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This report was originally a JPL interoffice memorandum (IOM No.: 3610-81-119
ISPM) entitled "Reed-Solomon Encoders — Conventional Versus Berlekamp's Archi-
tecture,’” dated July 10, 1981.
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ABSTRACT

Concatenated coding has Leen adopted by the National Aeronautics and Space
Administration of the United States of America for interplanetary space missions.
NASA's Jet Propulsion Laboratory is employing concatenated coding with a convolu-
tional inner code and a Reed-Solomon outer code for spacecraft telemetry.

This paper compares conventicnal RS encoders with those that incorporate two
ingenious architectural features due to E. R. Berlekamp. Berlekamp's architecture
approximately halves the number of multiplicaticns of a set of fixed arguments by
any RS codeword symbol. The fixed arguments and the RS symbols are taken from a
nonbinary finite field. Each set of multiplications is bit-serially performed
and completed during one (bit-serial) symbol shift. Berlekamp's architecture

eliminates all firmware employed by conventional RS encoders.
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I. BACKGROUND

Reed-Solomon (RS) codes are a special case of the nonbinary generalization
of Bose-Chaudhuri-Hocquenghem (BCH) codes. They are among the Maximum Distance
Separable (MDS) codes which realize the maximum minimum Hamming distance possible
for a linear code (Refs. 1 and 2). The interest in RS codes was primarily
theoretical until the concept of concatenated coding was formulated and first
introduced in Ref. 3. Concatenated coding has been adopted by the U.S. National
Aeronautics and Space Administration (NASA) for interplanetary space missions
(see Fig. 1). The inner code is a convolutional code, whereas the outer code is
an RS code. The application of corcatenated coding to NASA's Jet Propulsion
Laboratory (JPL) spacecraft telemetry with a convolutional inner code and an RS
outer code was firust proposed and analyzed in Ref. 4. This was followed by a
contract study: "Concatenated RS/Viterbi Channel Coding for Advanced Planetary
Missions: Analysis, Simulations and Tests." Reference 5 is the final report of
that study. Reference 6 presents a discussion of the Viterbi decoder which serves

as a maximum likelihood decoder of the inner convolutional code.

An investigation undertaken at JPL of alternative communication systems for
downlinking imaging and general science data appears in Ref. 7. This resulted in
the adoption of concatenated RS/convolutional coding for imaging data from the
Voyager spacecraft as a backup beyond Saturn encounter. Imaging data from the
Galileo spacecraft will also be subjected to RS/convolutional coding. This
decision is a consequence of the foregoing and subsequent investigations as
exemplified in Ref. 8.

Concatenated RS/Viterbi channel performance tests were made at JPL using
simulation of ideal and nonideal receiver system models. The results of these
tests led to the adoption of RS/comnvolution coding for the NASA spacecraft of the
International Solar Polar Mission (ISPM) (see Ref. 9). The same coding has since
been adopted for the European Space Agency (ESA) spacecraft for ISPM. Experimental
results of RS/Viterbi channel coding on system performance and its impact on deep
space transmission of imaging information appears in Ref. 10. When used as an
outer code, protection is provided against errors emanating from the inner Viterbi
decoder. Viterbi decoding errors tend to occur in bursts whereby relatively few
RS symbols are affected. The expected burst length and the density of bit errors

within a burst bear some relation to the channel's signal-to-noise ratio. A
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Figure 1. Concatenated Coding for a Spacecrz:t Telemetry Channel
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performance analysis of the interleaved (255, 223) RS code in combating Viterbi
decoding errors is given in Ref. 11.

II. PARAMETERS AND PROPERTIES OF RS CODES

The class of Reed-Solomon codes of interest for practical considerations has

the following parameters:

J the number of bits per symbol

N = ZJ—l the total number of symbols per RS codeword
E the symbol error correction capability

2E the number of symbels representing checks

K = N-2E the number of symbols representing information

I the depth of symbol interleaving. That is, within a sequence of
NI symbols comprising I RS codewords, consecutive symbols of a
given RS codeword are separated by I-1 symbols belonging to other

codewords

Note that J, E, and I are independent parameters.

The symbols of an (N,K) RS code are taken from a finite field of 2J elements
referred to as a Galois Field of order 2'J or simply GF(ZJ) (see Refs. 1 and 2).
Every pair of distinct N-symbol codewords differs in at least 2E + 1 symbols.

Thus an (N,K) RS code has a minimum Hamming distance of 2E 41 and is E symbo.
error-correcting. A received word with any combination of E or fewer symbols in
error will be correctly decoded, whereas a rec:ived word containing more than E
symbols in error will be incorrectly decoded with a probability of less than one
chance in E factorial ({.e., E!).

Erroneous symbols of a received word confined to a region of E consecutive
symbols or less are correctable. 1In terms of bits, a burst-error of length J(E-1)
+ 1 bits can affect at most £ contiguous symbols. Hence all bursts of length
J(E-1) + 1 bits or less are correctable. Symbol interleaving to a depth of I
results inan (NI,KI) zode which inherits its properties from the (N,K) RS code.

Each of the 2E symbols of an (N,K) RS codeword is a distinct linear combination
of information symbols. Thus RS codes are linear. An (NI,KI) code is comprised of
Ki information symbols over which 2EI check symbols are computed. Every I—"'-h
- jmbol, starting with symbol 1,2,°+°, or I, belongs to the same (N,K) RS codeword.
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Symbol interleaving to a depth of I increases the burst-error correction capabil-
ity to length J(EI-1) + 1 bits. If a received word of an (NI,KI) code contains a
burst of length J(EI-1) + 1 bits or less, the number of erroneous symbols belong-
ing to the same N-symbol word will not exceed E. Upon deinterleaving, each of the
I N-symbol words will thus be correctly decoded.

Linearly combining any two codewords, not necessarily distinct, of a given
(N,K) RS code results in a codeword. Each codeword may be viewed as a vector
whose components (referred to as symbols) are field elements taken from GF(ZJ).
Scalar multiplication and vector addition follow from the binary operations of
"multiplication' and "addition" on the field elements. The foregoing is a re-
statement of the linearity of RS codes.

Every cyclic permutation of the symbols of an (N,K) RS codeword is a codeword.
Thus RS codes are cyclic. Note that all cyclic codes are linear but the converse
does not hcld. Because of the cyclic property of an(N,K) RS code, it can be
characterized bv 2 generator polymonial g(x). The degree of g(x) is 2E, the
number of check symbols. And g(x) has 2E distinct roots which are consecutive
integer powers (excluding zero) of a primitive element in GF(ZJ).

Cyclic codes have a well-defined mathematical structure. Furthermore,
encoders and decoders of cyclic codes are implementable by means of feedback
shift registers (FSRs). However, unlike Bose-Chaudhuri-Hoquenghem (BCH) codes,
RS codes are nonbinary. Thus each stage of the FSR must be capable of storing
any one of ZJ J-bit symbols. Solid-state random-access memories (RAMs) are
commonly used to sc.rve as nonbinary FSR stages.

