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SUMMARY

A jet in a crossflow is of interest in practical situations including

jet-powered V/STOL aircraft.Three aspects of the problem have received

little prior study. first is the effect of the angle of the jet to the

crossflow. Second is the performance of dual-jet configurations. The

.	 third item for further study is a jet injected from a body of revolution

as opposed to a flat plate. The Test Plan for this work was designed to
G

address these three aspects. The experiments were conducted in the 7 x 10

tunnel at NASA Ames at velocities from 14.5 - 35.8 m/ S eC (47.6 - 117.4

ft/sec.). Detailed pressure distributions are presented for single and

dual jets over a range of velocity ratios from 2 to 10, spacings from 	 #
Y	

;

i	 2 to 6 diameters and injection angles of 90, 75, 60, and 105 degrees.

i
j r	 For the Body of Revolution tests, the ratio of the jet to body diameters

f

was set as large as possible 	 1/2) to. be representative of V/SiOL

t



tests involved dual ;jets both

ions. The effects of the variot

the axisymmetric and planar body

and strength of the interaction

Some flowfield measurements are

simple analysis is capable of pre-

w	 Y	 f,hl

t;

aircraft applications, The Flat Plate

aligned and inside-by-side configurat

parameters and the differences between

geometrics un the nature, size, shape,

regions on the body surfaces is shown.

also presented, and it is shown that a

dieting the trajectories of the jet's.



NOTATION

Cp	 Pressure coefficient

AC	 Pressure coefficient difference (C
p	 pjet on

Diameter,cm

Mass flow rate ,kg/sec.

Mach number

Pressure,atm
i

Dynamic pressure,atm

Nominal velocity ratio

Center to center jet spacing,cm

Temperature , o K

Velocity ,m/sec.

Streamwise coordinate measured from center of the front nozzle,cm

D
0

m

M

P

q

R

S

T

V

x

X = X/D

y

	

	 Transverse coordinate (arc -length for body of revolution)

measured from nozzle center plus (+) is to the right looking
3

downstream,cm

Y-y1D
k	

p	
Density , kg/m''

'	 e	 Injection angle measured from the horizontal,deg.

Ir a* 	 Boundary layer displacement thickness,cm

Subscripts	
{

d
b	 Main body

j	 Jet conditions

co	 Freestream conditions

(—)	 Averaged quantity over Jet exit



INTRODUCTION

The flowfield produced by a jet in a cross flow is of interest in

a number of practical situations ranging from smokestacks and power plant

and sewage outfalls to chemical mixing operations to jet-powered V/STOL air-

craft. The available information on this flow, in general, is discussed in

Ref. (1). For the U/STOL application, the pressure field induced on adjacent

surfaces is of particular importance. Tht.s, there have been a number of

detailed experimental studies of that part of the flowfield covering many

of the important variables and parameters (see Refs. (2) - (12)). Reviews

of the early work can be found in Refs. (13) and (14), and an up to date

tabulation of the available information is contained in Ref. (15). The

jet generally induces negative (with respect to the freestream) pressures

on the nearby surfaces, and this results in a net loss of lift on the body

viewed as a whole. The longitudinal variation of the surface pressures is

also important, since that determines the resulting pitching moment.

There are three aspects of the general problem that have received

little or, no careful study. The first is the effect of the angle of the

jet with respect to the crossflow. That is important because the transition

to wingborne operation is most commonly accompanied by a change in the angle

of the jet thrust vector. There are few prior investigations in the liter-

ature (see Refs. (8), (11) and(16)). The second item is the performance

of dual-jet configurations, either in-line or side-by-side. The mutual

interference as a function of center-to-center spacing is the issue here.

Again, few references (e.g. Refs. (3), (8) and (17)) exist. The third item

identified here as a prime candidate for further study is the behavior of a

6 ;
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1
Jet (or jets) injected from a body-of revolution as opposed to the large

flat plates usually considered. This is of obvious importance for V/STOL

aircraft with lifting jets in the fuselage. One can anticipate substantial

transverse pressure "relief" around a cylindricai body. The only previous

work found is Ref, (18) which considered a case where Djet/Dbody `< 1. That
	

i

is not realistic for V/STOL	 aircraft where 0jet/body " 1/2 can be en-

countered. Lastly, the interplay of the three items mentioned here over a range

of the key parameter for all such flows, Vjet/Vstream' is clearly of im-

portance to the designer.

There have also been a number of analyses and semi-empirical analyses

for the jet in a crossflow problem (e.g. Refs. (15), (19) - (28)) that should

be mentioned in a discussion of this general flow. None of them, however,

'can presently treat in a fundamental way the combination of two or more of
t

	

	

the three items selected here for study. Hopefully, the experimental studies

to be reported here will aid in the generalization of the existing analyses.

