d+1 approaches zero because the system under study

is assumed to be stable, hence, all the eigenvalues of ¢ are within

the unit circle. Hence, the limit of B(d) as d -+ - can be written as

d

1 + .v	
(^1I B(d) = lim (1 + d)V + 1im 	 J+1 1 Vl J+1

J
d ► R	 d

J=O

- (I - 0 -T 4fi 1 V - 0 (I - ^) -1	 (3-68)

: con from equation (3-68) that as d -* - the elements of B(d)

the elements of C I (d) will grow larger. Thus at least some

yes of C1 (d) will grow as the number of observations increases.

a



lim JIG 2 (j)!I = 0
j-,m

(3-73)
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The increase in the eigenvalues of C 1 (d) improves the probability of

correct detection of state-step failures that lie in the direction of

the corresponding eigenvectors. This can be sein easily by examining

the noncentrality parameter for

6 2 - v TC i (d)v	 (3-69)

As 6 2 increases in value the probability of correct detection im-

proves. Hence, the failure vectors which lie in the direction of eigen-

vectors corresponding to growing eigenvalues have a higher probability

of '-)eing detected as k increases.

2. State-Jump Failure

As in the case of state-step failure, the behavior of C i (d) matrix

depends on the behavior of Gi (j) matrix. The Gi (j) matrix for a

state-step failure is given by

G 2 (j) = Ho j 	(3-70)

Taking the norm of equation (3-70) yields

I IG 2 Q)I i = I IHm111	 (3-71)

It can be shown that (see Appendix B)

JIG 2 (j)II < II H II flm j ll	 ( 3-72)

Now since the system under stur,, is assumed to be stable the eigenval-

ues of ¢ are within the unit circle. Hence, as j ► m the matrix

m j becomes a null matrix, thus Il^ j ll -► 0 as j	 It follows

that

.a
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above results will be used to show that the sequence SC2(1),

!)p . . ., C 2 (d)I forms a Cauchy sequence, thus it converges to a
itant matrix as d ► 	 To accomplish this consider the following

:nition

q

A C(d, q )	 G?(j)V 1G2 (j)	 Cl (q) - C2 (d)(3-74)
j -d+1

where q > d. To establish that the sequence {C 2 (1), C 2 (2), . . .,

I
C2 (d) forms a convergent Cauchy sequence, it `s̀hould be proved that the

norm of AC (d,q) approaches zero as q -* -. Now to prove this consider

G 2 (j) for state-jump failure in equation (3-70) and AC(d,q) in equa-

tion ( 3-74). Substituting for C 2 (j) in equation (3-74) from equation

(3-70) yields

q
T

AC(d,q) -	 0j H 
T 
V_ 1Hm j 	(3-75)

j-d+l

Taking the norm of both sides and using the properties of the matrix

norm yields

q
T

JAC(d,q) I I .	 I I^j 
if V IH^'

j -d+l

q

III 1 11	 II H I1 2 I1^2'II

j-d+l



i
7

G
r
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or	
4

I JAC(d,q)i I _ (q - d - 1)I IV 111 11H11' 11^ 2d 1 l	 (3. 76)

Now as d -+ W the term 11m 2d 11 approaches zero, thus the left-hand

side of the inequality in equation (3-76) vanishes as d-+ m . There-

' fore 11AC(d,q)II	 0 as d + - which proves that the sequence

2 (1), C2 (2), .	 ., C 2 (d)I forms a convergent Cauchy sequence. This

result indicates that d 2 (sq. (3-69)) for state-jump failure approaches

a constant limit as d -+	 Hence, the probability of correct detection

for state-jump failure does not change after d becomes sufficiently

Large. This also has the implication that the estimate of the failure

vector will not significantly improve after C 2 (d) has reached its limit.

As Chow (Ref. 3) suggests the rate of convergence of C(d) to its limit

may be used in establishing the length of window N < d < M for detec-

tion. That is, the value of M can be selected based on how fast the

corresponding C 1 (d) approaches its limit. Next the asymptotic behavior

of Ci (d) matrix for sensor-step failures will be developed.

3. Sensor-Step Failure

In order to study the asymptotic behavior of the C i (d) matrix for

sensor-step failures consider the formulation of C i (d) for this type of

failure (initially derived in eq. (2-79)):

C 3 (d) c (d + 1)V 1
	

(3-77)

It can easily be seen from equation (3-77) that as d - ► -, the elements

of C3 (d) will grow. Therefore, at least some of the eigenvalues of

C3 (d) will increase as d - 	 This has the implication that for actual

failures in the direction of eigenvectors corresponding to growing

eigenvalues the probability of correct detection improves as d -+ -.

i
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d	 +	 In .	 This can be easily verified by computing C a l (d)	 I II

(3-77) as

C31(d) -	 1	 ^

Another important conclusion which follows from equation (3-

if the variances of the residuals are large then more obsei

needed to improve the estimate of the failure vector, V.

3.7 Summary and Discussion

The results developed in this chapter can be summarized under three

main topics. These topics are the probability distribution of the JLR

index, failure detectability, and the asymptotic behavior of the Ci(d)

matrix. The probability distribution of the GLR index was determined

to be a noncentral chi-squared when a failure actually occurs. On the

other hand when no failure has occurred the probability distribution of

the GLR index is a central chi-squared distribution. It was established

that when the direction and magnitude of the failure vector is restric-

ted to a known vector, v 
0

, the simplified GLR index will be distributed

as a Gaussian random variable. Identifying the distribution of the GLR

index leads to the calculation of four important detection probabilities.

These detection probabilities are probability of correct detection,

false alarm, cross detection, and wrong-time detection. Calculation of

these probabilities furnishes a guideline for selection of a threshold

for GLR decision rule. For :astance by utilizing the probability of

false alarm a threshold can be selected such that a low number of false

alarms would result.
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Another major utility of the detection probabilities is that they

offer a way of evaluating the performance of the GLR detector. In this

regard, the probability of correct detection provides a measure of con-

fidence in the overall result of detection and isolation while false

x

	

	 alarm probability gives an indication of the consistency of the detec-

tor. The probability of cross detection can be used to evaluate the

isolation capability of the detector and the probability of wrong-time

detection offers a way of measuring the accuracy of the failure time

estimate.

After identifying various probabilities associated with the GLR

technique, it	 essential to determine what failures can be detected.

It was established that the detectability of a failure is dependent on

the invertability of the C i (k,t) matrix. Based on this result it was

shown that sensor-step failures are always detectable. For the time-

invariant systems detectability of actuator failures is related to sys-

tev, observability and failures which fall into the unobservable sub-

space are not detectable. In addition it was shown that if C i (d) for

actuator failures is not invertible in n - 1 steps then it will never

be invertible.

Failure detectability can also be examined by comparing the

probabilities of correct detection and false alarm. It was shown in

Section 3.3 that the noncentrality parameter, d 2 , for false alarm is

zero. However, the noncentrality parameter for correct detection is

nonzero and is given by

d 2 . v TC I (k,t)v
	

(3-79)

Now if C i (k,t) has an eigenvalue which is very close to zero then any
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failure along the eigenvector corresponding to the small eigenvalue

drives d 2 close to zero. Thus the probability of correct detection

becomes very close to the probability of false alarm. This confirms the

previous result that if the C i (k,t) is not invertible (i.e., CI(k,t)

has at least one zero eigenvalue) then not all failures are detectable.

From a similar argument it can be concluded that the probability of cor-

rect detection of failure vectors lying in the direction of eigenvectors

corresponding to large eigenvalues is higher. It follows from the above

discussion that C I (d) plays an important role in successful detection

of a failure. Since C i (d) is a function of the number of residuals ob-

served then it is important to study its behavior as more observations

are taken.

The significance of studying the asymptotic behavior of C i (d) ma-

trix is twofold. First, the invertibility of Ci (d) determines the de-

testability of failures. The second reason for such study is that the

- 1
C1 (d) is the covariance matrix of the estimate of the failure vector,

hence it is a measure of the estimate accuracy. The results of studying

the asymptotic behavior of C i (d) for the three modes of failure are as

follows. For state-step and sensor-step failures C i (d) will have some

eigenvalues which grow as d - ► 	 On the other hand C i (d) for state-

jump failures converges to a constant matrix. Thus the corresponding

GLR index, Li (k,t), will also approach a constant value.

The elements of C i (d) for sensor-step failure (eq. (3-77)) gro,.,

as d + m; hence both the failure detection probability and the accur-

acy of the failure vector estimate improve as d -> -. If C i (d) in

this case is a diagonal matrix then C i l (d) is also a diagonal matrix

which implies that the elements of the failure v^r	 --`:
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mutually independent. This is a desirable featur of the proposed de-

tection technique because the estimate of each sensor failure is not af-

fected by a failure in another sensor. This facilitates the isolation of

failed sensors as they are associated with the elements of the failure

vector which are significantly different from zero.

The study of the statistical properties of the proposed GLR tech-

nique provides substantial information regarding the reliability of the

detection and isolation. Furthermore, a simple condition for detects-

bility of failures can be established and finally the study of saymptotic

behavior of C i (d) furnishes a guidelkie for the necessary number of ob-

servations. In the next Chapter the application of the proposed detec-
t

a	 tion technique to a jet engine will be presented.

3

x
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PERFORMANCE EVALUATION OF CLR 'rECIINIQUE

In this chapter the application of the proposed CLR detection tech-

nique to sensor /actuator failures in a turbofan jet engine will be pre-

sented. The objective is to evaluate the performance of the technique when it

is applied to a realistic problem. The study provides more insight into the

problems and capabilities associated with the on-line implementation of the

technique. This study is performed by simulating the sensor/actuatorfail-

ures of a jet engine in a nonlinear digital simulation of the engine. Then

the effect of sensor/actuator failures on the output measurements is

used in the CLR detection routine to detect and isolate the failures.

The description of this study and the associated results are pre-

rented in the following order. In Section 4.1 a brief description of

the engine and the nonlinear simulation is given. in Section 4.2 the

digital simulation of the sensor/actuator failures is described. Then in

Section 4.3 the performance of the GLR technique is tested by utilizing

the digital simulation prugram. The results oi' Section 4.3 are based on

using the full-scale nonlinear engine simulation as the engine model.

(Fig. 3.2) for generating model r-.siduals. To evaluate the effect of

model accuracy, in Section 4.4 the nonlinear simulation is replaced with-

linear engine model derived from the nonlinear simulation. Finally in

Section 4.5 a summary and discussion of the chapter is presented.

4.1 Turbofan Jet Euine

A turbofan jet engine developed by Genct ­ LL Electric Company under

9n
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contract to the National Aeronautics and Space Administration was sel-

ected for the application of the proposed GLR technique. The engine is

referred to as Quiet Clean Short-Haul Experimental Engine, QCSEE. Two

models of QCSEE for Over The Wing (OTW) and Under The Wing (UTW) utiliza-

tion were developed. For the purpose of this study the UTW model was

used. A schematic diagram of the UTW model is given in Figure 4.1.

The fundamental objective of the QCSEE development has been to de-

velop an advanced engine for short-haul commercial aircraft having

Short-Takeoff-Or-Landing (STOL) capability and producing less noise and

atmospheric pollution than current aircraft. Another specific technical

objective of the QCSEE program was to develop a digital control system

for the engine to be evaluated in a simulated flight environment. To

achieve these objectives, a turbofan jet with special design features

evolved. Some of these design features are: a composite high Mach in-

let;a variable-pitch fan with composite blades; a variable geometry ex-

haust nozzle; an advanced core and low pressure turbine; and a treated

fan duct with an acoustic splitter. Also a digital control system was

designed and incorporated in the engine to perform the overall engine

computation and evaluate the engine command. The digital control moni-

tors the engine sensors and generates signals for manipulating fuel

flow, fan pitch angle, and fan nozzle area. Fault indication and cor-

rective action is also incorporated in the digital control system.

As it was discussed in Chapter 1, the detection techniques using

analytical redundancy are mainly suitable for engines with digital

control systems. Since QCSEE provides a digital control system it is an

appropriate choice for the performance evaluation of the proposed detec-

._in technique. In addition the sensors and actuators of QCSEE are de-

i
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signed to be compatible with the digital control, therefore the corre-

sponding failure study will be realistic and applicable.

QCSEE has four input controls which can be used to control the en-

gine response. These input controls are fuel flow, fan nozzle area,

fan pitch angle, and compressor stator position. The compressor stator

position iti controlled indirectly by the hydromechanical control backup

system; hence, it is not used for this study. The fuel flow to the com-

bustor iK controlled by an electrohydraulic servovalve. The fan nozzle

actuator adjusts the position of four Interlocking flaps of the nozzle

as a function of flow and pressure from an electrohydraulic servovalve.

For the variable-pitch fan the actuator is a ball-spline system. The

mechanical rotation for this system is provided by a hydromechanical

motor. The digital control corrects the position of the blades by send-

ing a signal to the servovalve controlling the flu'u flow to the hydro-

mechanical motor.

Engine sensors are designed to be compatible with the digital con-

trol system. Pressure, temperature, and speed sensors are utilized in

QCSF.E. Three types of temperature sensors are utilized. A thermo-

couple is used to measure the compressor discharge temperature and a

platinum wire-wound resistance-type device is ey ed to monitor the fan

inlet temperature. To measure the core engine inlet temperature a zir-

conium gas-filled coil is used. Application of different temperature

sensors is based on the range, response time, accuracy, and sensitivity

of the sensor. For measuring fan speed a magnetic pickupsystemis used

while for compressor speed voltage from alternator windings is employed.

All absolute and relative pressures in the engine are monitored by

thin-film strain gauge bridge transducers. More detailed information re-

..,cam:
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garding QCSEE sensors and actuators is available in reference 48.

4_1.1 QCSEE Simulati

In order to evalu!e the performance of QCSEE, NASA Initiated a

program for studying QCSEE performance in a STQL Ilight environment. A

manned flight simulator was used to study engine performance. Details

of the QCSEE simulation program and some results of the flight simula-

Lion program are given in reference 49. A main requirement of this

program was a reasonably detailed engine simulation which would provide

realistic engine response with acceptable execution time. For this

simulation study a digital QCSEE simulation was selected. The execu-

tion time for QCSEE simulation must be such that the overall flight

simulation could be accomplished in real time. To meet the time re-

quirement, the high frequency elements of the engine were not included

in the development of the simulation for the engine.

The simulation was derived from the real QCSEE propulsion system.

This simulation represents the engine and control system dynamics.

Since the high frequency elements were excluded, only rotor dynamics

and compressor and turbine capacitances are included. To represent

accurately the operation of the high Mach inlet engine ail major engine

components for the bypass duct ane core are included in the model.. In-

let throat and duct performance are also included in the model. Simi-

larly, the fan and compressor are modeled using pressure and tempera-

ture ratio maps. The combustor was modeled by relations which include

pressure drop and heat rise. Combustor dynamics were not included.

The engine turbines were represented by flow and enthalpy drop maps as

functions of pressure ratio and corrected speed.

The simulation of QCSEE engine control consisted of two parts,

Al
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digital and hydromechanical controls. In the digital part the fan speed,

inlet Mach number, and engine pressure ratio controls were modeled.

The hydromechanical segment represented core speed, acceleration, and

deceleration controls.

The simulation had four engine states, four iterative loops. four

control sensor states, and four actuator states. For programming Che

model, a computationally efficient curve fitting technique was used to

represent various multivariable functions. Model dynamic equacions

were solved using a modified Euler integration technique. The result-

ing digital engine simulation program is accurate, stable, and runs

faster than real time.