The Hamming weight enumerator for MDS codes (hence RS codes} is well known.
"Separable” (in Maximum Distance Separable, MDS) and "systematic"” are synonymous
terms for codes whose information symbols occupy leading adjacent positions and
are followed by check symbols. See Refs. 1, 2, and 6 for a detailed treatment
of BCH and RS codes.

I1II. MATHEMATICAL CHARACTERIZATION OF RS CODES
Consider an (N,K) RS codeword

C=C. ConuunC e GF2Y) (1)

N-10N-2 = C2p4y Coper Cor where C

i

f e,
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The polynomial

N-1 N-2 2E 2E-1 ~
+ CygX  H oo #CpxT + Gy yx + . N
Y

over GF(ZJ) is termed a codeword polynomial. Every codeword polynomial contains

C(x) = CN_lx

b+2E-1 2E
g(x) = ﬂ (x-v)) = Z(;ix1
j=b i=0 (3)

the generator polynomial of the code as a factor. Note that Yy is any primitive

+
element in GF(ZJ) and 2E consecutive powers (excluding zero) of y (i.e., yb, Yb 1,

Yb+2£_1) are roots of g(x).

Encoding is the process of computing 2E check symbols over K information
symbols such that the N (i.e., K+2E) symbols are coefficients of C(x) in (2)

containing g(x) in (3) as a factor. Given the information polynomial

x ~ +C, .x + .00 +C

1(x) = Cy_ N-2 2E (4)

Check symbols C c C, are computed as follows:

2E-1* T2E-2* "7 70

10 | RGO |, ()
g(x) g(x)

2E1(x) = g(x)H(x) + r(x)

»

where

2E-1 2E-2
r(x) CZE-lx + C2E-2x + s 4 C0 (5)

«?E1(x) = r(x) mod g(x) (6)
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2E _ ‘
C(x) = x I(x) + r(x) = 0 mod g(x) 7

where a{x) = b(x) mod m(x) implies; that m(x) divides a(x)-b(x), where a(x) and
b(x) are pulynomials over a field. Similarly, for integers a = o mod m implies
that m divides a-b. The symbol "+" denotes sum modulo 2 (i.e., the exclusive-OR
operation) and

-1 21 mod 2

The polynomials xZEI(x) and r(x) in (6) and (7) are nonoverlapping and the co-
efficients of C(x) in (7) as explicitly shown in (2) represant an (N,K) RS codeword.

Furthermore, C(x) contains g(x) as a factor.

IV. HARDWARE CONS1NERATIONS IN THE DESIGN OF RS ENCODERS

A. CONVENTIONAL ARCHITECTURE

A functional logic diagram of a conventional (N,K) RS encoder appears in
Fig. 2. Assume the register (composed of 2E J-bii storage elements) of the FSR
is initially cleared. With switches A and B in the up position, information
symbols (i.e., coefficients of I(x) in (4)) are sequentially entered and simul-

taneously delivered to the channel. Symbol C is entered first and C__ last.

Upon the entry of CZE’ the check symbols whic: :re coefficients of r(x)zin (5)
reside in the register where Ci is stored in xi. At this time, switches A and B
are placed into the down position. T1ie check symbols, starting with CZE-I’ are
then delivered to the chinnel while the register is cleared in preparation for

the next set of K information symbols.
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. 2
The FSR in Fig. 2 accepts I(x) and computes r(x) by multiplying I(x) by x E

and reducing the result modulo g(x) as given in (6). From (3), where G
necessarily equals 1,

2E

2E 2E-1 2E-2 . .
x° = GzE-lx + GZE-Zx + + Glx + Co mod g(x)
Each of the 2E compcaents
C2E-10 C2e-20 77 G0 G

is multiplied by the symbol appearing on the feedback path. The resulting 2E
component vector is effectively added to the symbol string stored in the register
after a symbol shift to the left has occurred. The incoming informatioa symbsls,
CZE~3’ CZE—Z’ ooy CO’ and the intermediately stored symbols are ali members of
GF(27).

Consider a (255, 223) RS code where the field element a is a root of the
primitive 8-t-h degree polynomial over GF(2)

f(x) = x8 + x7 + x2 +x +1 (8)

Each nonzero element is expressible =s an integer power of a, 4 generator of
GF(28). Since

8 7 2
a =a +a +a+1l

every element is representable as a polynomial in a over GF(2) of drgree less
than 8, Thus

a” = uy a7 + ug a6 + " 4 Yy 9)

where u, = Oor 1l and 0 s n < 255, The zero element (i.e., 00°°-0) corresponds

to the constaat 0 polynomial and is denoted by a¥,

A tabulation of a portion of GF(ZB) generated by a appea s as follows:

- —— ——
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0 00000001

1 00000010

2 000001100

3 00001000

4 00010000
5 00100000

6 01000000

’ 10000000

8 10000111

9 10001001
2 01110001
25 11100010
26 01000011
27 10000110
28 10001011
29 10010001
30 10100101
3] 11001101
32 00011101
33 00111010
251 11101011
252 01010001
253 10100010
254 11000011
0 00000001

The binary oper-ation of "addition" defined on the field elements is termwise
sum modulo 2 (i.e., vector addition over GF(2)).

Example 1

10000111 (ad)

+ 10000110 (27

OOOOOOOI(LO‘» O

. Addition of RS symbols is readily implementable with 2-input Exclusive-Ol gates.
The binary operation of "multiplication'" defined on the field elements is
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7 6 7 6

(n7 o +uc a4+ uo) (v7 a +vea + o+ vo)

with the result reduced modulo
f(a) = ua + a7 + dz +a+l

The coefficients are members of GF(2) and subject to the rules of modulo 2
arithmetic.

Each multiplier of an KS encoder has one argument fixed, namely Gi’ a co-
efficient of g(x). A hardware multiplier of an arbitrary field element by a
fixed field element is given in Ref. 1 (chapter 2). Such a multiplier would be

required for each distinct nonzero G, which does not equal 00 (i.e., 00---01).

i
Another method follows from the property

al oJ = o{i*]) mod 255

Example 2

@ (L000100I,

41110001

024093033(00111010) a

The conventional approach for multiplying two field elements employs two
read-only-memories (R0Ms). The addresses of one ROM correspond to the field
elements (u7 Mgttt U in GF (28)), and the content of each address is the binary
representation of the log to the base a of the corresponding field element. The
addresses of the other ROM correspond to the logs expressed in binary, and the
content of each address is the antilog of the corresponding log. Mu_ciplication
in GF(ZS) utilizing the tables of logs and antilogs may be realized as follows.

(1) The logs of each of two field elements are sequentially read and stored.
(2) The 8-tit binary representations of the logs are added (as positional
binary numbers) modulo 255. An overflow bit (28) is treated as an end-

around carry resulting in casting out 28-1.

10
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(3) The antilog corresponding to log of the product (derived in step 2) is

then read out.

Example 3
log
a
u7u6u5uau3u2u1uo b1b6b5b4b3b2b1bo
10010001 00011101 (29)
01010001 11111100 (252)
(-0 0011001
. - 1
i 00011010 (26)
logn antilogu
b7b6b5b4b3b2b1bo u7u6u5u4u3u2ulu0
(26) 00011010 01000011 n

Note that 00---0 and 11---1 (25510) have the same antilog.