The test plan for the present work was designed to provide new information

on the influence of the three effects chosen for investigation - 1) in-

jection angle, 2) multiple jets and 3) injection from a body of revolution

with Diet/D
body ' 1/2. The original Test Matrix planned is shown in Table

I. The tests were conducted in the 7 x 10 Subsonic Tunnel at the NASA Ames

Research Center. In the succeeding sections of this report, the apparatus,
	

k

F	
instrumentation, test procedures, test conditions and results will be pre-



APPARATUS
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The experiments were conducted in the 7 ft. (2.13m) x 10 ft. (3.05 m)
r

Subsonic Wind Tunnel at the NASA Ames Research Center at velocities from

14.5 m/sec (47.6 ft/sec) to 35.8 m/sec (117.4 ft/sec) depending upon the

Jet/freestream velocity ratio desired. This facility is described in Ref.

(29).

11,,

Test Models

Two basic configurations a Body of Revolution and a Flat Plate, were

used for this work. The Body of Revolution model is shown in Fig. 1. It

is 2.06 m (6.75 ft.) long with a diameter of 10.16 cm (4 in.). The model has

a wooden, streamlined nose, and-it is strut-supported from the rear. The

front jet nozzle is always located 0.56 m (1.84 ft) from the nose; the rear

nozzle is shifted axially to achieve the various jet spacing considered.

Each nozzle is located in a 10.16 cm (4.0 in) long section that is ,lade

from a 10.16 cm ( 4.0 in) diameter tube split in half longitudinally. There

are a number of spacer sections either 5.08 cm (2.0 in) or 10.16 cm (4.0 in)

long to occupy the areas ahead of, between and behind the nozzle sections in

the arrangements for the various jet spacings. The jets had a 4.92 cm

(1.94 in) exit diameter to give D. /D	 1/2. The details of the
het body	 I

nozzle design will be described in the next section, but it is important

to note here that the large jet diameter caused problems in the model design

i

because of severe internal crowding of air supply _lines and pressure tap

leads.

On the basis of previous studies of the pressure field near the exhaust, a

i

^
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i	 detailed coverage of the model surface with pressure taps was clearly

k	 necessary. Preliminary layouts indicated that as many as 2000 pressure

taps would be required for this two-jet arrangement. That implied not only

excessive instrumentation requirements (40 - 50 48 -port Scanivalves) but
k

	

	

prohibitive problems with running the pressure leads out through the body.

Indeed, it proved impossible to design a model under the given constraints

to do so. Thus, it was decided to utilize the presumed right/left symmetry	 g

5

of the flow and locate pressure taps on an asymmetric pattern. Some re-

dundant locations were incorporated to enable checks on the right/left

symmetry of the pressure field. Finally, the pressure tap layout was designed

with closer spacing in the immediate vicinity of the jets. The final con 1
figuration for the 90 1 injectors is shown in fig. 2. They are laid out on

1
a grid with values of x%D indicating axial location with respect to the center

of the front jet and values of y/D indicating the arc distance off the center-

line of the jets. The layout on the _spacers was on a ;simpler pattern as can

be seen in Fig. 2(a) which is for the 6 jet diameter spacing arrangement. For

the nozzles with injection angles other than 90 0 , the opening in the body sur-

face becomes elongated_. Thus, some of the pressure tap locations near the

nozzle for the 1000 case are obliterated for the oblique angle Gases 	 With

this, 10 48-port Scanivalves were still required.

The nozzle and spacer sections were held in the model by screws along

the side centerlines,. The joints between the sections were carefully sealed

and smoothed with modeling clay and the side seams were taped:

The boundary layer developing along the body was measured at a station

in line with the back of the front nozzle at speeds corresponding to 1.0 to

5.0 cm H20(12.7to 28. S . m/s)which covered the lower half of the test range,-

F
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The displacement thickness was found to vary from'0.091 cm at the lower

speed to 0,067 cm at the higher.	 These values indicate S*/Djet 	l/50

which must be considered in the small boundary layer range. 	 The velocity

profiles indicated turbulent flow, which is in accord with the values of

the Reynolds number based on length.	 At the lowest speed in the test plan,

the Reynolds number based on the length to the center of the front nozzle

is 5.6 x 105

The Flat Plate, Model	 is shown in Fig.	 3.	 It has a streamlined leading:

edge, and the bottom is covered with a fairing. 	 There is a large "L" shaped

cut out section to accommodate the injector and spacer sections in various
x

combinations to produce the required different center-to-center jet spacings 3

in either the aligned onside-b -side arrangements.	 The front (or right9	 Y	 9	 g

looking downstream) injector section always remained in the same place.

