### JPL PUBLICATION 82-71

(NASA-CR-169754) THE REED-SOLCMCN ENCODERS: N83-17141 CCNVENTIONAL VERSUS BERLEKAMP'S ARCHITECTURE (Jet Propulsion Lab.) 70 p HC A04/MF A01 CSCL 09B Unclas G3/61 08234

# Reed-Solomon Encoders — Conventional vs Berlekamp's Architecture

Marvin Perlman Jun-Ji Lee

December 1, 1982

# NASA

1

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

. . . ...

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

### CONTENTS

-

. •

۹.,

٠.

4 · · · ·

| I.        | BACKGROUND                                                  | 1  |
|-----------|-------------------------------------------------------------|----|
| 11.       | PARAMETERS AND PROPERTIES OF RS CODES                       | 3  |
| 111.      | MATHEMATICAL CHARACTERIZATION OF RS CODES                   | 4  |
| IV.       | HAPDWARE CONSIDERATIONS IN THE DESIGN OF RS ENCODERS        | 6  |
|           | A. CONVENTIONAL ARCHITECTURE                                | 6  |
|           | B. BERLEKAMP'S ARCHITECTURE                                 | .2 |
| <b>v.</b> | MATHEMATICAL CHARACTERIZATION OF THE (255, 223) RS ENCODER  |    |
|           | DESIGNED BY BERLEKAMP                                       | 7  |
| VI.       | HARDWARE COST OF RS ENCODERS - CONVENTIONAL VS. BERLEKAMP'S |    |
|           | ARCHITECTURE                                                | 5  |
| VII.      | TESTING RS ENCODERS                                         | 6  |
|           | A. INTRODUCTION                                             | 6  |
|           | B. TEST SEQUENCES                                           | 8  |
|           | C. RELIABILITY TESTING OF A BERLEKAMP RS ENCODER 6          | 0  |
| VIII.     | CONCLUSIONS                                                 | 52 |
| REFERE!   | NCES                                                        | 54 |

### Tables

, • • •

٠

| 1.  | Representation of Elements in $GF(2^6)$                                            |
|-----|------------------------------------------------------------------------------------|
| 2.  | $Tr(l_{i}G_{i})$ Values for a (63, 53) RS Code                                     |
| 3.  | Check Symbol Computation in the Dual Basis of a<br>(63, 53) RS Code                |
| 4.  | Two Representations of Field Elements in GF(2 <sup>8</sup> )                       |
| 5.  | GCS Test for a Berlekamp Encoder                                                   |
| 6.  | A Cyclic Permutation of the GCS in Table 5                                         |
| 7.  | GCS Type Tests with C <sub>32</sub> One Set of Unit Vectors in the<br>Dual Basis   |
| 8.  | GCS Type Tests with C <sub>32</sub> a Second Set of Unit Vectors in the Dual Basis |
| 9.  | One Nonconstant and Four CS Type Tests Applied to a Berlekamp                      |
|     |                                                                                    |
| 10. | A Reliability Test for a Berlekamp Encoder                                         |

••

••

ta

٠

PRECEDING PAGE BLANK NOT FILMED

•

\*

## CONTENTS (contd)

### Figures

:

1

5

:

į

٤

·

| 1. | Concatenated Coding for a Spacecraft Telemetry Channel 2             |
|----|----------------------------------------------------------------------|
| 2. | A Conventional (N,K) RS Encoder                                      |
| 3. | A (N,K) RS Encoder Utilizing Berlekamp's Architecture                |
| 4. | Implementation of the Linear Binary Matrix for a (63, 53)<br>RS Code |
| 5. | Transformational Equivalence of RS Codewords with a Common g(x)      |

### NOTE

v v ver mændenden some u

ţ

•

.

•

- 1

:

1

This report was originally a JPL interoffice memorandum (IOM No.: 3610-81-119 ISPM) entitled "Reed-Solomon Encoders - Conventional Versus Berlekamp's Architecture," dated July 10, 1981.

#### ABSTRACT

Concatenated coding has teen adopted by the National Aeronautics and Space Administration of the United States of America for interplanetary space missions. NASA's Jet Propulsion Laboratory is employing concatenated coding with a convolutional inner code and a Reed-Solomon outer code for spacecraft telemetry.

This paper compares conventional RS encoders with those that incorporate two ingenious architectural features due to E. R. Berlekamp. Berlekamp's architecture approximately halves the number of multiplications of a set of fixed arguments by any RS codeword symbol. The fixed arguments and the RS symbols are taken from a nonbinary finite field. Each set of multiplications is bit-serially performed and completed during one (bit-serial) symbol shift. Berlekamp's architecture eliminates all firmware employed by conventional RS encoders.

#### I. BACKGROUND

1

Reed-Solomon (RS) codes are a special case of the nonbinary generalization of Bose-Chaudhuri-Hocquenghem (BCH) codes. They are among the Maximum Distance Separable (MDS) codes which realize the <u>maximum</u> minimum Hamming distance possible for a linear code (Refs. 1 and 2). The interest in RS codes was primarily theoretical until the concept of concatenated coding was formulated and first introduced in Ref. 3. Concatenated coding has been adopted by the U.S. National Aeronautics and Space Administration (NASA) for interplanetary space missions (see Fig. 1). The inner code is a convolutional code, whereas the outer code is an RS code. The application of concatenated coding to NASA's Jet Propulsion Laboratory (JPL) spacecraft telemetry with a convolutional inner code and an RS outer code was first proposed and analyzed in Ref. 4. This was followed by a contract study: "Concatenated RS/Viterbi Channel Coding for Advanced Planetary Missions: Analysis, Simulations and Tests." Reference 5 is the final report of that study. Reference 6 presents a discussion of the Viterbi decoder which serves as a <u>maximum likelihood</u> decoder of the inner convolutional code.

An investigation undertaken at JPL of alternative communication systems for downlinking imaging and general science data appears in Ref. 7. This resulted in the adoption of concatenated RS/convolutional coding for imaging data from the Voyager spacecraft as a backup beyond Saturn encounter. Imaging data from the Galileo spacecraft will also be subjected to RS/convolutional coding. This decision is a consequence of the foregoing and subsequent investigations as exemplified in Ref. 8.

ł

Concatenated RS/Viterbi channel performance tests were made at JPL using simulation of ideal and nonideal receiver system models. The results of these tests led to the adoption of RS/convolution coding for the NASA spacecraft of the International Solar Polar Mission (ISPM) (see Ref. 9). The same coding has since been adopted for the European Space Agency (ESA) spacecraft for ISPM. Experimental results of RS/Viterbi channel coding on system performance and its impact on deep space transmission of imaging information appears in Ref. 10. When used as an outer code, protection is provided against errors emanating from the inner Viterbi decoder. Viterbi decoding errors tend to occur in bursts whereby relatively few RS symbols are affected. The expected burst length and the density of bit errors within a burst bear some relation to the channel's signal-to-noise ratio. A



Figure 1. Concatenated Coding for a Spacecrait Telemetry Channel

performance analysis of the interleaved (255, 223) RS code in combating Viterbi decoding errors is given in Ref. 11.

#### **II. PARAMETERS AND PROPERTIES OF RS CODES**

The class of Reed-Solomon codes of interest for practical considerations has the following parameters:

| J               | the number of bits per symbol                                     |
|-----------------|-------------------------------------------------------------------|
| $N = 2^{J} - 1$ | the total number of symbols per RS codeword                       |
| E               | the symbol error correction capability                            |
| 2E              | the number of symbols representing checks                         |
| K = N-2E        | the number of symbols representing information                    |
| I               | the depth of symbol interleaving. That is, within a sequence of   |
|                 | NI symbols comprising I RS codewords, consecutive symbols of a    |
|                 | given RS codeword are separated by I-1 symbols belonging to other |
|                 | codewords                                                         |

Note that J, E, and I are independent parameters.

The symbols of an (N,K) RS code are taken from a finite field of  $2^{J}$  elements referred to as a <u>Galois Field</u> of order  $2^{J}$  or simply  $GF(2^{J})$  (see Refs. 1 and 2). Every pair of distinct N-symbol codewords differs in at least 2E + 1 symbols. Thus an (N,K) RS code has a minimum Hamming distance of 2E + 1 and is E symbol error-correcting. A received word with any combination of E or fewer symbols in error will be correctly decoded, whereas a received word containing more than E symbols in error will be incorrectly decoded with a probability of less than one chance in E factorial (i.e., E!).

Erroneous symbols of a received word confined to a region of E consecutive symbols or less are correctable. In terms of bits, a burst-error of length J(E-1)+ 1 bits can affect at most E contiguous symbols. Hence all bursts of length J(E-1) + 1 bits or less are correctable. Symbol interleaving to a depth of I results in an (NI,KI) code which inherits its properties from the (N,K) RS code.

Each of the 2E symbols of an (N,K) RS codeword is a distinct linear combination of information symbols. Thus RS codes are linear. An (NI,KI) code is comprised of K1 information symbols over which 2EI check symbols are computed. Every  $I^{\underline{th}}$  , mbol, starting with symbol 1,2,..., or I, belongs to the same (N,K) RS codeword.

Symbol interleaving to a depth of I increases the burst-error correction capability to length J(EI-1) + 1 bits. If a received word of an (NI,KI) code contains a burst of length J(EI-1) + 1 bits or less, the number of erroneous symbols belonging to the same N-symbol word will not exceed E. Upon deinterleaving, each of the I N-symbol words will thus be correctly decoded.

Linearly combining any two codewords, not necessarily distinct, of a given (N,K) kS code results in a codeword. Each codeword may be viewed as a vector whose components (referred to as symbols) are field elements taken from  $GF(2^J)$ . Scalar multiplication and vector addition follow from the binary operations of "multiplication" and "addition" on the field elements. The foregoing is a restatement of the linearity of RS codes.

Every cyclic permutation of the symbols of an (N,K) RS codeword is a codeword. Thus RS codes are cyclic. Note that all cyclic codes are linear but the converse does not hold. Because of the cyclic property of an (N,K) RS code, it can be characterized by a generator polymonial g(x). The degree of g(x) is 2E, the number of check symbols. And g(x) has 2E distinct roots which are consecutive integer powers (excluding zero) of a primitive element in  $GF(2^J)$ .

Cyclic codes have a well-defined mathematical structure. Furthermore, encoders and decoders of cyclic codes are implementable by means of feedback shift registers (FSRs). However, unlike Bose-Chaudhuri-Hoquenghem (BCH) codes, RS codes are nonbinary. Thus each stage of the FSR must be capable of storing any one of 2<sup>J</sup> J-bit symbols. Solid-state random-access memories (RAMs) are commonly used to serve as nonbinary FSR stages.

The Hamming weight enumerator for MDS codes (hence RS codes) is well known. "Separable" (in Maximum Distance Separable, MDS) and "systematic" are synonymous terms for codes whose information symbols occupy leading adjacent positions and are followed by check symbols. See Refs. 1, 2, and 6 for a detailed treatment of BCH and RS codes.

#### III. MATHEMATICAL CHARACTERIZATION OF RS CODES

Consider an (N,K) RS codeword

 $C = C_{N-1}C_{N-2} \cdots C_{2E+1} C_{2E} \cdots C_0$ , where  $C_i \in GF(2^J)$ 

(1)

The polynomial

$$C(x) = C_{N-1}x^{N-1} + C_{N-2}x^{N-2} + \cdots + C_{2E}x^{2E} + C_{2E-1}x^{2E-1} + \cdots + C_{2E}x^{2E}$$

over GF(2<sup>J</sup>) is termed a codeword polynomial. Every codeword polynomial contains

$$g(x) = \prod_{j=b}^{b+2E-1} (x - y^{j}) = \sum_{i=0}^{2E} G_{i} x^{i}$$
(3)

· ')

the generator polynomial of the code as a factor. Note that  $\gamma$  is any primitive element in GF(2<sup>J</sup>) and 2E consecutive powers (excluding zero) of  $\gamma$  (i.e.,  $\gamma^{b}$ ,  $\gamma^{b+1}$ , ...,  $\gamma^{b+2E-1}$ ) are roots of g(x).

Encoding is the process of computing 2E check symbols over K information symbols such that the N (i.e., K+2E) symbols are coefficients of C(x) in (2) containing g(x) in (3) as a factor. Given the information polynomial

$$I(x) = C_{N-1}x^{K-1} + C_{N-2}x^{K-2} + \dots + C_{2E}$$
 (4)

Check symbols  $C_{2E-1}$ ,  $C_{2E-2}$ , ...,  $C_0$  are computed as follows:

 $\frac{x^{2E}I(x)}{g(x)} = H(x) + \frac{r(x)}{g(x)}$  $x^{2E}I(x) = g(x)H(x) + r(x)$ 

where

$$\mathbf{r}(\mathbf{x}) = \mathbf{C}_{2E-1} \mathbf{x}^{2E-1} + \mathbf{C}_{2E-2} \mathbf{x}^{2E-2} + \dots + \mathbf{C}_{0}$$
(5)

$$\mathbf{x}^{2E}\mathbf{I}(\mathbf{x}) \equiv \mathbf{r}(\mathbf{x}) \mod \mathbf{g}(\mathbf{x}) \tag{6}$$

and

$$C(x) = x^{2E}I(x) + r(x) \equiv 0 \mod g(x)$$

(7)

where  $a(x) \equiv b(x) \mod m(x)$  implies that m(x) divides a(x)-b(x), where a(x) and b(x) are polynomials over a field. Similarly, for integers  $a \equiv b \mod m$  implies that m divides a-b. The symbol "+" denotes sum modulo 2 (i.e., the exclusive-OR operation) and

#### $-1 \equiv 1 \mod 2$

The polynomials  $x^{2E}I(x)$  and r(x) in (6) and (7) are nonoverlapping and the coefficients of C(x) in (7) as explicitly shown in (2) represent an (N,K) RS codeword. Furthermore, C(x) contains g(x) as a factor.

#### IV. HARDWARE CONSIDERATIONS IN THE DESIGN OF RS ENCODERS

#### A. CONVENTIONAL ARCHITECTURE

A functional logic diagram of a conventional (N,K) RS encoder appears in Fig. 2. Assume the register (composed of 2E J-bit storage elements) of the FSR is initially cleared. With switches A and B in the up position, information symbols (i.e., coefficients of I(x) in (4)) are sequentially entered and simultaneously delivered to the channel. Symbol  $C_{N-1}$  is entered first and  $C_{2E}$  last. Upon the entry of  $C_{2E}$ , the check symbols which are coefficients of r(x) in (5) reside in the register where  $C_i$  is stored in  $x^i$ . At this time, switches A and B are placed into the down position. The check symbols, starting with  $C_{2E-1}$ , are then delivered to the channel while the register is cleared in preparation for the next set of K information symbols.



original page is of poor quality

Figure 2. A Conventional (N,K) RS Encoder

ę,

The FSR in Fig. 2 accepts I(x) and computes r(x) by multiplying I(x) by  $x^{2E}$  and reducing the result modulo g(x) as given in (6). From (3), where  $G_{2E}$  necessarily equals 1,

 $x^{2E} \equiv G_{2E-1}x^{2E-1} + G_{2E-2}x^{2E-2} + \cdots + G_1x + G_0 \mod g(x)$ 

Each of the 2E components

$$G_{2E-1}, G_{2E-2}, \dots, G_1, G_0$$

is multiplied by the symbol appearing on the feedback path. The resulting 2E component vector is effectively added to the symbol string stored in the register <u>after</u> a symbol shift to the left has occurred. The incoming information symbols,  $C_{2E-1}, C_{2E-2}, \cdots, C_{0}$ , and the intermediately stored symbols are all members of  $GF(2^{-1})$ .

Consider a (255, 223) RS code where the field element  $\alpha$  is a root of the primitive 8<sup>th</sup> degree polynomial over GF(2)

$$f(x) = x^{8} + x^{7} + x^{2} + x + 1$$
 (8)

Each nonzero element is expressible as an integer power of  $\alpha$ , n generator of GF(2<sup>8</sup>). Since

$$\alpha^8 = \alpha^7 + \alpha^2 + \alpha + 1$$

every element is representable as a polynomial in  $\alpha$  over GF(2) of degree less than 8. Thus

$$\alpha^{n} = u_{7} \alpha^{7} + u_{6} \alpha^{6} + \dots + u_{0}$$
 (9)

where  $u_i = 0$  or 1 and  $0 \le n < 255$ . The zero element (i.e.,  $00 \cdot \cdot \cdot 0$ ) corresponds to the constant 0 polynomial and is denoted by  $\alpha^*$ .