If a fixed operand is 1 (ao), multiplication is the identity operation
vealizable with J wires. If either operand is O (u*), multiplication by 0 is
implementable by logic external to the ROMs.

The most economical method (in terms of memory requirements) of interleaving
a depth of I is to replace each of the 2E nonbinary stages with I stages. The 2EI
stage FSR is described by the generator polynomial

~1 b+2E-1 2E
g(x) = ﬂ (xI—oj) = E Gi(xI)i (10)
? j=b 1=0

where the indeterminate x in (2) is replaced with xI. The é(x) in (10) charac-
terizes an (NI,KI) RS code where every IED symbol starting with symbol 1, 2, ---,
or 1 belongs to an (N,K) RS codeword characterized by g(x) in (3). Clearly the
Gi's associated with g(x) and g(x) are identicai.

In a conventionally designed RS encoder a single ROM (containing both tables)
and binary adder (with end-around carry) could be sequentiallv shared by each

multiplier having a different G, (where G, ¢ ao) as one of its operands. The cost

11
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of this reduced complexity i{s the increase in time needed for K sets of multi-
plications per (N,K) RS codeword. A set could contain up to 2E multiplications
associated with 2E distinct Gi's none of which 1is equal to ao.

B. BERLEKAMP'S ARCRITECTURE

The RS encoder design due to Berlekamp (kef. 12) incorporates two ingenious
features. First, the number of multiplications per symbol shift is approximately
halved by selecting a g(x) whose 2E roots are E reciprocal pairs. That is, in (3),

G (b#2E-1) -1 N <1<k an

In expanded form, g(x) is a self-reciprocal polynomial where (over the range of
1 in (11))

= = = cee 3
G1 and GZE G 1 (00---013

GZE-i 0

Second, and more significant, Berlekamp formulated a hardware design of bit-serial
mult’, ilers over GF(ZJ) which 1s compatible with the serial organization of RS
encoders. One operand is any of the 2J field elements. The other is a vector

whose components are fixed <'itinct G,'s representing coefficients of g(x).

In the design of an (N,K) RS encéder, two parameters affected the complexity
of the circuitry associated with multiplication. These parameters are discussed
in conneci:fon with a (255, 223) RS encoder unless stated otherwise.

" .e elements of GF(ZS) form a vector space of dimension 8. One parameter
iy 8 where

7
1, 8, 82’ e, B

is a basis, a set of linearly independent vectors which spans the vector space of
GF(ZS). In the case where B equals a, a generator (associated with (8) and (9)),
results in the basis made up of the unit vectors ao (00---001), al (00---010),
etc. Any element in CF(28) that is not a member of a subfield may serve as B

Since,

CF(2)C 6F(22) Cor(2*) Cor(2®)

12
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8 cannot be selected from the 16 elements in GF(Z‘). Each element of GF(28) is
a root of

8
x2 -x = x(xzss-l) =0
Each element of GF(Z‘) is also a root of
'
xz -X = x(xls—'l) = 0

Let {a”} be the set of 15 nonzero roots of unity. Then

(uy)IS mod 255 _ 1 = 00
and
15y = 0 mod 255
y 2 0 mod (15?3237
y £ 0 mod 17

(where (r,s) denotes the greatest common divisor of r and s). Thus ¢ (a*) and

ol7® for 0 <k < 15

compose the subfield CF(Za), a vector space of dimension 4. Thus there can be

at most 4 linearly independent vectors in the set

17 _(17kx2) mod 255

1 (17kx7) mod 255
y O ’ a

where k = 0,1, ++«, or 14,
For each basis

(1, 8, 82, --+, 811 = (g}

13
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in GF(ZB), a dual basis (also called a complementary and a trace-orthogonal basis) -

is determined (see Refs. 1, 2, and 13). The concept of a trace of a finite field
element is involved in the development of a dual basis.

Consider GF(pn), a finite field of p“ elements over GF(p) where p is a prime.
The trace Tr is a function on GF(pn) defined by

n-1

25: 1 n
Tr(y) = Y?P  where y € GF(p")

1=0

The trace has the following properties:

(1) Tr(y) € GF(p)
(2) Tr(y+§) = Tr(y) + Tr(9)
(3) Tr(cy) = cTr(y) where ¢ € GF(p)

A proof for each follows:

2 n-1
(1) [Tr(y) 1P = (Y + P+ yP P P

n
=P+ yP e PP
n

= Tr(y) since yp =y

Thus [Tr(-{)]p = Tr(y) implies that Tr(y) e GF(p).

(2) n-1 1 n-1 1 1
rr<y+6)-2<y+c)" - E (P +8P)
i=0 i=0
n-1 N n-1 1
= Yo+ E 6 = Tr(y) + Tr(8)
i=0 i=0
(3)
n-1 L n-1 { {
Tr(cy) = E (cy)P = E cP P
i=0 i=0
14

i
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since ¢ = c.
n-1 1 n-1 {
Tr(cy) = E ey =c E YP o= eTr(y)
1=0 1=0
Example &

Given GF(Z‘) generated by a, a root of the primitive polynomial x“ +x+1

over GF(2). The trace of each of 16 elements is tabulated as follows:

n of o u3u2u 1 Tr(un)
* 0000 0
0 0001 0
) 0010 0
2 0100 0
3 1000 1
4 0011 0
5 0110 0
6 1100 1
7 1011 1
8 0101 0
9 1010 1

10 0111 0
11 1110 1
12 1111 1
13 1101 1
14 1001 1

From the definition of the trace

Tr(a) = a + uz + aa + 08 = 0000 = 0

Tr(ua) - cl3 + Cl6 + Ol12 + 026 (024 mod 15 _ 09)

= a3 + a6 + 012 + u9 = 0001 = 1

Tr(a*) = Tr(0) = 0+ 0+0+0=0

Tee®) = Tr(1) =141 +141=0 O

15
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Tr(as) - as +0 +a +a

- as +4a 4+a +a =0

"
=]
+
e
+
1>
+
[+

Tr(a’)

- 07 + ula + 013 + ull = 0001 = 1 (]

From the linear property, the trace of a® is

a + uo)

n 3 2
Tr(a ) = Tr(u3u + u,a + uy

- u3Tr(a3) + uzTr(az) + ulTr(a) + uoTr(ao)

= u

3

2
since Tr(a3) =1 and Tr(a") = Tr(a) = Tr(uo) = 0 in GF(ZA) in e¢xample 4,
In GF(28) generated by a, a root of Eq. (8), the trace of an element as
represented by a" in (9) is
Tr(a™) = u, +u

+u. + ua +u, +u, +u

7 6 5 3 2 1

since
i 0
Tr(a’) =1 for 1 <1 <7 and Tr(a') = O
For each basis {81} in GF(28), o" 1s also representable as

volo + vlll 4+ 0+ v7£7 (12)

where

v, = Tr(Bian)

The set

{2 eey, £7} = {2}

o’ 11'

16
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. 1for0<i=3<8
Tr(8 lj) -
Ofor 0 <i¢ j <8 (13)

Given an element o in GF(ZB). Its components in the dual basis are readily

computed as follows.

an Hivjlj

j=0
Thus,
7
glom < E = vjeiz
j=0
and
7 .
in i
Tr(R7a ) = E vj Tr(B lj) vy (14)
j=0

from property (3) of a trace and (13).
A selection of a basis {Bi} and a determination of its dual basis {lj} are

illustrated in example 5.