The pressure tap layouts for the injector and spacer sections are shown using

the 900 injector as an example.	 Part of the fixed portion of the plate is

also instrumented with pressure taps.	 The Flat Plate Model had roughly twicep	 g	 y

as many pressure taps as the Body or Revolution Model.

The surface distance! to the center of the front(or right) injector was
.r

54 cm compared to	 61 cm for the Body of Revolution Model.	 Thus, the
7

boundary layer at the front jet in this case may be estimated to be as

a*Flat Plate
16
 Body Rev." 0.97.

Injector Design

.	 The requirement for D.	 /D	 1/2 caused ;difficult problems in the
het	 body

design of the jet injectors. 	 It was desired to have a relatively uniform jet

exit velocity profile for all	 injection angles.	 Non-uniformities in jet exit

profiles have been shown to influence the surface pressure field (Ref. 	 (12)),

f
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and we wished to avoid the added complexity introduced thereby. The re-

qiirement was to design an air feed system, a plenum chamber, flow straight-

eners and a nozzle contour to result in a uniform velocity profile all to

fit in a cross-section only twice the diameter of the Jet. This had to in-

elude cases where the Jet was to exit back towards the rear of the model,

from whence the feed lines came, at angles up to 459 . Worse yet, there had

to be enough room around the rear injector, so that the feed lines to the

front injector and the pressure leads to the front injector and the forward

spacer sections could pass. The development of a suitable design proved very

difficult, and the final configuration was chosen by a process of trial and

error that evolved from an initial configuration based on prior experience

and intuiti'an. The Flat Plate model did not present serious space problems,

so the injector Design developed for the Body of Revolution was simply

adopted there also. Indeed, some of the same pieces could be used.

The injector design finally chosen can be illustrated for the case of

the 900 injector shown in Fig. 4. The air supply is via four, 0.8 cm ID

tubes that entered the bottom (from the right in the view shown in Fig. 4).

These lines fed passages that exited into the plenum cnamber from four,

round vents in the bottom. Each 'vent is topped with a flat disk that is

larger than the vent diameter. 	 The air left the vents through four holes 1

around the periphery of each. 	 This configuration was selected in an attempt

to distribute the entering flow over the cross-section of the necessarily j

short (in the flow direction) plenum. 	 Just above the vent exits is a per- x

forated plate with the hole pattern shown which serves as the next step in

Th isthe. flow d is tr ibu tion  process.	 h s ath 1	 pattern 	 shole	 wa s ref ined b	 rial	 a dy t	 n ^

E

3

6



error, and different patterns were required for the other injection angles
d

Above the perforated plate is a smooth contraction down to the Jet diameter.
I

This is followed by a flow straightener insert. 	 This inserth shown in Sect.E

C-C„consists of a 3.0 cm long, thin-wall tube holding a 0.32 cm honeycomb

x with 20 mesh screening to y and bottom.	 The purpose of the large length

diameter honeycomb is to i 1orce the flow to be all in the same direction. 	 The

purpose of the screens is to lessen any remaining non-uniformities by acceler-

ated turbulent mixing. 	 The assembly of the injectors and the manner in which

the Body of Revolution model goes together is illustrated in Fig. 5. 	 Lastly,

three types of jet exit geometry were considered, and they were accomplished

by having three different flow straightener sections for each nozzle, 	 The

first type had a curved exit to match the contour of the body: 	 The second
;I

was flat and flush with the highpoint of the body surface. 	 The last type was

flat and perpendicular to the jet injector axis.	 For the inclined injectors,

this results	 in a protuberance into the main flow out from the body.

After all the work involved, it was gratifying to find that rather

uniform exit velocity profiles could be obtained. 	 Some representative

measured exit velocity profiles are shown in Fig. 6 a, b, c, and d.	 These are

hand tracings of Pitot pressure profiles recorded about 2. cm above the jet

exits in the absence of the main tunnel crossflow. 	 In Fig. 6 a and b, we

show an axial and a transverse traverse 'through the nozzle center of the 900,

front injector.	 We believe that some of the small scale "structure” evident
tf}

'
I

in these profiles is due to wakes trailing off the honeycomb surfaces.	 The

,z

^i
result of an axial traverse through the center of the 60°, front injector is

3 shown; in Fig. 6c.	 This example, and that for the 45°, front injector in Fig.

6d, do not correspond to the same exit velocity as in Fig. 6 a and b or each

y,

}
j,
j`

r

t



other. The profiles for the inclined injectors are not as uniform as

for 900 , but they were judged as quite acceptable. The air supply for

the injectors came from the nominally 200 atm. system at Ames. Some 	 {

difficulties were encountered with adequately controlling the air temper-

atuee for a few runs.