A tabulation of a portion of  $GF(2^{B})$  generated by  $\alpha$  appeas as follows:

| n of α <sup>n</sup> | α | 7 _( | δ <u>α</u> 5 | ς 1<br>α | α | 3_2 | 2<br>a | 1 |
|---------------------|---|------|--------------|----------|---|-----|--------|---|
| *                   | 0 | 0    | 0            | 0        | 0 | 0   | 0      | 0 |
| 0                   | 0 | 0    | 0            | 0        | 0 | 0   | 0      | 1 |
| 1.                  | 0 | 0    | 0            | 0        | 0 | 0   | 1      | 0 |
| 2                   | 0 | 0    | 0            | 0        | 0 | 1   | 0      | 0 |
| 3                   | 0 | 0    | 0            | 0        | 1 | 0   | 0      | 0 |
| 4                   | 0 | 0    | 0            | 1        | 0 | 0   | 0      | 0 |
| 5                   | 0 | 0    | 1            | 0        | 0 | 0   | 0      | 0 |
| 6                   | 0 | 1    | 0            | 0        | 0 | 0   | 0      | 0 |
| 7                   | 1 | 0    | 0            | 0        | 0 | 0   | 0      | 0 |
| 8                   | 1 | 0    | 0            | 0        | 0 | 1   | 1      | 1 |
| 9                   | 1 | 0    | 0            | 0        | 1 | 0   | 0      | 1 |
| •                   |   |      |              |          | • |     |        |   |
| •                   |   |      |              |          | ٠ |     |        |   |
| •                   |   |      |              |          | • |     |        |   |
| 24                  | 0 | 1    | 1            | 1        | 0 | 0   | 0      | 1 |
| 25                  | 1 | 1    | 1            | 0        | 0 | 0   | 1      | 0 |
| 26                  | 0 | 1    | 0            | 0        | 0 | 0   | 1      | 1 |
| 27                  | 1 | 0    | 0            | 0        | 0 | 1   | 1      | 0 |
| 28                  | 1 | 0    | 0            | 0        | 1 | 0   | 1      | 1 |
| 29                  | 1 | 0    | 0            | 1        | 0 | 0   | 0      | 1 |
| 30                  | 1 | 0    | 1            | 0        | 0 | 1   | 0      | 1 |
| 31                  | 1 | 1    | 0            | 0        | 1 | 1   | 0      | 1 |
| 32                  | 0 | 0    | 0            | 1        | 1 | 1   | 0      | 1 |
| 33                  | 0 | 0    | 1            | 1        | 1 | 0   | 1      | 0 |
| •                   |   |      |              |          | ٠ |     |        |   |
| •                   |   |      |              |          | • |     |        |   |
| •                   |   |      |              |          | • |     |        |   |
| 251                 | 1 | 1    | 1            | 0        | 1 | 0   | 1      | 1 |
| 252                 | 0 | 1    | 0            | 1        | 0 | 0   | 0      | 1 |
| 253                 | 1 | 0    | 1            | 0        | 0 | 0   | 1      | 0 |
| 254                 | 1 | 1    | 0            | 0        | 0 | 0   | 1      | 1 |
| 0                   | 0 | 0    | 0            | 0        | 0 | 0   | 0      | 1 |

The binary operation of "addition" defined on the field elements is termwise sum modulo 2 (i.e., vector addition over GF(2)).

Example 1

$$\frac{10000111(\alpha^{8})}{+10000110(\alpha^{27})}$$

. Addition of RS symbols is readily implementable with 2-input Exclusive-OR gates. The binary operation of "multiplication" defined on the field elements is

ORIGINAL FALLE TO OF POOR QUALITY

 $(u_7 \alpha^7 + u_6 \alpha^6 + \cdots + u_0) (v_7 \alpha^7 + v_6 \alpha^6 + \cdots + v_0)$ 

with the result reduced modulo

 $f(\alpha) = \alpha^8 + \alpha^7 + \alpha^2 + \alpha + 1$ 

The coefficients are members of GF(2) and subject to the rules of modulo 2 arithmetic.

Each multiplier of an KS encoder has one argument fixed, namely  $G_i$ , a coefficient of g(x). A hardware multiplier of an arbitrary field element by a fixed field element is given in Ref. 1 (chapter 2). Such a multiplier would be required for each distinct nonzero  $G_i$  which does not equal  $a^0$  (i.e.,  $00\cdots01$ ).

Another method follows from the property

$$a^{i}a^{j} = a^{(i+j) \mod 255}$$

Example 2

$$a^{9}$$
 (1 0 0 0 1 0 0 1)  
 $a^{24}$  (0 1 1 1 0 0 0 1)  
 $a^{24} a^{9} = a^{33}$  (0 0 1 1 1 0 1 0)

The conventional approach for multiplying two field elements employs two read-only-memories (ROMs). The addresses of one ROM correspond to the field elements  $(u_7 \ u_6 \ \cdots \ u_0$  in GF  $(2^8)$ ), and the content of each address is the binary representation of the log to the base  $\alpha$  of the corresponding field element. The addresses of the other ROM correspond to the logs expressed in binary, and the content of each address is the antilog of the corresponding log. Mu\_ciplication in GF( $2^8$ ) utilizing the tables of logs and antilogs may be realized as follows.

- (1) The logs of each of two field elements are sequentially read and stored.
- (2) The 8-bit binary representations of the logs are added (as positional binary numbers) modulo 255. An overflow bit  $(2^8)$  is treated as an end-around carry resulting in casting out  $2^8$ -1.

(3) The antilog corresponding to log of the product (derived in step 2) is then read out.

#### Example 3

|                                                                                                                         | - a                                                                                                                     |       |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------|
| <sup>u</sup> 7 <sup>u</sup> 6 <sup>u</sup> 5 <sup>u</sup> 4 <sup>u</sup> 3 <sup>u</sup> 2 <sup>u</sup> 1 <sup>u</sup> 0 | <sup>b</sup> 7 <sup>b</sup> 6 <sup>b</sup> 5 <sup>b</sup> 4 <sup>b</sup> 3 <sup>b</sup> 2 <sup>b</sup> 1 <sup>b</sup> 0 |       |
| 10010001                                                                                                                | 00011101                                                                                                                | (29)  |
| 01010001                                                                                                                | 11111100                                                                                                                | (252) |
|                                                                                                                         | -00011001                                                                                                               |       |
|                                                                                                                         | 1                                                                                                                       |       |
|                                                                                                                         | 00011010                                                                                                                | (26)  |

102



Note that  $00\cdots 0$  and  $11\cdots 1$  (255<sub>10</sub>) have the same antilog.

If a fixed operand is 1 ( $\alpha^0$ ), multiplication is the identity operation realizable with J wires. If either operand is 0 ( $\alpha^*$ ), multiplication by 0 is implementable by logic external to the ROMs.

The most economical method (in terms of memory requirements) of interleaving a depth of I is to replace each of the 2E nonbinary stages with I stages. The 2EI stage FSR is described by the generator polynomial

$$\hat{g}(x) = \prod_{j=b}^{b+2E-1} (x^{I} - \alpha^{j}) = \sum_{i=0}^{2E} G_{i}(x^{I})^{i}$$
 (10)

where the indeterminate x in (2) is replaced with x<sup>I</sup>. The  $\hat{g}(x)$  in (10) characterizes an (NI,KI) RS code where every  $I^{\underline{th}}$  symbol starting with symbol 1, 2, ..., or I belongs to an (N,K) RS codeword characterized by g(x) in (3). Clearly the  $G_{a}$ 's associated with g(x) and  $\hat{g}(x)$  are identical.

In a conventionally designed RS encoder a single ROM (containing both tables) and binary adder (with end-around carry) could be sequentially shared by each multiplier having a different  $G_i$  (where  $G_i \neq a^0$ ) as one of its operands. The cost

11

. · .

of this reduced complexity is the increase in time needed for K sets of multiplications per (N,K) RS codeword. A set could contain up to 2E multiplications associated with 2E distinct  $G_1$ 's none of which is equal to  $\alpha^0$ .

#### **B. BERLEKAMP'S ARCHITECTURE**

The RS encoder design due to Berlekamp (Ref. 12) incorporates two ingenious features. First, the number of multiplications per symbol shift is approximately halved by selecting a g(x) whose 2E roots are E reciprocal pairs. That is, in (3),

$$\alpha^{b+i} \alpha^{(b+2E-1)} \stackrel{-i}{=} \alpha^{N} = 1 \quad 0 \le i \le E$$
 (11)

In expanded form, g(x) is a self-reciprocal polynomial where (over the range of i in (11))

 $G_{2E-i} = G_i \text{ and } G_{2E} = G_0 = 1 (00 \cdots 01)$ 

Second, and more significant, Berlekamp formulated a hardware design of bit-serial mult'-liers over  $GF(2^J)$  which is compatible with the serial organization of RS encoders. One operand is any of the  $2^J$  field elements. The other is a vector whose components are fixed distinct  $G_i$ 's representing coefficients of g(x).

In the design of an (N,K) RS encoder, two parameters affected the complexity of the circuitry associated with multiplication. These parameters are discussed in connection with a (255, 223) RS encoder unless stated otherwise.

the elements of  $GF(2^8)$  form a vector space of dimension 8. One parameter is 8 where

1, 
$$\beta$$
,  $\beta^2$ ,  $\cdots$ ,  $\beta^7$ 

is a basis, a set of linearly independent vectors which spans the vector space of  $GF(2^{\circ})$ . In the case where  $\beta$  equals  $\alpha$ , a generator (associated with (3) and (9)), results in the basis made up of the unit vectors  $\alpha^0$  (00...001),  $\alpha^1$  (00...010), etc. Any element in  $GF(2^8)$  that is <u>not</u> a member of a <u>subfield</u> may serve as  $\beta$  Since,

$$GF(2) \subset GF(2^2) \subset GF(2^4) \subset GF(2^8)$$

B cannot be selected from the 16 elements in  $GF(2^4)$ . Each element of  $GF(2^8)$  is a root of

 $x^{2^{8}} - x = x(x^{255} - 1) = 0$ 

Each element of  $GF(2^4)$  is also a root of

 $x^{2} - x = x(x^{15} - 1) = 0$ 

Let  $\{\alpha^{y}\}$  be the set of 15 nonzero roots of unity. Then

 $(\alpha^{y})^{15 \mod 255} = 1 = \alpha^{0}$ 

and

ŝ

$$15y \equiv 0 \mod 255$$
  
 $y \equiv 0 \mod \frac{255}{(15,255)}$   
 $y \equiv 0 \mod 17$ 

(where (r,s) denotes the greatest common divisor of r and s). Thus 0  $(a^*)$  and

$$a^{17k}$$
 for  $0 \le k < 15$ 

compose the subfield  $GF(2^4)$ , a vector space of dimension 4. Thus there can be at most 4 linearly independent vectors in the set

$$1, a^{17k}, a^{(17kx2) \mod 255}, \dots, a^{(17kx7) \mod 255}$$

where  $k = 0, 1, \dots, \text{ or } 14$ .

For each basis

 $\{1, \beta, \beta^2, \cdots, \beta^7\} = \{\beta^i\}$ 

in  $GF(2^8)$ , a <u>dual basis</u> (also called a complementary and a trace-orthogonal basis) is determined (see Refs. 1, 2, and 13). The concept of a <u>trace</u> of a finite field element is involved in the development of a dual basis.

Consider  $GF(p^n)$ , a finite field of  $p^n$  elements over GF(p) where p is a prime. The trace Tr is a function on  $GF(p^n)$  defined by

$$Tr(\gamma) = \sum_{i=0}^{n-1} \gamma^{p^{i}} \text{ where } \gamma \in GF(p^{n})$$

The trace has the following properties:

- (1)  $Tr(\gamma) \in GF(p)$
- (2)  $Tr(\gamma+\delta) = Tr(\gamma) + Tr(\delta)$
- (3)  $Tr(c\gamma) = cTr(\gamma)$  where  $c \in GF(p)$

A proof for each follows:

(1) 
$$[\operatorname{Tr}(\gamma)]^{p} = \left(\gamma + \gamma^{p} + \gamma^{p^{2}} + \cdots + \gamma^{p^{n-1}}\right)^{p}$$
$$= \gamma^{p} + \gamma^{p^{2}} + \gamma^{p^{3}} + \cdots + \gamma^{p^{n}}$$
$$= \operatorname{Tr}(\gamma) \text{ since } \gamma^{p^{n}} = \gamma$$

Thus  $[Tr(\gamma)]^p = Tr(\gamma)$  implies that  $Tr(\gamma) \in GF(p)$ .

(2)  

$$Tr(\gamma+\delta) = \sum_{i=0}^{n-1} (\gamma+\delta)^{p^{i}} = \sum_{i=0}^{n-1} (\gamma^{p^{i}}+\delta^{p^{i}})$$

$$= \sum_{i=0}^{n-1} \gamma^{p^{i}} + \sum_{i=0}^{n-1} \delta^{p^{i}} = Tr(\gamma) + Tr(\delta)$$

(3)

$$Tr(c_{\gamma}) = \sum_{i=0}^{n-1} (c_{\gamma})^{p^{i}} = \sum_{i=0}^{n-1} c^{p^{i}} \gamma^{p^{i}}$$

$$c^{p^{i}} = (\cdots (c^{p})^{p} \cdots)^{p} = c \text{ for } i > 1$$

Ş

since  $c^p = c$ .

$$Tr(c\gamma) = \sum_{i=0}^{n-1} c\gamma^{p^{i}} = c \sum_{i=0}^{n-1} \gamma^{p^{i}} = cTr(\gamma)$$

### Example 4

Given  $GF(2^4)$  generated by  $\alpha$ , a root of the primitive polynomial  $x^4 + x + 1$  over GF(2). The trace of each of 16 elements is tabulated as follows:

| n of a <sup>n</sup> | a <sup>3</sup> a <sup>2</sup> a 1 | $Tr(\alpha^n)$ |
|---------------------|-----------------------------------|----------------|
| *                   | 0000                              | 0              |
| 0                   | 0001                              | 0              |
| 1                   | 0010                              | 0              |
| 2                   | 0100                              | 0              |
| 3                   | 1000                              | 1              |
| 4                   | 0011                              | 0              |
| 5                   | 0110                              | 0              |
| 6                   | 1100                              | 1              |
| 7                   | 1011                              | 1              |
| 8                   | 0101                              | 0              |
| 9                   | 1010                              | 1              |
| 10                  | 0111                              | 0              |
| 11                  | 1110                              | 1              |
| 12                  | 1111                              | 1              |
| 13                  | 1101                              | 1              |
| 14                  | 1001                              | 1              |

From the definition of the trace

$$Tr(\alpha) = \alpha + \alpha^{2} + \alpha^{4} + \alpha^{8} = 0000 = 0$$
  

$$Tr(\alpha^{3}) = \alpha^{3} + \alpha^{6} + \alpha^{12} + \alpha^{24} (\alpha^{24 \mod 15} = \alpha^{9})$$
  

$$= \alpha^{3} + \alpha^{6} + \alpha^{12} + \alpha^{9} = 0001 = 1$$
  

$$Tr(\alpha^{*}) = Tr(0) = 0 + 0 + 0 \div 0 = 0$$
  

$$Tr(\alpha^{0}) = Tr(1) = 1 + 1 + 1 + 1 = 0$$

4.1

ORIGINAL PAGE IS

$$Tr(\alpha^{5}) = \alpha^{5} + \alpha^{10} + \alpha^{20} + \alpha^{40}$$
  
=  $\alpha^{5} + \alpha^{10} + \alpha^{5} + \alpha^{10} = 0$   
$$Tr(\alpha^{7}) = \alpha^{7} + \alpha^{14} + \alpha^{28} + \alpha^{56}$$
  
=  $\alpha^{7} + \alpha^{14} + \alpha^{13} + \alpha^{11} = 0001 = 1$ 

From the linear property, the trace of  $a^n$  is

$$Tr(\alpha^{n}) = Tr(u_{3}\alpha^{3} + u_{2}\alpha^{2} + u_{1}\alpha + u_{0})$$
  
=  $u_{3}Tr(\alpha^{3}) + u_{2}Tr(\alpha^{2}) + u_{1}Tr(\alpha) + u_{0}Tr(\alpha^{0})$   
=  $u_{3}$ 

since  $Tr(\alpha^3) = 1$  and  $Tr(\alpha^2) = Tr(\alpha) = Tr(\alpha^0) = 0$  in  $GF(2^4)$  in example 4. In  $GF(2^8)$  generated by  $\alpha$ , a root of Eq. (8), the trace of an element as represented by  $\alpha^n$  in (9) is

 $Tr(\alpha^{n}) = u_{7} + u_{6} + u_{5} + u_{4} + u_{3} + u_{2} + u_{1}$ 

since

$$\operatorname{Tr}(\alpha^{1}) = 1 \text{ for } 1 \leq i \leq 7 \text{ and } \operatorname{Tr}(\alpha^{0}) = 0$$

For each basis  $\{\beta^i\}$  in GF(2<sup>8</sup>),  $\alpha^n$  is also representable as

 $v_0 \ell_0 + v_1 \ell_1 + \cdots + v_7 \ell_7$  (12)

where

 $v_i = Tr(\beta^i \alpha^n)$ 

The set

 $\{\ell_0, \ell_1, \cdots, \ell_7\} = \{\ell_j\}$ 

is a basis dual to the basis  $\{\beta^1\}$  such that

$$Tr(\beta^{i}\ell_{j}) = \begin{cases} 1 \text{ for } 0 \leq i = j < 8 \\ 0 \text{ for } 0 \leq i \neq j < 8 \end{cases}$$
(13)

Given an element  $\alpha^n$  in GF(2<sup>8</sup>). Its components in the dual basis are readily computed as follows.

$$a^{n} \leftrightarrow \sum_{j=0}^{7} v_{j} i_{j}$$

Thus,

$$\beta^{i_{\alpha}n} \leftrightarrow \sum_{j=0}^{\prime} = v_{j}\beta^{i_{\ell}}$$

and

$$Tr(\beta^{i}\alpha^{n}) = \sum_{j=0}^{7} v_{j} Tr(\beta^{i}\ell_{j}) = v_{i}$$
(14)

from property (3) of a trace and (13).