Example 5

Given CF(26) generated by a, a root of the primitive 6th degree polynomial
x6 + x5 + xz + x + 1 over GF(2). Contained within GF(26) are the subfields GF(ZZ)
and GF(23), and the subfield GF(2) is contained in both GF(ZZ) and GF(23).

Fach element of GF(22) is a root of

2
x2 -x = x(x3-1) =0

17
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Let {aw} be the set of three nonzero roots of unity. Then

(“w)3 mod 63 -1l= u0
and
3w 2 0 mod 63
- 63
w 2 0 mod (.63
w = 0 mod 21

Thus the elements in GF(26) which compose the subfield GF(ZZ) are

0 21 42

a*, a, a , a

Each element in GF(23) is a root of

3
2

X =-x= x(x7-1) = 0.
Let {ay} be the set of 7 nonzero roots of unity. Then

7 mod 63 - 0

(ay) 1=aqa
and
7y = 0 mod 63
y = 0 mod 77%%57
y £0 mod 9

Thus the elements in GF(26) which compose the subfield GF(23) are

. 0 9 18 27 36 45 54
a*, a, a0, a ,a ,a ,0 ,a

18
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Any element not contained in GF(ZZ) and not contained in GF(23) may serve as
8 in forming the basis

Qa, 8, 8, -, 8°) = (81

in GF(26). In this example 8 equal to u3 was selected. In Table 1 each field

element, an, in GF(26) is represented in two ways. Namely,

an - usus + ubu , + ° + uo
where
06 = as + 02 +a+1l
and
volo + vlll + e & VSQS -~ an
where
v, = Tr(Bian) = Tr(an+31)
and

n
Tr(a)=u5+ua+u3+u22..1

The basis {Bi} in GF(26) is

3 12 15

{10 B, Bzv 8™, Bl.' BS} = {1. 03, 0»6, 09, a , a }

The entries in column 20 corresponding to o are

Vo = Tr(an)

19
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Te (a")

05(!4&3020 1

Table 1. Representations of Elements in GF(26)
000000

a

n of

01100111011000001111001001010100
10001100111011000001111001001010
01110001100111011000001111001001
10101110001100111011000001111001
11110101110001100111011000001111
01111110101110001100111011000001

N1 O~ O0O00O0C
N OOHF~OM~AO
OO OO~ =t
OCO0OHOHA0~0
COMHMOOr10O e~
~NH - OO0 ~00

0111111010111000110011101100000111100100

10000011110010010101001101000010
01000010001\411011111101011100011
00100010110111111010111000110011
00010001011011111101011100011001*
00001000101101111110101110001100
00000111100100101010011010000100

OO OO~
COrdrd vl O =l i
MHOMHO0O00O
N E O -OOO
A O A~ O
O OO 4 i

0123456789m

13
14
15
16
17
19
20
22
23
24
25
26
27
30
K
32
33
34
35
36
37
38
39

[y
~ -

kel SR SR Al
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Table 1. Representations of Elements in GF(26) (contd)

GS al‘ 0302 a

20ty 8 t3 s

Tr(an)

1

a

n of

[3a] Ual 4] -
~ -~ = [ a]
o -} ] []
(] [ L} [
~F — o wny
=) L [ o

~OOQOHOIr N O A A A A OO~ O0O
cooroolorol OO MO MM
OCHOOOCOHOOOHO--AO A MArderd O
OrmrmOlHOlOor Ol 00O O AHO A~
OMOOHHO-OOOO|HOOO O O
AOAOHOIOHMHOHO|IOOO OO0 O A

HCHOMOOMMOMMOOOOHMOOO~OMNA

A A A A A AO A A A OO A OO e O~
OO MrmrmremOOHOOHONOANOO~~
Orrird OO HOODOHOHOAOOHMMO~N~OO
OO MmO AO0ODHOMOMOO~A0~OC
OO MMrdecdOOMOO0OHOCMOHOO~NHOA
At~ O A O A A A0 O0O~N OO0 me Orie

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
58
59
60
61
62

9.0 El 9.2 23 9.4 25

o o o o o L)
o (=] o o - o
o o o L] o o
o (=] — o o o
o (] o o o o
~ o o o o o
(3] (] ~ [a]
- «a @ « L3 o«
-t ~z ~ [en
[*al [Ta] [Ta} o o (]
(=] -] ] [=] [~} [}
™ O (<) o~ Tl -]
~ ~r ~z v 7} el
) =] -} =] 3 8
(8] o o o~ " [0 ]
o o~ o~ [3a] o o
=] [=] =) -] -] [
el o o~ A a —
o~ o~ (2] o Lag) ~
=] =] -] (=] 3 3
) [ o] — 0¥ 3 ~ o
~ ~ wn [ [Ca] O
[+] -] [+ ] -3 [+ ] -]
a0 — 3 r~ (=]
~r [Ta] wny (2] o o
-] 3 =] =] - a
o~ aa) -3 L]
- K «Q «Q [~ K

i
T '3
r{8 j)

Y

-t

21
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whereas the entries in cclumn 11 are

v, " Tr(ga") = Tr(un+3)
which is Tr(a™) cyclically shifted uvpward three places excluding Tr(a*). The
remaining columns are similarly formed. The dual basis {2, 6} is

3

w8 45 26 23 43 51
{20, ll, 22, £3, 14, 15} ={a ,a ,a , v ,a ,a}

i
The elements § ?jt GF(Z6 and Tt(Bilj) € GF(2), respectively, are entries in the
foregoing tables.

As previously asserted,

{ lfor 2 <i=3j<6
Tr(B'2,) =
3 Ofor 0 <1¥%3j <6 a

The trace Tr(eilj) plays a role in determining the comp.nents of a field element
a" in the dual basis {lj} as shown in (14). The product of an arbitrary field
clement with a fixed coefficient of g(x) 1s realized bit-serially in the dual

basis.

The order of a nonzero element ak in GF(Zs) is

255
(k, 255)

If (k, 255) 1s 1, ak is of order 255, hence primitive. There ave a total of ¢(255)
or 128 primitive elements in GF(28), where ¢(n) is the number of integers no
greater than n that are relatively prime to n. (An integer 1 and n are relatively
prime if (i,n) 1is 1.)

Let y be a primitive elrzent in GF(28). Correspouding to y is a generator
polynomial

22



is
|GINAL PAGE

b+2E-1 2E
g(x) = TT (x-Yj) - Z Gft:l
§=b 1=0

for a (255, 255-2E) RS code.

From (11)
2b + 2E - 1 = 255
For an E of 16,
b=112 and b + 2E - 1 = 143

and given a primitive element y in GF(ZB),

143 32
a(x) = ﬂ (x~v)) =Z oxt 1s)
j=112 1=0

is a self-reciprocal generator polynom!al for a (255, 223) RS code.