The QCSEE digital simulation model was selected to be used in

evaluation of the performance of the proposed GLR failure detection tech-

nique. Specifically, two duplicates of the simulation program were em-

ployed to represent the actual engine and the engine model (see Fig.

4.3). Then sensor/actuator failures were introduced in the program

representing the engine and the resulting residuals were tested for

failure. Although the proposed GLR technique is developed for linear

systems, using nonlinear models of the engine provides a more realistic

measure of the GLR performance. Following this evaluation, the nonlin-

ear simulation program representing the model of the engine T:aas re-

placed with a linear model of the engine. These simulation studies

provide a measure of the effects of model inaccuracies on failure de-

tection. The proposed GLR technique, however, requires a linear state

space representation of QCSEE. The derivation o f the state space ma-

trices for QCSEE is discussed in the next section.

s^
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4.1.2 QCSEE Linear Model

For evaluating the performance of the C1.R technique a linear state

space model representation of QCSEE at the 62.5% engine power level was

generated. The linear model was generated from the QCSEE digital sim-

ulation and is briefly described in this section.

Consider the schematic diagram of the QCSEE engine in Figure 4.2.

In order to develop a linear model it is necessary to select the engine

states. The following engine variables, were selected as engine states:

P12 - Fan inlet duct total pressure

P13 - Fan discharge total pressure

P4 - Compressor discharge pressure

P8 - Core nozzle total pressure

NL - Fan speed

NH - Compressor speed

T3 - Compressor discharge temperature

T4 - Combustor discharge temperature

Three inputs are liven as follows:

XMV - Fuel -wetering valve setting

X18 - Fan nozzle area actuator position

THETAI - Fan pitch mechanism drive motor position

The. , ;,.t of output variables Includes different types of measurements:

1";I 1 - VIIV,11W lnlL-1 scat is pressure

1 1 13 - Fan discharge total pressure

P4 - Combustor pressure

11 8 - Core nozzle total pressure

NL - Fan rotor speed

NH - Compressor speed

._
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T41C - Calculated turbine temperature

FN - Net thrust

Based on the above selection of state variables and the given input-

ou ,Lput variables, a linear model of the engine using a small signal

perturbation technique is developed (Ref. 47). The corresponding A,

B, C, and D matrices for the 1!near model representing a 62.5% power

level condition are presented in Appendix E. The dynamics of the en-

gine control. are not included in the linear model because only the de-

tection of engine sensor or actuator failure is of interest.

To develop the GLR detectors for QCSEE it is necessary to discre-

tize the system matrix, A, of the linear model. This is accomplished

by using standard discretization techniques (see, e.g., Ref. 53). The

computation of the discrete system matrix, ^, completes the essential

information for the development of the GLR detection program. Utilizing

the detection program, the performance of the GLR technique will be

evaluated by failure simulations. The failure simulations will be dis-

cussed in the next section.

4.2 GLR Simulation Program

In this section a description of the digital simulation program for

evaluating the performance of the GLR detection technique is presented.

In the first part two duplicates of the nonlinear QCSEE simulation pro-

gram are used to represent the engine and the model of the engine as

shown in Figure 4.3. The objc- dive in this part is to evaluate the

performance of the detection technique when the model follows the engine

perfectly. Sensor/actuator failures in this case are simulated in the

program representing the engine. In the second part the nonlinear

QCSEE simulation program representing the engine model is replace(i with



97

the linear model described in Section 4.1.2. This will result in a dis-

crepancy between the engine output and the linear model as the model

does not follow the engine perfectly. Thus this study will provide In-

sights into the effect of the degree of model accuracy on the behavior

of the GLR detectors. The configuration for this simulation is illus-

trated in Figure 4.4.

4.2.1 Failure Simulation Under Perfect Modeling

Consider the GLR simulation arrangement in Figure 4.3. Three main

elements of this configuration are the two nonlinear QCSEE digital sim-

ulations and the GLR detection program. The nonlinear QCSEE simulations

represent the engine and the engine model. The inputs to both the en-

gine and engine model are the same. These inputs are: fuel metering

valve position, XMV; fan nozzle actuator position, X18; and fan pitch

mechanism. As it is shown in Figure 4.3, the outputs of the engine

model are subtracted from those of the engine to compute the model re-

sidual. The six output selected for residual calculations are:

PS11 - Engine inlet static pressure

NL - Fan roLur speed

NH - Compressor speed

Pit - Fan inlet duct total pressure

P4 - Combustor pressure

P8 - Core nozzle pressure

The residuals computed from the above outputs are transmitted to the

GLR detection program for sensor/actuator failure detection.

Using identical QCSEE digital simulations for the engine and engine

model representations allows studying the performance of GLR in the pre-

Bence of perfect modeling. In this case when no .failure has occurred
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the difference between the engine output and the model output is the

engine sensor noise. The QCSEE simulation program does not incorporate

the engine sensor noise. Therefore to generate realistic engine out-

puts, the sensor noise characteristics must be added to the outputs of

the QCSEE program representing the engine.

4.2.2 QCSEE Sensor Noise Characteristics

Due to the unavailaaility of QCSEE sensor noise characteristics the

noise characteristics of an F-100 engine were used. This is justified

on the basis that comparable sensors are used for pressure, speed, and

temperature measurements in the QCSEE and the F-100 engines. Thus ac-

tual sensor measurements from an F-100 jet engine altitude test (Ref.

22) were utilized to compute the sensor noise characteristics. For this

purpose, 100 samples of engine pressure, temperature, and speed mea-

surements were used to calculate the variance for the three types of

irs. This process was repeated for two engina operating points and

-esulting variances were averaged over the two points. The sensor

,nces computed in this fashion are the elements of the diagonal sen-

ioise covariance matrix which is shown in Appendix F.

Using the computed noise covariance matrix, zero mean independent

;ian variables were generated and were added to the output of the

simulation representing the engine. Addition of the noise to the

ie output, completes the measures necessary for computing the re-

Js required by the GLR detection program.

{ GLR Det-ction Program

'he GLR detection program is designed to detect failures in time-

•iant systems. The program is not restricted to QCSEE applica-

and can be utilized for any time-invariant system.
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The inputs to the GLR detection program are: the discrete system

matrix ^; the output matrix H; the model residual vector sequence

r(k); residual variance V; the input and output dimensions of the sys-

ter; the failure threshold c; the first detection test observation

number; the failure time sliding window limits M and N; and the max-

imum number of residuals. In addition the number of observation at

which the first detection test is to be performed should also be speci-

fied in the program. The logical structure of the GLR program is di-

vided into three parts. In the first part the matrices G i ld) and

Ci (d) (see Table 3.2) for the three failure types are computed and

stored. Since these matrices remain unchanged they may be computed and

stored off line and then retrieved for GLR computations. In the second

part the GLR indices, L i (k,t), (Table 3.2) for the three failure types,

i, and for all possible values of failure time, t, inside the interval

k - M < z < k - N are calculated. Then, for each type of failure,

Li (k,t) is maximized over the values of t. These maximum values of

the GLR indices are compared with each other and the largest value is

selected. This two-step maximization for the failure type, i, (i --

1,2,3) and the failure time, t, (k - M < t < k - N) can be expressed as

Li (k,t) - lax Max L i (k,t J	(4.1)

i	 t

If the maximum GLR index computed in this fashion exceeds the threshold

E then the program declares a failure of type i at time t. The

threshold a is chosen such that the probability of false alarm will

be less than 0.001. Since the false alarm probability is distributed

17
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as a central chi-squares, then c can be selected directly from the

chi-squared distribution tables (e.g., see Ref. 46). For the QCSEE

simulation there are six output residuals, therefore there will be six

degrees of freedom associated with the GLR index. The threshold was

selected approximately twice the average of the maximum GLR index under

a no-failure condition, or c - 34. For six degrees of freedom this

results in a false alarm probability of less than 0.001 for each of the

three GLR detectors.

Finally, in the last part of the program the estimate of the fail-

ure vector, v, is computed and sensor failure isolation is accomplished.

The calculation of the estimate of the failure vector is achieved by

employing the maximum likelihood estimator for v in equation (3-32).

Sensor failure isolation calculation logic iE derived from the con-

strained GLR (CLLR) technique which was descriL• ^d in Section 3.3.3.

Specifically, a set of vectors are associated with possible sensor

failures. Each vector in this set has all zero elements except unity

at the position corresponding to the failed sensor. In the QCSEE sim-

ulation, for single failure isolation the vector set contains six vec-

tors of dimension 6. As an example the failure vector associated with

the fourth sensor has the form of:

0

0

f 4	0	 (4.2)
1
0
0/

Application of CGLR leans to selection of the vector associated with the

failed sensor and thus isolates the failed sensor. The detection deci-
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sion rule for CGLK is derived as follows. The CGLR indices for sensor-

step failure are computed from equation (3-37) and maximized with respect

•	 to failure time, t, and constrained vector directions, f j . The maximum

value of CCLR selected in this fashion is compared with threshold a for

failure detection. This comparison can be used as a cross ch-ck for the

detection results of GLR. At the same time, the failure vector direc-

tion associated with the maximum value of the CGLR is utilized to iso-

late the failed sensor. The failure time, t, associated with the maxi-

mum value of CGLR can also be used as a cross check for the estimate of

failure time, t, which is computed in the second part of the program.

A flow diagram of the complete program logic is given in Figure 4.5.

4.3 GLR Performance Tests

To evaluate the performance of the proposed GLR technique for the

case of perfect modeling three categories of failure simulation tests

were performed: (1) No failure, (2) Single sensor or actuator failure,

and (3) Multiple sensor/actuator failure. The no-failure tests eval-

uate the consistency of the detection technique and establish a base-

line of performance.

4.3.1 Consistency Test

The consistency of the GLR technique is tested by applying the GLR

technique to model residuals when no failure has occurred. For this

purpose two noise sequencCs for the six sensors of QCSEE are generated

by utilizing the same covariance matrix (given in Appendix F) but with

two different seed numbers. Then two consistency test runs are made

by employing these noise sequences. For each run, the noise sequence

is added to the output of the QCSEE program representing the engine

(Fig. 4.3). Then without inducing any failure in the engine the model
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residuals are computed. It should be mentioned that in this cas

model residuals are identical to the output sensor noise. Sinc

failure has occurred the GLR indices over the sliding detection

must bc: smaller than the th reshold (r, o 34). Application of the

technique to the model residuals in this case yields the expect(

stilts. That is the maximum GLR index, Li(k,t), is substantially

than the threshold e. These results are shown in Figures 4.6

In each of these figures the maximum GLR inde y., 1_ (k,t), is plott

sus the observation time, k. The limits of the sliding window it

case are N = 3 and M - 13 and the total number of observatic

k . 30. The length of sampling interval for this test and all t

Sequent tests is 0.08 second. Figures 4.6 and 4.7 are useful 1i

ing more insight into the relationship between the probability of false

alarm and the selected value of the threshold, e. For example consider

Figure 4.6, it can be seen from this figure that for c < 18 there will

be at least one false alarm. The probability of false alarm for c = 18.0

is approximately 0.0065 which is 6.5 times larger than the probability

of false alarm when e = 34. Finally, the plots of the GLR indices in

Figures 4.6 and 4.7 indicate that the GLR results are highly consistent.

Next the capability of the GLR technique in detecting single sensor

failures will be examined in the following section.

4.3.2 Single Sensor Failure Tests (Using Sensor Set A)

In this category of tests performance of the GLR (under a perfect

modeling assumption) in detecting a single sensor/actuator failure is

studied. For the single sensor failure study a step failure is intro-

duced in each sensor separately. The magnitude of the failure for all

sensor failure simulations was selected to be larger than the tolerable
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sensor inaccuracies (normally three standard deviations of the sensor

noise). Specifically, the failure size was selected to be equal to five

standard deviations of the noise. Then, the failure sizes in pressure,

speed, and temperature sensors are, respectively, 0.5%, 0.197, and 0.557

of the nominal value of the corresponding p Pnsor measurements. The nor-

malized covariance matrix for sensor noise and the nominal values are

given in Appendix F.

Two distinct groups of single sensor failure tests are performed.

For this purpose two sets of sensors are i.tilized, namely set A and

set B. Each set contains six sensors. Specifically, the sensors in

set A are the same i9 in Section 4.2.1. The sensors in set B are the

same as in set A except P8 is replaced with T3. The results of single 	
{

sensor failure tests using set A are given n Table 4.1. The actual

failure time for the results in Table 4.1 is at the fifth (5) observa-

tion and the window limits for failure time are M - 23 and N - 3.

The total number of observations in these runs is 30 and the first de-

tection test is performed at the tenth (10) observation. The time of the

first detection test was selected somewhat arbitrarily. The results in

table 4.1 indicate that all of the sensor failures are properly detected

and the failure times are correctly estimated. Also the isolation c;f

the failed sensors in all six runs is successfully achieved. The esti-

mate of the failure time computed from the CGLR section of the program

is in agreement with the estimate from the GLR detection calculation.

The estimate of failure size for two typical output sensors, namely

PS11 air 4 NL, are plotted in Figures 4.8 and 4.9. These plots indicate

that the estimate of failure size in both pressure and speed sensors are

very close to the actual value of the failure size. It is shown in
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TABLE 4.1

SIMULATION RESULTS FOR SINGLE SEVSOR FAILURE

(Using Sensor Set A)

Sensors	 PS11	 NL	 NN	 P12	 P4	 I'8

L,.

Detection

Detected

type

Detected
failure

time

Actual
failure

time

Isolation

Fai lure
time from

I sol.ation

calculation

3	 3 3 ) 3	 3

5	 5 5 5 5

5	 5	 5

C	 C	 C	 C	 C	 C

5	 5	 5	 5	 5	 5

Simulation	 Number of outputs = 6

inputs	 Initial detection test observation - 10

Total observations = 30

M = 23, N = 3
E- = 34

C Iti used to Indicate correct isolation.
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Appendix G that the accuracy of the failure size estimate improves do

the number of observations increases. Examining the plots in Figures

4.8 and 4.9 revedls that as k becomes larger the estimates of fail-

ure size tend toward the actual values of failure sizes. The retr_,f.iing

difference between the e3ti-iates and the actual failure size is due to

sensor noise characteristics. That is, if the mean of the noise se-

quence is not truely zero, then the estimate of failure hize will not

converge to the exact value of the failure size. This is shown to be

true for all failure types in general in Appendix G.

4.3.3 Single Actuator Failure Tests Using Sensor Set A)

In this section single actuator failure tests are discunaed. The

output sensor measurements utilized for these tests are the same as be-

fore, namely, Pill, NL, NH, P12, P4, and P8. Likewise the threshold

and the limits of the sliding window are unchanged. The failure size

for actuator step failures is set to 5% of the nominal value of the ac-

tuator input at 62.5% power level (these nominal values are given in

Appendix F). For jump failures, the failure size is selected to be

equal to 20% of the nominal input values. The jump and step failurk :h

in the fan nozzle actuators are induced in the negative direction be-

cause the fan nozzle area at 62.5% power level is fully open (i.e., the

ncminal value for X18 is the same as the maximum value of X18).