A selection of a basis  $\{\beta^{1}\}$  and a determination of its dual basis  $\{l_{j}\}$  are illustrated in example 5.

### Example 5

Given  $GF(2^6)$  generated by a, a root of the primitive  $6^{th}$  degree polynomial  $x^6 + x^5 + x^2 + x + 1$  over GF(2). Contained within  $GF(2^6)$  are the subfields  $GF(2^2)$  and  $GF(2^3)$ , and the subfield GF(2) is contained in both  $GF(2^2)$  and  $GF(2^3)$ .

Fach element of  $GF(2^2)$  is a root of

$$x^{2^{2}} - x = x(x^{3} - 1) = 0$$



$$(\alpha^{w})^{3 \mod 63} = 1 = \alpha^{0}$$

and

 $3w \equiv 0 \mod 63$  $w \equiv 0 \mod \frac{63}{(3,63)}$  $w \equiv 0 \mod 21$ 

Thus the elements in  $GF(2^6)$  which compose the subfield  $GF(2^2)$  are

α\*, α<sup>0</sup>, α<sup>21</sup>, α<sup>42</sup>

Each element in  $GF(2^3)$  is a root of

$$x^{2} - x = x(x^{7} - 1) = 0.$$

Let  $\{\alpha^y\}$  be the set of 7 nonzero roots of unity. Then

 $(\alpha^{y})^{7 \mod 63} = 1 = \alpha^{0}$ 

1

and

$$7y \equiv 0 \mod 63$$
  
 $y \equiv 0 \mod \frac{63}{(7,63)}$   
 $y \equiv 0 \mod 9$ 

Thus the elements in  $GF(2^6)$  which compose the subfield  $GF(2^3)$  are

 $\alpha^{*}, \alpha^{0}, \alpha^{9}, \alpha^{18}, \alpha^{27}, \alpha^{36}, \alpha^{45}, \alpha^{54}$ 

Any element not contained in  $GF(2^2)$  and not contained in  $GF(2^3)$  may serve as  $\beta$  in forming the basis

$$\{1, \beta, \beta^2, \cdots, \beta^5\} = \{\beta^1\}$$

in GF(2<sup>6</sup>). In this example  $\beta$  equal to  $\alpha^3$  was selected. In Table 1 each field element,  $a^n$ , in GF(2<sup>6</sup>) is represented in two ways. Namely,

$$a^{n} = u_{5}a^{5} + u_{4}a^{4}, + \cdots + u_{0}$$

where

÷

and

where

and

$$Tr(\alpha^{n}) = u_{5} + u_{4} + u_{3} + u_{2} + u_{1}$$

The basis  $\{\beta^i\}$  in GF(2<sup>6</sup>) is

$$\{1, \beta, \beta^2, \beta^3, \beta^4, \beta^5\} = \{1, \alpha^3, \alpha^6, \alpha^9, \alpha^{12}, \alpha^{15}\}$$

The entries in column  $l_0$  corresponding to  $a^n$  are

volo

 $v_0 = Tr(\alpha^n)$ 

 $\mathbf{v}_{\mathbf{f}} = \mathrm{Tr}(\beta^{-}\alpha^{-}) = \mathrm{Tr}(\alpha^{-})$ 

Á.

- 2<sup>2</sup>

- .a

a ser a ser a

7

= 
$$Tr(e^{i}a^{n}) = Tr(a^{n+3i})$$

 $a^{6} = a^{5} + a^{2} + a + 1$ 

$$+ v_1 \ell_1 + \cdots + v_5 \ell_5 \leftrightarrow \alpha^n$$

| n of α <sup>n</sup> | a <sup>5</sup> a <sup>4</sup> a <sup>3</sup> a <sup>2</sup> a 1 | $Tr(\alpha^n)$ | <sup>£</sup> 0 <sup>£</sup> 1 <sup>£</sup> 2 <sup>£</sup> 3 <sup>£</sup> 4 <sup>£</sup> 5 |
|---------------------|-----------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------|
| *                   | 000000                                                          | 0              | 0 0 0 0 0 0                                                                               |
| 0                   | 000001                                                          | 0              | 011010                                                                                    |
| 1                   | 000010                                                          | 1              | 1 1 0 1 0 1                                                                               |
| 2                   | 0 0 0 1 0 0                                                     | 1.             | 1 1 1 1 0 1                                                                               |
| 3                   | 001000                                                          | 1              | 1 1 0 1 0 0                                                                               |
| 4                   | 010000                                                          | 1              | 101010                                                                                    |
| 5                   | 100000                                                          | 1              | 1 1 1 0 1 1                                                                               |
| 6                   | 100111                                                          | 1              | 101001                                                                                    |
| /                   | 101001                                                          | 0              | 010101                                                                                    |
| 8                   |                                                                 | 1              | 1 1 0 1 1 0                                                                               |
| 9<br>10             |                                                                 | 0              | 010011                                                                                    |
| 10                  |                                                                 | 1              |                                                                                           |
| 12                  |                                                                 | 1              |                                                                                           |
| 13                  | 011110                                                          | 1              |                                                                                           |
| 14                  |                                                                 | 0              | 010110                                                                                    |
| 15                  | 011111                                                          | 0              | 0 0 1 1 0 0 0                                                                             |
| 16                  | 111110                                                          | 1              |                                                                                           |
| 17                  | 0 1 1 0 1 1                                                     | 1              | 1 1 0 0 0 1                                                                               |
| 18                  | 1 1 0 1 1 0                                                     | Î.             | 011001                                                                                    |
| 19                  |                                                                 | õ              | 011011                                                                                    |
| 20                  | 010110                                                          | ĩ              | 1 0 0 0 1 0                                                                               |
| 21                  | 101100                                                          | 1              | 1 1 0 0 1 0                                                                               |
| 22                  | 111111                                                          | 1              | 1 1 0 1 1 1                                                                               |
| 23                  | 011061                                                          | Ō              | $0 0 0 1 0 0 k = \alpha^{23}$                                                             |
| 24                  | 110010                                                          | 1              | $\frac{100100}{3}$                                                                        |
| 25                  | 000011                                                          | 1              | 101111                                                                                    |
| 26                  | 0 0 0 1 1 0                                                     | 0              | $001000 l_{a} = a^{26}$                                                                   |
| 27                  | 0 0 1 1 0 0                                                     | 0              | 001001 2                                                                                  |
| 28                  | 011000                                                          | 0              | 011110                                                                                    |
| 29                  | 110000                                                          | 0              | 010001                                                                                    |
| 30                  | 000111                                                          | 0              | 010010                                                                                    |
| 31                  | 001110                                                          | 1              | 1 1 1 1 0 0                                                                               |
| 32                  | 011100                                                          | 1              | 1 0 0 0 1 1                                                                               |
| 33                  | 111000                                                          | 1              | 1 0 0 1 0 1                                                                               |
| 34                  | 010111                                                          | 1              | 1 1 1 0 0 0                                                                               |
| 35                  | 101110                                                          | 0              | 0 0 0 1 1 1                                                                               |
| 30                  | 111011                                                          | 0              | 001010                                                                                    |
| 3/                  | 010001                                                          | 1              | 1 1 0 0 0 0                                                                               |
| 30                  | 100010                                                          | 0              | 0 0 1 1 1 0                                                                               |
|                     |                                                                 |                |                                                                                           |

Table 1. Representations of Elements in  $GF(2^6)$ 

# Original page is of poor quality

# Table 1. Representations of Elements in $GF(2^6)$ (contd)

| n of a <sup>n</sup>                                                                                                                                                  | a <sup>5</sup> a <sup>4</sup> a <sup>3</sup> a <sup>2</sup> a 1 | Tr(a <sup>n</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | £0 <sup>2</sup> 1 <sup>2</sup> 2 <sup>2</sup> 3 <sup>2</sup> 4 <sup>2</sup> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{r} 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ \beta = \alpha^{3} \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$            | 1<br>0<br>1<br>0<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $1 0 0 0 0 1$ $0 1 1 1 0 0$ $1 0 1 0 0 0$ $1 0 1 0 0 0$ $1 0 1 0 0 0$ $0 0 0 0 1 0$ $1 1 1 0 0 1$ $2_{4} = a^{43}$ $0 1 0 0 0 0 0$ $1 = a^{45}$ $1 0 0 0 1 0 1$ $1 0 0 1 0 1 1$ $0 0 0 0 0 1$ $1 = a^{43}$ $0 0 0 0 0 1$ $1 = a^{43}$ $0 0 0 0 0 1$ $1 = a^{5}$ $0 = a^{51}$ $0 0 1 1 1 1$ $0 0 0 0 1 1$ $1 = a^{5}$ $a^{51}$ $0 0 1 1 1 1$ $0 0 0 1 1 1$ $1 = a^{5}$ $a^{51}$ $0 0 1 1 1 1$ $0 0 0 1 1 0$ $1 = 1 = a^{51}$ $0 0 1 1 1 1$ $0 0 0 1 = a^{5}$ $a^{51}$ |
| 1<br>β<br>β <sup>2</sup><br>β <sup>3</sup><br>β <sup>4</sup><br>β <sup>5</sup>                                                                                       | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$           | 25<br>51<br>54<br>57<br>60<br>x<br>0<br>x <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

whereas the entries in column  $L_1$  are

$$v_1 = Tr(\beta \alpha^n) = Tr(\alpha^{n+3})$$

which is  $Tr(\alpha^n)$  cyclically shifted upward three places <u>excluding</u>  $Tr(\alpha^*)$ . The remaining columns are similarly formed. The dual basis  $\{l_i\}$  is

$$\{\ell_0, \ell_1, \ell_2, \ell_3, \ell_4, \ell_5\} = \{\alpha^{48}, \alpha^{45}, \alpha^{26}, \alpha^{23}, \alpha^{43}, \alpha^{51}\}$$

The elements  $\beta_{j}^{i} \in GF(2^{6} \text{ and } Tr(\beta_{j}^{i}) \in GF(2)$ , respectively, are entries in the foregoing tables.

As previously asserted,

$$\operatorname{Tr}(\beta^{\mathbf{i}} \boldsymbol{\ell}_{\mathbf{j}}) = \begin{cases} 1 \text{ for } 0 \leq \mathbf{i} = \mathbf{j} < 6 \\ 0 \text{ for } 0 \leq \mathbf{i} \neq \mathbf{j} < 6 \end{cases}$$

The trace  $Tr(\beta^{i}l_{j})$  plays a role in determining the components of a field element  $\alpha^{n}$  in the dual basis  $\{l_{j}\}$  as shown in (14). The product of an arbitrary field clement with a fixed coefficient of g(x) is realized bit-serially in the <u>dual</u> basis.

The order of a nonzero element  $\alpha^{k}$  in  $GF(2^{8})$  is

$$\frac{255}{(k, 255)}$$

If (k, 255) is 1,  $\alpha^{k}$  is of order 255, hence primitive. There are a total of  $\phi(255)$  or 128 primitive elements in GF(2<sup>8</sup>), where  $\phi(n)$  is the number of integers no greater than n that are relatively prime to n. (An integer i and n are relatively prime if (i,n) is 1.)

Let  $\gamma$  be a primitive element in GF(2<sup>8</sup>). Corresponding to  $\gamma$  is a generator polynomial

 $g(x) = \prod_{j=b}^{b+2E-1} (x-\gamma^{j}) = \sum_{i=0}^{2E} G_{i}x^{i}$ 

for a (255, 255-2E) RS code.

From (11)

2b + 2E - 1 = 255

For an E of 16,

b = 112 and b + 2E - 1 = 143

and given a primitive element  $\gamma$  in GF(2<sup>8</sup>),

$$g(x) = \prod_{j=112}^{143} (x-\gamma^{j}) = \sum_{i=0}^{32} G_{i}x^{i}$$
(15)

is a self-reciprocal generator polynom!al for a (255, 223) RS code.

Given that  $\gamma$  equal to  $\alpha^k$  is primitive, the expanded g(x) in (15) will be the same for the reciprocal of  $\gamma$  (i.e.,  $\gamma^{-1}$  equal to  $\alpha^{255-k}$ ). Thus there are 64 distinct self-reciprocal polynomials over GF(2<sup>8</sup>) that could serve as the codes' generator polynomial g(x). For an (N,K) RS code, there are  $\phi(N)/2$  distinct selfreciprocal polynomials over GF(2<sup>J</sup>) from which g(x) may be selected.

The field element  $\beta$  used to form a basis in GF(2<sup>8</sup>) and the field element  $\gamma$ in (14) govern the complexity of the bit-serial hardware multiplier in the Berlekamp RS encoder architecture. Element  $\beta$  can be selected from among 240 elements in GF(2<sup>8</sup>) - i.e., 256 less the 16 elements comprising the subfield GF(2<sup>4</sup>). Element  $\gamma$  can be selected from among 64 pairs of reciprocal primitive elements in GF(2<sup>8</sup>) independently of the choice of  $\beta$ .

For a given basis  $\{\beta^i\}$  in  $GF(2^8)$ , its dual basis  $\{i_j\}$  is determined as illustrated in Example 5 for a field of lower order. Corresponding to a given primitive element  $\gamma$  (or  $\gamma^{-1}$ ) in  $GF(2^8)$ , the coefficients  $G_i$  of g(x) in the expanded form in (15) are determined where

$$G_0 = G_{32} = 1$$
 and  $G_{32-1} = 1 \leq i \leq E$ 

The 16 coefficients

represent a largest set of distinct coefficients not equal to 1 ( $\alpha^0$ ).

Bit-serial multiplication of the vector

$$C_0, C_1, C_2, \cdots, C_{16}$$

by a field element z (i.e., an RS symbol) is realized as follows:

A linear binary matrix (i.e., an array of Exclusive-OR gates) is used to compute

$$T_{\rho}(z) = Tr(z \cdot G_{\rho})$$

Since

1

$$\mathbf{z} \cdot \mathbf{G}_{\underline{\ell}} = \sum_{j=0}^{7} \mathbf{z}_{j}^{(\underline{\ell})} \mathbf{e}_{j}$$

in the dual basis,

$$Tr[\beta^{i}(z \cdot G_{t})] = \sum_{j=0}^{7} z_{j}^{(t)}Tr(\beta^{i}t_{j})$$

$$= T_{t}(\beta^{i}z) = z_{i}^{(t)}$$
(16)

The simultaneous application of  $T_0, T_1, \dots, T_{16}$  to a stored z yields

$$\{z_0^{(l)}\}$$
 for  $0 \le l \le 16$ 

from (16) where i = 0. Note that  $\{z_0^{(\ell)}\}$  is the first component of the products  $zG_0, zG_1, \dots, zG_{16}$ . Subsequently, z is replaced by  $\beta z$  and a simultaneous application of  $T_0, T_1, \dots, T_{16}$  to a stored  $\beta z$  yields

$$\{z_1^{(\ell)}\}$$
 for  $0 \leq \ell \leq 16$ 

(from (16) where i = 1), the second components of  $\{zG_{\ell}\}$ . Similarly, replacing  $\beta z$  by  $\beta(\beta z)$  and applying  $\{T_{\ell}\}$  yields the third component of  $\{zG_{\ell}\}$  and so on. It will be shown that  $\beta z$  is simply derived from z.

The form of the functions  $\{T_{p}\}$  is

$$T_{\ell}(z) = Tr(zG_{\ell}) = \sum_{j=0}^{7} z_{j}Tr(\ell_{j}G_{\ell})$$
 (17)

For every z, the output of  $T_{\underline{\ell}}$  is the modulo 2 sum (i.e., Exclusive-OR) of those components  $z_{\underline{j}}$ 's in the dual basis for which

 $\operatorname{Tr}(\ell_{j}G_{\ell}) = 1$ 

A functional logic diagram of an (N,K) RS encoder utilizing Berlekamp's architecture is shown in Fig. 3. The linear binary matrix has as its inputs the contents of the Z register. At a given time interval, the representation of a field element z in the dual basis is stored in register Z. The outputs of the matrix for a (255, 223) RS ercoder (where J equals 8 and E equals 16) are

 $T_0 = Tr(zG_0)$  $T_1 = Tr(zG_1)$  $T_{15} = Tr(zG_{15})$  $T_{16} = Tr(zG_{16})$ 

For a given  $\ell$ ,  $Tr(zG_{\ell})$  is a parity check over a particular subset of the bits representing z in accordance with (17). These outputs represent

$$z_0^{(0)}, z_0^{(1)}, \dots, z_0^{(15)}, z_0^{(16)}$$

the first components (bits) in the representation in the dual basis of the products

$$zG_0, zC_1, \cdots, zG_{15}, zG_{16}$$

respectively.