Given that y equal to ok is primitive, the expanded g(x) in (15) will be
the same for the reciprocal of y (i.e., y-l equal to a255-k). Thus there are 64
distinct self-reciprocal polynomials over GF(ZB) that could serve as the codes'
generator polynomial g(x). For an (N,K) RS code, there are ¢(N)/2 distinct seif-
reciprocal polynomials over GF(ZJ) from which g(x) may be selected.

The field element 8 used to form a basis in GF(28) and the fielc element Y
in (14) govern the complex:ity of the bit-serial hardware multiplier in the Berle-
kamp RS encoder architecture. Element B can be selected from among 240 elements
in GF(ZB) — i.e., 256 less the 16 elements comprising the subfield GF(24). Ele-
ment y can be selected from among 64 pairs of reciprocal primitive elements in

GF(28) independently of the choice of 8.

23
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For a given basis {81} in GF(28). its dual basis {lJ} is determined as
illustrated in Example 5 for a field of lower order. Corresponding to a given
primitive element y {or 7-1) in GF(28). the coefficients Gy of g(x) 1in the
expanded form in (15) are determined where

Gy~ Cy, = 1and Gy, , = 1<1i<E

The 16 coefficients
Gy» Gys "7» Gy

represent a largest set of distinct coefficients not equal to 1 (no).

Bit-serial multiplication of the vector

se e

Go» G1» Gp» *77s Gy

by a field element z (i.e., an RS symbol) is realized as follows:

A linear binary matrix (i.e., an array of Exclusive-OR gates) is used to

compute

Tl(z) = Tr(z-Gi)

Since

in the dual basis,

24
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1 . ® g ple)
(sl (z-c)) - Z 2y 3
3=0

- 1,06%) = 2, (16)

T, *

1* » T16 to a stored z ylelds

The simultaneous application of TO'

tz,"™}  for 0 <t <16

0

(

)]
from (16) where 1 = 0. Note that {zo l‘} is the first component of the products
zco, zcl, cee, zGlG. Subsequently, z is replaced by Bz and a simultaneous

application of T ey, T16 to a stored Bz yields

0' Tlt

(z.) for 0 < 2 < 16

1

(from (16) where 1 = 1), the second components of {zGl}. Similarly, replacing 8z
by 8(8z) and applying {Tl} yields the third component of {sz} and so on. It will
be shown that Bz is simply deri.ed from 2.

The form of the functions {TI} is

7
Tl(z) = ‘I‘r(zGl) = Z ijr(leE) (17) ‘
j=0

For every z, the output of Tl is the mcdulio 2 sum (i.e., Exclusive-OR) of those

components z,'s in the dual basis for which

3

Tr(ljcl) =1

25
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A functional logic diagram of an (N,K) RS encoder utilizing Berlekamp's archi-
tecture is shown in Fig. 3. The linear binary matrix has as its inputs the contents
- of the Z register. At a given time interval, the representation of a field element
2 in the dual basis is stored in register Z. The outputs of the matrix for a (255,
223) RS ercoder {where J equals 8 and E equals 16) are

T, = Tr(zco)

g
(]

Tr(zGl)

= Tr(zG

15 15)

T Tr(zcl6)

16

For a given £, Tr(zGl) is a parity check over a particular subset of the

bits representing z in accordance with (17). These outputs represent

© W .,

(15) (16)
0 » 0 ’ » ’ z

z 0

0

the first components (bits) in the representation in the dual basis of the

products

zGo. zcl. ey zGlS, zG16

respectively.

The output Tr(Biz) which is fed back to the Z register is used in deriving
Bz. A field element z may be represented as a" or in the dual basis in vector

form as

2z = Tr(z), Tr(Bz), °°-, Tr(B7z)

26



ORIGINAL PAGE IS
OF POOR QUALITY

<
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Figure 3. A (N,K) RS Encoder Utilizing B:rlekamp's Architecture
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vhere
Tr(Biz) - Tr(Bian) -z,
Thus
Bz = Tr(Bz),'Tr(Bzz), ses, Tr(BBz)
Computing Bz from z corresponds to

zZ, « 2

g “2%y 021 <7

8
2, * Tr(B z) = zg
where the bits stored in the Z register are shifted and the output Tr(Baz) of th
binary matrix is entered. Clocking the Z register so configured yields Bz, the
set of inputs to the binary matrix during the subsequent time interval. The

outputs

T0 = Tr( BzGO)
T, = Tr(SzGl)
T15 = Tr(BzGlS)

T16 = Tr(BzGl6)

represent {21(2)}’ the second components of {zGQ}, respectively. Similarily, t
2
remaining components are computed recursively. The final components {zl “} ar

computed during the B:E time interval when 872 resides in the Z register and tt

outputs are {Tl = Tr(87zcl)}.

28
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Since G equals Gl

32-2

2G4, _; = 26 1<t <16

£

The components of the products of

2Gy9s 2Gygs **7y 2G4y

will have also been computed. The bit-serial multiplication of

G

31° %300 770 G

by z over GF(28) is thus complete. Furthermore, the resultant vector

2Gq » 2G50, **°, 26

0
has been bit-serially added to the previous contents of the FSR (ia Fig. 3),
symbol-shifted one place to the left. Upon computing a set of corresponding
i(l)}. z © is entered into the register section S0 as z (l),
(31) i i
z

v 24 are each simultaneously Exclusive-ORed with the bit emanating

components {2z

2 ..

and

%y

from the register section Sl, 82, LN 831, respectively. The field element z
is a symbol (represented in the dual basis) being fed back during the encoding
process.

Each register section except S.. is 40 bits in length and stores 5 8-bit

symbols, This provides an interleae;ng depth of 5. Register Y serves as a
staging register and is essentially an extension of 531. After the products
{zcllhave been determined, register Z is reloaded with the contents of register
Y. At this time register Y contains the next symbol z to be fed back. Register
sections Sl. SZ' ceey, 330 reside iﬁ RAM's. The Y and Z registers are composed
of delay flip~flops and register section 531 is a serjal shift rezister. Until
all information symbols have been entered (and simultaneously delivered to the
channel), the Y input is the bit-by-bit Exclusive-OR of the bits composing the
information symbol being entered and the bits composing the symbol exiting reg-

ister section S After the last information symbol has been entered, a control

i’

29
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signal (not shown in Fig. 3) level 1is changed to disable the information input
and switch from the information mode to the check mode. The 5 sets of 32 chec
symbols are then bit-serially delivered to the channel as the Y and Z register
and the S1 register sections are cleared.

The derivation of the functions {Tz} is given in Example 6 for a (63, 53)

RS code.

Example 6
6
Refer to Example 5 and Table 1, wherein every field element in GF{2 } is

represented as
4
o® = uia® 4 ual 40 4w

where a6 = as + az + a+ 1. For the basis {Bi} in GF(26)

3 12 1.