The results of the single actuator failure runs are presented in

Table 4.2. Each column of this table represents a simulation run. The

result-, in this table indicate that the GLR technique has detected the

failure type properly. Multiple estimates of the failure time for step

failure in X18 and THETAI resulted. The evolution of these failure

,a
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TABLE 4. 2

3IIr►'JLATION RESULTS FOR SINGLE ACTUATOR FAILURE

(Using Sensor Set A)

Step failure	 Jump failure

Actuators XMV	 X18	 THETA]	 XMV	 X18	 THETA]

Detection

Detected	 1	 1	 1	 2	 2	 2
type

Actual	 J	 5	 5	 5	 5	 5
failure
time

Detected	 5	 5	 4	 5	 5	 5
failure	 6	 5
time	 7	 6

Simulation	 Number of outputs = 6
inputs	 First detection test observation number - 10

Total observations = 30
M = 23, N = 3
E = 34
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time estimates are plotted in Figures 4.10 and 4.11, respectively.

4.3.4 Single Sensor Failure Tests (Using Sensor Set B)

The second group of single failure simulation runs are made using

sensor set B. Specifically, the core nozzle pressure, P8, is replaced

with the compressor discharge temperature, T3. The reasons for replac-

ing this output are as follows. The GLR detection technique utilizes

the effect of sensor/actuator failures on the residuals for detection.

Since the effect of actuator failures on various outputs is different

then the GLR resp3nse will be different depending on the outputs used

to compute the model residuals. Another reason for replacing P8 with

T3 is that in the first group no temperature sensor was included. Hence

the new output set contains all three types of sensors, namely, pret3-

sure, temperature, and speed sensors.

For the simulations using sensor set B the first d etection test is

performed before the failure occurs. This is in contrast to the simu-

lation tests using sensor set A in Section 4.3.3. In that section the

first detection test was performed after the failure occurs. This

change in the time of the first detection test provides more informa-

tion about the performance of the technique. One such extra measure of

performance is to count the number of observations (after the failure

occurs) required until one of the GLR indices exceeds the threshold, C.

This is referred to as "time to detection." In situations when no in-

formation about the type of failure is available (i.e., any of the three

failure types are possible) another measure of performance can be de-

fined as "time to correct type." This measure is defined as the total

number of observations (after the occurrence of the failure) until the

:z

•	 v
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GLR program identifies the correct type of failure. To describe the

concept of these_ performance measures consider the plots of maximum GLR

indices for a hypothetical sensor failure in Fi.lture 4.12. The first

detection test is performed at the fifth (S) observation while the sen--

sor failure occurs at the tenth (10) observation. However, it can fe

seen that none of the GLR indices exceeds the threshold until the thir-

tecath (13) observation. Thus the time to detection for this example

is three. It can be seen from the figure ghat the GLR index correspond-

ing to state-step failure continues to b- the largest index until the

sixteenth (16) observation. Then at the sixteenth (16) observation the

GLR index corresponding to correct failure type (sensor step) becomes

the largest index. Therefore, the time to correct type is 6. Now as-

sume that the failure time is still not estimated correctly (as 10) and

will not be until the eighteenth (18) observations. Hence the total

detection time is 8. It is noted that these performance measures are

defined to be compatible with the GLR decision rule which was described

in Section 4.2.3. It is possible, however, that these measures of per-

formance be defined differently. For example, the time to detection may

be defined as the total number of observations before the GLR index cor-

responding to the a .-:`ual failure type exceeds the threshold e (rather

than any of the three indices).

Simulation results for single sensor failures of this set of out-

puts are given in Table 4.3. As in the previous case each column in the

table represents one simulation run. All failures in this group are

detected properly and the isolation of the failed sensors is also

achieved successfully. Two measures of GLR response time, namely time

to detection and time to correct type are also shown in the table. It
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TABLE 4.3

SIMULATION RESULTS FOR SINGLE SENSOR Fj

(Using Sensor Set B)

Sensors	 PS11	 NI,	 NH	 P12

Detection

3 3 3 3

10 10 10 10

10	 10	 10	 10

C C C C

10 10 10 10

0 1 0 2

2 9 4 2

3	 9	 4	 3

Number of outputs = 6
First detection test observation = 5
Total observations = 20
M - 23, N = 3

E = 34

C indicates correct isolation.

Detected
type

Detected
failure
time

Actual

failure
time

Isolation

Failure
time from

isolation

calculations

'rime to
detection

Time to
correct
type

Total
detection
time

Simulation
inputs

A

k

,.. t.,^r.._o-ssn..4ew 	... teo-.....an-..n.....,.. ,.«^...,	 .a ...^^.^ek.w.e .. ..,M m,n..+	 ..-.a^^^..Y..^ .-.n«.,, ^...^^. 	 .,ss.wk.... y. ^r ,.....»... n. ._..-w..nw..e_ke	 .w..e. 3...:i .^. ^...min_.w:_^vy..'8:^ffi:N.:nea.: r"^.
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follows from these results that all failures are detected in two obser-

vations or less. However, identifying the correct failure type requires

more observations. The maximum time to correct detection of the failure

type for the simulation tests in Table 4.3 is nine observation interval

periods. Another useful measure of detection speed is total time re-

quired for correct identification of the failure type and time. In

Table 4.3 and the subsequent tables this is referred to as: total de-

tection time.

The evolution of the estimate of failure size, a, for PL11, Nli,

and T3 sensor failures is shown in Figures 4.13, 4.14, and 4.15, re-

spectively. The observation number in these plots start with the time

at which the failed sensor is properly identified. It should be noted,

however, that the correct estimation of the failure time requires at

least three observations after the failure occurs. This is due to set-

ting the upper limit of the failure time window (k - M < t < k - N), N,

to three. This delay can be better understood by examining the maximum

GLR index, L^ (k,t), in equation (4-1). Note that the GLR indices are
i

only computed and extremized over the values of t inside the window

k - M < t < k - N. Now if a failure occurs at the current observation,

k, the GLR index corresponding to this failure time will not be compu-

ted until N observations later. Therefore, the correct estimation of

the failure time would not be possible until N observations later.

Plots of the maximum GLR index, L^ (k,t), corresponding to single
i

sensor failure detection in PS11, NH, and T3 are plotted in Figures

4.16, 4.17, and 4.18, respectively. In these figures the values of

L*(k,t), from the first detection test at the fifth (5) observation are
i

plotted. The time of the actual failure is marked with a vertical
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dotted line and the value of threshold, i - 34, is shown by a horizon-

tal solid line. The limits of the failure time window for these plots

are M - 23 and N - 3.

It follows from the examination of these plots that as soon as

the failure occurs the L„(k,t) starts to increase. This increase
•	 i

occurs even before the actual failure time enters the window. The rea-

son for the rise in L (k,t) is that while the calculation of L„(k,t)
i	 i

is restricted to the observations inside the sliding window, the resid-

uals used in the calculation include the most• recent observation.

Hence as soon as the residual carrying the effects of a failure is en-

countered the L i (k,t) will rise. This GLR property is especially de-

sizable when only the detection of a failure is of interest and the es-

timate of the failure time is not utilized.

The effect of the value of threshold on the time to detection can

be examined from the plots of Li (k,t). Lower values of threshold, c,

yield faster detection of a failure in the system but increase the

required number of observations (after the detection) for identifying

the correct failure type. This may be easily verified from Figures

4.16 through 4.18. The increase in false alarm rate due to a low

value of threshold, e, can be assessed from the same figures. Spe-

cifically the values of L i (k,t) before a failure occurs can be com-

pared with e. Alternatively increasing the value of threshold delays

the detectic,i but reduces the rate of false alarm and improves the

identification of correct failure type. Therefore, an alternative

method of establishing the threshold, c, is to use the time to detec-

tion as a criteria. Care should be exercised in using this criteria as

fast detection increases the rate of false alarm,

{
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4.3.5 Single Actuator Failure Tests (Using Sensor Set B)

Corresponding to the set B of output sensors (i.e., PS11, NL,

NH, P12, P4, and T3) a series of single actuator failure simulation

runs are made. The results of these runs are summarized in Table 4.4.

Two modes of failures are simulated in each actuator. The step failure

size is selected to be 5% of the nominal value of the corresponding in-

put at 62.5% power level. For the actuator jumps the failure size is

selected to be 20% of the nominal value of the inputs. For X18 the

failures are Introduced by subtracting the faLlure S17C from the input

while for the other two actuators the respective failure sizes are added

to the inputs. The failures are introduced at the thirteenth (13) ob-

servation and the first failure detection test is made on the tenth (10)

observation. A total of 30 observations are tested. The failure time

window limits at N = 3 and M a 23 and the threshold a is kept at

34. It is remarked that the value of N assures the invertibility of

Ci (d) matrix and the value of M provides a reasonable range for CI.(d)

convergence (see Sections 3.5 and 3.6).

The results in Table 4.4 indicate that all failures are properly

identified and the failure time is estimated with good accuracy. The

estimates of failure time for all jump failures are correctly determined

while failure time estimates for step failures are accurate to one ob•-

servation. Also the results in Table 4.4 reveal that actuator failures

are detected immediately following the failures. Identifying correct

failure type, however, requires more observations after the failure oc-

curs. The maximum number of observations required for identifying the

correct failure type is eight observation intervals. Alternatively,

determination of the correct failure time requires at least three obser-
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TABLE 4.4

k

SIMULATION RESULTS FOR SINGLE ACTUATOR FAILURE

F (Using Sensor Set B)

Step failure Jump failure

i
r	 Actuator XMV	 X18	 THETAI XMV X18	 THEM

Detection

Detected 1	 1	 1 2 2 2

type
Y

Actual 13	 13	 13 13 13 13

failure
y	 time

Detected 13	 * 12	 12 13 13 13

failure 13	 13

time

Time to 0	 0	 0 0 0 0

detection

Time to 8	 0	 0 1 3 1

correct
type

Total 8	 3	 3 3 3 3

detection
time

Simulation Number of outputs = 6

inputs First detection test observation number 10

Total observations 30
M-23,N-3
e=34

•	 Only at one observation point failure time estimate is 12.
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vations because the upper limit oC the failure-time window (k - M < t

< k - N) N is three.

The evolution of the maximum GLR index, L..(k,t) corresponding to
i

the step failure in XMV and jump failure in X18 are plotted in Figures

4.19 aad 4.20, respectively. The values of L„(k,t) for actuator fail-
I

ures become very large after the failures occur. This is due to small

value of the sensor noise variance as compared to the effect of the ac-

tuator failures cn the model residuals.

The presentation of the results of single actuator failures cor-

responding to the second group of outputs concludes the simulation of

single failures under a perfect modeling assumption (Fig. 4.3). In

summary two sets of output sensors were selected and for each set

three modes of failure were studied. In these simulations the failures

were introduced separately in sensors and actuators. In the simula-

tions corresponding to sensor set A (see 'fables 4.1 and 4.2) the fail-

ure occurs prior to the first detection test and in the case of set B

the failure occurs after the initial detection test. This provides in-

sight into the behavior of the GLR for various failure times. In the

next section detection of multiple failures will be explored. The ob-

jective is to evaluate the capability of the GLR technique in detecting

multiple failures under perfect modeling.

4.3.6 Multiple Sensor Failure Simulation

During jet engine operation it is possible that two or more sensor/

actuator failures will occur simultaneously. The occurrence of two or

more simultaneous sensor/actuator failures is referred to as a multiple

failure. It is logical to expect that the detection of multiple fail-

ures will be easier. The reason for such an expectation is as follows.

V-110
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Any single sensor/actuator failure causes the mean of the residuals to

deviate from zero. Thus the cumulative effects of multiple failures in-

crease the deviation of the residual mean from zero further.

Although detection of multiple sensor failures may be easier, iso-

lation of such failures poses a Problem. This is true since the exten-

sion of the constrained GLR (CGLR) technique to the multiple failure

case is not straightforward. This is due to the following reasons. The

CGLR for single failure was derived by restricting the failure vector,

V, to afj where a is the failure size and f 	 is the jth vector

direction. When CGLR is employed for single sensor failure isolation,

f ' has all zero elements except unity in the jth position (e.g., see

eq. (4-2)). Therefore, for single failures the number of possible fail-

ure directions is equal to the number of sensors. But in the multiple

failure case the number of possible failure directions can grow very

rapidly. Another difficulty is the unequal size of failures in the

failed senors. That is, if the failure size is not the same in the

failed sensors then the failure vector, v, can not be represented by

afj.

An alternative approach to the problem of multiple sensor isola-

tion is to use the estimate of the failure vector (eq. (2-37)). The

elements of failure vector estimate associated with the failed sensors

are substantially different from zero. Thus the failed sensors can be

isolated easily.

To evaluate the performance of the proposed GLR technique in a

multiple failure application, multiple sensor failure simulation tests

for QCSEE were performed. For these tests perfect modeling was as-

sumed (Fig. 4.3) and several combinations of sensor failures involving
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at least two or more sensors were -4 mulcted. To achieve tile• desired re-

sults multiple sensor failures were induced in the nonlinear simulation

program representing the engine and the resulting residuals were fed in-

to the detection program. Since in the development of the C,,R program

no assumptions regarding the maximum number of failed :sensors was made

the program can be directly utilized. It shouid be noted that in all

cases the failures were Introduced simultaneously. The results of these

simulations are ,iummarized in 'fable 4.5. The six sensors used to i;ert-

erate these results are PS11, NL, Nil, 1 1 12, P4, and T3. The total num-

ber of observations for each run is 26. The magnitude of the failure in

each failed sensor is five times the standard deviation of the corre-

sponding noise sequence. The first detection test in all cases is per-

farmed at the tenth (10) observation. The limits of the window around a

the failure time are N e 3 and M - 23.

The results of Table 4.5 indicate that all multiple sensor failures 	 A

are detected and the failure type is also identified successfully. For

multiple failures which occur at the fifth (5) observation, the occur-

rence of the failure is detected immediately after the first detection

test. For these failures total detection time reflects the number of

observations from the first detection test until. the time and type of

the failure is correctly determined.

The values of the Gl.R index for multiple failure in PS11 and NL

are plotted in Figure 4.21. Comparing this figure with Figure 4.22 (a

single failure in PS11) reveals that the level of the GLR index for the

multiple failure case is higher as was expected. It was remarked be-

fore that CGLR may not be applicable for isolation in the multiple fail-

ure case.	 It was also indicated that the estimate of the failure size
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TABLE 4. 5

MUI TIPLF SENSOR FAILURE SIMUTATION RESULTS

Sonsor 1.2 1,2,3	 1,'1,4,6	 1.2,3, 1,2,3,4,5.6
number

Detected 3 1	 1	 3 3
type

Actual 5 5	 10	 5 12
failure

time

Detected 5 5	 10	 5 12
failure

time

Time to --- ---	 0	 --- 0

detection

Time to **1 **1	 *02 2 1
a

correct.

type

^c* 0*	 * *
Total 1 1	 3	 0 3

detection

time

Sensors PS11 1, NL 9 2, NH	 3,	 P12	 4,	 P4 m 5, T3	 6

Simulation Number of outputs - 6

inputs First detection test performed at tenth observation

Total number of observations . 26

Window limits	 I.! -l3,	 N -	 3 y

E - 34

Number of observations after the first detection test.

.r
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nwy be used for the multiple failure isolation. 'I'hc vector v (eq.

(2-37)) provides an estimate of tale failure size In the sensors corre-

sponding to its various elements.	 I'lot of these estimates for I'Sll,

NH, and '1'3 when multiple failures in I'S11, Nit, PIZ, and T3 have occurred

are shown in Figures 4.23 through 4.25, respectively.

An interesting observation can be made regarding these failures.

