General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

AgRISTARS

"Made available under NASA sponsorisop
in the interest of early and wide dis. -emination of Earth Resources Survey - veram :siormation and without liability for any use mode therean.:

- Supporting Research

-E83-10139
s.n.0.300
JSC-18574

TM-85199
 A Joint Program for
 Agriculture and
 Resources Iriventory
 Surveys Through
 Aerospace
 Remote Sensing

September 1982

PROGRAM TO COMPUTE THE POSTIIONS OF THE AIRCRAFT AND OF THE AIRCRAFT SENSOR FOOTPRINTS

Jack F. Paris

Earth Resources Resmarch Division
Lyndon B. Joivwon Space Cemter Houston, Texas 77058

PROGRAM TO COMPUTE THE POSITIONS OF THE AIRCRAFT AND OF THE AIRCRAFT SENSOR FOOTPRINTS

Jack F. Paris

Earth Resources Research Division NASA Lyndon B. Johnson Space Center Houston, Texas 77058

PROGRAM TO COMPUTE THE POSITIONS OF THE AIRCRAFT AND OF THE AIRCRAFT SENSOR FOOTPRINTS
 Jack F. Paris
 Earth Resources Research Division NASA Lyndon B. Johnson Space Center Houston, Texas 77058

ABSTRACT

The positions of the ground track of the aircraft and of the aircraft sensor footprints, in particular the metric camera and the radar scatterometer on the C-130 ajrcraft, are estimated by a program called ACTRK. The program uses the altitude, speed, and attitude information contained in the radar scatterometer data files to calculate the positions. The report documents the ACTRX program.

TABLE OF CONTENTS

Page
LIST OF FIGURES 11
1.0 INTRGDUCTION 1
2.0 INPUT PARAMETERS. 1
3.0 LOGIC OF THE PROGRAM 2
4.0 CONCLUSION. 5

APPENDIX A. PROGRAM LISTING

LIST OF FIGURES

FIGURE 1. Geometry of Aircraft Attitude
 FIGURE 2. Relationship Between Photo Center and Aircraft Positıun
 FIGURE 3. Relationship Between Radar Footprint Position and Aircraft Position
 FIGURE 4. Example of Calculated Positions of the Aircraft and Aircraft Sensor Footprints for Data Taken Over Webster County, Iowa, on August 19, 1980.

AND OF THE AIRCRAFT SENSOR FOOTPRINTS

Jack F. Paris
Earth Resources Research Division NASA Lyndon B. Johnson Space Center Houston, Texas 77058

1.0 INTRODUCTION

The purpose of the Aircraft Tracks (ACTRK) program, written in FORTRAN, is to calculate the positions of the $C-130$ aircraft and of the centers of sensor footprints (ground resolution elements or fields of view) during a particular data run. The calculations are possible due to frequent (about every 0.65 sec) information provided in the data files on the altitude, speed, and attitude of the aircraft. In tre ACTRK program, it is assumed that the alrcraft was flying over level terrain, that no errors exist in the input data, and that changes in aircraft orientation $*$ d speed were gradual throughout the flight. These assumptions were valid for the agricultural scenes addressed by the program.

2.0 INPUT PARAMETERS

The input parameters (from the computer compatible tape or disk file) are jefined as follows:

1. Roll angle (ROLL') - the angle between the line passing through the aircraft wing tips and the horizontal plane. The roll angle is positive when the left wing is above the 'orizontal plane. The units are degrees.

[^0]2. Pitch angle (PITCH) - the angle between the line passing through the fuselage of the aircraft and the horizontal plane. The pitch angle is positive when the nose of the aircraft is above the horizontal plane. The units are degrees.
3. Heading angle (AHEAD) - the azimuthal orientation of the line passing through the fuselage of the aircraft as sen from above relative to true north. The angle is measured clockwise from true worth. The units are degrees.
4. Drift angle (DRIFT) - the differet e between the heading angle and the direction of the actual ground track. The drift angle is positive when the ground track is clockwise from the heading angle. The units are degrees.
5. Ground speed (GS) - the speed of the aircraft with =espect to the ground. Ground speed is calculated by the onboard navigation system computer from the dir speed and the wind speed vectors. The units are knots.
6. Radar altitude (ALT) - the vertical distance between the aircraft and the ground. The units are feet.