{1, s, 8%, 82, 8%, &°) = (1, o3, of, o7, o212, o!F;

the dual basis {lj} was shown to be

2} = {048, a&S’ 326, u23_ 043’ u51}

{os 4 %0 2q, 24, &g

An RS symbol is representable as o" and in the dual basis as

z = zolo + zlll + 4 ZSQS

where

z, = Tr(Bian) = Tr(an+3i

i )

It remains to select a self-reciprocal generator polynomial over GF(2) f
the (63, 53) RS code where

30
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Jw6, N=63, E=5, I=1

b+9 190
g(x) = 2 (x-Yj) - z (::lxi
j=b =0 -

From (11)
2b +2E -1 =N
2b + 9 = 63
b=27 and b + 9 = 36
The element y where

27 28 36
Y Tty Y

are distinct roots of g(x) may be selected among ¢(63)/2 or 18 reciprocal pairs

of primitive elements. The generator a is primitive and

k
Y=a
is primitive if and only if (k, 63) = 1.
For v = 05,
the coefficients of g(x) are
15
Go = GlO =] G3 = G7 = q
34
Gl = G9 = Gé - G6 =1
4 54
G2 - 68 = q G5 a

31
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The form of the {T!.} functions (as shown in (i7) for a (255, 223) RS code) is

5

Tl(z) = Tr(zGl) -2 ijr(!leQ)
j=0

The values of the traces Tr("jcz) are tabulated in Table 2. Values of Tr(a") are
given in Table 1.

Components z 's of every z in the dual basis for which

3

Tr(L Gl) =1

b

contribute to the output TE' From Table 2, the Tl functions are

0 0 4
Tl = zy + zg
T2 = z, + ze
'I‘3 = zg
T5 = z, + z, + Zg

The output

Tr(BGan) = 26

required in deriving Bz from z is deterriined as follows:

32
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3] 0 1 2 3 4 5
LG ué8 045 u26 °23 OI43 051
j o
rr(njco) 1 0 0 0 0 0
(2.G.) 019 016 060 u57 Ol14 cl22
j1
Tr(ljcl) 0 1 0 0 0 1
¢ 52 49 30 27 45 55
L.G a a a Qa a a
j2
b}
Tr(leZ) 0 0 0 0 ] 1
0 60 41 38 58 3
£.G a a a a a a
33
Tr(ljc3) 0 0 0 0 0 1
39 36 17 14 34 42
L.G a a a a
i’s
Tr(ljcs) 0 0 1 0 1 1
\ 48 45 26 23 43 51
{QOO \1' [2’ l3’ Ql‘i 25} {0 y & * y @ @ y G
e 34 15 0 5
{Gye Gy» Gy B34 G4y G5} = fa7, o “oah ot a0, B2
Note that Tr(EJGO) - Tr(ljca).
33
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2 2) 2, 25 2, Zg a" 86 n an+18 Tr(86an)
100000 o o2 1
010000 4> o? 0
0601000 af 'al“' 1
6001060 o NE 0
600010 o o1 1
000001 ot o® 1

Tr(86an) =z =z +2z. . 4+2z, +2z2

6 0 2 4 5
The linear binary matrix with inputs Zge 295 "7ty g and outputs To, Tl’ ty, TS
and zg (i.e., Tr(66an)) for a (63, 53) RS code is shown in Fig. 4. O

In a conventional {N,K) RS encoder, an information or check symbol is repre-

sented as

n
a =u . +u, a+ ' +u o

and denoted by

In an (N,K) RS encoder employing Berlekamp's architecture, the symbols (informa-
tion and check) are represented in the dual basis. The transformation from one
representation to the other is linear. The symbol a1 in the dual basis is repre-

sented as
[Tr(ai)] 1y + [Tr(Bai)] R [‘rr(e"'lai)] 21_1
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Figure 4. Implementation of the Linear Binary Matrix
for a (63, 53) RS Code
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1
vwhere z, = Tt(Bka‘). Thus

Tr(ad), tregad), -+, Tr(87 tal) — ot

Tr(uj). 'l‘r(Buj). T, Tr(BJ_laj) - o
and
8J

Tr(al) + Tt(“j)' Tr(gal) + Tr(gad), -, Tr( "Ly 4 oree?lod)

= Tr [(aihj)], Tr [B(aimj)] s °t, IT [BJ_I(oi-mj)] - u1 + uj

The automorphism 1in GF(ZJ) of the two representations under ti.. same rules

of "addition" 1s fllustrated in Example 7.

Example 7

Refer to the two representations of elements in GF(26) in Table 1.

Sua u3u2 Ul uo Zo £1 22 23 24 25
24
; 11 001 0 «— 100100
i +2 1011311 «— 011101
* %4

Example 8

Given the iaformation symbol sequence

36
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lo ll lz l3 l‘ ls

C,. 0 000 00O

C11 0 00 0 0O

c 0 00 0 01

10
to be encoded by a (63, 53) RS encoder incorporating Berlekamp's architecture.
Leading zero information symbols have no effect on the 10 6-bit register sections
(which are initially cleared). The single nonzero information symbol is entered
into the Z register via the Y rezister, and the Tl functions (derived in Example

' -
0§ of (zGl}. Re
placing z with Bz (by clocking the Z register) and applying the Tl functions yield

6 and implemented in Fig. 4) are applied to determine the 2z

the zl's of {zG,} and so on as shown in Table 3.
The symbols of the codeword in Table 3 expressed as powers of a are compared

with corresponding coefficients of g(x) as follows.

C., - C

62 ¢, ¢, ¢c ¢ ¢ €, c,  C C

11 0% % € G S € ¢ & & G

Codeword ak  eee ok 051 322 °55 a3 u51 °142 051 a3 055 u22 u51

Coefficients of g(x) ak **"a* u a a a- a o a a_ a a a

Note that the codeword polynomial is a scalar multiple (of 051) of the g(x) of
the (63, 53) RS code. This property of RS codes provides a simple check on the
derived T, functions aud z, (i.e., Tr(BGun)). 0

V. MATHEMATICA'. CHARACTERIZATION OF THE (255, 223) RS ENCODER
DESIGNED BY BERLEKAMP

As previously discussed, the independent parameter values of the (255, 223)

RS code are
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Table 3. Check Symbol Computation in the Dual Basis of a (63, 53) RS Code
ottt b
0O 00 0 0 O C62
8z Bzz 832 B‘z Bsz .
z, 0O 0 0o 0 1 0 0 O 00 C11
z, 0 0 0 0 1 1 0 0O c 1 °1o
z, 0 00 1 1 0 110 11 <y
zy ¢ 0 1 1 0 1 1 01 1 0 C8
z, 0 1 1 0 1 O 1 10 00 C7
zq 11 0 1 0 O 0 0O 01 C6
1 01 00 C5
0 0 O 01 Cl.
1 10 0 O C3
1 01 1 0 CZ
1 1 0 11 Cl
0 0O 01 Co
4 +
T!,(Z) Tl(Bsz)
To =z, - Ta '1'3 -z
'l‘l-tzl+z5 Ts-z.2+z +25
T, =z, +2 Tr(86un)-z-z +2, +2z, +z2
2 4 5 0 2 4 5

38
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J = 8 bits per symbol
E = 16 symbol error correction capability
I «5 (symbol) interleaving depth

The generator a of the nonzero field elements in GF(Za) is a root of the primitive
polynoaial over GF(2)

18 + x7 + ‘2 +x+1 (18)
The field element
8 = o'’ (19)

was selected to form the basis in GF(28)

(a, s, 8%, -+, 8} (8}

The resulting dual basis is
{e,} = {lo. L ey L)