The output  $Tr(\beta^i z)$  which is fed back to the Z register is used in deriving  $\beta z$ . A field element z may be represented as  $\alpha^n$  or in the dual basis in vector form as

$$z = Tr(z), Tr(\beta z), \cdots, Tr(\beta^{7}z)$$



. 2



Figure 3. A (N,K) RS Encoder Utilizing Borlekamp's Architecture

Å.

where

$$Tr(\beta^{i}z) = Tr(\beta^{i}\alpha^{n}) = z_{i}$$

Thus

$$\beta z = Tr(\beta z), Tr(\beta^2 z), \cdots, Tr(\beta^8 z)$$

Computing  $\beta z$  from z corresponds to

$$z_{i} + z_{i+1} = 0 \le i < 7$$
  
 $z_{7} + Tr(\beta^{8}z) = z_{8}$ 

where the bits stored in the Z register are shifted and the output  $Tr(\beta^8 z)$  of th binary matrix is entered. Clocking the Z register so configured yields  $\beta z$ , the set of inputs to the binary matrix during the subsequent time interval. The outputs

 $T_{0} = Tr(\beta z G_{0})$   $T_{1} = Tr(\beta z G_{1})$  . . .  $T_{15} = Tr(\beta z G_{15})$   $T_{16} = Tr(\beta z G_{16})$ 

represent  $\{z_1^{(\ell)}\}$ , the second components of  $\{zG_{\ell}\}$ , respectively. Similarly, t remaining components are computed recursively. The final components  $\{z_1^{(\ell)}\}$  ar computed during the  $\vartheta^{\pm \underline{h}}$  time interval when  $\beta^7 z$  resides in the Z register and th outputs are  $\{T_{\underline{\ell}} = Tr(\beta^7 zG_{\underline{\ell}})\}$ .

Since  $G_{32-\ell}$  equals  $G_{\ell}$ 

$$zG_{32-\ell} = zG_{\ell} \quad 1 \leq \ell \leq 16$$

The components of the products of

$$z_{G_{17}}, z_{G_{18}}, \cdots, z_{G_{31}}$$

will have also been computed. The bit-serial multiplication of

$$G_{31}, G_{30}, \dots, G_{0}$$

by z over  $GF(2^8)$  is thus complete. Furthermore, the resultant vector

 $zG_{31}, zG_{30}, \cdots, zG_{0}$ 

has been bit-serially added to the previous contents of the FSR (in Fig. 3), symbol-shifted one place to the left. Upon computing a set of corresponding components  $\{z_i^{(l)}\}, z_i^{(0)}$  is entered into the register section  $S_0$  as  $z_i^{(1)}$ , and  $z_i^{(2)}, \cdots, z_i^{(31)}$  are each simultaneously Exclusive-ORed with the bit emanating from the register section  $S_1, S_2, \cdots, S_{31}$ , respectively. The field element z is a symbol (represented in the dual basis) being fed back during the encoding process.

Each register section except  $S_{31}$  is 40 bits in length and stores 5 8-bit symbols. This provides an interleaving depth of 5. Register Y serves as a staging register and is essentially an extension of  $S_{31}$ . After the products  $\{zG_{\underline{z}}\}$  have been determined, register Z is reloaded with the contents of register Y. At this time register Y contains the next symbol z to be fed back. Register sections  $S_1$ ,  $S_2$ ,  $\cdots$ ,  $S_{30}$  reside in RAM's. The Y and Z registers are composed of delay flip-flops and register section  $S_{31}$  is a serial shift register. Until all information symbols have been entered (and simultaneously delivered to the channel), the Y input is the bit-by-bit Exclusive-OR of the bits composing the information symbol being entered and the bits composing the symbol exiting register section  $S_{31}$ . After the last information symbol has been entered, a control

signal (not shown in Fig. 3) level is changed to disable the information input and switch from the information mode to the check mode. The 5 sets of 32 chec symbols are then bit-serially delivered to the channel as the Y and Z register and the  $S_i$  register sections are cleared.

The derivation of the functions  $\{T_{g}\}$  is given in Example 6 for a (63, 53) RS code.

#### Example 6

Refer to Example 5 and Table 1, wherein every field element in  $GF(2^6)$  is represented as

$$a^{n} = u_{5}a^{5} + u_{4}a^{4} + \cdots + u_{0}$$

where  $\alpha^6 = \alpha^5 + \alpha^2 + \alpha + 1$ . For the basis  $\{\beta^i\}$  in GF(2<sup>6</sup>)

$$\{1, \beta, \beta^2, \beta^3, \beta^4, \beta^5\} = \{1, \alpha^3, \alpha^6, \alpha^9, \alpha^{12}, \alpha^{15}\}$$

the dual basis  $\{l_i\}$  was shown to be

$$\{l_0, l_1, l_2, l_3, l_4, l_5\} = \{\alpha^{48}, \alpha^{45}, \alpha^{26}, \alpha^{23}, \alpha^{43}, \alpha^{51}\}$$

An RS symbol is representable as  $\alpha^n$  and in the dual basis as

$$z = z_0 \ell_0 + z_1 \ell_1 + \cdots + z_5 \ell_5$$

where

$$z_i = Tr(\beta^i \alpha^n) = Tr(\alpha^{n+3i}).$$

It remains to select a self-reciprocal generator polynomial over GF(2) f the (63, 53) RS code where

· .

$$J = 6$$
,  $N = 63$ ,  $E = 5$ ,  $I = 1$ 

$$g(x) = \sum_{j=b}^{b+9} (x-y^j) = \sum_{i=0}^{10} G_i x^i$$

From (11)

2b + 2E - 1 = N2b + 9 = 63. b = 27 and b + 9 = 36

The element y where

 $y^{27}, y^{28}, \dots, y^{36}$ 

are distinct roots of g(x) may be selected among  $\phi(63)/2$  or 18 reciprocal pairs of primitive elements. The generator  $\alpha$  is primitive and

 $\gamma = \alpha^k$ 

is primitive if and only if (k, 63) = 1.

For  $\gamma = \alpha^5$ ,

5

the coefficients of g(x) are

 $G_0 = G_{10} = 1$   $G_1 = G_9 = \alpha^{34}$   $G_2 = G_8 = \alpha^4$   $G_3 = G_7 = \alpha^{15}$   $G_4 = G_6 = 1$  $G_5 = \alpha^{54}$ 

The form of the  $\{T_{\underline{\ell}}\}$  functions (as shown in (17) for a (255, 223) RS code) is

$$T_{\ell}(z) = Tr(zG_{\ell}) = \sum_{j=0}^{5} z_{j}Tr(\ell_{j}G_{\ell})$$

The values of the traces  $Tr(l_jG_l)$  are tabulated in Table 2. Values of  $Tr(\alpha^n)$  are given in Table 1.

Components  $z_j$ 's of every z in the dual basis for which

$$Tr(l_{i}G_{l}) = 1$$

contribute to the output  $T_{\ell}$ . From Table 2, the  $T_{\ell}$  functions are

$$T_{0} = z_{0} = T_{4}$$

$$T_{1} = z_{1} + z_{5}$$

$$T_{2} = z_{4} + z_{5}$$

$$T_{3} = z_{5}$$

$$T_{5} = z_{2} + z_{4} + z_{5}$$

The output

, ÷

$$Tr(\beta^6 \alpha^n) = z_6$$

required in deriving  $\beta z$  from z is determined as follows:

1.0

| t                                                         | 0               | 1               | 2               | 3               | 4               | 5               |
|-----------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| <sup>و</sup> ئ <sup>6</sup> ر                             | a <sup>48</sup> | a <sup>45</sup> | a <sup>26</sup> | a <sup>23</sup> | a <sup>43</sup> | a <sup>51</sup> |
| ſr( <sup>£</sup> j <sup>G</sup> <sub>0</sub> )            | 1               | 0               | 0               | 0               | 0               | 0               |
| (*j <sup>G</sup> 1)                                       | a <sup>19</sup> | a <sup>16</sup> | a <sup>60</sup> | a <sup>57</sup> | a <sup>14</sup> | a <sup>22</sup> |
| Tr(LjG1)                                                  | 0               | 1               | 0               | 0               | 0               | 1               |
| <sup>و</sup> ان و کړ کې د ک | a <sup>52</sup> | a <sup>49</sup> | α <sup>30</sup> | α <sup>27</sup> | a <sup>45</sup> | a <sup>55</sup> |
| Tr(l <sub>j</sub> G <sub>2</sub> )                        | 0               | 0               | 0               | 0               | 1               | 1               |
| ٤ <sub>j</sub> G <sub>3</sub>                             | a <sup>0</sup>  | a <sup>60</sup> | a <sup>41</sup> | a <sup>38</sup> | م <sup>58</sup> | a <sup>3</sup>  |
| Tr(l <sub>j</sub> C <sub>j</sub> )                        | 0               | 0               | 0               | 0               | 0               | 1               |
| ٤ <sub>j</sub> G <sub>5</sub>                             | a <sup>39</sup> | a <sup>36</sup> | a <sup>17</sup> | 14              | α <sup>34</sup> | a <sup>42</sup> |
| $Tr(l_jC_5)$                                              | υ               | 0               | 1               | 0               | 1               | 1               |

Table 2.  $Tr(t_j G_t)$  Values for a (63, 53) RS Code

 $\{\ell_0, \ell_1, \ell_2, \ell_3, \ell_4, \ell_5\} = \{\alpha^{48}, \alpha^{45}, \alpha^{26}, \alpha^{23}, \alpha^{43}, \alpha^{51}\}$  $\{G_0, G_1, G_2, G_3, G_4, G_5\} = \{\alpha^0, \alpha^{34}, \alpha^4, \alpha^{15}, \alpha^0, \alpha^{54}\}$ 

Note that  $Tr(\ell_j G_0) = Tr(\ell_j G_4)$ .

| <b>z</b> 0 | <b>z</b> 1 | <b>z</b> 2 | <b>z</b> 3 | <b>z</b> 4      | <b>z</b> 5           | a <sup>n</sup>  | $\beta^{6}\alpha^{n} = \alpha^{n+18}$ | $Tr(\beta^6 \alpha^n)$ |
|------------|------------|------------|------------|-----------------|----------------------|-----------------|---------------------------------------|------------------------|
| 1          | 0          | 0          | 0          | 0               | 0                    | a <sup>48</sup> | ۵ <sup>3</sup>                        | 1                      |
| 0          | 1          | 0          | 0          | 0               | 0                    | a <sup>45</sup> | ۵                                     | 0                      |
| 0          | 0          | 1          | 0          | 0               | 0                    | 26<br>u         | ά44<br>α                              | 1                      |
| 0          | 0          | 0          | 1          | 0               | 0                    | α <sup>23</sup> | <sup>41</sup>                         | 0                      |
| 0          | 0          | 0          | 0          | 1               | 0                    | a <sup>43</sup> | a <sup>61</sup>                       | 1                      |
| 0          | 0          | 0          | 0          | ð               | 1                    | a <sup>51</sup> | ۵ <sup>6</sup>                        | 1                      |
|            |            |            | Tr         | (в <sup>6</sup> | a <sup>n</sup> ) = : | $z_6 = z_0$     | $+ z_{2} + z_{4} + z_{5}$             |                        |

The linear binary matrix with inputs  $z_0, z_1, \dots, z_5$  and outputs  $T_0, T_1, \dots, T_5$ and  $z_6$  (i.e.,  $Tr(\beta^6 \alpha^n)$ ) for a (63, 53) RS code is shown in Fig. 4.

In a conventional (N,K) RS encoder, an information or check symbol is represented as

$$\alpha^{n} = u_{0} + u_{1} \alpha + \cdots + u_{J-1} \alpha^{J-1}$$

and denoted by

: ]

$$u_0 u_1 \cdots u_{J-1}$$

In an (N,K) RS encoder employing Berlekamp's architecture, the symbols (information and check) are represented in the <u>dual basis</u>. The transformation from one representation to the other is linear. The symbol  $\alpha^{1}$  in the dual basis is represented as

$$\begin{bmatrix} \operatorname{Tr}(\alpha^{\mathbf{i}}) \end{bmatrix} \ \boldsymbol{\ell}_{0} + \begin{bmatrix} \operatorname{Tr}(\beta\alpha^{\mathbf{i}}) \end{bmatrix} \ \boldsymbol{\ell}_{1} + \cdots + \begin{bmatrix} \operatorname{Tr}(\beta^{\mathbf{J}-1}\alpha^{\mathbf{i}}) \end{bmatrix} \ \boldsymbol{\ell}_{j-1}$$

á



....

1

÷

Figure 4. Implementation of the Linear Binary Matrix for a (63, 53) RS Code

and denoted by

$$z_0 z_1 \cdots z_{J-1}$$

1.1

where  $z_k = Tr(\beta^k \alpha^2)$ . Thus

Tr(
$$\alpha^{j}$$
), Tr( $\beta\alpha^{j}$ ), ..., Tr( $\beta^{J-1}\alpha^{j}$ )  $\leftrightarrow \alpha^{j}$   
Tr( $\alpha^{j}$ ), Tr( $\beta\alpha^{j}$ ), ..., Tr( $\beta^{J-1}\alpha^{j}$ )  $\leftrightarrow \alpha^{j}$ 

and

$$Tr(\alpha^{i}) + Tr(\alpha^{j}), Tr(\beta\alpha^{i}) + Tr(\beta\alpha^{j}), \cdots, Tr(\beta^{J-1}\alpha^{i}) + Tr(\beta^{J-1}\alpha^{j})$$
$$= Tr\left[(\alpha^{i}+\alpha^{j})\right], Tr\left[\beta(\alpha^{i}+\alpha^{j})\right], \cdots, Tr\left[\beta^{J-1}(\alpha^{i}+\alpha^{j})\right] \leftrightarrow \alpha^{i} + \alpha^{j}$$

The automorphism in  $GF(2^J)$  of the two representations under the same rules of "addition" is illustrated in Example 7.

#### Example 7

Refer to the two representations of elements in  $GF(2^6)$  in Table 1.

|                   | <sup>u</sup> 5 | <sup>u</sup> 4 | <sup>u</sup> 3 | <sup>u</sup> 2 | <sup>u</sup> 1 | <sup>u</sup> 0 |           | <b>²</b> 0 | ²1 | <b>z</b> 2 | <b>z</b> 3 | <b>z</b> 4 | <b>z</b> 5 |  |   |
|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------|------------|----|------------|------------|------------|------------|--|---|
| a <sup>24</sup>   | 1              | 1              | 0              | 0              | 1              | 0              | <b>+</b>  | 1          | 0  | 0          | 1          | 0          | 0          |  |   |
| + a <sup>58</sup> | 1              | 0              | 1              | 1              | 1              | 1              | <b></b>   | 0          | 1  | 1          | 1          | 0          | 1          |  |   |
| 44<br>a           | 0              | 1              | 1              | 1              | 0              | 1              | <b></b> + | 1          | 1  | 1          | 0          | 0          | 1          |  | D |

Å.

### Example 8

4

Given the information symbol sequence

ORIGINAL PAGE IS

to be encoded by a (63, 53) RS encoder incorporating Berlekamp's architecture. Leading zero information symbols have no effect on the 10 6-bit register sections (which are initially cleared). The single nonzero information symbol is entered into the 2 register via the Y register, and the  $T_{g}$  functions (derived in Example 6 and implemented in Fig. 4) are applied to determine the  $z_0$ 's of  $\{zG_g\}$ . Replacing z with  $\beta z$  (by clocking the 2 register) and applying the  $T_{g}$  functions yield the  $z_1$ 's of  $\{zG_{g}\}$  and so on as shown in Table 3.

The symbols of the codeword in Table 3 expressed as powers of  $\alpha$  are compared with corresponding coefficients of g(x) as follows.

 $C_{62} \cdots C_{11} C_{10} C_9 C_8 C_7 C_6 C_5 C_4 C_3 C_2 C_1 C_0$ Codeword  $\alpha^* \cdots \alpha^* \alpha^{51} \alpha^{22} \alpha^{55} \alpha^3 \alpha^{51} \alpha^{42} \alpha^{51} \alpha^3 \alpha^{55} \alpha^{22} \alpha^{51}$ Coefficients of g(x)  $\alpha^* \cdots \alpha^* \alpha^0 \alpha^{34} \alpha^4 \alpha^{15} \alpha^0 \alpha^{54} \alpha^0 \alpha^{15} \alpha^4 \alpha^{35} \alpha^0$ 

Note that the codeword polynomial is a scalar multiple (of  $a^{51}$ ) of the g(x) of the (63, 53) RS code. This property of RS codes provides a simple check on the derived T<sub>g</sub> functions and z<sub>6</sub> (i.e., Tr( $\beta^6 a^n$ )).