The above parameters are given on the first of the four data files versus elapsed time (ET) from the time of the first record. Also, the actual times (Greenwich Meridian Time, GMT) of the acquisition of these data are given on each record in hours (NHR), minutes (NMIN), and seconds (SEC). These time values are used to compute the time in seconds (TIME). The units for time (ET and TIME) are seconds.

3.0 LOGIC OF THE PROGRAM

If one follows the logic of the ACTRK program, it is divided into several parts as follows.

Dimensions of arrays are defined at the beginning. Allowances are made to handle up to 300 records (data records) for each aircraft run. This can be increased if necessary.

The program requests an irput from the terminal for the orientation of the flight line (FLIGHT) that was being flown (the intended flight line direction measured clockwise from true north as viewed from above). Be sure to include a decimal point in the input from the terminal since the read format is floating point. The units are degrees.

The firs three records of the file are read into dumm variahles. These records are headers for the remaining data records.

Data records are then read in a loop until the end of file is ericountered. Within the loop, the time data are converted to seconds (TIME), and the derived parameters, GTRACK and GRMMA, are calculated. GTRACK is the ground track angle (in degrees from true north in a manner similar to that of AHEAD). GTRACK is given by

$$
\begin{equation*}
\text { GTRACK }=\text { AHEAD }+ \text { DRIFT } \tag{1}
\end{equation*}
$$

GAMMA is the angle between the flight line direction (FLIGHI) and the ground track (GTRACK) and is given by

$$
\begin{equation*}
\text { GAMMA }=\text { FLIGHT }- \text { GTRACK } \tag{2}
\end{equation*}
$$

The ground speed (GS) is converted from knots to feet per second and restored in tne same variable name.

After the inputting of the data records is completed, the number of data records, ISTOP, is calculated. Then, two more inputs are requested from the terminal. One is the absolute position (XSTART) of the aircraft at the time of the first data record as measured down the flight line (X-axis). The other is the absolute position (YSTART) of the aircraft at the time of the
first data record as measured to the left of the flight line (Y-axis) as one faces the flight line direction. Be sure to include decimal points in these parameters entered from the terminal since the format is floating point. The inclision of XSTART and YST. ${ }^{-2} T$ allows one to locate the subsequent positions in an absolute frame of reference. The units are feet.

The program proceeds by going through a loof in which the positicns (X, Y) of the aircraft are calculated. A simple dead reckonin; procedure is used. The aircraft is vectored along at the average ground speed (ari:hmetic average of two adjacent data record values) in the average direction ancle, GAMMA, with respect to the intended flight line, FLIGHT. The time of travel is the difference in the elapstitimes (ET) between data records. Elapsed time is used rather than absolute time (TIME) since ET is given to an accuracy of hundredths of a second and TIME is given only to an accuracy of tenths of a second. The results of the aircraft position calculations are stored in the X and Y arrays. The units are feet. The equations for X and Y are as follows:

$$
\begin{align*}
& X_{i+1}=X_{1}+\left(E T_{i+1}-E T_{1}\right) * \overline{G S} * \operatorname{COS}(G A M M A) \tag{3}\\
& Y_{i+1}=Y_{i}+\left(E T_{i+1}-E T_{i}\right) * \overline{G S} * \operatorname{SIN}(G A M M A) \tag{4}
\end{align*}
$$