Instrumentation

The primary instrumentation for all the tests was a group of 48,-

port Scanivalves fitted with either Druck ± , 0.07 atm. or Statham ± 0.17

atm. transducers, Each nozzle or spacer section was laboriously hooked

up to one or more Scanivaive connectors by small diameter plastic tubing.

Each of the bank of 24 Scanivalves was hooked-up to mating sides of

Scan,ivalve connectors- 	 In this way, some or all of the Scanivalves_

could be fed by pressure Signals from the injector and spacer sections

needed for a given test configuration without tampering with the plastic
i

tubing hook-ups. The integrity of each lead from every pressure tap

was carefully checked one-by-one by applying a known pressure to the tap

at the model surface and reading the output from the Sranival ve.

The Scanivalves were operated and the data was obtained from them

interactively by the recently developed data acquisition system for the
t

40 x 80 and 7 x 10 wind tunnels at Ames Research Center. All the data

was recorded on tape for subsequent data reduction. In addition, the x

f

output from selected instruments could be monitored visually in digital

form._

A straight, 3D yaw head probe 'manufactured by United Sensor was used

to obtain mean-flow measurements in the plumes of the jets. The probe

had a blunted, conical nose with five pressure ports as shown in Fig. 7.

t
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OF POOR QUALrTY

The center hole, labeled as #1, was surrounded by the remaining four

ports (#' s 2-5) located along the periphery at 90 degrees intervals,

r.
i	 r The probe stem was sufficiently long so as to extend the tip out of

any interference effects induced by the supporting apparatus. 	 Mean

velocity, flow angularity and static pressure profiles in the jets

were obtained with the 30 yaw head probe.	 The calibration curves for

this probe, details for which are presented in Ref. (30)	 enable the

various mean flow quantities to be determined regardless as to the

magnitude of the angularity in any direction.	 This was the basic ad-

' vantage of such a calibration procedure as compared to the procedure

introduced by Winternitz in Ref,	 (31) which, although simpler, 	 is valid u

' for a large angle in one direction only.

a
The dimensionless pressure coefficients for data reduction are:

^	 ;

C p	_	 (P 5 - P4 )/A	 CP	 =	 (P2 - P3)/A
Yaw	 Pitch r$

C p	(Pl	
P
T
 )/A	 CF	 -	 (PS	 - PS)/ATotal	 Static	 Avg

where A = P
1
	- PS

Avg

P S	(P2 + P3 + P4 + P5)/4
Avg

Then

x PT=PI
	 _ACP

Total
a

C	 _P	 P	 A C
5	

PStaticSAvg

The veloci ty was determined from Bernoul`li's equation for incompressible

flow, P
T
 - P S = 1/2 p. V" + 1 /2p	 (') 2v	 The contribution from the

term involving the effect of turbulence can be neglected as the expected

t

9	 T^
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error in the velocity corresponding to such an assumption is apprfoxi•.

mately l% for turbulence intensity as high as 14%. The total velocity

vector was, therefore, determined as

C

=P.
v 1= 	 k

This quantity was cc!Ibined with pitch and yaw angles determined from

C P	and CP	to produce velocity vector plots. For these tests,
Yaw	 Pitch

the probe was oriented pointed down 45 0 towards the model.

All the other necessary measurements were also run through the
a	 1

data acquisition system. These included pressure measurements for

tunnel speed and orifice readings for injector mass flow and tempera-

ture readings for the tunnel and injector air flows. The barometer

and room temperature were read by eye, and the information was entered

into the data acquisition system manually.

i

4

3
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TEST PLAN AND PROCEDURES

One could obtain the desired range of jet to freestreamvelocity ratios
w

by a variety of paths including holding the freestream velocity constant

and varying the jet velocity or vice versa. There is some appeal to test
N

ing at a constant freestream velocity, because that would keep the body

Reynolds number and the boundary layer thickness constant. However, the

difficulties and effort required to achieve reasonably uniform jet exit

velocity profiles not just at one or a few conditions but over a range in

jet average velocity of 5:1 (2 < R < 10) was judged to be so severe as

to justify the choice of holding the jet velocity fixed and varying the

freestream. As a check on the influence of the body Reynolds number

variation thus introduced, one case at the same "R", but with a different

freestream velocity was included for most configurations tested.

There were three -other constraints that influenced the test plan.