### V. MATHEMATICA' CHARACTERIZATION OF THE (255, 223) RS ENCODER DESIGNED BY BERLEKAMP

As previously discussed, the independent parameter values of the (255, 223) RS code are

POOR QUALITY

.

ł

i

| <br>       |   |    |                |                  |                  |                  |                |                |            |                |                |     |                   |                 |
|------------|---|----|----------------|------------------|------------------|------------------|----------------|----------------|------------|----------------|----------------|-----|-------------------|-----------------|
|            |   |    |                |                  |                  |                  |                | t <sub>0</sub> | <b>L</b> 1 | <sup>2</sup> 2 | <sup>1</sup> 3 | £_4 | <sup>1</sup> 5    |                 |
|            |   |    |                |                  |                  |                  |                | 0              | 0          | 0              | 0              | 0   | 0                 | с <sub>62</sub> |
|            |   |    |                |                  |                  |                  |                |                |            |                | •              |     |                   |                 |
|            | z | βz | <sup>2</sup> z | β <sup>3</sup> z | 8 <sup>4</sup> z | β <sup>5</sup> z |                |                |            | •              | •              |     |                   |                 |
| <b>z</b> 0 | 0 | 0  | 0              | 0                | 0                | 1                |                | 0              | 0          | 0              | 0              | 0   | 0                 | с <sub>11</sub> |
| <b>z</b> 1 | 0 | 0  | 0              | 0                | 1                | 1                |                | 0              | 0          | 0              | 0              | 0   | 1                 | с <sub>10</sub> |
| <b>z</b> 2 | 0 | 0  | 0              | 1                | 1                | 0 <sup>.</sup>   |                | 1              | 1          | 0              | 1              | 1   | 1                 | c <sub>9</sub>  |
| <b>z</b> 3 | 0 | 0  | 1              | 1                | 0                | 1                |                | 1              | 0          | 1              | 1              | 1   | 0                 | c <sub>8</sub>  |
| <b>z</b> 4 | 0 | 1  | 1              | 0                | 1                | 0                |                | 1              | 1          | 0              | 1              | 0   | 0                 | с <sub>7</sub>  |
| <b>z</b> 5 | 1 | 1  | 0              | 1                | 0                | 0                |                | 0              | 0          | 0              | 0              | 0   | 1                 | с <sub>6</sub>  |
|            |   |    |                |                  |                  |                  |                | 1              | 0          | 1              | 0              | 0   | 0                 | C <sub>5</sub>  |
|            |   |    |                |                  |                  |                  |                | 0              | 0          | 0              | 0              | 0   | 1                 | c <sub>4</sub>  |
|            |   |    |                |                  |                  |                  |                | 1              | 1          | 0              | 1              | 0   | 0                 | C3              |
|            |   |    |                |                  |                  |                  |                | 1              | 0          | 1              | 1              | 1   | 0                 | c <sub>2</sub>  |
|            |   |    |                |                  |                  |                  |                | 1              | 1          | 0              | 1              | 1   | 1                 | c,              |
|            |   |    |                |                  |                  |                  |                | 0              | 0          | 0              | 0              | 0   | 1                 | c <sub>o</sub>  |
|            |   |    |                |                  |                  |                  |                | +              |            |                |                |     | <b>†</b>          | C C             |
|            |   |    |                |                  |                  |                  | т              | (z)            | )          |                |                | TL  | ( <sup>5</sup> z) |                 |
|            |   |    |                |                  |                  |                  |                |                |            |                |                |     |                   |                 |
|            |   |    | т0             | = <sup>z</sup> 0 | )                | = T <sub>4</sub> | т3             | -              | <b>z</b> 5 |                |                |     |                   |                 |
|            |   |    | т <sub>1</sub> | • <sup>z</sup> 1 | + z              | 5                | <sup>т</sup> 5 | -              | ².2        | + :            | <sup>2</sup> 4 | ⊦ z | 5                 |                 |
|            |   |    | т <sub>2</sub> | = z <sub>4</sub> | + z              | 5                | Tr             | (B             | an)        | ) =            | <sup>2</sup> 6 | = ; | $z_0 + z_2 + z_4$ | $+ z_{5}$       |
|            |   |    | -              |                  |                  |                  |                |                |            |                |                |     |                   | -               |

Table 3. Check Symbol Computation in the Dual Basis of a (63, 53) RS Code

ł

- J = 8 bits per symbol
- E = 16 symbol error correction capability
- I = 5 (symbol) interleaving depth

The generator  $\alpha$  of the nonzero field elements in GF(2<sup>8</sup>) is a root of the primitive polynomial over GF(2)

:

$$x^{8} + x^{7} + x^{2} + x + 1$$
 (18)

The field element

$$\beta = \alpha^{117} \tag{19}$$

was selected to form the basis in  $GF(2^8)$ 

$$\{1, \beta, \beta^2, \cdots, \beta^7\} \quad \{\beta^i\}$$

The resulting dual basis is

$${t_j} = {t_0, t_1, \dots, t_7}$$
  
=  ${a^{125}, a^{88}, a^{226}, a^{163}, a^{46}, a^{184}, a^{67}, a^{242}}$   
(20)

The field element

1

 $\gamma = \alpha^{11} \tag{21}$ 

÷

Ĺ

was selected in specifying the self-reciprocal generator polynomial

$$g(x) = \prod_{j=112}^{143} (x-\gamma^j) = \sum_{i=0}^{32} c_i x^i$$

₹.

,

•

The coefficients of g(x) in expanded form are

$$G_{0} = G_{32} = \alpha^{0} \qquad G_{8} = G_{24} = \alpha^{97}$$

$$G_{1} = G_{31} = \alpha^{249} \qquad G_{9} = G_{23} = \alpha^{30}$$

$$G_{2} = G_{30} = \alpha^{59} \qquad G_{10} = G_{22} = \alpha^{3}$$

$$G_{3} = G_{29} = \alpha^{66} \qquad G_{11} = G_{21} = \alpha^{213}$$

$$G_{4} = G_{28} = \alpha^{4} \qquad G_{12} = G_{20} = \alpha^{50}$$

$$G_{5} = G_{27} = \alpha^{43} \qquad G_{13} = G_{19} = \alpha^{66}$$

$$G_{6} = G_{26} = \alpha^{126} \qquad G_{14} = G_{18} = \alpha^{170}$$

$$G_{7} = G_{25} = \alpha^{251} \qquad G_{15} = G_{17} = \alpha^{5}$$

$$G_{16} = \alpha^{24}$$

$$(22)$$

Note that  $G_3 = G_{29} = G_{13} = G_{19}$ . The resulting  $T_g$  functions are:

> $T_0 = z_0$  $T_1 = z_1 + z_2 + z_4$ + z<sub>6</sub>  $T_2 = z_2 + z_3$  $T_3 = z_0 + z_2 + z_3 + z_4 + z_5$  $= T_{13}$  $T_4 = z_0 + z_2$ + z7  $T_5 = z_0 + z_1 + z_2$  $+ z_6 + z_7$  $T_6 = z_0 + z_1$  $+ z_5 + z_6$  $T_7 = z_1 + z_2 + z_4$  $T_8 = z_0 + z_1 + z_3$ + z<sub>6</sub> + z<sub>7</sub>  $T_9 = z_0 + z_2 + z_3 + z_4 + z_5$  $T_{10} = z_0 + z_1$ + z<sub>4</sub> + z7 T<sub>11</sub> **z**4

 $T_{12} = z_0 + z_1 + z_2 + z_3 + z_4 + z_5 + z_6 + z_7$   $T_{14} = z_0 + z_1 + z_2 + z_4 + z_5 + z_6$   $T_{15} = z_0 + z_1 + z_3 + z_5 + z_7$   $T_{16} = z_1 + z_2 + z_6$ 

ORIGINAL PAGE IS OF POOR QUALITY

In addition to the T, functions

$$\operatorname{Tr}(\beta^{8}\alpha^{n}) = z_{8} = z_{0} + z_{1} + z_{3} + z_{7}$$

is an output of the linear binary matrix as discussed in Section IV-B.

The sole criterion in the selection of  $\beta$  in (19) and  $\gamma$  in (21) was the realization of a linear binary matrix of minimal complexity. The dual basis  $\{l_j\}$  directly results from the selection of  $\beta$ . The coefficients  $\{G_{g}\}$  of g(x) are fixed by the choice of  $\gamma$ . As discussed and shown in (17), those components  $z_j$ 's in the dual basis for which

$$Tr(\ell_i G_\ell) = 1$$

contribute to the output  $T_{\ell}$ . A measure of complexity for a given  $\beta$  and  $\gamma$  is the number of 1's in the set

$${Tr(l_G)}$$
 for  $0 \le j \le 8$ 

and distinct  $G_{\rho}$ 's among

$$\{c_0, c_1, \cdots, c_{16}\}$$

Using this measure, Berlekamp combined a computer search with some hand computation in finding a  $\beta\gamma$  combination yielding a set of T<sub>g</sub> functions of minimal complexity. The entire binary matrix was realized with 24 2-input Exclusive-OR gates organized for maximum gate sharing within three levels of gating.

The two representations of field elements in  $GF(2^8)$  appear in Table 4.

| n of a <sup>n</sup> | i of a <sup>i</sup> | Tr(a <sup>n</sup> ) | j of L <sub>j</sub> | n of a <sup>n</sup> | i of a <sup>i</sup> | Tr (a <sup>n</sup> ) | j of l <sub>j</sub>         |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|-----------------------------|
|                     | 76543210            |                     | 01234567            |                     | 76543210            |                      | 01234567                    |
| *                   | 00000000            | 0                   | 00000000            | 46                  | 11110000            | 0                    | 00001000(k)                 |
| 0                   | 00000001            | Ŏ                   | 01111011            | 47                  | 01100111            | õ                    | $\frac{00001000}{01001110}$ |
| i                   | 00000010            | i                   | 10101111            | 48                  | 11001110            | ĩ                    | 10101110                    |
| 2                   | 00000100            | 1                   | 10011001            | 49                  | 00011011            | 1                    | 10101000                    |
| 3                   | 00001000            | 1                   | 11111010            | 50                  | 00110110            | Ô                    | 01011100                    |
| ۵<br>۵              | 00010000            | 1                   | 10000110            | 51                  | 01101100            | õ                    | 01100000                    |
| Ś                   | 00100000            | 1                   | 11101100            | 52                  | 11011000            | õ                    | 00011110                    |
| 6                   | 01000000            | 1                   | 11101111            | 53                  | 00110111            | õ                    | 00100111                    |
| 7                   | 10000000            | 1.                  | 10001101            | 54                  | 01101110            | ĩ                    | 11001111                    |
| 8                   | 10000111            | ī                   | 11000000            | 55                  | 11011100            | 1                    | 10000111                    |
| 9                   | 10001001            | 0                   | 00001100            | 56                  | 00111111            | ī                    | 11011101                    |
| 10                  | 10010101            | 1 ·                 | 11101001            | 57                  | 01111110            | Ô                    | 01001001                    |
| 11                  | 10101101            | 0                   | 01111001            | 58                  | 11111100            | Õ                    | 01101011                    |
| 12                  | 11011101            | 1                   | 11111100            | 59                  | 01111111            | õ                    | 00110010                    |
| 13                  | 00111101            | 0                   | 01110010            | 60                  | 11111110            | ĩ                    | 11000100                    |
| 14                  | 01111010            | 1                   | 11010000            | 61                  | 01111011            | 1                    | 10101011                    |
| 15                  | 11110100            | 1                   | 10010001            | 62                  | 11110110            | ō                    | 00111110                    |
| 16                  | 01101111            | ī                   | 10110100            | 63                  | 01101011            | ň                    | 00101101                    |
| 17                  | 11011110            | ō                   | 00101000            | 64                  | 11010110            | ĩ                    | 11010010                    |
| 18                  | 00111011            | Õ                   | 01000100            | 65                  | 00101011            | î                    | 11000010                    |
| 19                  | 01110110            | 1                   | 10110011            | 66                  | 01010110            | ō                    | 01011111                    |
| 20                  | 11101100            | 1                   | 11101101            | 67                  | 10101100            | Ő                    | 0000010(r)                  |
| 21                  | 01011111            | 1                   | 11011110            | 68                  | 11011:11            | Ő                    | $\frac{00000010}{01010011}$ |
| 22                  | 10111110            | 0                   | 00101011            | 60                  | 00111001            | ĩ                    | 11101011                    |
| 23                  | 11111011            | Ō                   | 00100110            | 7.4                 | 01110010            | ō                    | 00101010                    |
| 24                  | 01110001            | 1                   | 11111110            | 71                  | 11100100            | õ                    | 00010111                    |
| 25                  | 11100010            | 0                   | 00100001            | 72                  | 01001111            | õ                    | 01011000                    |
| 26                  | 01000011            | 0                   | 00111011            | 73                  | 10011110            | ĩ                    | 11000111                    |
| 27                  | 10000110            | 1                   | 10111011            | 74                  | 10111011            | 1                    | 11001001                    |
| 28                  | 10001011            | 1                   | 10::00011           | 75                  | 11110001            | ō                    | 01110011                    |
| 29                  | 10010001            | Ō                   | 01110000            | 76                  | 01100101            | 1                    | 11100001                    |
| 30                  | 10100101            | ĩ                   | 10000011            | 77                  | 11001010            | 0                    | 00110111                    |
| 31                  | 11001101            | 0                   | 01111010            | 78                  | 00010011            | 0                    | 01010010                    |
| 32                  | 00011101            | ī                   | 10011110            | 79                  | 00100110            | 1                    | 11011010                    |
| 33                  | 00111010            | Ō                   | 00111111            | 80                  | 01001100            | 1                    | 10001100                    |
| 34                  | 01110100            | Ō                   | 00011100            | 81                  | 10011000            | 1                    | 11110001                    |
| 35                  | 11101000            | Õ                   | 01110100            | 82                  | 10110111            | 1                    | 10101010                    |
| 36                  | 01010111            | Ō                   | 00100100            | 83                  | 11101001            | 0                    | 00001111                    |
| 37                  | 10101110            | 1                   | 10101101            | 84                  | 01010101            | ĩ                    | 10001011                    |
| 38                  | 11011011            | 1                   | 11001010            | 85                  | 10101010            | ō                    | 00110100                    |
| 39                  | 00110001            | Ō                   | 00010001            | 80                  | 11010011            | Ō                    | 00110000                    |
| 40                  | 01100010            | ī                   | 10101100            | 87                  | 00100001            | ĩ                    | 10010111                    |
| 41                  | 11000100            | ī                   | 11111011            | 88                  | 01000010            | 0                    | 01000000(1.)                |
| 42                  | 00001111            | 1                   | 10110111            | 89                  | 10000100            | Ō                    | 00010100                    |
| 43                  | 00011110            | Ō                   | 01001010            | 90                  | 10001111            | Ō                    | 00111010                    |
| 44                  | 00111100            | Ō                   | 00001001            | 91                  | 10011001            | ĩ                    | 10001010                    |
| 45                  | 01111000            | Ō                   | 01111111            | 92                  | 10110101            | ō                    | 00000101                    |