It is evident that the estimate of the size of the failure in the speed

sensor. Nil, Is more at , curatc than the estimates for PIII and T3 son-

sors. the reasons for such a difference arc as follows. 	 it can be seen

from the covariance matrix of the sensor noise sequences (see Appen-

dix F) that the variance of the speed sensor Is approximately 10 times

smaller than the variance of the other sensors. Since this covariance

matrix is used to generate the noise sequences for all three sensors,

the pressure and temperature sensor residuals will have more inherent

variation around the mean and thus a less accurate estimate of the fail-

ure sizes.

Alternatively, it is shown in Appendix G that the GLR estimate of

the failure vector is unbiased. Therefore, as more observations are

taken the estimate of the failure vec!ir will approach the true failure

vector. The rate by which the estimate will approach the true vector

can be assessed by the variance of the failure vector estimate. It was

shown in Appendix D that the covariance of the failure vector estimate

is C 1 (k,t). In the proposed GLR, C 1 (k,t) has a simple form for sen-

sor failures in time-invariant systems,

C i 1 (d) a d 
1 1 V

	
(4-3)

Equation (4-3) was originally derived in Chapter TT (eq. (2-79)). It



L

ORIGINAL PAGE 11

OF POOR QUALIT

follows from equation (4-3) that as d - It - t grows the variatio

the failure vector estimate will be reduced. Since in this case

the covariance matrix of sensor noise sequences, ivy diagonal the r

of convergence of each element in the estimate vector is independe

the other elements. The rate of convergence for each element, how

is dependent on the noise variance of the corresponding sensor. H

the convergence for sensors with smaller noise variances will be

er. Specifically, the estimate of the failure size in NH will con

approximately 10 times faster than the estimates for PL11 and T3.
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4_.3.7 Multiple Actuator Failure Simulation

The capability of the proposed CLR detection technique for detect-

ing multiple actuator failures was also tested by simulation. For this

purpose both multiple jump and multiple step actuator failures were simu-

lated. The rcesul Ls of these simulation runs are summarized in Table 4.6.

I n ea( I 	 I hi -	 I t udh , of t Iic fa I I ur y IN c(IuaI to ')7, of t Iiv nom I mi I

value oI Lhe corresponding actuators. The falluresi are Introduct'd -;In,-

ultaneously and Lire resulting residuals ar- passed to the detection pro-

gram. Perfect modeling _s assumed (i.e., configuration of Fig. 4."') and

a total. of 26 residual observations are examined for failure detection.

The failure time window !,units are N c 3 and M m 23. The outputs

used to generate the residuals are PS11, NL, NH, P12, P4, and T3. The

first detec^ion test is performed at the tenth (10) observation and the

corresponding threshold is the same as before, namely c - 34.

The results in Table 4.6 indicate that all failures are detected

and the correct type of failure is identified. The detection and iden-

tification of the failures in al p cases requires fi°ae (5) or less
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TABLE 4.6

SIMULATION RESULTS FOR MULTIPLE ACTUATOR FAILURES

Failed XMv XMv XMv XMv
actuators X18 X18 X18 X18

'I'll ETA i 'I'll ETA I

Detected 1 1. 2 2
tvpe

Detected 10 10 10,*12,*13
failure

time

Actual 10 10 10 10
failure

time

Time to 0 0 0 0
detection

Time to 1 1 S 0
correct

type

Total 3 3 5 3
detection

time

Indicated as failure time only once in 17 estimates
computed.

,z
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observations. The correct estimate of the failure time is obtained in

all cases except when ;Jump failures are induced in all three actuators.

In this case, however, each of the two wrong estimates occurs only once

in the total of 17 GLR tests performed.

k	 To illustrate the increase in magnitude of the GLR index for mul-

tiple actuator failures, plots of L ^ (k,t) for step and ,Jump failures

•	 in XMV, X18, and THEM are plotted in Figures 4.26 and 4.27, respec-

tively. Comparing these figures with Figures 4.19 and 4.20, respec-

tively, confirms that the values of L.•(k,t) for multiple failures are
i

^t
higher than L^(k,t) for a single failure.

r
i

This completes the study of GLR performance under a perfect model-

ing assumption. The results can be summarized in two parts. First,

single failures were simulated in sensors and actuators separately.

Two different sets of output sensors were tested. Second, multiple

failures were simulated to assess the capability of the proposed GLR

technique in detecting multiple failures.

The overall results of all simulations indicate excellent GLR per-

formance. Failures were detected in all cases and the proper fai:_ore

types were determined. Specifically, for sensor failures not only were

failures detected and isolated properly in all cases but also failure

times were estimated without any error. However, for step failures in

X18 and THETAI (and for multiple failures involving these actuators)

small inaccuracies in estimating the time o f the failure are encountered.

It should be noted that the proposed GLR technique is developed for

linear systems but the residuals used in the above cases are generated

from nonlinear engine models. Although such an arrangement represents

a realistic situation in which the proposed GL__n technique is applied

6
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to the ,jet engine, the results will not be perfect because of the non-

linearity of the residuals. Hence, the inaccuracies in the estimate of

the failure time is attributed to these nonlinear effects in the resid-

uals.

The ;Hain restriction in the above simulations was that the engine

model follows the engine perfectly. In the next section a linear model

is employed to replace the nonlinear simulation representing the engine

model in Figure 4.3. The resulting configuration will be identical to

Figure 4.4. The objective will be to evaluate the effect of model de-

gradation on the overall performance of the GLR technique, specifi-

cally when a linearized model of the engine is used to generate the

residual. Since the linear model does not follow the engine exactly,

the discrepancy between the simulation model and the linearized model

can be viewed as model degradation.

The study of the effect of model inaccuracies on the performance of

the GLR tests is also useful. because storage requirements and the over-

all computation time requirements for an on-line GLR detection may often

be severe. Since a complete simulation of the engine often requires

large storage and high computation time, a simplified engine model can

be used to reduce computational requirements. A linear model of the

engine is one of the simplest forms of the engine model. The linear

model will not model the engine perfectly however. Thus, it is impor-

tant to investigate the impact of these modeling errors on the perform-

ance of the GLR technique.

4.4 GLR Simulation with Model Degradation

In this section the effect of model degradation on the performance

of the GLR technique is studied. For this purpose the nonlinear simula-
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tion program representing the engine model is replaced by a linear state

space model of the engine. Specifically the simulation results of this

section are generated from a configuration identical to the configura-

tion in Figure 4.4. The linear model used in this configuration is gen-

erated from the QCSEE nonlinear simulation (see Appendix E). Since the

linear engine model does not follow the nonlinear simulation of QCSEE

perfectly, the discrepancy between the model and the simulation can be

viewed as the model degradation.

To study the performance of the proposed GLR under model degrada-

tion, single and multiple sensor/actuator failures were simulated using

the linear model. However, the model residuals calculated by subtract-

ing the linear model output from the output of the nonlinear simulation

model are no longer zero mean white Gaussian. This is due to the dis-

crepancy between the linear model and nonlinear simulation of the

engine. to this case application of the proposed GLR detection tech-

nique to the model residuals (when no failure has occurred) resulted in

declaring a failure. This occurs because the bias in the residuals

caused by modeling inaccuracies is indistinguishable from the bias due

to a sensor failure. Therefore, for studying the performance of the

GLR under model degradation, the sensitivity of the detection technique

to the model discrepancies should be reduced.

The sensitivity of the detection technique can be reduced by two

methods. The first approach is to increase the value of threshold to a

level that GLR indices computed from the model residuals with no fail-

ure would not exceed the threshold. This approach, while simple, is

not always desirable because it is difficult to establish a guideline

for increasing the level of threshold, c. Specifically, it is difficult
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to establish a level for r, which will reduce thu sensitivity of the

detection technique uniformly. That is, when the level. of threshold is

raised then the GLR corresponding to output sensors which have higher

discrepancies will exceed the threshold faster than the sensors with

lower discrepancies. If the effect (magnitude) of model degradation is

approximately the same in all outputs then of course this approach can

be utilized.

The second approach is to increase the elements of the covariance

matrix artificially. That is, to enter a covariance matrix for model

residuals into the detection program that has larger elements than the

true covariance of the residuals. This method is more attrar , tive than

the previous approach because each element of the covariance matrix may

be increased individually. Changing individual elements of the covar-

iance matrix allows compensation of different levels of output discrep-

ancies. Another advantage of this method is that the amount of increase

in each covariance matrix element can be estimated from the respective

outn ,it discrepancy caused by the linear model. Following this approach

the discrepancies between the linear model and the nonlinear s lMulatio n

of QCSEE at steady state were deter-mined. For this purpose identical

inputs were applied to the linear model and the nonlinear simulation.

The respective outputs were subtracted from each other to compute the

discrepancies. Each steady state discrepancy was approximately 10 

Limes larger than the standard deviation of the corresponding; sensor

noise level. This indicates that the lowest number by which the covar-

iance matrix should be multiplied to avoid false alarms (due to model

degradation) is approximately 10 6 . Hence, the covariance matrix must

be multiplied by a larger number to provide a greater margin between

s
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the GLR index and the threshold. This is necessary to avoid high false

alarm rate as larger elements of the generated noise sequence together

with imperfect modeling effects cause the GLR index to exceed the thres-

hold. Thus the normalized covariance matrix was multiplied by 5x106.

The residuals computed according to the covariance matrix which

was described above were gated by the GLR detection program (with no

failure effect in the residuals). The plot of the GLR indices corre-

sponding to this test is shown in Figure 4.28. Although the value of

GLR index over the observation sequence does not exceed the threshold

e, it show, an increasing trend in the indices. Comparing the pattern

of the GLR indices in Figure 4.28 with plots of the GLR indices in Fig-

ures 4.5 and 4.6 reveals the existing pattern more vividly. This

trend is due to the model degradation effecte on the residuals. Exper-

ience from several trial simulation runs indicate that increasing the

value of the covariance matrix elements reduces the magnitude of GLR

indices but does not remove the increasing pattern. This is indeed

due to the fact that degradation in the model forces the mean of the

residuals to c:eviate from zero and increasing the value of the element

in the covariance matrix only reduces the sensitivity of the detec-

tion technique. However, the reduction in the sensitivity of the GLR

does allow performing the simulation of various failure modes without

a forced false alarm clue to model degradation. In the next section

the simulation results for sensor failures are presented.

4.4.1 Sensor-Step Failure Simulation

To evaluate the performance of GLR in detecting sensor failures

when model degradation occurs, simulation tests involving single and
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multiple sensor failures were made. Specifically, single failures were

introduced in the pressure sensor (PS11), the speed sensor (NL), and the

temperature sensor (T3) separately. The same six outputs (i.e., PS11,

NL, NH, P12, P4, and T3) as before were used to generate the residuals.

The total number of observations used for these runs was 30 and the win-

dow limits for failure time are M - 23 and N - 3. The threshold c

was kept at 34 and the covariance matrix used in the detection program

was computed as in Section 4.4. The failure size in the sensors is five

tines the standard deviation of its noise.

The results of these simulation runs are summarized in Table 4.7.

The results of single sensor failures indicate that the step failures

in pressure and temperature sensors are detected and identified prop-

erly. However, the step failure in speed sensor, NL, is not properly

identified. Although the type of the failure is not correctly identi-

fied the occurrence of the failure is detected and the estimate of

failure time is also correctly estimated in six (6) observations.

When model degradation occurs the estimate of the failure size

(computed by constrained GLR) is a combination of the estimate of fail-

ure size and the output degradation effect on the sensor. For example

the average estimate of failure size in PS11 over 14 estimation tests

results is 5.142 and the actual failure size is 5.098; thus the differ-

ence is 4.4x 10 3 . The average effect of model degradation on the PS11

sensor calculated from residuals is 5.55 x 10 2 . The estimates of the

failure size in PS11 are plotted in Figure 4.29.

The speed of failure detection can be measured by time to detec-

tion. From the results in Table 4.7 can be seen that although occur-
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TABLE 4.7

SIMULATION RESULTS FOR SENSOR ?'ALLURES

(With Linear Model)

Failed	 PS11	 NL	 T3	 NH	 PS11 P12

sensor	 P12	 NI.	 P4

	

T3	 NH T3

Detected	 3	 1,3	 3	 3	 3

type

Detected	 12	 12	 12	 12	 12

failure
time

12	 12	 12	 12Actual 12
failure
time

Isolation C

Failure 12
timj from
isolation

Time to 5

detection

Time to 5
correct
type

Total 5
detection
time

_-	 C	 --	 --

--	 12	 --	 --

3 2 2	 1

-- 15 2	 2

-- 15 3	 3

C correct isolation.
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rence of a failure is detected rapidly more observations are require

before the correct type of failure is identified. A comp,irison bets

the number of required observations to correct type for single sells(

failures and multiple failures indicates that multiple failures are

tected more rapidly than single failures. These results are similar

the results obtained under perfect modeling. Nigher speed and accui

of detection and estimation of multiple failures are attributed to I

more intensive effect of the multiple failures on the residuals. Tt

multiple failure simulation results in Table 4.7 show accurate estima-

tion of the failure time. To illustrate the evolution of the GLR index

for single and multiple failures the indices for a single sensor failure

in PS11 and multiple: sensor failures of all. six sensors are plotted in

Figures 4.30 and 4.31, respectively. Again the Index in the multipIc

failure case rises more rapidly. Next, detection of actuator failures

under model degradation is discussed.

4.4.2 Actuator Failure Simulation

The performance of the GLR detection technique with imperfect

modeling was evaluated by simulating single and multiple actuator fail-

ures. The results of these simulation tests are presented in Tables 4.8

and 4.9, respectively. The failure size for these tests are 5% of the

input for step failures and 20% of the input for jump failures. Each

simulation is performed over a total of 30 observations and the window

limits for failure time are set as N = 3 and M = 23. The level of

threshold c is maintained at 34 but the covariance matrix of the re-

siduals is computed according to the same procedure that was explained

in Section 4.2.

Consider the results of single actuator failure simulations in
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Failed
actuator

Detected
type

Detected
failure
time

Actual
failure
time

TABLE 4. 8

SIMULATION RESULTS FOR ACTUATOR FAILURE.

(Linear Model)

Step failure	 Jump failure

XMV	 X18	 THETAI	 XMV	 X18	 THETAI

1	 1	 1	 2	 2	 1,2

12	 12	 11,12	 12	 11	 11,12

12	 12	 12	 12	 12	 12

Time to
detection

Time to
corre :t
type

Total
detection
time

0 3 0 0 3	 0

10 7 0 1 3	 --

10 7 -- 3 --	 --

__._.. .... ..... _:...
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TABI.F. 4. 9

SIMULATION RESULTS FOR MUL

(Linear Model

Step failure

Failed actuators	 XMV	 XMV

THETAI	 X18

THETAI

Detected
	

1	 1

type

Detected
	

9,10,11,12	 10,11,12

failure

time

Xla XMV

THETAI X18
THETAI

2 2

12 12

Actual
failure
timeme

Time to

detection

Time to

correct

type

Tutal

detection
Lime

1? 12 12 12

0 0 0 0

0 0 1 1_



131

Table 4.8. For ttese iLmulations the type of the failure is accurately

determined except for the jump failure in THETAI. However, for this

case the number of times that the failure type is correctly determined

as a jump failure by far exceeds the number of times that the failure

type is erroneously identified. Specifically, from the total of 18 de-

section tests performed, 14 test results indicated that the failure is

a jump failure.

The estimate of the failure time is accurately determined for all

cases. The largest error in the estimate of failure time is one obser-

vation. In the case of a step failure in TRrTAI only four out of 16

failure time estimates were incorrectly estimated as 11. The remaining

12 were correctly estimated. Exactly the same results were obtained for

a jump failure in THETAI.