First, it was thought important to keep the minimum body Reynolds number

based on the surface distance to the first nozzle above a certain value,

picked as 5 x 105 , to have a turbulent boundary layer. This meant a

freestream velocity above roughly 13 m/sec. Second, to avoid the added

complexity of strong compressibility effects, it was decided to keep

the maximum jet velocities below roughly 120 m/sec (M i < 0.35). Lastly,

the pressure drop through the most severely inclined injectors was large

enough to limit the mass flow (and thus the jet velocity) tha'6 could be

{	 obtained for those configurations.

Taking all of the items above into account, a test plan was adopted

that had a nominal jet volume flow rate of 0.214 m 3/sec corresponding to

V = 112.5 m/sec and freestream velocities corresponding to 1.28 < q < 8.03

CM.	 H 2O 04.5 < Vim, < 36. 2, m/ s .) • 	 ,
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The air supply pressure settings to give the desired flow rates

through the various nozzles were found by examining the results of exit

velocity traverses such as shown in Fig. 6a, b, c and d for each nozzle

in every set, This was necessary, since the feed lines to the front

and rear nozzles were of different lengths resulting in different pres-

sure drops.

Each test series was run as follows. First, the data acquisition

system was run to obtain "null" readings and calibration settings. The

air supply pressure settings corresponding to the set of injectors its

use were then brought up and adjusted. Next, the tunnel was turned on

to the lowest speed in the series. The data acquisition system was run.

The tunnel speed was adjusted to the next setting, and the process was

repeated over the range desired. The last point in each series was a

single value of "R" achieved at a different combination of tunnel and

jet speed than the point at the same "R" in the main series. The tunnel

and air supply were turned off, and  'null" readings were again taken.

The injectors and/or spacers were then rearranged to obtain the next

configuration desired. A test series as described was then run, and so

nn
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f RESULTS
r

General

The data was reduced and the results are presented here as

4C	 = (C	 - C	 )
p	 p,^et on	 p3et off

as a function of spatial location on the body surface for each configuration.

In this way, the first-order effects of any asymmetries or surface irregular-

ities on the models should be normalized out.	 Before being accepted, each

set of data was examined against some qualification criteria. 	 The first }

group of these involved the Jet injection conditions. 	 Was the mass flow (and

thus Vj ) set close enouah to the desired nominal conditions? 	 For the two--jet

z

tests, were the mass flows set close enough to each ot ,.her?	 For these items, 1

a tolerance of roughly ± 5% was adopted.	 Next, when combined with the actual

tunnel speed for a given data point, was the desired value of "R" achieved

within again roughly ± 5%?	 These questions were important, since we wished

to make case-to-case comparisons such as the effect of het spacing holding

"R" nominally fixed, etc. 	 The next examination of the acceptability of the

data centered on the right/left symmetry of the flow. 	 For that purpose., the

ACp 's from the redundant ports at x/D = 0 and x/D = S/D (i.e. the axial

stations correspondingto the center of the nozzle exits) and Y = 0.625 and

0.875 to the right and left were compared.	 Here, it was found necessary to

adopt the cruder tolerance of ± 15%.	 Data for a number of runs had to be dis-

carded on this basis. 	 There was no particular pattern to the occurrence of

these "bad_" runs. 	 Such a run	 was sometimes found in the middle of a

continuous test series of acceptable runs.

Due to time limitations and some problems with the newly operational

data acquisition system, it was not possible to complete the entire test

matrix as originally planned.	 The test, matrix that was run still encompassed

a very large number of conditions and configurations, so only selected re-
71

SultS are presented in this reDort.
e
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Body of Revolution

Surface Pressure Distributions	 A ^^

The data is presented, as plots of axial and transverse variations of

AC P* The axial plots are for y10 = 0.0, 0.248, 0.480, 0.682 and 0.842 for

the Body of Revolution.

The results obtained for R = 7.7, 90 0 injection through nozzles

with exits contoured to the body surface at a spacing of 2.0 drams. are

shown in Fig. 3 as open circles. The results obtained for injection

from the front nozzle only with the exit of the rear nozzle carefully

covered by tape are shown as the solid circles.	 That notational

practice is followed throughout. Looking at the single jet results

fi rst, the expected pattern of negative C p I s is evident. T he magnitude

of the pressurecoefficients near the injectors agrees with those found

on flat plates. The influence of the round main body compared to a

flat plate case is evidenced as a faster decay in the maximum C P with

y/D, that is,perpendicular to the flow direction; The comparison is

somewhat equivocal at this point in our presentation, since the current

work used a much denser pattern of pressure taps near the injector than

some of the earlier studies. Also, it must be remembered that we are

giving ACp so the main effects of the body itself are removed. The

dual jet results show that the influence of the rear jet is Less than

that of the front jet at this close spacing. On the other 'hand, the

presence of the rear jet seems to strengthen the influence of the fron t

jet slightly. An appreciation of the right/left symmetry found can

be gained from the transverse variations plotted in Fig. 9 for thi s

14
3
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same case.