125 B8 226 163 46 1B4 67 0267

= a7, a ,a",a ,a ,a ,a , “}
(20)

The field element
Y= 311 (21)

vas selected in specifying the self-reciprocal generator polynomial

143 32
1o = TT b= 3 et
4=112 1=0
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The coefficients of g(x) in expanded form are

Note that G, = G

The resulting Tl functions are:

=z,
= z, +
=z, +
=z, +
= zo + zl +
- zo + z1

- z, +
"ty

= 2, +
- zo + zl

G0 = 632 = ap 68 = 626 - 097
G, = G, - o2%? Gy = Gpy = oa3°
Gy = G3p = 0 Gyo= G5y = @
3= Gyo = a® €11= 6y = a??
G4 = Gpg = * Gip = o = &
G5 = )y = a0 Gy3 = G)g = o
Gg = Gpg = a'2° €14 = G = a0
Gy = Gpg = o™t G5 = 67 = &
6 q = o
3 " Cy9 ™ 613 = Gyo-
zz + z4 + z6
z2 + z3
z2 + z3 + 24 + z5 = T13
22 + 27
z2 + z6 + z7
+ ZS <+ Z6
22 + 24
s tztz
z, + 234z, 4+
+ 24 + 27
%
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2 + :‘ + zs + 26

+ 2 + 2

~-)
L}

12 zo + zl + zz

114 - zo + zl

T e ® z, +z

+:2
+ 2

+z

1 3 5

1 + zz + !6

7
T, = z

In addition to the 'l‘l functions

Tr(Bsun) =zp = zo + zy + z, + z,

is an output of the linear binary matrix as discussed in Section IV-B.

The sole criterion in the selection of 8 in (19) and y in (21) was the
realization of a linear binary matrix of minimal complexity. The dual basis
{lj} directly results from the selection of 8. The coefficients {Gl} of g(x)
are fixed by the choice of y. As discussed and shown in (17), those components
zj's in the dual basis for which

Tr(ljcl) =]

contribute to the output Tl' A measure of complexity for a8 given 8 and y is the

number of 1's in the set

{Tr(ljcl)} for 0 < j <8

and distinct Gg's among

{G., G }

0 G107 Gy
Using this measure, Berlekamp combined a computer search with some hand computa-
tion in finding a By combination yielding a set of Tl functions of minimal com-
plexity. The entire binary matrix was realized with 24 2-input Exclusive-OR gates
organized for maximum gate sharing within three levels of gating.

The two representations of field elements in GF(28) appear in Table 4.
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Table 4. Two Representations of Field Elements in GF(28)

n of

WOOSNOTWVMBEWNEHO »

1 of ol Tr (a") j of lj nof a@ 4 of oi Tr (a™) J of lj
76543210 01234567 76543210 01234567
00000000 0 00000000 46 11110000 0 00001000(24)
00000001 0 01111011 47 01100111 0 01001110
00000010 1l 10101111 48 11001110 1 10101110
00000100 1 10011001 49 00011011 1 10101000
00001000 1 11111010 50 - 00110110 0 01011100
00010000 1 10000110 51 01101100 0 01100000
00100000 1 11101100 52 11011000 0 00011110
01000000 1 11101111 53 00110111 0 00100111
10000000 1. 10001101 54 01101110 1 11001111
10000111 1 11000000 55 11011100 1 10000111
10001001 0 00001100 56 00111111 1 11011101
10010101 1 11101001 57 01111110 0 01001001
10101101 0 01111001 58 11111100 0 01101011
11011101 1l 11111100 59 01111111 0 00110010
00111101 0 01110010 60 11111110 1 11000100
01111010 1 11010000 61 01111011 1 10101011
11110100 1 10010001 62 11110110 0 00111110
01101111 1 10110100 63 01101011 0 00101101
11011110 0 00101000 64 11010110 1 11010010
00111011 0 01000100 65 00101011 1l 11000010
01110110 1 10110011 66 01010110 0 01011111
11101100 1 11101101 67 10101100 0 00000010(26)
01011111 1 11011110 68 11011111 0 01010011
10111110 c 00101011 €n 00111001 1 11101011
11111011 0 00100110 7u 01110010 0 00101010
01110001 1 11111110 71 11100100 0 00010111
11100010 0 00100001 72 01001111 0 01011000
01000011 0 00111011 73 10011110 1 11000111
10000110 1 10111011 74 10111011 1 11001001
10001011 1 10200011 75 11110001 0 01110011
10010001 0 01110000 76 01100101 1 11100001
10100101 1 10000011 77 11001010 0 00110111
11001101 0 01111010 78 00010011 0 01010010
00011101 1 10011110 79 00100110 1 11011010
00111010 0 00111111 80 01001100 1 10001100
01110100 0 00011100 81 10011000 1l 11110001
11101000 0 01110100 82 10110111 1 10101010
01010111 0 00100100 83 11101001 0 00001111
10101110 1 10101101 84 01010101 1 10001011
11011011 1 11001010 85 10101010 0 00110100
00110001 0 00010001 8o 11010011 0 00110000
01100010 1 10101100 87 00100001 1 10010111
11000100 1 11111011 88 01000010 0 01000000(11)
00001111 1 10110111 89 10000100 0 00010100
00011110 0 01001010 90 10001111 0 00111010
00111100 0 00001001 91 10011001 1 10001010
01111000 0 01111111 92 10110101 0 00000101
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Table 4. Two Representations of Field Elements in GF(ZB) (contd)

n of

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

n
a

i of ai

76543210
11101101
01011101
10111010
11110011
01100001
11000010
00000011
00000110
00001100
00011000
00110000
£1100000
11000000
00000111
00001110
00011100
00111000
01110000
11100000
01000111
10001110
10011011
10110001
11100101
01001101
10011010
10110011
11100001
01000101
10001010
10010011
10100001
11000101
00001101
00011010
00110100
01101000
11010000
00100111
01001110
10011100
10111111
11111001
01110101
11101010
01010011
10100119

Tr(a™) j of ¢

OHHFOHOOOFHHKMHHOMOFHHOROOFOMOOKMKMKMEREMNROOOOOOOKWHOMKMO M

3
01234567
10010110 140
01110001 141
10110010 142 .-
11011100 143
01111000 44
11001101 145
11010100 146
00110110 147
01100011 148
01111100 149
01101010 150
00000011 151
01100010 152
01001101 153
11001100 154
11100101 155
10010000 156
10000101 157
10001110 158
10100010 159
01000001 160
00100101 161
10011100 162
01101100 163
11110111 164
01011110 165
00110011 166
11110101 167
00001101 168
11011900 169
11011111 170
00011010 171
10000000(1,)172
00011000 = 173
11010011 174
11110011 175
11111001 176
11100100 177
10100001 178
00100011 179
01101000 180
01010000 181
10001001 182
01100111 183
11011011 184
10111101 185
01010111 186

n of cn i of ui

43

76543210
11001011
00010001
00100010
01000100
10001000
10010111
10101001
11010101
00101101
01011010
10110100
11101111
01011001
10110010
11100011
01000001
10000010
10000011
10000001
10000101
10001101
10011101
10111101
11111101
01111101
11111010
01110011
11100110
01001011
10010110
10101011
11010001
00100101
01001010
10010100
10101111
11011001
00110101
01101010
1101010C
00101111
01011110
10111100
11111111
01111001
11110010
01100011