Given the aircraft positions, X and Y, res program proceeds with the calculation of the positions of the photo centers and the centers of the radar scatterometer footprints (i.e., the areas from which returned and filtered radar scatterometer signals come). Another angle, EPI, is calculated in this procedure. EPI is the difference between the intended flight line direction (FLIGHT) and the heading angle (AHEAD) of the aircraft. EPI is needed due to the fact that the fan-shaped antenna of the radar scatterometer is aligned with the axis of the aircraft and is directed toward the aft of the aircraft. Aircraft roll affects the location of the intersection of the antenna pattern and the ground. It is assumed that the metric camera is hard mounted to the aircraft (i.e., it rolls with the aircraft as the aircraft rolls). In the case of the radar scatterometer, changes ir pitch angle
(PITCH) do not affect the position of the radar scatterometer footprint since the incidence angle has been specified according to the Doppler freauency shift filter used in processing the data. Changes in pitch angle do affect the position of the casera phot center. Changes in the roll angle do affect both the camera and radar scatterometer fortprint positions. Of course, changes in altitude affect these positiona also. In the last computational loop of the program, the equations used to predict the effects of changes in pitch, roll, and drift on these positions are applied. See the atrached Eigures (Figures 2 and 3) for the equations.

The last loop simply writes the resuits of the calculations out to a file for subseuqent use.

The last plot given in this note shows the results of the application of ACTRK to an actual aircraft flight run over Webstel County, Lowa, on August 19 , 1980. Note the different tracks of the photo center, alrcraft ground track, and radar scatterometer footprints. In some instances, the lateral displacemint between fairs of tracks is several hundred feet. This could result in some footprints lying outside a particular field of interest at some or all angles of viewing. It should be noted, in particular, that the use of photography to locate the aircraft and the positions of radar scatterometer footprints could result in some data being included wrongly in a data set that is supposed to be taken over a given field.

4.0 CONCLUSION

The procina, ACTRK, is explained in this short document. It produces useful estimaies of the positions of the aircraft, photo centers, and radar scatterometer footprints where level terrain has been overflown and where changes in the altitude, speed, and attitude of the aircraft are slow enough to be well tracked by the data given in the first data file of the set of four data files produced by the NASA Johnson Space Center before 1982.

If significantly unlevel terrain should be encountered, the user should not use the ACTRK program. The distance from the aircraft position to the sensor footprint position would be in error. Also, the range from the aircraft to the sensor footprint would be in error. Finally, the local incilence angle would not be equal to the sensor look angle. It should be possible to alter the program such that the elevation of the surface along the flight line can be estimated on one pass and used in antoher pass to make these estimates more accurately than dues the existing ACTRK program.

To use the calculated aircraft and aircraft rensor positions with the measured data, the author makes the following comments. One can use the aircraft positions versus time of flight (TIME) or elapse: time (ET) as given as a basis for other comparisons. The sensors, however, acquire data over an area that is not, in general, directly below the aircraft. For example, at. nominal ground speeds (160 knots), at an altitude of 460 meters (1500 feet), and with a pitch angle of one degree, the center of the photos leads the aircraft position by 8 meters (26 feet) or 0.1 seconds. The position of the radar scatterometer foctprint taken at a sensor look anglo of 15 degrees legs the aircraft position by 123 m (402 fc .) or 1.5 sec . At a sensor look angle of 50 degrees, the lag is $548 \mathrm{~m}(1788 \mathrm{ft})$ or 6.6 sec . Reportedly, in the case of the radar scatterometer data, the measurements have bepit adjusted such that the radar backscattering crefficient value reported at a given time Is of the area under the aircraft or to the left of right of the aircraft when nonzero roll and drift angles existed) at the time reported. This is the so-called nadir time correction. Nevertheless, the data are actually acquired several seconds later (1.5 and 6.6 seconds, respectively, for 15 and 50 degree data) when the aircraft wac in a different attitude than at the time of the overflight of the area in quesiion. The author has noted, also, that the apparent time that the airplane crosses a field boundary according to the photography can be as much as 1.5 seconds before thet boundary is crossed by the radar scatterometer even though the data have been nadir time corrected. The explanation of this observation has not been found by the author.