The effects of the important parameter R = Vj /V, is illustrated by

the data in fig. 10 for R - 3.2 at 90 0 with a contoured exit. The

patterns are quite similar to those for R = 7.7 in Fig. 8, however,

one must recall that C P denotes the pressure difference Ap normalized

with the freestream dynamic pressure, which is different for the two

cases. The differences in Cp are largest with increasing lateral dis

tance and in the vicinity of the second jet.

The possible influence of different Reynolds numbers based;_on length

along the body to the first jet at the same dimensionless velocity ratio,'

R. was studied by running some tests at the same R but different V0

Some results are shown in Vig.11 for acase with R - 3, 90 0 the contoured

injector with injection from the front nozzle only. The case shown had

a Reynolds number effect larger than was found in most cases, and the

effect is generally rather small.

Another variable considered in these tests was the geometry of the

nozzle exit. The results presented so far corresponded to the presumably

simplest case of the nozzle exits contoured to the curved body surface.

In Figs. 12 and 13 results for a flat topped nozzle at R z 8 and z 3,

900 and S/D = 2 are given, and these may be compared to the contoured

nozzle results in Figs. 3 and 10. As might be expected, there are

large effects between the nozzles. Also, the magnitude of the largest

l	
js

a

(absolute values) C P 's is reduced and, the lateral decay seems faster. ^	 a

Lastly, the influence of exit geometry is found to be larger at the

higher velocity ratio.

The results of increasing S/D to 4.0 and the 6.0 at 90 0 with a

contoured nozzle exit are shown in Figs. 14 and 15 for R 	 4.;	 The
E	 ^



IF
	

F*

results in Fig. 14 show that the rear jet is still strongly "sheltered"

by the front jet at S/D - 4.0. Now, however, the presence of the rear
u

jet slightly reduces the influence of the front jet as opposed to the

results in Figs. 8 and 10 for S/D = 20. The data presented in fig. 15

is for both jets operating at A = 4.7, 90 0 with contoured injectors

at S/D = 2.0, 4.0 and 6.0. Note, that the data for the lesser spac-

ings has been "shifted" downstream to overlay the S/D = 6.0 data for

the rear nozzle. Here, one can see that the influence of the rear on

the front jet is reduced as S/D is increased from 2.0 to.4.0 to 6.0.

The pattern in front of the rear jet changes sharply with S/D from

2.0 to 4.0, but only slightly from 4.0 to 6.0.

The influence of injection angle for flat topped nozzles is dis-

played in Figs. 16 - 19. The results in Fig. 16 for R z 8 and S/D =

2.0 at 750 can be compared with those in Fig. 12 for 900 . The peak

values near the front jet are increased slightly and those near the

rear jet are increased more,especially at greater lateral distances.

The C  values between the jets tend to bul slightly more negative.

The general trends continue for the 600 case in Fig. 17, but a new

feature also appears	 A "peak and valley pattern appears next to

jets. This i.s. very pronounced at y/D = .682 near the front jet.

This pattern was not observed at 900 or 750 (see Figs. 12 and 16).

The same pattern is seen in Fig. 18 for R z 4 at 600	 At this lower

velocity ratio, the rear jet decreases the influence of the front jet

-	 on the body surface. For all the inclined jet cases, the influence

of each jet is about the same indicating that there is little "shelter-

ing" even at this close S/D = 2.0. This behavior is clearest atthe

higher R's.

16,_
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The effect of increased spacing to S/D s 4.0 for the inclined Jets

is shown in Fig. 19 for R k 8 at 600 . The "peak and valley" pattern is

repeated, and the influence of the rear jet on the front and vice versa

is slight. All our results indicate only a small effect of spacing for

S/D > 4.0.

Flowfield Measurements

To amplify on the surface pressure data, some limited measurements

of the jet flowfield above the surface were made with the'yawhead probe

described earlier. A plot of the local velocity vectors in the plane of

the jets for R = 6.5 at 900 is Shown in Fig. 20 for injection from the

front nozzle alone. The trajectory of the jet can be seen, and the high

penetration across the main flow is clear. The same type of presentation

for R	 3`.2 in Fig. 21 shows the sharply reduced penetration that results.

The intersection region with two jets with R 	 6.5 is displayed in Fig. 22.

One can observe that the rear jet is "sheltered" strongly by the front

jet; the trajectory of the rear jet is nearly vertical until the inter-

section.