Table 4. Two Representations of Field Elements in  $GF(2^8)$ 

and the second se

â

| n of a <sup>n</sup> | i of a <sup>i</sup> | Tr (a <sup>n</sup> ) | j of £    | n of a <sup>n</sup> | i of a <sup>1</sup> | $Tr(\alpha^n)$ | j of <sup>1</sup> j |
|---------------------|---------------------|----------------------|-----------|---------------------|---------------------|----------------|---------------------|
|                     | 76543210            |                      | 01234567  |                     | 76543210            |                | 01234567            |
| 93                  | 11101101            | 1                    | 10010110  | 140                 | 11001011            | 0              | 01001100            |
| 94                  | 01011101            | 0                    | 01110001  | 141                 | 00010001            | ĩ              | 11111101            |
| 95                  | 10111010            | i                    | 10110010  | 142.                | 00100010            | 0              | 01000011            |
| 96                  | 11110011            | ī                    | 11011100  | 143                 | 01000100            | Õ              | 01110110            |
| 97                  | 01100001            | 0                    | 01111000  | 144                 | 10001000            | ő              | 01110111            |
| 98                  | 11000010            | i                    | 11001101  | 145                 | 10010111            | õ              | 01000110            |
| 99                  | 00000011            | ī                    | 11010100  | 146                 | 10101001            | ĩ              | 11100000            |
| 100                 | 00000110            | 0                    | 00110110  | 147                 | 11010101            | 0              | 00000110            |
| 101                 | 00001100            | Ō                    | 01100011  | 148                 | 00101101            | 1              | 11110100            |
| 102                 | 00011000            | 0.                   | 01111100  | 149                 | 01011010            | 0              | 00111100            |
| 103                 | 00110000            | Õ                    | 01101010  | 150                 | 10110100            | Ő              | 01111110            |
| 104                 | 01100000            | Ō                    | 00000011  | 151                 | 11101111            | õ              | 00111001            |
| 105                 | 11000000            | Ō                    | 01100010  | 152                 | 01011001            | 1              | 11101000            |
| 106                 | 00000111            | Ō                    | 01001101  | 153                 | 10110010            | 0              | 01001000            |
| 107                 | 00001110            | i                    | 11001100  | 154                 | 11100011            | Ō              | 01011010            |
| 108                 | 00011100            | 1                    | 11100101  | 155                 | 01000001            | ĩ              | 10010100            |
| 109                 | 00111000            | 1                    | 10010000  | 156                 | 10000010            | 0              | 00100010            |
| 110                 | 01110000            | ī                    | 10000101  | 157                 | 10000011            | õ              | 01011001            |
| 111                 | 11100000            | ī                    | 10001110  | 158                 | 10000001            | 1              | 11110110            |
| 112                 | 01000111            | ī                    | 10100010  | 159                 | 10000101            | 0              | 01101111            |
| 113                 | 10001110            | Ō                    | 01000001  | 160                 | 10001101            | 1              | 10010101            |
| 114                 | 10011011            | Ō                    | 00100101  | 161                 | 10011101            | 0              | 00010011            |
| 115                 | 10110001            | 1                    | 10011100  | 162                 | 10111101            | ĩ              | 11111111            |
| 116                 | 11100101            | Ō                    | 01101100  | 163                 | 11111101            | 0              | $00010000(l_{-})$   |
| 117                 | 01001101            | 1                    | 11110111  | 164                 | 01111101            | 1              | 10011101            |
| 118                 | 10011010            | 0                    | 01011110  | 165                 | 11111010            | 0              | 01011101            |
| 119                 | 10110011            | 0                    | 00110011  | 166                 | 01110011            | 0              | 01010001            |
| 120                 | 11100001            | 1                    | 11110101  | 167                 | 11100110            | 1              | 10111000            |
| 121                 | 01000101            | 0                    | 00001101  | 168                 | 01001011            | ī              | 11000001            |
| 122                 | 10001010            | 1                    | 11011000  | 169                 | 10010110            | Ō              | 00111101            |
| 123                 | 10010011            | 1                    | 11011111  | 170                 | 10101011            | 0              | 01001111            |
| 124                 | 10100001            | 0                    | 00011010  | 171                 | 11010001            | 1              | 10011111            |
| 125                 | 11000101            | 1                    | 10000000( | ٤_)172              | 00100101            | 0              | 00001110            |
| 126                 | 00001101            | 0                    | 00011000  | 0 173               | 01001010            | 1              | 10111010            |
| 127                 | 00011010            | 1                    | 11010011  | 174                 | 10010100            | 1              | 10010010            |
| 128                 | 00110100            | 1                    | 11110011  | 175                 | 10101111            | 1              | 11010110            |
| 129                 | 01101000            | 1                    | 11111001  | 176                 | 11011001            | 0              | 01100101            |
| 130                 | 11010000            | 1                    | 11100100  | 177                 | 00110101            | 1              | 10001000            |
| 131                 | 00100111            | 1                    | 10100001  | 178                 | 01101010            | Ō              | 01010110            |
| 132                 | 01001110            | 0                    | 00100011  | 179                 | 11010100            | Ō              | 01111101            |
| 133                 | 10011100            | 0                    | 01101000  | 180                 | 00101111            | 0              | 01011011            |
| 134                 | 10111111            | 0                    | 01010000  | 181                 | 01011110            | 1              | 10100101            |
| 135                 | 11111001            | 1                    | 10001001  | 182                 | 10111100            | 1              | 10000100            |
| 136                 | 01110101            | 0                    | 01100111  | 183                 | 11111111            | 1              | 10111111            |
| 137                 | 11101010            | 1                    | 11011011  | 184                 | 01111001            | 0              | 00000100(1_)        |
| 138                 | 01010011            | 1                    | 10111101  | 185                 | 11110010            | 1              | 10100111            |
| 139                 | 10100110            | 0                    | 01010111  | 186                 | 01100011            | 1              | 11010111            |

Table 4. Two Representations of Field Elements in  $GF(2^8)$  (contd)

3

| n of a <sup>n</sup> | i of a <sup>i</sup> | Tr(a <sup>n</sup> ) | j of l <sub>i</sub> n | of a <sup>n</sup> | i of a <sup>1</sup> | $Tr(\alpha^n)$ | j of l <sub>i</sub> |
|---------------------|---------------------|---------------------|-----------------------|-------------------|---------------------|----------------|---------------------|
|                     | 76543210            |                     | 01234567              |                   | 76543210            |                | 01234567            |
| 187                 | 11000110            | 0                   | 01010100              | 234               | 10001100            | 1              | 11101110            |
| 188                 | 00001011            | 0                   | 00101110              | 235               | 10011111            | 1              | 10111100            |
| 189                 | 00010110            | 1                   | 10110000              | 236               | 10111001            | 0              | 01100110            |
| 190                 | 00101100            | 1                   | 10001111 '            | 237               | 11110101            | 1              | 11101010            |
| 191                 | 01011000            | 1                   | 10010011              | 238               | 01101101            | 0              | 00011011            |
| 192                 | 10110000            | 1                   | 11100111              | 239               | 11011010            | 1              | 10110001            |
| 193                 | 11100111            | 1                   | 11000011              | 240               | 00110011            | 1              | 10111110            |
| 194                 | 01001001            | 0                   | 01101110              | 241               | 01100110            | 0              | 00110101            |
| 195                 | 10010010            | 1                   | 10100100              | 242               | 11001100            | 0              | 0000001(1,)         |
| 196                 | 10100011            | 1                   | 10110101              | 243               | 00011111            | 0              | 00110001            |
| 197                 | 11000001            | 0                   | 00011001              | 244               | 00111110            | 1              | 10100110            |
| 198                 | 00000101            | 1                   | 11100010              | 245               | 01111100            | 1              | 11100110            |
| 199                 | 00001010            | 0                   | 01010101              | 246               | 11111000            | 1              | 11110010            |
| 200                 | 00010100            | 0                   | 00011111              | 247               | 01110111            | 1              | 11001000            |
| 201                 | 00101000            | 0                   | 00010110              | 248               | 11101110            | 0              | 01000010            |
| 202                 | 01010000            | 0                   | 01101001              | 249               | 01011011            | 0              | 01000111            |
| 203                 | 10100000            | 0                   | 01100001              | 250               | 10110110            | 1              | 11010001            |
| 204                 | 11000111            | 0                   | 00101111              | 251               | 11101011            | 1              | 10100000            |
| 205                 | 00001001            | 1                   | 10000001              | 252               | 01010001            | 1              | 00010010            |
| 206                 | 00010010            | 0                   | 00101001              | 253               | 10100010            | 1              | 11001110            |
| 207                 | 00100100            | 0                   | 01110101              | 254               | 11000011            | 1              | 10110110            |
| 208                 | 01001000            | 0                   | 00010101              |                   |                     |                |                     |
| 209                 | 10010000            | 0                   | 00001011              |                   |                     |                |                     |
| 210                 | 10100111            | 0                   | 00101100              |                   |                     |                |                     |
| 211                 | 11001001            | 1                   | 11100011              |                   |                     |                |                     |
| 212                 | 00010101            | 0                   | 01100100              |                   |                     | •              |                     |
| 213                 | 00101010            | 1                   | 10111001              |                   |                     |                |                     |
| 214                 | 01010100            | 1                   | 11110000              |                   |                     |                |                     |
| 215                 | 10101000            | 1                   | 10011011              |                   |                     |                |                     |
| 216                 | 11010111            | 1                   | 10101001              |                   |                     |                |                     |
| 217                 | 00101001            | 0                   | 01101101              |                   |                     |                |                     |
| 218                 | 01010010            | 1                   | 11000110              |                   |                     |                |                     |
| 219                 | 10100100            | 1                   | 11111000              |                   |                     |                |                     |
| 220                 | 11001111            | 1                   | 11010101              |                   |                     |                |                     |
| 221                 | 00011001            | 0                   | 00000111              |                   |                     |                |                     |
| 222                 | 00110010            | 1                   | 11000101              |                   |                     |                |                     |
| 223                 | 01100100            | 1                   | 10011010              |                   |                     |                |                     |
| 224                 | 11001000            | 1                   | 10011000              |                   |                     |                |                     |
| 225                 | 00010111            | 1                   | 11001011              |                   |                     |                |                     |
| 226                 | 00101110            | 0                   | 00100000(12           | )                 |                     |                |                     |
| 227                 | 01011100            | 0                   | 00001010              |                   |                     |                |                     |
| 228                 | 10111000            | 0                   | 00011101              |                   |                     |                |                     |
| 229                 | 11110111            | 0                   | 01000101              |                   |                     |                |                     |
| 230                 | 01101001            | 1                   | 10000010              |                   |                     |                |                     |
| 231                 | 11010010            | 0                   | 01001011              |                   |                     |                |                     |
| 232                 | 00100011            | 0                   | 00111000              |                   |                     |                |                     |
| 233                 | 01000110            | 1                   | 11011001              |                   |                     |                |                     |

Table 4. Two Representations of Field Elements in GF(2<sup>8</sup>) (contd)

ψ.

44

ź

VI. HARDWARE COST OF RS ENCODERS - CONVENTIONAL VS BERLEKAMP'S ARCHITECTURE

There are two existing designs utilizing Galileo flight-qualified parts with enough similarity in their functional specifications to make a meaningful comparison.

- (1) One is a conventional (255, 223) RS encoder with an interleaving depth I of 2. It accepts a bit-serial input of up to approximately 800 kbits per second. An input sequence comprised of 2 sets of 223 8-bit symbols (i.e., 3558 bits) need not be continuous. This encoder will serve as an outer encoder for compressed imaging data aboard the Galileo spacecraft.
- (2) The other is a (255, 223) RS encoder utilizing Berlekamp's architecturc with an interleaving depth I of 5. The (2551, 2231) code can be shortened to a ((255-Q)I, (223-Q)I) shortened code where

### $223 - Q \ge 1$

The leading QI symbols of the shortened code are viewed as 0's (00...0) and discarded. It accepts a bit-serial input up to approximately 400 kbits per second. An input sequence comprised of 5 sets of 223-Q 8-bit symbols need not be continuous. This encoder was designed and implemented in breadboard form by E.R. Berlekamp of Cyclotomics Inc. under a JPL contract. It has been adopted as the outer encoder for all science and engineering data emanating from the NASA ISPM spacecraft. The JPL specifications were in accordance with Galileo requirements, which exceed those of ISPM (specifically serial input and output bit rates). The (255, 223) RS code with an interleaving depth of 5 was a contender to the (24, 12) extended (binary) Golay code (bit) interleaved to a depth of 36. The extended Golay code was the early choice for the outer code of nonimaging science data for the Galileo spacecraft. Subsequent to a third and final review, the extended Golay code will serve as the outer code. However, packetized telemetry with RS/convolutional concatenated coding has been adopted as a NASA-JPL standard for future spacecraft missions.

The logic building blocks used in (1) and (2) were integrated circuits (ICs) in the Complementary-symmetry Metal Oxide Semiconductor (CMOS) family. Low power and amenability to radiation hardening are characteristics of CMOS technology that are essential in space applications. ROMs and RAMs each occupy 3 16-pin IC locations on flight circuit boards. The number of ICs and IC locations for each design are as follows:

(1) Conventional RS encodar

| Total number | of | ICs excluding ROMs and RAMs | 26 |
|--------------|----|-----------------------------|----|
| Total number | of | ROMs and RAMs               | 24 |
| Total number | of | 16 pin locations            | 98 |

(2)RS encoder with Berlekamp architectureTotal number of ICs excluding RAMs31Total number of RAMs8Total number of 16 pin locations5.

#### VII. TESTING RS ENCODERS

#### A. INTRODUCTION

As described in Section IV, a conventional RS encoder contains an FSR. If symbol interleaving is required, each register section of the FSR is lengthened by a factor of I (see Eq. 10). An RS encoder utilizing Berlekamp's architecture similarly incorporates an FSR. It differs principally from a conventional encoder in that symbol multiplication is bit-serial and is realized in hardware.

The size of the codeword dictionary of a (255, 223) RS code is  $(256)^{223}$  or  $2^{1784}$  (which approximately equals  $10^{537}$ ). However, the number of information symbol sequences required to test the functional integrity of an encoder is surprisingly small. This is due to the linearity, cyclic structure and other properties (subsequently discussed) of RS codes.

Three classes of RS symbol sequences provide a user with a simple, systematic and effective means of testing conventional as well as Berlekamp types of RS encoders. Hereafter, the classes of symbol sequences are referred to as the generator polynomial coefficient sequence (GCS), the constant symbol sequence (CS), and the iterative symbol sequence (IS).

Conventional and Berlekamp type of (255, 223) RS encoders are assumed to have the same self-reciprocal generator polynomial whose coefficients appear in (22).

# ORIGINAL PART IS

The representation of symbols associated with the conventional encoder are the polynomials in  $\alpha$  appearing in Table 4. Corresponding to each polynomial in  $\alpha$  is the representation in the dual basis of symbols associated with the Berlekamp-type encoder. Given

 $\alpha^{n} = u_{7}\alpha^{7} + u_{6}\alpha^{6} + \cdots + u_{0}$ 

the corresponding element is

$$z = z_0^{\ell_0} + z_1^{\ell_1} + \cdots + z_7^{\ell_7}$$

where

 $[z_0, z_1, \dots, z_7] = [u_7, u_6, \dots, u_0] T_{\alpha \ell}$ 

and

$$T_{\alpha\ell} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}$$
(24)

Row 1, row 2,  $\cdots$ , and row 8 in T are representations in the dual basis of  $\alpha^7$  (10  $\cdots$ , 0),  $\alpha^6$  (010  $\cdots$  0), ---, and  $\alpha^0$  (00  $\cdots$  01), respectively. The inverse of  $T_{\alpha l}$  is

$$T_{\alpha\ell}^{-1} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

(25)

Row 1, row 2,  $\cdots$ , and row 8 in  $T_{\alpha\ell}^{-1}$  are polynomials in  $\alpha$  corresponding to  $\ell_0$  (10  $\cdots$  0),  $\ell_1$  (010  $\cdots$  0),  $\cdots$ , and  $\ell_7$  (00  $\cdots$  01), respectively. Thus

 $[z_0, z_1, \dots, z_7] T_{\alpha \ell}^{-1} = [u_7, u_6, \dots, u_0]$ 

Given a conventional and a Berlekamp type of an (N,K) RS encoder with a common g(x). The <u>transformational equivalence</u> of codewords is illustrated in Fig. 5.

**B.** TEST SEQUENCES

#### 1. The Generator (Polynomial) Coefficient Sequence (GCS)

The generator polynomial and every scalar multiple of the generator polynomial of an RS code are codeword polynomials of lowest degree. Consider the information symuol sequence

$$\begin{array}{c} c_{254} c_{253} \cdots c_{33} c_{32} \\ a^{*} a^{*} \cdots a^{*} a^{0} \end{array}$$

associated with a conventional (255, 223) RS encoder. Only the last information symbol  $C_{32}$  is nonzero. Thus

$$I(x) = \alpha^{0} (00 \cdots 01)$$



¥

• .

₩,

ł

÷,

\* 1

۶,

.

÷

Ţ

:

ţ

į

**!**·

, I , I , I

æ

. ....

1

â



Figure 5. Transformational Equivalence of RS Codewords with a Common g(x)

and

4

$$x^{32}I(x) \equiv \sum_{i=0}^{31} G_i x^i \mod g(x)$$

÷

5

1

where  $G_{31}, G_{30}, \dots, G_0$  as given in (22) are the check symbols. The encoded word is

$$c_{32} c_{31} c_{30} c_{29} \cdots c_3 c_2 c_1 c_0$$
  
 $a^0 a^{249} a^{59} a^{66} \cdots a^{66} a^{59} a^{249} a^0$ 

the GCS where the leading all-zeros symbols are not shown.

Every codeword polynomial

$$C(x) = C_{254} x^{254} + C_{253} x^{253} + \cdots + C_1 x + C_0$$

contains g(x) as a factor and is a member of a <u>principal ideal</u> of the <u>ring</u>  $F[x] / (x^{255}-1)$  over  $GF(2^8)$  where g(x) is a generator of the ideal (see Ref. 2). Thus

$$xC(x) = c_{253} x^{254} + \dots + c_1 x^2 + c_0 x + c_{254} x^{255}$$
$$= c_{253} x^{254} + \dots + c_1 x^2 + c_0 x + c_{254}$$

since

$$x^{255} \equiv 1 \mod x^{255} - 1.$$

The coefficients of xC(x) are a cyclic permutation one place to the left of those of C(x). It follows that cyclic permutations of a GCS are codewords. Furthermore, linear combinations of GCSs and cyclic permutations of GCSs are also codewords.