ORIGNAL PAGE 15

 OF POOR QUALITY

FIGURE 1. GEOMETKY OF AIRCRAFT ATtITUDE

$$
\begin{aligned}
& \gamma=\text { GAMMA ANGLE } \\
& \varepsilon=\text { EPI ANGLE } \\
& \delta=\text { DRIFT ANGLE }
\end{aligned}
$$

ORIGINAL PAGE IS OF POOR QIIALITY

FIGURE 2. RELATIONSHIP BETWEEN PHOTO CENTER AND AIRCRAFT POSITION
$A=\operatorname{ALTITUDE}$ (FEET)
$p=$ PITCH ANGLE (DEG)
$\mathbf{r}=$ ROLL ANGLE (DEG)
$a=A \tan p$
$b=A \tan r$
$X_{p}=X_{N}+a \cos \varepsilon-b \cos \varepsilon$
$Y_{P}=Y_{N}+a \sin \varepsilon+b \cos \varepsilon$

ORIGINAL PAGE I 3 OF POOR QUALITY

figure 3. relationship between radar footprtnt position and aIRCRAFT POSITION
$A=$ ALTITUDE (FEET)
$r=$ ROLL ANGLE (DEG)
θ = RADAR LOOK ANGLE (DEG)
$b=A \tan r$
$c=A \tan \theta$
$d=\sqrt{c^{2}-b^{2}}$
$\mathrm{X}_{\mathrm{R}}=\mathrm{X}_{\mathrm{N}}-\mathrm{d} \cos \varepsilon-\mathrm{b} \sin \varepsilon$
$Y_{R}=Y_{N}-d \sin \varepsilon+b \cos \varepsilon$

ORIGINAL PAGE is OF POOR QUIALITY

APPENDIX A

PROGRAM LISTING AIRCHAFT (APDANENI UNOUND TRACK). OF THE PRINCIPAL PUINT (CENIER) ACTUOOSO OF TME METEIC CAMEZA: ANO OF THE HAUAK SCATTEROMETEN FUOTPRINTS ATACTOOUOO SDECIFIC AVGLESO THE JNDUT UATA CUNSIST, UF AIKCRAFT ATTITUUE, ACTGOUTU SPEEU. ANT ALTITUDE INFUKMATICN LOCATEUTN THE FIRST FILE OF A ACTOOOAO EAOAF SCATTEROMETER SATA PEUVIDED ON COMPUTER COMPATIULE TAPES EY ACTUOOGO THE NASA JDHNSUUN SPACE CENTEN SEFONE IGRZ.
THE PROGRAN WAS WKITTEN QY IH. JACK F. PAOIS. VASA/JSC. HOUSTON, TEAAS. ON SEPTEMAEN゙ 7 , 19×2.
$\triangle A C T U O 100$
\qquad
ACTUO130
aCTUOLSO
ACTUOL60
\triangle ACTUOLBO
ACTOOI 40
PARAMETER
DEFINITION
$A C T U O 200$
$A C T O O L 10$
ETME ELAPSED TIME (SEC) SINCE NUP START
ETME
TIME
QITCH
CLOCK TIME (SEC) FRUM GMT TIME ON LATA RECUKUS
ACTOOL2O R.L ANGLE (UEG) (POSITIVE IS GIGHT WIVIG DUNN) FifCr a'vge (UEG) (pUSITIVE IS ivUSE Jj) JFIFT ANGLE (UEG), GZUUND TRACK HEAUING MINUS AIFCKAFT HEAUIVG

```
ALTITUDE OF AIHCPAFT (FEET) MEASUREL oY RAUAR aLTITUDE OF AIHCPAFT (FEET) MEASUREU OY RAUAR
```