The ability of the simple analysis of Ref. (28) to predict the trajectory

of single and dual jets at various velocity ratios is demonstrated for two

cases in Figs. 23 and 24. Obviously, the main features of the flow are

accurately predicted. It should be possible to extendthis trajectory

analvsis to predict surface oressures.
d
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Flat Plate Model

Pressure Distributions

Longitudinal pressure distributions; at selected lateral distances are

plotted in Fig. 25 for the 901 injectors at R = 6 with a spacing of two

diameters and the jets aligned one behind the other. The results for

both jets are shown as open circles, and those for the front jet only

are solid circles. This is the same tYpe of plot as used for the Body

of Revolution results. The data in Fig. 25 can, thus, be roughly compared

to fig. 8 for the Body of Revolution at R = 7.7. First, one can note

that there are no positive C P values behind the second,jet on the Flat

Plate. Second, the peak values on the Body of Revolutlo-i are somewhat

higher very near the nozzles. Third, by comparing values at y/ D -' 0.8, it

can be seen that the peak values definitely decay faster with lateral'
3

.*distance on the Body of Revolution. In general, however, the qualitative

observations made earlier about the Body of Revolution cases also hold

here.

The effects of the important parameter R can be seen in the isobar

plots in Figs. 26, 27, and 28 for R = 4,6 and 8. As R increases, the area

of the surface influenced by the jets increases. This increase is mostly

in terms of the areas with ,small to moderate negative values of C
P
 (e.g.

0 < -Cp < -1.0). The area with C  < -1.0 does not change significantly

with R. Since the area of influence increases with R,, the total normal

force also increases with R but the increase is slow. Thus, the value

of the total normal force normalized with the thrust ofthe jets actually

decreases with increasing R The effective center of normal force moves

forward with increasing R. Estimates indicate that this center coincides



with the center of the front jet at about R = 10.	 Lastly, the shape of

the interaction region changes with increasing R. 	 At low R', the isobars

show asymmetrical lobes displaced in the downstream diM,ection.	 At higher

R, there is less downstream distortion.	 Compare Fig. 26 at R = 4 to

Fig.	 28 at R = 8.

The present results in Fig. 28 can be roughly compared with those of

Wooler cat al	 in Ref.	 (32) at R = 0 but, S/D = 2.5 as opposed to our S/D = `

2.0.	 The comparison is made difficult, since the tests in Ref. 	 (32) did #_

not have as detailed a coverage of the area near the jets as here. 	 None-

theless, comparison of the Cp = -0.5 isobars for example, shows rather
IT

good agreement in terms of overall shape and axial and lateral extent"

The effects of increasing the dimensionless spacing, S/D, from 2 to 4 F	 '

with 90
0
 and R = 6 are shown in Figs. 29 and 30.	 The plots in fig. 29

can be compared to those in Fig. 	 14, although that data is for a lower

R = 4.7.	 Here, as for the Body of Revolution, the rear jet is still

sheltered by the front jet and the influence of the front jet on the flow

is reduced by the presence of the rear ;jet. 	 Looking at the isobar patterns
ti

in Fig. 30 and comparing with those in Fig.27 for the same case with S/D

2, one can observe that the only overlap of the interaction regions of

the two jets is now for small	
C 
	 values only.	 Comparing isobar plots

l

with the front jet only (not presented here due to space limitations)

with those for both jets operating shows that the interaction of the two

'	 jets increases the surface area influenced by the front jet. 	 The merging

of the interaction regions was also found to be influenced by the velocity

P	 ratio, R.	 The merging is most pronounced at low R values.	 Also, the

-sheltering of the rear jet reduces the downstream distortionof its flow-

interaction area. ^r



The influence of injection angle at R - 6 is shown in the next series

of figures, Figs. 31 and 32 have results for a 75 0 angle, and Figs. 33k

and 34 have results for upstream injection at 1050, all at S/D = -4. The

750 results can be crudely compared to those in Fig. 16, but this is con-

fused by the fact that those data are for the flat top nozzle exit and

S/D = 2. The isobar plats in Figs. 32 and 34 and that for 900 in Fig. 30

show some interesting effects. The change from 75 0 to 900 produces only
	 i

slight changes in the total interaction area influenced by the jets and,

thus, in the normal force. However, the charge from 90 0 to 1050 leads
,

to an increase in the total interaction area and, hence also the normal

force. Further, as the angle goes from 750 to 900 to 1050, the effective

center of the interaction region moves forward. The plots in Figs. 29

and 33 indicate that the region ahead of the front jet is influenced some-

what more strongly by upstream angled injection. In addition, the sheltering

of the rear jet by the front jet is stronger for 1050 than for 900 or 750

injection.