#### Example 9

The results of a GCS-type test on a Berlekamp-type encoder with symbol interleaving to a depth of 5 appear in Table 5. Each of the 5 columns of 8-bit symbols is a codeword. The encoder is initially cleared and the 5 sets of leading information symbols ( $C_{254}$  through  $C_{33}$ ) of all zeros are not shown. Information symbols enter and check symbols exit row by row as shown in the deinterleaved arrangement of Table 5. Note that  $C_{32}$  of codeword 5 is the only nonzero information symbol. The information symbol  $C_{32}$  with the resulting check symbols ( $C_{31}$  through  $C_{0}$ ) is a representation of a scalar multiple of the GCS in the dual basis. From (25) and (22),

 $[c_{32}, c_{31}, \cdots, c_0] T_{\alpha \ell}^{-1} = \alpha^{-93} [c_{32}, c_{31}, \cdots, c_0]$ 

Successive applications of the  $T_{g}$  functions in (23) on z (11  $\cdots$  1),  $\beta z$ ,  $\cdots$ ,  $\beta^{7} z$ (for  $\beta$  in (19)) yield the like components  $\{z_{0}^{(\ell)}\}, \{z_{1}^{(\ell)}\}, \cdots, \{z_{7}^{(\ell)}\}$  of the symbols  $C_{32}, C_{31}, \cdots, C_{0}$  of codeword 5 in Table 5. As in Table 3 for Example 8, the GSC provides a simple check on the derived  $T_{g}$  functions and  $z_{8}$  (i.e.,  $Tr(\beta^{8}\alpha^{n})$ ).

#### Example 10

A test run on a Berlekamp encoder resulting in a cyclic permutation of the GCS in Example 9 is given in Table 6. The information symbols  $C_{33}$  and  $C_{32}$  of codeword 5 result in a GCS that is cyclically shifted upward one symbol.  $C_{254}$  ( $\alpha$ ) in Example 9 is  $C_0$  in Example 10. The leading 222 information symbols in this example are all zeros.

Clearly, an all-zeros symbol (information and check) sequence is a codeword (e.g., codewords 1 through 4). It is the identity element of the linear (code) space and is representable as  $a^{\star}g(x)$ .

**J** 1

| Codeword  |          |          |          |                         |  |  |
|-----------|----------|----------|----------|-------------------------|--|--|
| 1 2 3 4 5 |          |          |          |                         |  |  |
|           |          |          |          | <b>z</b> 0 <b>z</b> 7   |  |  |
| 00000000  | 5000000  | 00000000 | 0000000  | 11111111 C.,            |  |  |
| 00000000  | 00000000 | 00000000 | 00000000 | <b>0</b> 0100010        |  |  |
| 00000000  | 00000000 | 00000000 | 00000000 | 00000111                |  |  |
| 00000000  | 00000000 | 00000000 | 00000000 | 00011101                |  |  |
| 00000000  | 00000000 | 00000000 | 00000000 | 01010001                |  |  |
| 0000000   | 0000000  | 00000000 | 00000000 | 10000001                |  |  |
| 00000000  | 0000000  | 00000000 | 00000000 | 00111111                |  |  |
| 00000000  | 00000000 | 00000000 | 00000000 | 11110110                |  |  |
| 00000000  | 00000000 | 00000000 | 00000000 | 10000110                |  |  |
| 00000000  | 0000000  | 00000000 | 00000000 | 11100111                |  |  |
| 00000000  | 00000000 | 00000000 | 00000000 | 0:011101                |  |  |
| 0000000   | 0000000  | 00000000 | 00000000 | 11110101                |  |  |
| 0000000   | 00000000 | 00000000 | 00000000 | 01100100                |  |  |
| 00000000  | 00000000 | 00000000 | 00000000 | 00011101                |  |  |
| 0000000   | 00000000 | 00000000 | 00000000 | 00110111                |  |  |
| 0000000   | 00000000 | 00000000 | 00000000 | 10111000                |  |  |
| 0000000   | 00000000 | 00000000 | 0000000  | 11010111                |  |  |
| 00000000  | 00000000 | 00000000 | 00000000 | 10111000                |  |  |
| 00000000  | 00000000 | 00000000 | 00000000 | 00110111                |  |  |
| 0000000   | 00000000 | 00000000 | 00000000 | 00011101                |  |  |
| 00000000  | 00000000 | 00000000 | 00000000 | 01100100                |  |  |
| 00000000  | 0000000  | 00000000 | 00000000 | 11110101                |  |  |
| 0000000   | 00000000 | 0000000  | 00000000 | 01011101                |  |  |
| 00000000  | 00000000 | 00000000 | 00000000 | 11100111                |  |  |
| 00000000  | 00000000 | 00000000 | 00000000 | 10000110                |  |  |
| 0000000   | 0000000  | 0000000  | 0000000  | 11110110                |  |  |
| 0000000   | 0000000  | 0000000  | 0000000  | 00111111                |  |  |
| 0000000   | 0000000  | 0000000  | 00000000 | 10000001                |  |  |
| 00000000  | 0000000  | 0000000  | 0000000  | 01010001                |  |  |
| 0000000   | 0000000  | 0000000  | 0000000  | 00011101                |  |  |
| 00000000  | 0000000  | 0000000  | 00000000 | 00000111                |  |  |
| 0000000   | 00000000 | 0000000  | 0000000  | 00100010                |  |  |
| 0000000   | 00000000 | 0000000  | 0000000  | 11111111 c <sub>o</sub> |  |  |

Table 5. GCS Test for a Berlekamp Encoder

e,

| Table 6. | A Cyclic | Permitetion | of the | CCS 4m  | Table |
|----------|----------|-------------|--------|---------|-------|
| TEDIE V. |          | reroutation | or rne | 14.5 IN | 12010 |

;

.

| ,        | •           | Codeword |          | _                |  |
|----------|-------------|----------|----------|------------------|--|
| •        | 2           | 3        | 4        | )<br>Z. Z.       |  |
| 00000000 | 00000000    | 00000000 | 00000000 | 11111111 C       |  |
| 00000000 | 00000000    | 00000000 | 0000000  | 00100010 C       |  |
| 00000000 | 00000000    | 00000000 | 00000000 | 00000111         |  |
| 00000000 | 00000000    | 00000000 | 0000000  | 00011101         |  |
| 00000000 | 00000000    | 00000000 | 00000000 | 01010001         |  |
| 00000000 | 0000000     | 00000000 | 0000000  | 10000001         |  |
| 00000000 | 00000000    | 0000000  | 00000000 | 00111111         |  |
| 00000000 | 0000000     | 00000000 | 0000000  | 11110110         |  |
| 00000000 | 0000000     | 00000000 | 0000000  | 10000110         |  |
| 00000000 | 000000000 . | 00000000 | 0000000  | 11100111         |  |
| 00000000 | 00000000    | 0000000  | 00000000 | 01011101         |  |
| 00000000 | 00000000    | 00000000 | 0000000  | 11110101         |  |
| 00000000 | 00000000    | 00000000 | 0000000  | 01100100         |  |
| 0000000  | 00000000    | 00000000 | 0000000  | 00011101         |  |
| 00000000 | 00000000    | 00000000 | 0000000  | C <b>~110111</b> |  |
| 00000000 | 00000000    | 00000000 | 00000000 | 10111000         |  |
| 00000000 | 00000000    | 00000000 | 0000000  | 11010111         |  |
| 0000000  | 0000000     | 0000000  | 00000000 | 10111000         |  |
| 00000000 | 0000000     | 00000000 | 00000000 | 00110111         |  |
| 0000000  | 0000000     | 00000000 | 00000000 | 00011101         |  |
| 00000000 | 0000000     | 00000000 | 00000000 | 01100100         |  |
| 0000000  | 0000000     | 00000000 | 00000000 | 11110101         |  |
| 00000000 | 00000000    | 0000000  | 00000000 | 01011101         |  |
| 00000000 | 00000000    | 00000000 | 00000000 | 11100111         |  |
| 00000000 | 00000000    | 00000000 | 00000000 | 10000110         |  |
| 00000000 | 00000000    | 00000000 | 00000000 | 11110110         |  |
| 00000000 | 0000000     | 00000000 | 0000000  | 00111111         |  |
| 00000000 | 00000000    | 00000000 | 00000000 | 10000001         |  |
| 0000000  | 00000000    | 00000000 | 00000000 | 01010001         |  |
| 00000000 | 0000000     | 0000000  | 0000000  | 00011101         |  |
| 00000000 | 00000000    | 0000000  | 00000000 | 00000111         |  |
| 00000000 | 0000000     | 0000000  | 0000000  | 00100010         |  |
| 0000000  | 0000000     | 00000000 | 0000000  | 1111111          |  |
| 0000000  | 00000000    | 00000000 | 00000000 | 00000000 C       |  |
|          |             |          |          | 0                |  |

#### Example 11

Tables 7 and 8 present test runs on a Berlekamp encoder whereby  $C_{32}$  of 8 GCS type tests are the unit vectors  $(10 \cdots 0)$ ,  $(010 \cdots 0)$ ,  $\cdots$ ,  $(00 \cdots 01)$ , respectively, in the dual basis. "Adding" corresponding symbols yields the (scalar multiple of the) GSC in Table 5. The code's generator matrix can be obtained from linear combinations of cyclic permutations of the GCS-type sequences. Each of the 223 distinct codewords in the code's generator matrix has one and only one nonzero information symbol.

Consider the check symbol sequences for 20 information symbol sequences where each information symbol is randomly selected. Those computed by the encoder could be compared with those derived from the code's generator matrix. A symbol-bysymbol match for each of the 20 pairs of check symbol sequences would verify the functional integrity of an RS encoder with an extremely high degree of confidence. Additional tests serve to increase that degree of confidence.

### 2. The Constant (Symbol) Sequence (CS)

The polynomial  $x^{255}$ -1 factors are as follows.

 $x^{255}-1 = (x-1)(x^{254} + x^{253} + \cdots + x + 1)$ 

Since the roots of g(x) are among the 255 roots of unity (i.e., the nonzero elements of  $GF(2^8)$ ), g(x) divides  $x^{255}$ -1. Since

$$(g(x), x-1) = 1$$

g(x) must divide the factor of degree 254. Thus f(x) and any scalar multiplie Kf(x) where

$$f(x) = \sum_{i=0}^{254} x^{i} \qquad \text{and } K \in GF(2^8)$$

are codewords. The information symbol sequence

|          |          | 32       |                               |            |    |
|----------|----------|----------|-------------------------------|------------|----|
| 1        | 2        | CodeMold | k                             | E          |    |
| *        | 2        | 3        | 4                             | 5          |    |
|          |          |          | 2 <sub>0</sub> 2 <sub>7</sub> |            |    |
| 0000001  | 00000010 | 00000100 | 00001000                      | 00000000 C | 32 |
| 01100110 | 10101011 | 01010110 | 10101100                      | 0000000    |    |
| 00001000 | 00011000 | 00110001 | 01100010                      | 0000000    |    |
| 00100111 | 01101000 | 11010001 | 10100010                      | 0000000    |    |
| 11110010 | 00010111 | 00101110 | 01011100                      | 0000000    |    |
| 10000011 | 10000101 | 00001010 | 00010100                      | 0000000    |    |
| 01000001 | 11000011 | 10000111 | 00001110                      | 0000000    |    |
| 00011011 | 00101101 | 01011011 | 10110111                      | 0000000    |    |
| 10001011 | 10011101 | 00111011 | 01110110                      | 0000000    |    |
| 00101000 | 01111000 | 11110000 | 11100001                      | 0000000    |    |
| 11100110 | 00101010 | 01010100 | 10101000                      | 00000000   |    |
| 00011111 | 00100001 | 01000011 | 10000110                      | 00000000   |    |
| 10101101 | 11110111 | 11101110 | 11011100                      | 00000000   |    |
| 00100111 | 01101000 | 11010001 | 10100016                      | 00000000   |    |
| 01011001 | 11101010 | 11010100 | 10101001                      | 00000000   |    |
| 11001000 | 01011000 | 10110000 | 01100000                      | 00000000   |    |
| 01111001 | 10001010 | 00010101 | 00101010                      | 0000000    |    |
| 11001000 | 01011000 | 10110000 | 01100000                      | 00000000   |    |
| 01011001 | 11101010 | 11010100 | 10101001                      | 000000000  |    |
| 00100111 | 01101000 | 11010001 | 10100010                      | 00000000   |    |
| 10101101 | 11110111 | 11101110 | 11011100                      | 00000000   |    |
| 00011111 | 00100001 | 01000011 | 10000110                      | 0000000    |    |
| 11100110 | 00101010 | 01010100 | 10101000                      | 000 . 0000 |    |
| 00101000 | 01111000 | 11110000 | 11100001                      | 00000.00   |    |
| 10001011 | 10011101 | 00111011 | 01110110                      | 0000000    |    |
| 00011011 | 00101101 | 01011011 | 10110111                      | 0000000    |    |
| 01000001 | 11000011 | 10000111 | 00001110                      | 0000000    |    |
| 10000011 | 10000101 | 00001010 | 00010100                      | 0000000    |    |
| 11110010 | 00010111 | 00101110 | 01011100                      | 0000000    |    |
| 00100111 | 01101000 | 11010001 | 10100010                      | 0000000    |    |
| 00001000 | 00011000 | 00110001 | 01100010                      | 00000000   |    |
| 01100110 | 10101011 | 01010110 | 10101100                      | 0000000    |    |
| 00000001 | 0000010  | 00000100 | 00001000                      | 00000000 C | )  |

ł

Table 7. CCS Type Tests with C22 One Set of Unit Vectors in the Dual Basis

ORIGINAL PAGE IS OF POOR QUALITY

• • •

.1

.

ì

| Table 8. | GCS Type Tests with | C <sub>32</sub> a Second | Set of Unit Vect              | ors in the Dual Basis   |  |  |
|----------|---------------------|--------------------------|-------------------------------|-------------------------|--|--|
| Codeword |                     |                          |                               |                         |  |  |
| 1        | 2                   | 3                        | 4                             | 5                       |  |  |
|          |                     |                          | z <sub>c</sub> z <sub>7</sub> |                         |  |  |
| 0001000  | 0 00100000          | 01000000                 | 10000000                      | 0000000 C               |  |  |
| 0101100  | 1 11010101          | 10101010                 | 00110011                      | 00000000                |  |  |
| 1100010  | 1 10000011          | 00000110                 | 00000100                      | 00000000                |  |  |
| 0100010  | 1 10101101          | 01011010                 | 10010011                      | 0000000                 |  |  |
| 1011100  | 0 10000010          | 00000101                 | 11111001                      | 0000000                 |  |  |
| 0010100  | 1 11010000          | 10100001                 | 11000001                      | 0000000                 |  |  |
| 0001110  | 0 01111000          | 11110000                 | 10100000                      | 0000000                 |  |  |
| 0110111  | 1 11000101          | . 10001011               | C0001101                      | 0000000                 |  |  |
| 1110110  | 0 01010011          | 10100111                 | 11000101                      | 0000000                 |  |  |
| 1100001  | 1 10101111          | 01011110                 | 10010100                      | 0000000                 |  |  |
| 0101000  | 1 01000101          | 10001010                 | 11110011                      | 0000000                 |  |  |
| 0000110  | 1 00000100          | 00001000                 | 00001111                      | 00000000                |  |  |
| 1011100  | 1 11011110          | 10111101                 | 11010110                      | 0000000                 |  |  |
| 0100010  | 1 10101101          | 01011010                 | 10010011                      | 0000000                 |  |  |
| 0101001  | 0 11111101          | 11111010                 | 10101100                      | 0000000                 |  |  |
| 1100000  | 1 01001011          | 10010110                 | 11100100                      | 0000000                 |  |  |
| 0101010  | 0 11010001          | 10100010                 | 00111100                      | 0000000                 |  |  |
| 1100000  | 1 01001011          | 10010110                 | Ì1100100                      | 0000000                 |  |  |
| 01010010 | 0 11111101          | 11111010                 | 10101100                      | 0000000                 |  |  |
| 0100010  | 1 10101101          | 01011010                 | 10010011                      | 0000000                 |  |  |
| 1011100  | 1 11911110          | 10111101                 | 11010110                      | 0000000                 |  |  |
| 0000110  | 1 00000100          | 00001000                 | 00001111                      | 0000000                 |  |  |
| 01010001 | 1 01000101          | 10001010                 | 11110011                      | 0000000                 |  |  |
| 11000011 | 1 10101111          | 01011110                 | 10010100                      | 0000000                 |  |  |
| 11101100 | 0 01010011          | 10100111                 | 11000101                      | 0000000                 |  |  |
| 01101111 | 1 11000101          | 10001011                 | 00001101                      | 0000000                 |  |  |
| 00011100 | 0 01111000          | 11110000                 | 10100000                      | 0000000                 |  |  |
| 0010100  | 1 11010000          | 10100001                 | 11000001                      | 0000000                 |  |  |
| 10111000 | 0 10000010          | 00000101                 | 11111001                      | 0000000                 |  |  |
| 01000101 | 1 10101101          | 01011010                 | 10010011                      | 0000000                 |  |  |
| 11000101 | 1 10000011          | 00000110                 | 00000100                      | 0000000                 |  |  |
| 01011001 | 1 11010101          | 10101010                 | 00110011                      | 0000000                 |  |  |
| 00010000 | 0 00100000          | 01000000                 | 1000000                       | 00000000 c <sub>0</sub> |  |  |

56

٠.,

$$C_{254} C_{253} \cdots C_{32}$$

к к … к

results in check symbols  $C_{31}$  through  $C_0$  that are also equal to K.