The actuator failures are detected rapidly in all cases. Maximum

delay in detecting the failure is three (3) observations. Identifica-

tion of the type of the failure, however, requires more observations.

Finally, it should be mentioned that when a failure type or time is not

correctly estimated then no number appears in the boxes corresponding

to the time to correct type or detection time. The plots of CLR indices

for step and jump failures in THETAI are shown in Figures 4.32 and

4.33.

Consider the results of multiple failure simulations in Table 4.9.

The failure type has been detected successfully in all cases. The es-

timate of the failure time for step failures are not as accurate as in

the case of no model degradation. Specifically, for the case of multi-

ple failures in XMV and THETAI the failure time is estimated as 9 and 10

once and as 11 twice in the total of 16 estimates. Similarly, for step

e OF

F-



132

failure in all three actuators the time of failure is estimated as 10

once and as 1.1 three times. Nonetheless, in both cases the majority 1

the failure time estimates are equal t,- ► the actual failure time.

Due to more intensive effects of multiple failures on the model

siduals the time to detection for multiple failues is Less than the time

to detection for single failures. The evolution of the GLR indices for

multiple ste p and jump failure in all three actuators arc s plotted in

Figures 4.34 and 4.35, respectively. Comparing the plots in Figures

4.34 and 4.35 with the plots in Figures 4.32 and 4.33, respectively, re-

veals the increase and rapid rise of the GLR indices for multiple fail-

ures.

The study of performance or the CLR detection technique under model

degradation is concluded at this point. In this study the performance

of the GLR technique for single and multiple sensor/actuator failures

was evaluAt-ec'. For this purpose various performance measures such as

correct failure type detection, estimate of the actual failure time,

time to detection, and total detection time were used. Tables 4.7

through 4.9 provide a summary of the complete results o° the performance

evaluation tests. Next a summary and discussion of the results of this

chapter will be presented.

4.5 Summary and Discussion

Simulation tests were conducted to evaluate the performance of the

GLR detection technique in a realistic and practical environment. Spe-

cifically, the GLR technique was applied to a Quiet Clean Short-Haul Ex-

perimental Engine, QCSEE. The simulation studies were carried out by

utilizing a reasonably detailed nonlinear digital simulation of the QCSEE

engine. The QCSEE digital simulation was developed by NASA for ut:liza-
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tion in a flight simulator for STOL flight tests. The simulation pro-

?	 gram has been tested against a highly detailed digital model of the en-

gine and the results match very well. For failure detection simulation

studies a linear discrete state space representation of the engine and

engine sensor noise characteristics are required.

The linear model of the engine was generated from the engine simu-

lation (see Appendix E) and the sensor noise characteristics were ex-

tracted from actual engine measurements of an F-100 engine. The use of

F-100 sensor noise characteristics is justified on the basis that simi-

lar sensors are used for measuring comparable engine parameters in jet

engines. Another, main assumption in this regard is that the noise char-

acteristics of sensors measuring analogous engine outputs are identical.

For example, noise characteristics of all. QCSEE pressi:re sensors are

assumed to be the same.

To conduct the failure detection simulation tests, a digital com-

puter program incorporating the GLR concept was developyd to examine the

model residuals for failure detection. The program is capable of de-

tecting a failure, identifying the type of the failure, and estimating

the failure time. Isolation of single sensor failure inside the pro-

gram is achieved by utilizing the concept of the constrained GLR. ror

multiple sensor failure isolation, the estimate of failure vector is

used. The underlying idea for this approach is to associate the failed

sensors with the nonzero elements of the failure vector. Incidently,

estimates of failure vector are also useful for failure accommodation.

The GLR program has been extensively tested by numerous simulation

tests.	 {

At first the consistency of the GLR program was examined by test-

r
i
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ing the model residuals when no sensor/actuator failure was present.

The results indicate that no false alarm was encountered. Specificai,y,

it follows from Figures 4.6 and 4.7 that the level of threshold, c:, re-

mained substantially higher than the maximum value of the. GLR index

over the observation range. Another interesting result from these fig-

urer is that lowering the level of c	 Increases the ?, ►'obabi.ltty of

false alarm. The consistency tests wort , carried out by otlilizing

model residuals generated from the simulation configuration of Figure

4.3. For easy reference this configuration is referred to as perfect

modeling configuration or in short, perfect modeling.

After consistency tests the capability of the GLR technique in

detecting sensor/actuator failure was tested. To conduct these tests

the perfect modeling configuration was employed first. This configu-

ration provided a realistic performance evaluation of the detection

technique for situations in which the model follows the engine without

any discrepancies. Alternatively, tenting the GLR technique (which

originally is developed for linear systems) with the nonlinear QCSEE

simulation provides a more realistic evaluation of the perfor-mance of

the technique. The results of failure detection tests with regular

modeling configuration is referred to a3 the first test category. The

secund test category consists of failure simulations in the presence of

some discrepancy between the model. output and the engine (Fig. 4.4).

This is referred to as imperfect mode Li.n;; conf ig,_rration.

Under perfect modeling two sets of single sensor and actuator

failure tests were conducted. The summary of the results of these

tests are reported in Tables 4.1 through 4.6. Examination of the re-

sults reveals an impressive performance by the GLR detection technique.

_.	 .........wax..a,::.. 	 .........:...... ,.....:.....n. ....	 uF.:k..w ,o...... new::'. cna..,,...wwu.v..w..so.:..,..:w: s....:..:ws .....w.a 	 :.....us., 1.«.n.n.uvatw.:..u.u'rnx4vtGid':n.:: m.xv.... 	 m..:ti:&ae:.....«.a....ir{Y
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Particularly, all single sensor failures were correctly detected and

isolated. Also Lite failure times in all sensor failure cases were cor-

rectly estimated. The speed of detection in all cases was high such

that the failed sensor was completely identifies in nine (9) observa-

tions or less. Here complete identification refers to the correct fail-

ure detection, isolation, and proper estimation of the failure time.

The estimates of failure size in the sensors were also computed accur-

ately. Similarly, all single actuator failures were detected and the

correct failure types were identified. The estimates of failure time

for all cases were also correctly determined except for step failure in

the fan pitch angle and fan nozzle actuators. However, the inaccura-

cies in these estimates do not exceed two observations. In addition,

the frequency of the correct estimates of failure time exceeds the fre-

quency of incorrect estimates (bee, e.g., Figs. 4.10 and 4.11).

Under perfect modeling the capability of the GLR technique in de-

tecting multiple sensor/actuator failure was also examined. As expec-

ted the effects of multiple failures on the residuals were stronger

and therefore Lite failure detection was accomplished faster. It

should be mentioned that since any single actuator failure affects the

output of all sensors, multiple sensor failure residuals might resem-

ble the residuals of single actuator failure. As a result cross de-

tection may occur. However, the results of multiple failure analysis

for QCSEE indicate that the proposed detection technique successfully

identified all the multiple sensor failures. In addition the failure

time and size were correctly identified in all cases. Similarly, the

performance of the detection technique in detecting multiple actuator

k

......_
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failures is impressive (see Table 4.6). The technique identified all

the multiple actuator failures with a very short delay in detection

(the maximum delay was five (5) observations). Estimates of failure

time were accurately calculated in all cases except for multiple ,jump

failures in three actuators. It should be noted, however, that each

of the two wrong failure time estimates occurred only once in a total

of 17 estimate calculations.

To evaluate the performance of the GLR technique further the second

category of tests with model degradation were carried out. The objec-

tive of these tests was to study the role of the engine model in succes-

ful detection of the sensor/actuator failures. To achieve this, a lin-

ear model of the engine was generated and substituted for the nonlinear

simulation representing the engine model. The linear model was gener-

ated from the simulation program and it follows the simulation model

closely, However, the model residuals generated from the linear model

would no Monger be zero-mean white noise. Therefore, the sensitivity

of the detection program must be reduced to avoid false alarms due to

model degradation biases. This sensitivity reduction was achieved by

increasing the values of the elements of the sensor noise covariance

matrix.

After reducing the sensitivity of the detection technique a series

of simulation testis were conducted. The results of these tests ar-

summarized in Table 4.7. These results indicate that even when a lin-

ear model is iti.lized the detection results are quite satisfactory.

The sensor failure simulation results in this category indicate that

with the exception of failure in the fan speed sensor all other failures

were correctly detected. Several interesting observations can be made
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by comparing the results of sensor failure simulation of perfect and

imperfect modeling. For instance the results of failure tests for PS11

and T3 in Tables 4.3 and 4.7 reveals that iii case of model degrada-

tion the failure detection is slower. However, this reduction in de-

S .

	

	 tection speed is due to lowering the :sensitivity of the GLR detection

program rather than modal degradation. Alternatively it can be conjec-

tured that increase in the delay to correct failure type is due to the

model degradation effects. Specifically, the modifications of the co-

variance matrix in the GLR detection program effect the GLR indices of

all three failure types equally. Similar comparison can be made be-

tween the simulation results of multiple failure of all sensors in

Tables 4.5 and 4.7. It follows from this comparison that longer delay

in detection under imperfect modeling was not encountered. Thus it

follows that multiple failures accentuate the change in the residual

mean and thus they compensate for the reduced sensitivity o±` the de-

tection program.

The performance of the GLR in detecting single and multiple actua-

tor step and Jump failures with imperfect modeling was also evalu, -(,d.

A summary of these results is in Tables 4.8 and 4.9. For sing l e_ actua-

tor failures all failures were successfully identified exc ,:.•pt the jump
/.

failure in THETAI. Comparing the results in Table 4.8 with t ►t(: perfect

modeling actuator failure simulation results in Table 4.4 indicates

that longer delay in detection under imperfect modeling were encoun-

tered. This confirms the previous conclusion that longer time to de-

tection is due to reduction in the sensitivity of the detection program.

It also follows from the results in Table 4.9 that the estimates of
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failure time contain small Inaccuracies which do not exceed on

ling interval.

Multiple actuator failure results in Table 4.9 indicate tl

intensive effects of multiple failure again eliminate the dela,

ure detection. In addition the failure types are also correct

fied (no cross detection). The estimritc of failure time, howe,

tlnues to show Inaccuracies. Compared to the results in Table 4.6 the

frequency of inaccurate failure time estimate, in Table 4.9, increased

under imperfect modeling while the error range is the same for both

test categories. Another comparison which can be made between the re-

sults in Tables 4.6 and 4.9 concerns total detection times. It can be

seen that for jump failures the total detection time are equal for the

two test categories.

It should be emphasized that even under imperfect modeling the GLR

technique performs quite satisfactorily. These performance results war-

rant further investigation into the use of imperfect models in the pro-

posed technique. The use of simpler but imperfect model can broaden

the application of GLR to complex systems which require very detailed

and complicated modeling for perfect reproduction of their dynamics.

In summary the GLR performance evaluation tests indicate that

the proposed detection technique is a reliable, consistent, fast, and

accurate method of detecting failures. In addition it provides all. thy:

necessary information regarding the size, time, and type of failures.

The proposed GLR technique is also capable of Isolating failed sensors

and it furnishes the required information for accommodating the failure.

The problem of failure accommodation is studied further in the next

chapter.

1



CHANTER V

FAILURE ACCOMMODATION

5.1 Introduction

The last phase of the proposed failure analysis, namely failure

accommodation, is discussed ir, this chapter. As it was indicated in

the first chapter, failure accommodation techniques are closely

related to the system control design methodology. The accommodation

technique, proposed in this Chapter, is based on the Multivariable

Nyquist Array (MNA) technique. Hence, it is compatible with the

proposed GL& failure detection and isolation techniques and completes

the proposed failure analysis technique. The concept of failure

accommodation and its relation to the MNA failure technique is described

in Section 5.2. Also in Section 5.2 the concepts of the MNA technique

that are utilized in the development of the proposed accommodation

technique are liscussed. Then in Section 5.3 the proposed accommodation

procedure is described. Examples of the accommodation procedure for

the QCSEF. engine are presented in Section 5.4. Finally, in Section 5.5

a summary an,. discussion, of the results are presented.
	 ,2

5.2 Failure Accommodation

The significance of sensors in successful control of jet engines

was discussed in Chapter I (Section 1.3). It follows from the discus-

sion that a sensor failure may degrade the overall performance of the

engine. Thus, after a failure has been detected and isolated it is

necessary to take corrective actions to minimize the performance

139
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degradation (i.e. to ac-,ommodate the failure). Based on the proposed

failure analysis technique (see Section 2.2), failure accommodation

may be achieved in twu alternative fashions. First, the control

system remains unchanged and the lost measurement is replaced by the

corresponding model output. In the second method the system control

design is altered to minimize the performance degradation. Tile imple-

mentation of the first method is straightforward. However, the replace-

ment (or reconstruction) of the lost measurements is not always practi-

cal. Therefore, the second accommodation technique must be developed.

Such a development for the proposed failure analysis technique is

based on the MNA design methodology. Therefore, it is helpful to

review the MNA concepts essential to the development of the accomoda-

tion technique.

5.2.1 MNA Design Technique

The use of Nyquist stability criterion in classical control

theory for single input single output systems is well established.

In 1969, Yrofessor H. If. Rosenbrock proposed an extension of the

Nyquist criterion to multivari-^^"e systems (Ref. 17). 1  his paper,

Rosenbrock utilized the cone ,pt of diagonal dominance for the linear

system transfer function matrices in the inverse polar plane to

develop the Nyquist stability theory for multivariable systems. Since

the stability theory was developed fur the inverse polar plane, it

is referred to as the Inverse Nyquist Array (INA) method. 'The Nyquist

stability theory for the direct polar plane was :IlLroduced by Rosenbrock

in 1974 (Ref. 18). Likewise, this method is referred to as the Direct

Nyquist Array (,DNA) method.

Being natural extensions of the classical control techniques,
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JA and DNA have been examined by researchers (see, e.g., Refs.

?1, 23, and 24). This has produced significant results which

!s the understanding and applicability of thee? techniques.

One such result is due to Leininger (Ref. 24) who has shown that it

is possible to achieve dominance in either the direct or inverse plane

and complete the design in the opposite plane, thus unifying, the INA

and DNA under a single heading as the "Multivariable Nyquist Array"

(MNA). In applying MNA to any system the main concern is to achieve

dominance in either polar plane. Once dominance is obtained the design

of individual feedback loops can proceed in the same fashion as in

single input single output systems. Hence, it is of great importance

to achieve dominance in a fast rel.irble fashion.

To understand the concept of dominance consider the system block

diagram in Figure 5.1. In this diagram G(S) is the n x n system trans-

fer matrix, and K(S) and L(S) are two n x n pre- and post-compensators,

respectiv,ily. The n x n diagonal matrix F(S) represents the feedback

gain matrix. The open-loop transfer function matrix, Q(S), in the

direct polar domain is given by

ti

Q(S) = L(S)G(S)K(S)
	

(5-1)

In the inverse polar plane the open-loop transfer matrix is given by

Q(S) = K(5)G(S)L(S)

whc VC

G(S) = G-I(ti)

Q(S1 = Q 1(S)

K(S) = K 1(S)

L(S) = L-1(S)

(5-2)
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n
To proceed with the feedback gain design either Q(S) or Q(s)

must be diagonally dominant. The definition of the diagonal dominance

can be exp ressed in a more unified and general fashion as follows.

Let P(S) represent the general open loop transfer function matrix,

given as

P(S) = A(S)Z(S)B(S)	 (5-:3)

Where A(S) and B(S) are the pre- and post-compensators or their

proper invcr5e depending on the plane in which the dominance is sought.