The result of reduced spacing to S/D 2 at 75 0 and R = 6 can be noted

by comparing Figs. 35 and 36 with figs. 31 and 33 for S/D	 4. The effects
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are generally the same as for 900 injection.

The data taken for 600 injection on the Flat Plate model all showed

very unsymmetrical (right/left) surface pressure patterns. For that reason,

none of those results are included here. It is hoped that those tests
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, The next series of figures present the results obtained with two Jets
i
F° in aside-by-side arrangement. 	 Due to test time limitations fewer para-

meters were varied in this configuration. 	 All the data obtained are for

the 900 injectors only.

Transverse pressure distributions at five axial stations, including

one ahead of the Jets, are shown in Fig. 37 for R = 6 and S/D = 2.	 Data
k

for only the right jet operatingare shown as solid circles. 	 The presence

of the left jet has a slight effect on the right jet at the station ahead

of the jets WD	 -.825), but the interference effect is quite large at

x/D = 0 and the downstream stations. 	 High (negative) AC p values are ob-

tained between and just downstream of the jets. 	 Also, the right/left

symmetry of the flow can	 be seen to be good for single and dual

" jet runs.	 This is illustrated more specifically in Fig. 38 where axial

pressure distributions at presumably symmetric transverse locations are

shown.	 Perfect symmetry would have the crosses and circles on top of

each other. Here, as in all the cases tested, the best symmetry was found

in the range 4 <-R < 8. At the highest and lowest velocity ratios, the

symmetry achieved was the poorest. An isobar map for the same case as in

Figs. 37 and 38 is given in Fig. 39.

Figs. 40 and 41 and 42 and 43 show pressure distributions and isobar
F

maps for S/D = 2 with R 4 and 8. Comparing these with Figs. 37 and 39,

the effects of R can be seen-. As R is increased, there is a pronounced

increase in the size of the interaction region around the jets. The inter-

action normal force also increases, both as a result oi l the increase in

area effected and increases (negative) in the AC  values near the orifices.

E	 This latter point can be seen by comparing the distributions at x/D	 0.0

,}r
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in Figs. 37, 40, and 42 for R = 4 1 6 and S, respectively. The effective

center of the interaction force shifts upstream as R is increased. Taken

altogether, these results indicate a strong increase in the interaction

between the two jets as R is increased at this close spacing, S/D = 2.

The large (negative) ACp values in the region immediately behind the jets

along the line of symmetry between them at the high R's is noteworthy.

This is probably a result of the interaction between the pairs of counter-

rotating vortices formed in each jet.

The influence of increasing S/D to 4 at R = 6 can be seen by comparing

the results in Figs. 44 and 45 to those given earlier for S/0 - 2 at the

same R in Figs. 37 and 39. The interaction of the jets is diminished

significantly. This can be seen both by comparing ti p° results with and

without the left jet operating in Fig. 44 and by comparing the distributions

at x/D = 0.495, for example, in Figs. 37 and 44, Looking at the isobar

maps, one can see that there is much less overlap of the interaction re-

gions of the two jets at S/D = -,. The overlap or merging of the interaction

regions is R dependent; it is Strongest at the higher R values. The inter-

action region of each jet on the "free" side (the side away from the other

jet) is still always larger than for the single jet even at S/D 	 4.

A



CONCLUSIONS

An examination of the available prior literature for the interaction

of a Jet in a crossflow with an adjacent surface reveals that there were

three prominent areas that required further study. The first was the

influence of the angle of jet injection with respect to the main stream.

The second was the performance of dual-jet configurations at various

spacings, including aligned and side-by-side arrangements, The third was

the differences between injec-. :on from a flat plate and a body of revolution

especially where the jet diameter, is an appreciable fraction ( Z 1/2) of

the body diameter. The mutual interaction of these three topics is also,

obviously of importance. A Test Plan to meet these objectives

was designed and carried out in the 7 x 10 tunnel at NASA Ames Research

Center.

The numerous findings, of these studies are presented in detail along

with the data in the Results section. In brief summary here, it can be

stated that the three topics selected for study were all found to have

strong effects on the nature, size, shape and strength of the interaction
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(b) - Dimensioned Sketch

Fig. 1 - Body of Revolution Model

28



TUNNEL f

CONTOURED SURFACE NOZZLE.
1.92 cm 11 91 m.) dum

ORIGINAL PAGE 19
Of POOR Q

. - o

PLAN VIEW WITH SURFACE PRESSURE LAYOUT	 (a) - Plan View

SEC. A-A
	

(b) - End View



ORIGINAL PAGE M
OF POOR QUALITY



a
I	 NN

O2
vtN
w
O
d7 C
y • 
Ô
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