In Table 9, codewords 2 through 5 are CS test sequences. Note that codeword 1 added to codeword 5 in Table 5 cyclically shifted downward one symbol is a CS of 11 ··· 1's in the dual basis.

3. Iterative (Symbol) Sequences (ISs)

Over every field  $x^d$ -1 divides  $x^n$ -1 if and only if d divides n. In any field which contains a primitive  $n^{\frac{th}{t}}$  root of unity

$$x^{n}-1 = \sum_{i=0}^{n-1} (x-a^{i})$$

as discussed in Ref. 1. Also if n = kd, then

$$\alpha^0$$
,  $\alpha^k$ ,  $\alpha^{2k}$ , ...,  $\alpha^{(d-1)k}$ 

are roots of

.

4

.....

-

 $x^{d}-1 = 0$ 

Consider the polynomials

$$Q_{d}(x) = \frac{x^{255}-1}{x^{d}-1} = \sum_{j=0}^{(255/d)-1} (x^{d})^{j}$$

where d divides  $255 = 3 \cdot 5 \cdot 17$ . Since

$$x^{255}-1 = (x^{d}-1) Q_{d}(x)$$

| Codeword              |          |          |            |          |                  |  |  |
|-----------------------|----------|----------|------------|----------|------------------|--|--|
| 1                     | 2        | 3        | 4          | 5        |                  |  |  |
| <b>x</b> 0 <b>x</b> 7 |          |          |            |          |                  |  |  |
| 00000000              | 11111111 | 11111111 | 11111111   | 11111111 | C <sub>254</sub> |  |  |
| 11111111              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 11111111              | 11111111 | 11111111 | > 11111111 | 11111111 |                  |  |  |
| 11111111              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| •••                   | •••      | •••      | •••        | •••      | ~                |  |  |
| 1111111               |          |          | 11111111   |          | <sup>C</sup> 32  |  |  |
| 11011101              |          |          |            |          |                  |  |  |
| 11011101              |          |          |            |          |                  |  |  |
| 11111000              |          |          |            |          |                  |  |  |
| 11100010              |          |          |            |          |                  |  |  |
| 10101110              |          | 11111111 |            |          |                  |  |  |
| 01111110              | 1111111  | 1111111  | 11111111   | 1111111  |                  |  |  |
| 11000000              | 11111111 | 1111111  | 11111111   | 11111111 |                  |  |  |
| 00001001              | 1111111  | 11111111 | 11111111   | 11111111 |                  |  |  |
| 01111001              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 00011000              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 10100010              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 00001010              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 10011011              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 11100010              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 11001000              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 01000111              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 00101000              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 01000111              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 11001000              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 11100010              | 1111111  | 11111111 | 11111111   | 11111111 |                  |  |  |
| 10011011              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 00001010              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 10100010              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 00011000              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 01111001              | 1111111  | 11111111 | 11111111   | 1111111  |                  |  |  |
| 00001001              | 1111111  | 11111111 | 11111111   | 11111111 |                  |  |  |
| 11000000              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 01111110              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 10101110              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 11100010              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 11111000              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |
| 11011101              | 11111111 | 11111111 | 11111111   | 11111111 |                  |  |  |

Table 9. One Nonconstant and Four CS Type Tests Applied to a Berlekamp Encoder

•

· · · · ·

.

Ĺ

58

ï

g(x) divides  $Q_d(x)$  if g(x) and  $x^d-1$  have no common roots (i.e., (g(x),  $x^d-1$ ) = 1). The roots  $\{R_d\}$  of

$$x^{d} - 1 = 0$$

for various values of d are

2

`` • •

. . . . . . .

150, 165, 180, 195, 210, 225, 240}

The roots of g(x) whose coefficients are given in (22) are

$$\{R_{\alpha}\} = \{(\alpha^{11})^{j \mod 255} : 112 \le j \le 143\}$$

or (in ascending powers of  $\alpha$ )

= { $a^{i}$  : i = 1, 10, 12, 21, 23, 32, 34, 43, 45, 56, 67, 78, 89, 100, 111, 122, 133, 144, 155, 166, 177, 188, 199, 210, 212, 221, 223, 232, 234, 243, 245, 254}

Since  $\{R_3\}$  and  $\{R_g\}$  have no common elements g(x) divides

$$Q_3(x) = \frac{x^{255}-1}{x^3-1} = \sum_{j=0}^{84} x^{3j}$$

and

$$C(x) = (s_2 x^2 + s_1 x + s_0) Q_3(x)$$

where  $s_2$ ,  $s_1$ ,  $s_0 \in GF(2^8)$  is a codeword polynomial.

Denote the symbol sequence  $s_2$ ,  $s_1$ ,  $s_0$  by  $\overline{S}$ . Then C(x) corresponds to the IS

| s s      | ••• 5 s <sub>2</sub> | $s_1 s_0 \overline{s} \overline{s} \cdots \overline{s}$ |
|----------|----------------------|---------------------------------------------------------|
| $\smile$ | $\sim$               | $\sim$                                                  |
| 223      | symbols              | 32 symbols                                              |

which is a codeword. Similarly,  $\{ R_5 \}$  and  $\{ R_6 \}$  have no common elements and g(x) divides

$$Q_5(x) = \frac{x^{255}-1}{x^5-1} = \sum_{j=0}^{50} x^{5j}$$

and

$$C(x) - (s_4 x^4 + s_3 x^3 + \cdots + s_0) Q_5(x)$$

where  $s_i \in GF(2^8)$  is a codeword corresponding to an IS. Clearly, ISs of length 15 and 17 are not codewords since  $\{R_{15}\}$  and  $\{R_{17}\}$  each have elements contained in  $\{R_{g}\}$ . (Note that CSs are special cases of ICs.)

#### C. RELIABILITY TESTING OF A BERLEKAMP RS ENCODER

The 4 nonzero test sequences appearing in Table 10 were contrived by Berlekamp. None are valid codewords. The only nonzero row of information symbols

| 1                             | 2        | 3        | 4        | 5       |
|-------------------------------|----------|----------|----------|---------|
| <sup>z</sup> 0 <sup>z</sup> 7 |          |          |          |         |
| 00000010                      | 00000100 | 00001000 | 00010000 | 0000000 |

|            |            | Table 10. | A Realiability | Test for a Berle | kamp Encoder |                |
|------------|------------|-----------|----------------|------------------|--------------|----------------|
|            |            |           | Symbol         | Sequence         |              |                |
| 1          | L          | 2         | 3              | 4                | 5            |                |
| <b>z</b> 0 | <b>z</b> 7 |           |                |                  |              |                |
| 0000       | 0010       | 00000100  | 00001000       | 00010000         | 00000000     | C, 1>>254      |
| 0000       | 0000       | 0000000   | 0000000        | 00000000         | 00000000     | 1.             |
| 0000       | 0000       | 0000000   | 0000000        | 0000000          | 00000000     | (all night run |
| •          | ••         | • • •     | •••            | •••              | • • •        | _              |
| 0000       | 0000       | 00000000  | 0000000        | 00000000         | 00000000     | Caa            |
| 0100       | 1001       | 10010010  | 00100100       | 01001000         | 0000000      | 32             |
| 1100       | 1110       | 10011100  | 00111000       | 01110001         | 0000000      |                |
| 0101       | 1100       | 10111000  | 01110000       | 11100000         | 0000000      |                |
| 0100       | 0101       | 10001010  | 00010101       | 00101010         | 0000000      |                |
| 0001       | 1110       | 00111101  | . 01111010     | 11110100         | 0000000      |                |
| 1100       | 1111       | 10011111  | 00111111       | 01111110         | 0000000      |                |
| 1010       | 0110       | 01001101  | 10011010       | 00110100         | 0000000      |                |
| 1010       | 0111       | 01001110  | 10011101       | 00111011         | 0000000      |                |
| 1111       | 1111       | 11111110  | 11111101       | 11111010         | 00000000     |                |
| 0100       | 1110       | 10011101  | 00111011       | 01110110         | 0000000      |                |
| 1010       | 0011       | 01000110  | 10001101       | 00011010         | 00000000     |                |
| 1101       | 1011       | 10110110  | 01101100       | 11011001         | 0000000      |                |
| 1011       | 1011       | 01110111  | 11101111       | 11011111         | 00000000     |                |
| 0100       | 0001       | 10000010  | 00000101       | 00001011         | 00000000     |                |
| 0111       | 1011       | 11110111  | 11101110       | 11011100         | 00000000     | ·              |
| 1010       | 1100       | 01011001  | 10110011       | 01100111         | 0000000      |                |
| 0000       | 1011       | 00010111  | 00101110       | 01011100         | 0000000      |                |
| 1001       | 1110       | 00111100  | 01111001       | 11110011         | 0000000      |                |
| 0011       | 0000       | 01100001  | 11000010       | 10000100         | 0000000      |                |
| 0100       | 1011       | 10010110  | 00101100       | 01011000         | 0000000      |                |
| 0101       | 0000       | 10100000  | 01000001       | 10000010         | 0000000      |                |
| 1001       | 0100       | 00101000  | 01010000       | 10100000         | 0000000      |                |
| 0011       | 1001       | 01110010  | 11100100       | 11001000         | 0000000      |                |
| 0011       | 1100       | 01111001  | 11110011       | 11100110         | 0000000      |                |
| 0010       | 0110       | 01001100  | 10011001       | 00110011         | 0000000      |                |
| 0000       | 1000       | 00010000  | 00100001       | 01000011         | 00000000     |                |
| 1101       | 0000       | 10100001  | 01000010       | 10000101         | 00000000     |                |
| 1000       | 1111       | 00011110  | 00111101       | 01111010         | 00000000     |                |
| 1001       | 1110       | 00111100  | 01111001       | 11110011         | 0000000      |                |
| 0011       | 1011       | 01110110  | 11101100       | 11011000         | 0000000      |                |
| 0100       | 1011       | 10000110  | 00001101       | 00011011         | 0000000      |                |
| 0011       | 00011      | 01100001  | 1100010        | 10000100         | 00000000     | c              |
| 0011       | 0000       | 01100001  | 11000010       | 10000100         | 0000000      | <u>~</u> 0     |

•

was entered after clearing the encoder. Given

 $z = z_0 z_1 \cdots z_7$ 

 $\beta z = z_1 z_2 \cdots z_8$ 

then

where

1

ł

$$z_8 = Tr(\beta^8 z) = z_0 + z_1 + z_3 + z_7.$$

Thus each of the nonzero symbols starting with 2 is  $\beta$  times its predecessor. This row of information symbols followed by rows of all zeros far excelling 222 rows was entered into the encoder in the message mode over a period of 15 hours at a clock input speed of 1.6 MHz. Each clock time interval is comprised of 4 phases, resulting in an effective 4-kHz internal clock speed. Corresponding to the row just below the row labeled C<sub>32</sub>, the cutput was switched to the check mode (after the 1.6-MHz clock was switched to the single-step mode to reach the correct phase by single-stepping the clock and monitoring the encoder's internal signals). Each nonzero sequence of symbols from column 2 through 4 should be  $\beta$  times the symbols of the preceding column. This may be readily verified visually because of the simple relationship between z and  $\beta z$ . The initial row was chosen whereby  $z_8$  for each  $\beta z$  is zero. Any plausible sequence of malfunctions during the run would very likely alter the expected outcome.

#### VIII. CONCLUSIONS

The IC part count of the (255, 223) RS encoder employing Berlekamp's architecture is 39, of which 9 are RAMs. RAMs are classified as Large-Scale Integrated Circuits (LSIs). The remaining 30 are Small-Scale Integrated Circuits (SSIs). The conventional (255, 223) RS encoder contains 60 ICs of which 24 are LSIs (i.e., RAMs and ROMs). Constraints of power, weight and volume <u>clearly favor</u> <u>Berlekamp's architecture</u> in an IC implementation for spacecraft utilization implementation.

The comparison of Very-Large-Scale Integrated Circuit (VLSI) implementations of conventional and Berlekamp-type RS encoders in <u>considerably less conclusive</u>. In a VLSI implementation, logical elements and connection paths reside on a single chip. Logical elements provide processing and memory, and controlled connection paths provide communication between a processor and memory.

Unlike the case for IC design, complexity is not a function of the number of logical elements but rather of the active chip area they occupy. Patterns with inherent regularity such as those associated with ROMs and RAMs are amenable to VLSI designs where active chip area is at a premium (see Ref. 14). In IC designs, external interconnecting wires between ICs contribute insignificantly to propagation delay in a reasonable layout. By contrast, connection paths in VLSI designs can significantly affect active chip area and propagation delays.

A figure of merit for comparing VLSI implementations is the space-time product. Space is a measure of active chip area, whereas time is a measure of throughput. Parallelism in connection paths (where path-sharing is minimized) increases throughput at the expense of chip area. A VLSI implementation of a conventional RS encoder can match the throughput of a Berlekamp type at the expense of additional active chip area. For spacecraft applications, however, the potential throughput (speed) far exceeds the downlink telemetry rates anticipated for the remainder of this century.

NASA and the European Space Agency (ESA) have formed the NASA/ESA Working Group for Space Data Systems Standardization (NEWG). Telemetry channel coding appears in the "Guidelines for Data Communication Standards" (Ref. 15), which specify the (255, 223) RS code whose mathematical characterization appears in Section V herein. The representation of RS symbols will be in the dual basis (Table 4) in accordance with Berlekamp's architecture. The success of the Berlekamp architecture is reflected in its adoption by NASA/ESA in the guidelines (Ref. 15).

#### REFERENCES

- 1. Berlekamp, E.R., <u>Algebraic Coding Theory</u>, McGraw Hill Book Company, N.Y., 1968.
- MacWilliams, F.J., and Sloane, N.J.A., <u>The Theory of Error-Correcting Codes</u>, North-Holland Publishing Co., Amsterdam, 1977.
- 3. Forney, G.D., Concatenated Codes, The MIT Press, Cambridge, Mass., 1966.
- Rice, R.F., <u>Channel Coding and Data Compression System Considerations for</u> <u>Efficient Communication of Planetary Imaging Data</u>, Technical Memorandum 33-695, Jet Propulsion Laboratory, Pasadena, Calif., June 1974.
- Odenwalder, J.P., "Concatenated Reed-Solomon/Viterbi Channel Coding for Advanced Planetary Missions: Analysis, Simulations, and Tests," Submitted to JPL by the Linkabit Corp., San Diego, Calif., under Contract No. 953866.
- Peterson, W.W., and Weldon, E.J., <u>Error Correcting Codes</u>, 2nd Edition, The MIT Press, Cambridge, Mass., 1972.
- Rice, R.F., "Comparative Information Rate Advantages of Alternative Deep Space Communication Systems," Proceedings of the International Conference on Performance of Data Communication Systems and Their Applications, Paris, France, Sept. 1981.
- Rice, R.F., Hilbert, E.E., Lee, J., and Schultsmyer, A., "Block Adaptive Rate Controlled Image Data Compression," Proceedings of the 1979 National Telecommunication Conference, Washington, D.C., Nov. 1979.
- Liu, K.Y., <u>The Effects of Receiver Tracking Phase on the Performance of the</u> <u>Concatenated Reed-Solomon/Viterbi Coding System</u>," Publication 81-62, Jet Propulsion Laboratory, Pasadena, Calif., May 1981.
- Liu, K.Y.. and Lee, J, "An Experimental Study of the Concatenated Reed-Solomon/Viterbi Channel Coding System Performance and Its Impact on Space Communication," Proceedings of National Telecommunication Conference, New Orleans, La., Nov. 29-Dec. 3, 1981.
- 11. Berlekamp, E.R., "Performance Analysis of the Interleaved RS (255, 223) Code," unpublished memorandum, Cyclotomics, Inc., Berkeley, Calif., June 1980.
- 12. Berlekamp, E.R., "Technical Proposal for a Low-Power Reed-Solomon Encoder/ Interleaver Using About 30 CMOS IC's," submitted to JPL by Cyclotomics, Inc., in response to RFP No. BP-6-9007.
- Lempel, A., "Matrix Factorization Over GF(2) and Trace-Orthogonal Bases of GF(2<sup>n</sup>)," SIAM J. Comput., 4., 1975, pps. 175-186.

- Liu, K.Y., "Architecture for VLSI Design of Reed-Solomon Encoders," <u>IEEE Tran</u>. on <u>Computers</u>, Vol. C-31, No. 2, Feb. 1982.
- 15. NASA/ESA Working Group for Space Data Systems Standardization (NEWG), "Guidelines for Data Communications Standards: Telemetry Channel Coding - Issue 1," 18 Jan. 1982.

-1

١.