Likewise Z(S) represents either G(S) or G(S) and P(S) becomes

Q(S) or Q(S). Now using equation (5-3) the concept of diagonal domi-

nance for rows and columns of P(S) can be defined.

Definition: Let P(S) be a rational polynomi p l matrix .ad o f and 6i

be determined for all i = 1,2,...,n by

n

Fii 
= Max	 IPi j (S)I ̂ I i ii (S) IScD

J=1
J) i

and

(5-4)

n

9i	
SaD 
	 I,	 (S)	 (5-5)

=1
joi

Where D is the Nyquist contour. Then P(S) is row dominant if for

all	 i = 1,2,...,n

6i < 1	 (5-6)

and P(S) is column dominant if for all i = 1,2,...,n
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The functions defined in equations (5-4) and (5-5) are called row

and column dominance levels, respectively.

For an MNA design to proceed row or column dominance in either

direct or inverse plane is sufficient 	 it follows frcm the above

definition of diagonal dominance that there are twelve possible MNA

design forms wherein A(S) or B(S) can be specified or varied to

achieve dominance.. Therefore, it is of interest to establish a

relationship between the dominance in the direct and inverse polar

plane. In the course of the research for this dissertation a new

relationship between the dominance in the two polar planes is

established. The theorem establishing this relationship utilizes

a theorem provided by Rosenbrock (Pcf. 52). For easy reference

Rosenbrock's theorem is repeated here without the proof.

Theorem 5.1: Let the nxn complex matrix Q satisfy

n

I g ij 1	 © ! l qii
j=1
joi

n

Respectively	 Igjil = ei I
q 
ii

J=1
joi

Where 0 -0 1<1	 for i = l,2,...,u. Then Q has an inverse

Q	 Q	 satisfying

qji	 Oj q,i

Respectively I g ijl` 0 j igil,

(5-8)

(5-9)
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For	 i - 1,2,...,n and j - 1,2,...,1 - l,i+l,...,n

Proof: Secs reference 52, Chapter 5, Section 6.1.

Mow to  I I I z I ng t he t)rew '),I I Iiv doml 1 1 4 11 1W4 , ('cn ► 4111 lour; I it I Iic• d l r4 • 4 1

,ind l uv('rs(' I)lanV Gill 1W I l nkcd by t hy • l o l Itiw i ny, I livoi cell.

1'hvorem 5.2	 if an n x n transfer matrix Q(S) is row (column)

dominant then Q(S) !.s column (row) dominant if the sum of any n - 1

of the dominance levels is less than unity.

Proof: Note that if Q(S) is row dominant then equation (5-8) is

satisfied for all S on the Nyquist contour, D. It follows from

theorem 5.1 that the equation (5-9) is also valid for ScD Then the

dominance levels of Q(S) can be expressed in terms of 
0  

as follows:

	

O r 	Max 0

	

i	 iSell 

Respectively 0 1 = Max 0
i	 Sell	 i

(5-10)

for i = 1,2,...,n. Now consider the equation (5-9), adding the inequi-

ties for all possible jOi yields

c
tc	 n

L
(5-11)

	

q. 1i < YJ	 I g 
j

3 j^ ii

j = 1	 j=1
joi	 joi

((nom^	

n

LRespectively 
	 lgil'	

of Igi.i^
j = 1	 j

joi	 j¢i

Note that trom the conditions of the thclor,2m

n

8 j l 1	 (5--12)

j=1
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then it follows from (5-10) that

n
0J<1	 (5-13)

j-1

Therefore, it can be seen from (5-13.) that Q(S) is column (row) dominant.

Theorem 5.2 provides a method of testing for dominance in either

direct or inverse polar plane after the dominance condition is satisfied

in the opposite plane. It also follows from theorem 5.2 that the

dominance levels satisfying the conditions of the theorem, automatically

provide the freedom of completing the design in either of the polar

planes. Having established the definition of diagonal dominance, the

methods of achieving dominance can now be considered.

Three alternative methods of achieving dominance have been proposed

by the researchers. Rosenbrock introduced the concept of pseudo

diagonalization (Ref. 18) and Schafer and Sain developed (Ref. 54)a

dominance seeking graphical technique, called CARDIAD plots. However.

both these techniques emphasize the selection of compensator parametcrs

by the designer through a trial and error procedure. Thus they require

excessive time for obtaining dominance. The third approach introduced

by Leininger (ref. 20) is based on a function minimization procedure.

This metliod utilizes a conjugate direction function minimization

technique to adjust the parameters of the compensators to obtain the

dominance conditions (eqs. (5-6) and/or (5-7)). The function

minimization technique has been successfully applied to r-.,nercus
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practical problems (►Ref. 19).

The function minimization method transfers the task of ob

dominance to the computer and requires minimal intervention on

designer's part in achieving dominance, hence allowing the des

devote more of his time to the design of the feedback gains.

addition, due to lack of reed for continuous intervention by t

designer, the technique can be implemented in a batch mode. T

attractive features of the functional minimization technique a

particularly useful for failure accommodation, as alternative

configurations can be generated faster.

One of the main assumptions in the development of the MNA

technique is that the system under study has an equal number e

and outputs; namely the system is square. However, when a Rer

actuator failure occurs it may not be possible to utilize an E

number of inputs and outputs in the control design. Hence a F

cedure must be developed to make the MNA technique applicable w 11U11-

square systems. A procedure for this purpose is proposed in the next

section.

5.3 Failure Accommodation Technique

In this section a method of failure accommodation based on the

MNA design technique is developed. The main objective is to develop

a procedure that will. make the MNA design technique applicable to non-

square systems. Since the MNA design technique is developed for

square systems, the procedure entails converting the nonsquare systems

to square configurations. This may be achieved by designing pre- and

post-compensators of proper dimension so that the open-loop transfer
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Q(S); however, an n x n Q(S) resulting from a G(S) of rank n - 1

cannot he made dominant. This can be seen by examining the rank of

Q(S). Since the rank of Q(S) cannot be raised above the rank of G(S)

through matrix multiplication, then the rank of Q(S) is at most n - 1.

Therefore, the eigenvalues of Q(S) include at least one zero. Now,

according to Greshgorin Theorem (Ref. 55) the union of Greshgorin discs

for Q(S) (for any S) contain all the eigenvalues of Q(S). Therefore,

for all values of S on the NyquisL contour the Greshgorin discs sweep

out a band which contains all the cit,envalues of Q(S) (for S on D).

This band is referred to as Greshgorin band. For the dominance condi-

tions (eq. (5-6) or (5-7)) to be satisfied, the Greshgorin band must

exclude the origin (Ref. 18). Hence, to obtain dominance Lhe compensa-

tors should be selected such that the dimension of Q(S) will be equal

to n - 1.

It follows from the above discussion that for failure accommoda-

tion the system transfer matrix should always be squared down to the

lower dimension of G(S). Thus far it has been established that the

1NA design is not suitable for failure accommodation and tile , DNA design

can only be carried out by squaring the system down to its lower

dimension. Hence, it remains to develop a dominance-seeking procedure

for DNA design that will yield a square system of dimension n - 1.

The method of function minimization 1s utilized to obtain domi-

nance for nonsquare systems. To describe the technique, consider the

open-loop transfer matrix in equation (5-1). Now suppose that a sensor

has failed, then G(S) becomes an (n - 1) x n matrix. Thus, to

obtain dominance L(S) should be an (n - 1) x (n - 1) matrix and K(S) 	
:a

must be an n x (n - 1). Note that depending on the type of dominance

PRECEDING Pi1;;.L	 ;;.:+' , ...... _`!j
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(l.c. row or column) and whether K(S) and L(S) are specified or

variable, there are sIx possible DNA deslgn forms. The hurpcse of any

of there designs is to obtain dominance levels (co q. ()-6) and (5-7))

below unity. It is remarked that the dominance levels for several. of

these forms can be adjusted by varying only one row (or column) of

the compensators. For Instance, consider the case of row dominance

when K(S) is specified and L(S) is varied. It follows from equations

(5-1) and (5-4) that the elements in the ith row of L(S) do not ef-

fect the dominance levels of the remaining rows. Based on this obser-

vation, two separate functions can be specified for the function mini-

mization technique as

0	 (Row)

.1
1 =

0c	 (Column)
t

and

"1a.c (0 i)	 (Row)
i

s

Max (e)	 (column)
i

(5-14)

(5-15)

where 0 r and ei are given in equations (5-4) and (5-5) respective-

ly. Equation (5-14) Is used whenever the rows or columns of the

unspecified compensator effect the corresponding dominance levels

independently. Alternatively, equation ( 5-14) Is utilised when Such N

independence does not exist. Whcnrver .1 1 can he used, the unknown

parameters of individual rows or columns are computed to minimize .1

Thus, at most 11 unknown parameters are computed to extremize J1
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for each dominance level. For the design corresponding to equation

(5-15) all the unknown coefficients are adjusted to achieve low over-

all dominance levels. Therefore, the number of unknown parameters

used in extremizing the dominance levels is at least (n - 1) 2 and

at most (n - 1)(2n - 1).

The optimization technique selected to minimize J 1 and JL

Is a conjugate direction technique developed byLangwill and Powell

(Refs. 56 and 57). The technique is particularly suitable for mini-

mizing J 1 and J 2 functions because it does not require an explicit

evaluation of the gradient, as the calculation of the gradient of

these functions may pose some numerical problems. Additionally,

Fletcher, in his comparative study of optimization techniques kRef.

62) concludes that ar..ing the techniques which do not require the calcu-

lation of the gradient Powell's technique may be computationally the

most efficient.

After minimizing the functions in (5-14) and (5-15), the

resulting dominance levels are usually of different magnitude..

Indeed, often the resulting dominance levels for certain rows (or

columns) are less than unity and for the remaining rows (columns)

exceed one. In this case the DNA design still cannot be completed

until all the dominance levels are less than one. Leininger has

shown (Ref. 24) that it is possible to share the dominance between

rows (columns). The concept of dominance sharing can be described by

examining the open-loop transfer function Q(S) in (5-1). Suppose

that it is desired to achieve column dominance for Q(S), and the

function minimization technique has been applied and the resulting
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dominance levels are unequal. Then Q(S) is premultiplied by a

diagonal T = dig(t i ) for i = 1,2,..., n - 1. The resulting matrix

is given by

R(S) _ TQ(S) - TL(S)C(S)K(S)

or

glltl	 g12t1	 ql(n-1)tl

g 21 t 2	 g22t2	 q2(n-1)t2

R(S) =

q (n-1) I t (n-1)	 g (n-1) 2 t (n-1)	 q (n-1) (n-1) t (n-1)

(5-16)

It can be soen from the above equation that by selecting t i for

i = 1,2,..., n - 1 the dominance levels in R(S) can be varied. It

is also possible to establish a set of sufficient conditions that will

provide a guideline for selecting t i 's such that the dominance is

shared while it is still retained in the rows (columns) that are

already dominant (Ref. 24). However, it is practically more feasible

to employ the concept of function minimization technique to select the

diagonal elements of the T matrix. This may be achieved by minimi-

zing the following function

Jc = Max i 	i = i,2,...,n - 1	 (5-17)i
where yc is the column dominance level for R(S). if the minimiza-

tion of (5-17) is continued until the lowest value of J
c 

is obtained,
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then Yc for i = 1,2,..., n - 1 will become equal. Similarly,

1

when row dominance Is desired, the Q(S) is postmu.lLiplied by

T - dig(t i ), then, R(S) in this case becomes

R(S) a Q(S)T - L(S)G(S)K(S)T

or

^—	 I

g ll t 1	 g12t2	 ql(n-1)t(n-1)

g 21 t 1	 g22t2	 g2 (n-•i) 
t 
(n-1)

R(S)

I

i

g (n-1)l t l	 g(n-1)2t2	 g(n-1)(n- 1)t(n - 1)
(5-18)

To obtain dominance the following function is minimized

J r = Max( Yi 	 1,2, ... , n - .1	 (5-19)
i \	 J

Where y r are the row dominance levels for R(S) in (5-19).
i

Utilizing the failure accommodation technique developed i« this

section, a digital computer program capable of obtaining dominance for

nonsquare systems was developed. Tile performance of the program was

then tested by using the QCSEF..finear model at 62.5% power. The results

(If these tests are reported in the following section.

5.4 Performance Evaluation of Failure Accommodation Technique

A digital computer program for implementation and evaluation of

the nreposed failure accommodation technique was developec:. The main

,E
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purpose of the program was to provide the capability of o

dominance for nonsquare systems. However, the program is

such that it can be utilized for squ. -, systems as well.

tion, various forms of MINA designs can be examined by the

obtaining dominance. That is for square systems both INA

row and column dominance can be examined.

Staining

designed

In addi-

program for

and DNA

For nonsquare systems, row and column dominance in the DNA mode

can be tested. The dominance-seeking logic of the program is based

on the function minimization technique that was described in the

previous Section. In addition, the concept of dominance sharing is

implemented in the program logic.

Although the main objective of the program deveL)pment is to

demonstrate the capability of obtaining dominance, the program has

the capability of plotting Greshgorin and Ostrowski bands. These

bands are used to complete the DNA design. Graphically the Greshgorin

and Ostrowski bands are plotted by utilizing; Crossley's (Ref. 63)

envelope curves, Bence saving a significant amount of time in plotting.

For performance evaluation the proposed accommodation technique

was applied to the QCSEE with unequal number of inputs and outputs.

Specifically, two categories of tests were conducted. In the first

category the number of outputs is smaller than the number of inputs.

This group of tests represent a case of sensor failure wherein the

system must be reduced to the nonsquare system. The second category

of tests examine the system with fewer inputs than outputs; they

represent actuator failures. One example from each of the two test

categories will be presented here.



154 C' RIUi: t':'_ i	 .

OF PC.,F' ,

For the case of a sensor failure, three inputs and two sensors

are utilized. The inputs are XKV, THETAI, and X18 and the two

sensors are NI. and NH (for a description of inputs and outputs

see Section 4.1.2 in Chapter IV). The dynamics of the sensor are

neglected in this case. Column dominance is sought over the range

of zero to 50 Rad/s divided into 100 equally spaced points. The

initial pre- and post-compensators are

1	 0

K	 0	 1	 (5-20)

1	 -1

k

t	 and
E

1	 0
5

L	 (5-21)
0	 1

The dominance levels resulting from the above compensators are

el = 3.193

9 2 = 54.259
	

(5-22)

II'o obtain dominance, the post-compensator is kept constant and the

elements of the pre-compensator are varied to get dominance. It is

remarked that for this :DNA design form, changing the elements in the

column L of K for i - 1,2 effects only the ith dominance

level of Q(S).

After a single application of the function minimization pro-

gram, the following values for the pre-compensator result.
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0.10157	 0.31457 x 106

K	 0.81920 x 103	-0.67101 x 106	(5-23)

0.82020 x ]0 3	-1.0

and the associated dominance levels are

Ui = 0.09582

(5-24)

tl 
1

0.6125

It can be Been that although diagonal dominance is obtained with the

new K, dominance level e c is six times larger than O c in (5-24).