ACTUO240
UQ1FT
ACTUOC50
ALT ALTIMETFR (ALUNG VERTICAL TO GRUUNU)
$A C 1 U 0270$
$A C T O O C 50$
GS
\triangle HEAD
FLIGHT THE IATENDEG GNOUNO TKACK UF THE AIFCNAFT UR THE GRUIJNO SPEEO (KIVGTS) CALCULATEU GY UN-GUARO WAVIGATION SYSTEM
AIKCRAFT HEAUING (UEU) MEASUKED FKUM TRUE NOKTH (\cap - 360 DEG). IS NOT TAE SAME. IN GENERAL. AS THE GRDUNU TRACK UIRECTION (DEG) OF THE FLIGHT LINE MEASUREO FROM TRUE TORTH (0 - 300 UEG)
ACTOO290
GTRACK AIHCRAFT HFADIFG PLUS DRIFT (OEG). THE ACTUAL
GTRACK AIFCKAFT HFADIFG PLUS DRIFT (OEG). THE ACTUAL
ACTOO310
ACTUOB20
$A C T O D 330$
$A C T O O 330$
$A C T$
ACTUOS40
ACTOO
aCTUO360二IEECTION THE AIRCRAFT MAKES RELATIVE TU THE
$\triangle C 100370$
GAMMA UPOUNU YEASUFEU FRUM TRUE NURTH (O- 300 DEG) FLIUMT MINJS GRDUNi TKACK (UEG) FLIURT MINUS AIPCKAFT MEZAUING (UEU)
EPI LSSULUTE DOSIIION UF THE AIKCRAFT ALUNG THE FLIGHT LINE AT THE TIME OR THE FIRST UATA rECOKI FÓR THE RUI (FEET)
YSTART GSSULUTE DOSITION OF THE AIRCRAFT PERPENDICULAK iU THE FLIGHi LINE at ine fime of the first data -ECIMAD FUD TRE LUN (FEET) ruSITION OF THE AINCRAFT MEASURED ALONG TME PLIUHT LINF (FEET)
TOSITIOA OF THE AI RCKAFT MEASURED HERPENUICULAF TO THE FLIGHT LINE (FEET)
$\angle C T U O 350$
$4 C T U O 396$
ACTUO39C
ACTUO400
$A C T O D 410$
$A C T U O 42 C$ HOSITIUN OF TME CEVTEN OF THE METHIC NHOTO IFEET WOSITICN OF THE 15 UEG TAUAK SCATTEMURETEN FOOTPHINT (FEET) HUSIIDON OF TME SU DEG KAUAK SCATTERUMETEN
HCOTFINT (FEET)
x
Y
$x P$ Y Y
x15. Y15
$\times 50 . \quad$ Y 50

$A C T U O 44 C$
$A C T O O 45 C$
$A C T O O 45 C$
$A C T O O 46 S$
$A C T 0047 C$
ACTOU4 BC ACTOO44C $\triangle C T U O S O$
$A C T 00510$
$\triangle C T U 0 S 20$
$\triangle C T O 0530$
x
$A C T U O S 40$
$A C T U O S 50$
ACTOO500
ACTOOS70
$\triangle C T U O 580$
$\triangle C T U O S Y 0$
C* ACTU0000 ACTUOS10
DIMENSION ET (300), WOL (300). PITCH(300). ALT (300).GS(300), AHEAU(30U)

INPUT OF FLIGHT LI'vE UI-FCTION FROM TME TENAINAL
MLITE (1e. 20u)

- $1=3.14150$?

oumay dean fi-st fane afconct (heavers) of the uata file

```
FILE: actkk fontian a eodl / JOhivSON shace centeq
```

```
C ALSO: OUMNY READ FIRST OATA NECONO SINCE ET JIFFERENCE HETWEER
```