Using the dominance sharing option. of the program, the following T

matrix is computed

	

0.49638	 0.0

T =	 (5-25)

	

0.0	 1.255

which results in

e	 = 0.24227

(5-26)

eL = 0.24226

Now if the post-compensator, L, in (5-21) is premultiplied by T in

(5-25), a new post-compensator is obtained. Using the new compensator,

the function minimization and dominance sharing is repeated twice and

the following dominance levels result

01 = 0.099509

(5-27)

0j = 0.099502

The corresponding T matrix is

S
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1.0012	 0
T	 (5-28)

0	 1.0

and the K and L are

	

6.5101	 0.27307 x 105

K =	 404.09	 -0.96637 x 106
	

(5-29)

	

0.13446 x 107
	

-0.12080 x 107

and

	

(0.50052	 0.0
L =	 (5-30)

	

0.0	 1.2545
Examining the I' matrix in (5-28) rev:nls that. the T matrix is almost

an identity matrix; hence, multiplying L by T will not change L

significantly. This implies that repeating the function minimization

and dominance sharing will not change the dominance levels signifi-

cantly. It is noted that very low values of dominance levels are

obtained while both K and L are constant. This is desirable due in

part to easy implementation of constant compensators in practice. The

Greshgorin bands corresponding to the final compensators are plotted in

Figures 5.2 and 5.3.

In the second test category, a nonsquare QCSEE transfer function

matrix representing an actuator failure in THETAI was used. The out-

puts in this case were NL,NH, and Y8 and the inputs were XMV, and

X18. Column dominance for the nonsquare DNA design form was sought

over the range of zero to 50 Rad/s divided into 100 equally spaced

points. The initial pre- and post-compensator were
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K	 (5-31)
0.0	 1.0

and

1.0	 0.0	 0.0

L =	 ( 5-32)
-.1.0	 -1.0	 1.0

The dominance levels resulted from utilizing the above compensators

are

6i = 4.1969

(5-33)

e 	 1.12812

After a single application of the function minimization program, the

following dominance levels were obtained

ei = 0.98448

(5 -34)
e2 = 0.3873

The pre-compensator associated with the above dominance levels is

1.0	 -1.2885
K =	 ( 5-35)

10.83886 x 10 6	0.85

The post compensator elements were not varied. Using the dominance

sharing technique and function minimization in an alternating fashion

(as in the previous test category) twice, the T matrix approached

the identify matrix and the following dominance levels were obtained

el = 0.58554
(5-36)

92 = 0.58544

'I
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The pre- and post-compensator corresponding to the dominance levels

in (5-36) are

and

-0.85731 x 103

K
0.83912 x 106

1.522641
I.

-1.011035

-0.11644 X 1010

(5-37)
0,85

	

0.0	 0.0
(5-38)

	-1.011035	 1.011035

The Greshgorin plots corresponding to this case are given in Figures

5-5 and 5-6. Finally, as in the previous case the dominance is

obtained with constant pre- and post-compensators.

5.5 Summary and Discussion

In this chapter a new method for sensor/actuator failure accomo-

dation was proposed. The proposed technique is based on Multivariable

Nyquist Array (MNA) design methodology. Fundamentally, the tech-

nique provides for restructuring the MNA designed control system

after the failure is detected and isolated. In order to restructure

the control ,,ystem after a sensor/actuator fai -Lure, it becomes

essential to design the controls for unegcal number of inputs and

outputs. To meet this need it is essential to extend the MNA

techniques to nonsquare system applications. The proposed failure

accommodation technique is indeec a such an extension.

In the development of the proposed technique, it was shown

(Section 5.4) that obtaining dominance in the inverse plane for

nonsquare systems is cumbersome. Alternatively, it was demonstra-

ted that achieving dominance in the direct polar plane is feasible.
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In addition, a set of new conditions relating the dominanrz in the

direct and inverse plane was established. These conditions can be

utilized to assess dominance In the inverse plane using; ti ►e domi-

nance levels in the direct plane. Hence, It follows that under thee ► e

conditions (Theorem 5.2) it is possible to obtain dominance in the

direct plane and complete the design in either plane.

The proposed accommodation technique calls for converting the

nonsquare Kyscem to a square one; thus making standard MNA techniques

applicable. It was shown (Section 5.3) that in general, dominance

for converted square systems is only obtainable if the dimension of

the converted system is equal to the lower dimension of the nonsquare

system. Based on this result the concept of function minimization

and dominance sharing are incorporated in the proposed technique to

achieve dominance. Therefore, the compensator for converting the non-

square system to a square one is selected ouch thac the resulting

square system will be dominant.

Tile performance of the proposed technique was tested by applying;

it to the QCSEE. Two types of tests involving sensor and actuatui

failure were conducted. The results of these tests were excellent, as

in both cases high degree of dominance was obtained without having to

employ dynamic compensators. Development of the accommodation tech-

nique in this chapter, together with failure detection and isolation

in the previous chapters, complete all phases of the proposed failure

analysis technique. In the next chapter a brief summary of the

development of all three phases of the proposed failure analysis

technique will be presented and certain recommendations for future

research will he made.

4
k
s
t
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t



CHAPTER V1

SUMMARY OF RESULTS AND CONC1

It was established in Chapter I that future jet engines will rely

on digital controls to meet high performance requirements. The design

technique of these controls was indicated to be the modern control

techniques in both the time and frequency domains. A major design

requirement of digital control implementations in advanced aircraft

engines is h'gh system reliability. The reliability of the sensors

and actuators used to implement the control are important aspects of

this requirement. Improvements in tuis reliability can be achieved

by utilizing analytical redundancy.

Techniques for detection and isolation of sensor/actuator

failures utilizing analytical redundancy were closely related to

engine control design. Specifically, it was indicated that failure

analysis techniques compati.ble with they multivariable frequency

domain control techniques had significant advantages as they did not

require state estimation. Therefore, the main objectives of the

research were to develop a failure analysis technique which utilized

analytical redundancy and was compatible with the multivar.iable fre-

quency domain control design techniques, and to develop a failure

accommodation capability in the Multivariablc Nyquist Array (MNA)

technique.

In Chapter 1,:, a new Failure detection and isolation technique

160
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based on the concept ar Generalized Likelihood Ratio (GLR1 was de-

veloped. The technique did not require multiple hardware redundancy

and utilized the redundant information embedded in the model residuals.

Development of the technique focused on three failure types; namely,

state step, state jump, and sensor step. These failure types cover a

wide range of possible physical sensor/actuator failures. The techni-

que was derived for both time-varying and time-invariant linear sys-

tems. In addition to detection and isolation, the technique provided

estimates of failure time, direction and magnitude. In the case of

time-invariant systems a major portion of the computational burden of

the technique could be accomplished off-line, hence facilitating the

on-line implementation of the technique. For time-invariant systems,

a set of recursion relations was derived that simplified the on-line

implementation of the technique further. Finally, in Chapter II, it

was demonstration that the GLR technique can also be utilized for soft

sensor failure detection.

The results of Chapter III can be summarized under three main

topics. These topics were: (1) probability distribution of the GLTt

index; (2) failure detestability of the GLR technique; and (3) asymp-

totic behavior of the C i (d) matrix. Under the first topic the prob-

ability distribution of the GLR index was found to have a noncentral

chi-squared distribution in the case of a failure and a central chi-

squared if no failure occurred. The knowledge of the probability dis-

tribution of the GLR index provided the capability of computing four

important detection probabilities. The probabilities of correct de-

tection, false alarm, cross detection, and wrong time were used to

evaluate the confidence, consistency, isolation capability and failure
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time estimate accuracy of the technique. respectively. Order the sec-

ond topic, the detectability of the failures were examined. It was

shown that the technique was always capable of detecting sensor fail-

ures in both the time-varying and time-invariant systems. The detec-

tability of actuator failures was linked to the invertibility of the

C I (k.t) matrix and it was established that for observable time-invar-

iant systems C I (d) is always invertible. The significant impact of

the behavior of C i (d) on both the detectability and the accuracy of

failure vector estimate warranted the investigation of the asymptotic

behavior of C i (d). Hence under the third topic the behavior of the

C
I.
(d) matrix was studied and thie provided more insight into the ef-

facts of observation numbers on the detectability of failures and the

accurac y of failure estimates.

The performance o ► the GLR technique was evaluated in Chapter Iii

by applying the technique to a Quiet Clean Short-Haul Experimental

Engine (QCSEE.). For this purpose a reasonably detailed nonlinear

simulation of the engine was utilized. All other required programs

for simulating single and multiple sensor/actuator failure in the

QCSEE were developed. The programs included the implementation of

the proposed GLR detection technique with its isc l -itior, capability

derived from the constrained GLR (CLLR) technique. The performance

itvaluation studies were divided into two categories. In the first

category perfect modeling of the engine was ussu-oed while in the

second category model degradations (imperfect_ modeling) were per-

mitted. In the perfect modeling category single and multiple sensor

and actuator failures were simulated. The performance of the proposed
R

GLR technique in all test cases was excellent. Specifically, all
t
i
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5

sensor and actuator failures were properly and rapidly detected.

The isolation of the failed sensors and the estimation of the failure

size and time were also successfully accomplished in all simulation

tests. Small inaccuracies occurred in the estimates of failure time

for actuators.

In the imperfect modeling tests, single and multiple sensor/

actuator failures were simulated in the QCSEE. The results of these

tests were also quite satisfactory. For these tests the technique

continued to detect single sensor/actuator failures properly witr

small inaccuracies in identifying the failure types. It should be

emphasized, however, that no difficulty was encountered in identify-

ing muliple sensor and actuator failure types properly. Likewise,

failure times were properly estimated for all sensor failures while

for actuator failures, the estimates showed small inaccuracies. Zt

addition, the estimates of the combined effects of sensor fail'.,res

and model degradations were accurately determined.

A new failure accommodation technique was developed in Chapter V.

The technique was based on the Multivariable Nyquist Array control

design technique. Specifically, it utilized the MNA techniques to

design the nonsquare systems resulting from the loss of a sensor or

an actuator. It was shown that obtaining dominance for nonsquare

systems in the inverse polar plane was cumbersome, thus dominance

was sought in the dirt;-t polar plane. However, a e.et of new relations

between dominance in the inverse plane and the direct plane was

established. These relations could be used for deducing dominance

in the inverse plane from the dominance levels in the direct plane.

The accommodation technique called for converting nonsquare systems
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to square ones. For this purpose a new general guideline applicable

to nonsquare systems of any dimension was developed. Based on this

guideline a suite of programs for handling nonsquare systems was

developed. Using these programs the new accommodation technique was

applied to the QCSEE for both sensor and actuator accommodation. The

results of these tests were excellent, as high levels of dominance

were obtained without having to utilize dynamic compensators.

In brief, the achievements of this research include:

1. The development of a new, fast, and reliable failure detection

and isolation technique which is compatible with modern multivariable

control design techniques and does not require hardware redundancy.

2. The development of general computer algorithims for applica-

tion of the proposed detection and isolation technique to any linear

time-invariant dynamic system.

3. The successful application of the proposed technique to an

actual engineering system, namely the QCSEE.

4. The extension of MNA design techniques to nonsquare systems

for sensor/act^iator failure accommodation.

5. The derivation of a new relationship between the dominance

levels '.n the direct polar plane and the inverse polar plane.

6. The development of a suite of programs for MNA design of non-

square systems.

7. The successful application of the accommodation technique to

the QCSEE.

From the results of this research it can be coi.cluded that the

proposed failure analysis technique provides a fast, reliable, and

accurate method for sensor/actuator failure analysis of future jet

G
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engines.

There are several areas in which further research could lead to

significant results. First, although performance of the proposed

detection technique under model degradation was investigated, more

studies concerning the effects of model degradation are needed.

Second, the study of the computational requirement of the CLR techni-

que for on-line implementation is also very important. It is noted

the results of the studies of model degradation effects are of

fundamental importance for the computational requirement studies.

If an imperfect model with a low computational requirement can still

provide reliable detection, then the on-line implementation becomes

more feasible. Another significant research area is the problem of

cross detection, as wrong type detection could severely degrade

engine performance.

For more long term future research, several significant areas

can be ide.,_ified as follows. It was demonstrated in Chapter II that

the concept of GLR can be applied to the problem of soft failure.

However, much work remains to be done to develop a complete failure

analysis methodology parallel to the hard failure analysis in the

,p revious chapters. Also of significant importance is the investigation

Of the sinniltaneous failures in sensors and actuators. Finally, the

detection and isolation tJ several. failures which occur in sequence is

of great practical importance.

t	 'l
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Figure 4.5. - Logic flow diagram for the CLR

detection program.
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y	 Figure 4.5 - Concluded.Logic flow diagram for the CLR detection program.
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Figure 5 . 2. - Greshgorin bands for the first column (sensor

failure case).
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failure case).
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ORIGINAL PU^i.11Y
APPENDIX B	 OF POOR Q

FAILURE UETECTABILITY PROOFS

This appendix is comprised of two parts. In the first part a

theorem concerning the sum of positive definite matrices is presented

and in the second part various definitions and proofs concerning the

matrix norms are given.

PART B.1:

Theorem: Let V i for i - 1, 2, ..., R be R positive definite ma-

tries of order n then the matrix S.R defined as:

R

SR - F Vi

is also positive definite.

Proof: The proof is given by induction. Since V i is positive defin-

ite then by definition

x T V ix > 0
	

(B-1)

for any nonzero vector x. Similarly let V  be positive definite,

hence,

xTVj x > 0	 (B-2)

for any nonzero vector x. Now adding the two inequalities in equations

(,B-1) and (B-2) results in

xTVix + xrVj x > 0	 (B-3)

xT (ViX + V  x) > 0	 (B-4)

or

X  (Vi + V 
j 

)X > 0
	

(B-5)
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Therefore the theorem is true for R - 2. Now let

K_ 1

SR-1	
Vi

a
be positive definite. Then by applying equations (B-1) to (B-5;

SR-1 and VR the proof will be completed.

PART B.2:

Definition: A norm is a function that assigns to every vector

given vector space a real number denoted by 11x11 such that it

fi.es the following conditions:

215

1- 11xiI > 0	 for x f 0

2- I I x1 1- 0	 for x- 0

3- I l ax l 1- lal I ixl 1

where a Ls scalar and lal is the absolute value of a

4 - 1Ix + y l l _ i Ixl I + I lyl l	 for all x and y

I (x.y)l	 I Ixi 1	 1 lyl l

(B-6)

(B-1)

(B-8)

(h-91,

where (x,y) is the inner product of x and y and I(x,y)l is the ab-

solute value of (x,y)

Definition: A norm of an n x n matrix A is defined as

1 1A II - Minimum K
	

(B-10)

such that

1 TAXI 1_ K 11X1 I	 (B-11)

where 11 A 11 denotes the norm of matrix A and K is a scalar.



11 AXI I _< 11 Al 1 11411 (B-13)

r-

	
-,VIM

216

Theorem: The norms of any two n x n matrices satisfy the following

property

I I ABI I_ I I AI I I I BI I
	

(8-12)

The proof is given in reference 6. however, it is repeated here for the

sake of completeness. First it is necessary to show that for auy vec-

tor x the following holds

This simply follows from the definition of 11AII. Since min K - 11AII

then by direct substitution in equation (B-11) the equation (B-13) will

result. Now consider the vector 11ABX11, by applying the equation

(B-12) twice one can write

I I ABXj I- I I A (BX) I I_ I I Al I I I BX I I_ I I Al I I I BI I I I XI

Let

K - IIA11 IIBII

then

11ABX11_K 11XII

hence by equation (B-10) 11ABIJ - Min K which proves that

I1ABII _ 11 A 11 IIBII

An immediate result of the above theorem is that

11A RI
I < I IA11R.
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OF POOR QUALITY

APPENDIX C

:TENSOR NOISE COVARIANCE ESTIMATE

Consider the logarithm of the likelihood ratio given in equation

(2-96). It can be written as

k

log L- t 2 k logjs l I + 
k 2 

t log+S 2 1 - 2 Tr S2 Z r(j)rT(j)
Jot

k

+2T r S1 1: r(j)rT (j) 	(C-1)

Jot

Differentiating with respect to S 2 , the first and the last terms will

be eliminated. The third term can be written as:

k	 n

Tr S2 L r(j)rT(j) - Z Sij qij	 (C-2)

j-t	 i,j-1

where Sij is the ijth element of S 2 matrix and qij represents

the ijth element of the following matrix:

k

Q - Z r(j)rr(j)	 (.,-3)

Jot

Therefore the terms involving S 2 in equation (C-1) can be written as

n

9(k(k - t) log S2 1 - 2 E S ij qij	 (C-4)
i, j-1

Now differentiating with respect to S ii one can write

Is
x

a g - 2 (k - t)/'S2' aS 2	 2 qii	 (C-5)
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21

Note that the tera as	 is equal
ii

to the cofactor of	 S
ii

.
	

This is

easily seen by expansion of	 Is
2 1 Then

(k	 t)	 Cof S 1 S 2 111/
q, i

2
(C-6)

as	 2
ii

Similarly when taking the partial derivative with respect to	 S
ij

(kas - t) Cof S	 /Is
2
 I -Si

q ij
(C-7)

ij

Setting	 as and	 as
ag 	

equal to zero results in the following
ii ij

Cof S
(k - t)	 • q

Cof S
(k - t)	 is

2 I	 qLj

Using the fact that	 Cof S 
ij /IS21	 is the	 jith	 element of the in-

verse of the S 2	 matrix one can write

A	
I	 - 1

S 2 - (k - OQ

or

- -1
k 

S2 • (k - t)

	

	 r(j)rT (j)

_ J"t

Note that we have used the fact that qij = q ji,
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APPENDIX D

COVARIANCE OF FAILURE VECTOR ESTIMATE

The failure vector estimate, v, is used for both isolation and

accommodation of the failure in the system. Hence it is important to

obtain a measure of the accuracy of v. In this appendix the covariance

of v is calculated as the measure of the accuracy of v. The ap-

proach used here follows the one in reference 3, however, for the sake

of completeness it is presented here.

Consider the estimate of the failure vector derived in Section

2.3.3. For easy reference, it is repeated here as

V	 C I (k,t)DI(k,t)	 (D-1)

where

k

C i (k,t)	 Gi(j,0V 1 MG, (j , t)	 (D-2)

j-t

and

k

Di (k,t) '	 GT(j,t)V_ 1 (j)r(j)	 (D-3)

j-t

/9

where r(j) is the mode' residual defined is

r(J) - r 1 (j) + G1 0 ,U )v	(D-4)

where r1 (j) is a zero mean w!:ite Gaussian noise process and

GI (j,t)v is the bias in the residuals due to a type of failure. De-

fine the following relation
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k

Di (k • t ) '	 Gi(j,t)V 1 (j)r l (j)
	

(D-5)
1	 jot

The mean of Di (k,t) in equation (D-5) is zero and the cross covariance

of Di (k,t) and Di (k,t) can be computed as

r	 k

ECDi (k,t)Di(k,t)]	 E	 Gi(j,t)V-1(j)rl(j)'	 Wt	 IJ

	

k	 T

X	 GT(j,t)v 1 (j) r (j)	 (D-6)
Jot

Substituting for r(j) from equation (D-4) .tnd using the whiteness

property of r l (j), equation (D-6) can be w •itten as

k

E[Di(k,t)DT(k,t)]	 GT(j, t )V 1 (j )E[r l (j)ri(D] V 1(j )Gi(j,t)
Jot

or

k

E [Di (k,t)DT(k,t)]	 GT(j,t)V 1 (j)G i (j,t)	 (D-7)
Jot

comparing equation (D-7) with equation (D-2) yields

E [D
i 

(k,t)DT(k,t)]	 Ci (k,t)	 (D-8)

Now the equation (D-3) for D i (k,t) can be rewritten as
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	k 	 k

Di (k,t) -	 GTUIt)V 1r1 0) + Fa Ci(i.t) v 1G i 0,0V	 (D-9)

	

,)-t	 J-t

or

Di (k,t) - D i (k,t) + Ci (k,t)v	 (D-10)

Next, consider the error in the Maximum Likelihood Estimate v (MLE)

(given by eq. (D-1))

E [(v̂ - v) (v - v) T] - vvT - E[vvT] - E[vvT, + E[vvT]	 (D-11)

The second term on the right-hand side of equation (D-11) can be written

as

HIVI = E[C1 1 (k,t)D t (k,t)v T]
	

(D-12)

Substituting for Di (k,t) from equation (D-10) results in

E [vvT] - E [C i l (k,t)D,(k,t)vT + C i l (k,0 C i (k,t)vvT]	 (D-13)

Since the expected value of D i (k,t) is zero, equation (D-13) reduces to

v v T] = vv iE[ 	 (D-1'+)

The third term on the right-hand side of equation (D-11) can be com-

puted as	

('
E[vV̂ j - E[vDT (k,t)C i l (k,t)]	 (D-15)

From equation (D-10) it follows that

E[vvl - E {+Di(k,t) 	+ vTC i (k,t)] Cil(k,t)}

} or
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(D-16)

Finally the fourth term on the right-hand side of equation (D-11)

becomes

E[vvl _ E[Ci l (k,t)Di (k,t)Di (k,t)C i l (k t)]
	

(D-17)

Now substituting for D i (k,t) from equation (D-10) in equation (D-17)

results in:

E[vv T] 	 EjCil (k,t)[Di (k,t) + Ci(k,t),^^Di(k,t)Cil(k,t)^	 (D-18)

Multiplying the terms on the right-hand side of equation (D-18) and

using the result in equation (D-8) yfulds

E[vv T] _ [C i l (k,t) + vv 
T]
	 (D-19)

Substituting for the terms on the right-hand side of equation (D-11)

from equati.ons (D-14), (D-16), and (D-19) yields

E r(v - v) (v - v) T] _ C il (k,t)	 (D-20)
L.

Equation (D-20) is the desired result.

F

Ry

L,.w....
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APPENDIX E

QCSEE SYSTEM MATRICES

The system A matrix for QCSEE at 62.5% power level is

0.105085E
0.106.883E
0.850184 F.

A A. 102389E
0.895407E
0.710867E

-0.729535E
L-0.

02 0.291846E
02-0.168912E
02 0.588016E
01 0.708155E
03-0.799016E
02 0.909366E
01 0.176629E
02 0.333947E

00	 0.000000	 0.000000
02	 0.000000	 01000000
01-0.125307E 02	 0.000000

-01-0.409882E-01-0.995042E 01
03 0.337876E 01-0.144357E 03
02-0.632545E 02-0.283151E 02
01 0.552433E 00	 0.000000
01-0.601115E 01	 0.000000

4

-0.131467E-02	 0.600000	 0.000000	 0.000000

	

0.326249E-01-0.100647E-02	 0.000000	 0.000000
0.000000 0.430649E 00 0.401042E-01 0.38845AE-01
0.000000 0.518529E-02 0.402993E-03 0.467838E-03

-0.214247E 01 0.905415E 00 0.205227E 00 0.1987876.; 00
0.000000-0.685347E 00-0.169765E 01 0.642603E 00

	

0.000030 0.117756E-05-0.276006E 00	 0.000000
0.000000 0.144218E-06 0.971873E-01-0.619027E 00

The B matrix is

- 0.607d94E -01 0.103031E-03 0.179767E-01
0.132536E 01- 0.7,09244E 01-0.446111E 00
0.198737E 04 0.569287E-02-0.390624E-04

B _ 0.240662E 02 0.631966E-04- 0.439778E-06
0.100854E 05 0.370906E 00 0.293014E 02
0.329770E OS 0.108203E 00-0.179109E-02

-0.731900E 02-0.196076E 00 0.341769E-02
0.473328E 04-0.213886E 00 0.382312E-02

For the following output:

PS11

P13

P4

P8

NL

NH

T41C

FN

223



224

ORIGINAL PAGE IS

The C matrix is
	 OF POOR QUALITY

	

-0.178340E 01 0.1155509 01	 0.000000
0.000000 0.100503E 01	 0.000000
0.000000	 0.000000 0.1005039. 01

C .	 0.000000	 0.000000	 0.000000
0.000000	 0.000000	 0.000000
0.000000	 0.000000	 0.000000
0.000000	 0.000000- 0.959950E 01

0.5209698 04-0.335492E 04-0.213724E 01

0.000000
0.000000
0.000000

0.100503E 01
0.000000
0.000000
0:000000

0.5251822 03

-0.4986018-02 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000

0.1005039 01 0.000000 0.000000
0.000000 0.100503E 01 0.000000
0.000000 0.000000 0.000000

0.153103E 02-0.204418E 00 0.250473E-01

and the D matrix is

-0. 148495E 00 0.377881E-02 0.680882E-01'

	

0.000000	 0.000000	 0.000000

	

0.000000	 0.000000	 0.000000
D _	 0-0000000-000000	 0.000000

	

0.000000	 0.000000	 0.000000
	0.000000	 0.000000	 0.000000

0.760177E 04 0.456472E 01-0.100396E 00
0.1661S49 04-0.172886E 04-0.209075E 03

0.00 00 00
0.000000
0.00000
0.000000
0.000000
0.000000
0.000000

0. 24 26 13 E-01
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0.43? 74172
J.l"33_7976

207585173 -^ -
^ ^	 J. 3?'1H'^E 46F- C 1

30, 9;12177
-491C14A767
-3.'742551
.1,57.3ga2

,1, 9142 6; 41,7 1•-;)2- 1 .: 1'AC570r - 3rN

	

d.Z 2 ?55914, 
	

n. 1 27 ?4 4-7----
0.259 31 C' S1F-J2- ). l q I 16 S (6F- )2

	-30.?67671	 ).37?A??39F-)1

	

?. X7831 67	 -1,0145245
0.773 Al t JIF-01 0.267A2583F-01
0.63729 ? 77F-01-3, ,St,44169

1.2PI506 ?IF -U3
-0.E> Q A7l 7Ar-0?
-0 1749357E-01
o .450P 5A 24
= 79 114374?
-1.49177t 5

-!).A3617A4?F-03
^.31266244F-32

-0949036797F-04-0,27744'1263F
0.12374774E-02 I.16674167E
0.16T0b978E-03 0.2046^7^9E
0.19714762E-0_5 0.231946146E
0.79237133	 0.648';554AE
la52215196E-02 0.89539732
0.1335 y J95F-03 0.53711841E
092lS72ti:SE-03-0.57836771E

-JS--1. 37g91942E-06-0.55294.595E-06
-34 3.13773197E-04 0.12452.464E-04
-01 0.30427403E-03 0.2 4714542E=T2
-03 0.33591323F-05 0.29946321E-04,
=01 3. 10^A211 4-E-01 0.15651051E-01

-_1._13.32 3694 -0,421 57 732E-11
-03 0.978IA661	 0.59?36045F-04
-02 0.72414279E-07 0.951055?9
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APPENDIX F

QCSEE SENSOR NOISE CHARACTERISTICS

For the following sensors

PS11	 psi

NL	 rpm

NH	 rpm

P4	 psi

P12	 psi
T3	 0 

the covariance matrix of the sensor noise is

0.010147

12.839860	 0
12.839860

V s 0.010147
0	 0.010147

0.0171805

normalizing V with respect to the nominal value of the sensor measure-

ments yields

1.039941
0.153229	 0

0.153229	 -6
Vn	 1.039941	 x 10

0	 1.039941
1.784873

The following nominal values of the QCSEE actuator inputs at 62.5% power

are used to compute the failure sizes in the actuators

XMV a 0.355 in.

X18 m 1.87 in.

THETAI - 119.32 deg.

t
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The nominal value of the output sensors are

PS11 - 11.96? psia

NL - 2653.34 rpm

NH - 11958.60 rpm

P12 - 14.63 psia

P4 - 139.419 psia

T3 - 1090.17 0 

P8 - 15.538 psia

The sample mean vector of the generated noise sequence for PS11, NL, NH,

P12, P4, and P8 are

0.2927975

-0.091251

0.312425

0.138931

-2.19810

,L.3842 i

x 1074
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PROOF OF UNBIASED GLR ESTIMATION

In this appendix it will be proven that the failure vector esti-

mate resulting from GLR technique is an unbiased estimate of the failure

vector. To achieve this consider the expression for failure vector es-

timate from equation (2-37):

v	 C il (k,t)D i (k,t)	 (G-1)

where Ci (k,t) and Di (k,t) are defined in equations (2-35) and (2-36).

Substituting for D i (k,t) from equation (2-36) yields

k

v	 Ci l( k,t) E Gi(q, t)V lr(q )	 (G-2)

q=1

Under type i failure hypothesis r(q) is defined as in equation

(2-27). Now substituting for r(q) from equation (2-27) in equation

(G-2) yields

k

v	 Cil(k,t) Fa 
Gi(q,t)v 1(q)r1 (q)

q-1

k

+ C i l (q,t)	 GT(q,t)V-1Gi(q,t) v	 (G-3)

q=1

Taking expected value of both sides of the above equation results in

k

E[] = C i l (k,t)	 GT (q,t)v IGi (q ,t) v	 (G-4)

q=1

where the term inside the first bracket in equation (G-3) vanishes be-

cause r1 (j) has a null expected value. On the other hand, the term

I
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inside the b^:acket in equation (G-4) is equal to C I (k,t) (see eq.

(2-35)), hen:e

E [V̂] - v	 (G-5)

Therefore v is an unbiabnd estimator of v.

The estimate of failure size, a, resulting from the application of

Constrained GLR (CGLR) technique, given in equation (2-43), is also un-

biased. To show this, consider the expression for a from equation

(2-43) :

fiDi

f	

(k, t)
a	 ^.

jCi(k,t)fj

(G-6)

where f 
	

is the jth direction of the prespecified directions and

C i (k,t) and D i (k,t) are the same as in equations (2-35) and (2-36).

Substituting for D i (k,t) in equation (G-6) from equation (2-36) yields

f 	 Gi(q,t)V 1 (q)rl(q)
qml

a
fjCi(k,t)fj

k

fj	 Gi(q,t)V-1(q)Gi(q,t) f ja

+	
q	

(G-7)

fTCi(k,t)fj

Now taking the expected value of both sides of equation (G-7) res • ilts in

s

r



2 30	 OF pOOR 
QUALITY

OF

k

J	 G1(q, t ) V-1 (q ) G i (q. t) f'a

fj i	 jc(k,t)f	 '

In the above equation the term inside the bracket is C i (k,t); thus

equation (G-8) can be written as

E [a]	 a	 (G-9)

Hence a is an unbiased estimator of the failure size a.

A useful result of the above analysis is that as k the number of

observations increases the estimate of the failure vector improves.

However, if the mean of the model residual is different from zero when

no failure has occurred then the failure vector estimate is not un-

biased. This can be easily seen from equation (G-3); specifically

k	
1E [V- ] i v + C i l (k,t)	 Gi(q,t)V-1(q)E[rl(q)] 	 (G-8)

q=l

Similarly if CGLR technique is applied to the residuals with nonzero

mean the estimate of the failure size will be biased and it is given by

k

fi	 Gi(q^t)V 1(g)E[rl(q),

E 1C1
1
 - a +	

g 
1	 (G-9)

f jCi (k,t)f j

In all of the above analysis no assumption regarding the type of

the failure was made; hence, the above results are valid for all three

types of failure. Also the derivation is fcr time-varying systems but

clearly is applicable to time-invariant systems.

9
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