C ALSO: OUMNY READ FIRST OATA NECONO SINCE ET JIFFERENCE HETWEER
LEAO(20.1O1)A,.EA,CC.UU
LEAO(20.1O1)A,.EA,CC.UU
lU1FDRMAT(AS/A5/AS/AO)
lU1FDRMAT(AS/A5/AS/AO)
GEGIN LUON TO READ data kECOKUS FHOM THE OISK FILE
GEGIN LUON TO READ data kECOKUS FHOM THE OISK FILE
O2 20 I=1.300
O2 20 I=1.300
DEAE(20,IUC,E,NO=3UU)ET(I),NHR,N:AIV,SEC,ROLL(I),PITCH(I),DNIFT(I)
DEAE(20,IUC,E,NO=3UU)ET(I),NHR,N:AIV,SEC,ROLL(I),PITCH(I),DNIFT(I)
1.ALT(I).GS(I),AHEAI)(I)

```
    1.ALT(I).GS(I),AHEAI)(I)
```



```
C C
    TIME(I)=3KDH. #FLOAT(NHR) * OO."FFLOAT(NMIN) * SEC
    WQITE INPLT DATA TO LINE PRINTEN TO VENIFY CORRECT INPUT
    ** NOTE *** JJE* :AAY ELIMINATE TMIS STEOO
    WRITE(6.5NO)ET(I).NH&,NNMN.SECOmOLL(I).PITLH(I).DFIFT(I).ALT(I)
    1:GS(I):AHEAI'(I)
    500 FORMAT(F&.Z.CIS,F`.1.OFK.C)
C C Calculate gHouno thack and Ga:mma aivgle
    GTRACK(I)=AHEAD(I) * URIFT(I)
    GAMMA(I)=FLIGHT = GTRACK(I)
C CONVERT GROUND SPEED TO FEET PEQ SECOND FRUM KNOTS
        20 CONTINUE
    ISTOP IS NUMAER OF DATA RECURUS (ASSUMEU TU bE LESS THAN 300)
    300 [STOP=I-1
C
    ENTER AESOLUTE. POSITION OF AIRCFAFT AT TIME OF FIRST DATA RECORO
    WFlTE (10.201)
    201 FORMAT(: EINTER XSTART (FEET):')
    READ(15.100)XSTART
    WRITE(10.20C)
    202 FDRMAT(' ENTEY YSTART (FEET):')
    READ(15.100)YSTART
    x(1)=xSTALT
    Y(1)=YSTAHT
nnon
    CALCULATE INCHEMENT OF TIME. GVERAGE GKOUNU SHEEU, GVENAGE GAMMA
    ANGLE. ANO NEAT AINCKAFT POSITIUN.
    OO2II=2.ISTON
    IMLEINEEI(1)-EET(IMI)
    GSAVG=0.5*(GS(I) GOS(IMI))
    GAAVG=O.S*(UAMMA(I) - GamMA(IMD))
    GAAVGO=GAAVGOUI/10M.
    DELX=GSAV(G&LELTAT ~C'SS(GAAVG*)
    DELY=GSAVCO*UELTAT*SIN(GAAVGO)
    x(I)=x(IM1) - DELX
        21 CONTINUE
                            CALCULATE RHOTO PUSITIO% ANO RAUAN SCATTERU:NETEN FOUTPNINT
    COSITIONS (IS AND SO UEGUEES)
    00 30 I=1.1-TOP
    EPIIFLIGNT AHEAU(I)
    SEPIR=SIN(ERIN)
    j口=PITCん(I)w口I/1NO.
    &R=ROLL(I)*0i/180.
    A=ALT(I)OTAN(DK)
    B=ALT(I)*TAN(\omegaW)
    Cl5=ALT(I)*TA*(TNE1O*)
    C5O=ALT(I)OTAN(TREEJOK)
    D15=SGFT(C15*C15=-4<%)
```



```
FILE: ACTRY FIDTMAN & ËUUL / JONNSOY SPACE CENTEN
```



```
30 CONTINUE
```

```
C
```

C
0n 22 I=1.ISTMF

```
    0n 22 I=1.ISTMF
```



```
        CONTINUE
```

 CONTINUE
 ENO
    ```
    ENO
```

[^1]
[^0]: ${ }^{1}$ The name of the parameter in the FORTRAN program is given in all capitals.

[^1]:
 $\triangle C T U L D U$ ACTU152u $A C T U I O 30$
 $A C T U I O 4 O$ ACTUIO 50 ACTUV60
 $A C T U 1670$
 $A C T U 1000$
 $A C T O L O 00$
 $A C I O 10 \Rightarrow 0$
 $A C T O l O>0$
 $\triangle C T O: 100$
 $\begin{array}{ll}\triangle C T O: 100 \\ \triangle C T U 1 & 0\end{array}$
 $A C T U 1710$
 $\triangle C T O J T 2$
 $A C T O$
 $A C T O$
 $\triangle C T O$
 $A C T E O$
 $A C O$
 $4 C T U 1740$