Tr(an)

HHEHOMMHMFHEFOOOFOMHFEMEMOFNOOHFHFOOHFHOMNHOFHFOHOOMNMOOHNOOOMHOMMODOOOHD

00010000(¢

00000100(¢

j of lj

01234567
01001100
11111101
01000011
01110110
01110111
01000110
11100000
00000110
11110100
00111100
01111110
00111001
11101000
01001000
01011010
10010100
00100010
01011001
11110110
01101111
10010101
00010011
11111111
3)
10011101
01011101
01010001
10111000
11000001
00111101
01001111
10011111
00001110
10111010
10010010
11010110
01100101
10001000
01010110
01111101
01011011
10100101
1000C* 00
10111111
B
10100111
11010111



N e ey

ORIGINAL PARE 'S
OF POOR QUALITY

Table 4. Two Representations of Field Elements in GF(28) (contd)

nof a© 1 of u1 'l‘r(un) j of ,“j nof a° i of ui Tr(an) j of "j

76543210 01234567 76543210 01234567

187 11000110 0 01010100 234 10001100 1 11101110

188 00001011 0 00101110 235 10011111 1l 10111100

189 00010110 1 10110000 236 10111001 0 01100110

190 00101100 1 10001111° 237 11110101 1 11101010

191 01011000 1l 10010011 238 01101101 0 00011011

192 10110000 1 11100111 239 11011010 1l 10110001

193 11100111 1l 11000011 240 00110011 1l 10111110

194 01001001 0 01101110 241 01100110 0 00110101

195 10010010 1 10100100 242 11001100 0 00000001(27)

196 10100011 1 10110101 243 00011111 0 00110001

197 11000001 0 00011001 244 00111110 1l 10100110

198 00000101 1 11100010 245 01111100 b 11100110

199 00001010 0 01010101 246 11111000 1l 11110010

200 00010100 0 00011111 247 01110111 1 11001000

201 00101000 0 00010110 248 11101110 0 01000010

202 01010000 0 01101001 249 01011011 0 01000111

203 10100000 0 01100001 250 10110110 1 11010001

204 11000111 0 00101111 251 11101011 1 10100000

205 00001001 1l 10000001 252 01010001 1 00010010

206 00010010 0 00101001 253 10100010 l 11001110

207 00100100 0 01110101 254 11000011 1 10110110

208 01001000 0 00010101

209 10010000 0 00001011

210 10100111 0 00101100

211 11001001 1l 11100011

212 00010101 0 01100100

213 00101010 1l 10111001

214 01010100 1l 11110000

215 10101000 1l 10011011

216 11010111 1 10101001

217 00101001 0 01101101

218 01010010 1 11000110

219 10100100 1 11111000

220 11001111 1 11010101

221 00011001 0 00000111

222 00110010 1 11000101

223 01100100 1 10011010

224 11001000 1 10011000

225 00010111 1l 11001011

226 00101110 0 00100000(12)

227 01011100 0 00001010

228 10111000 0 00011101

229 11110111 0 01000101

230 01101001 1l 10000010

231 11010010 0 01001011

232 00100011 0 00111000

233 01000110 1 11011001
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VI. HARDWARE COST OF RS ENCODERS — CONVENTIONAL VS BERLEKAMP'S ARCHIIECTURE

There are two existing designs utilizing Galileo flight-qualified parts with
enough similarity in their functional specifications to make a meaningful com-
parison.

(1) One is a conventional (255, 223) RS encoder with an interleaving depth

I of 2. It accepts a bit-serial input of up to approximately 800 kbits
per second. An input sequence comprised of 2 sets of 223 8-~bit symbols
(i.e., 3558 bits) need not be continuous. This encoder will serve as
an outer encoder for compressed imaging data aboard the Galileo space-
craft.

(2) The other is a (255, 223) RS encoder utilizing Berlekamp's architecturc

with an interleaving depth I of 5. The (2551, 223I) code can be
shortened to a ((255-Q)I, (223-Q)I) shortened code where

223 -Q> 1

The leading QI symbols of the shortened code are viewed as 0's (00...0)
and discarded. It accepts a bit-serial input up to approximately 400
kbits per second. Ar 1nput sequence comprised of 5 sets of 223-Q 8-bit
symbols need not be continuous. This encoder was designed and imple-
mented in breadboard form by E.R. Berlekamp of{ Cyclotomics Inc. under a
JPL contract. It has been adopted as the outer encoder for all science
and engineering data emanating from the NASA ISPM spacecraft. The JPL
specifications were in accordance with Galileo requirements, which
exceed those of ISPM (specifically serial input and output bit rates).
The (255, 223) RS code with an interleaving depth of 5 was a contender
to the (24, 12) extended (binary) Golay code (bit) interleaved to &
depth of 36. The extended Golay code was the early choice for the outer
code of nonimaging science data for the Galileo spacecraft., Subsequent
to a third and final review, the extended Golay code will serve as the
outer code. However, packetized telemetry with RS/convolutional con-
catenated coding has been adopted as a8 NASA-JPL standard for future

spacecraft missions.
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The logic building blocks used in (1) and (2) were integrated circuits (ICs)
in the Complementary-symmetry Metal Oxide Semiconductor (CMOS) family. Low power
and amenability to radiation hardening are characteristics of CMOS technology that
are essential in space applications. ROMs and RAMs each occupy 3 16-pin IC loca-
tions on flight circuit boards. The number of ICs and IC locations for each
design are as follows:

(1) Conventional RS encodar

Total number of ICs excluding ROMs and RAMs 26
Total number of ROMs and RAMs 24
Total number of 16 pin locations 98

(2) RS encoder with Berlekamp architecture

Totai number of ICs excluding RAMs 31
Total number of RAMs 8
Total number of 16 pin locations 5.

VII. TESTING RS ENCODERS
A. INTRODUCTION

As described in Section IV, a conventional RS encoder contains an FSR. If
symbol interleaving is required, each register section of the FSR is lengthened
by a factor of I (see Eq. 10). An RS encoder utilizing Berlekamp's architecture
similarly incorporates an FSR. It differs principally from a conventional encoder
in that symbol multiplication 1s bit-serial and is realized in hardware.

The size of the codeword dictionary of a (255, 223) RS code is (256)223 or
21784 (wvhich approximately equals 10537). However, the number of information
symbol sequences required to test the functional integrity of an encoder is
surprisingly small. This is due to the linearity, cyclic structure and other
properties (subsequently discussed) of RS codes.

Three classes of RS symbol sequences provide a user with a simple, systematic
and effective means of testing conventional as well as Berlekamp types of RS
encoders. Hereafter, the classes of symbol sequences are referred to as the
generator polynomial coefficient sequence (GCS), the constant symbol sequence
(CS), and the iterative symbol sequence (IS).

Conventional and Berlekamp type of (255, 223) RS en~oders are assumed to have

the same self-reciprocal generator polynomial whose coefficients appear in (22).
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The representation of symbols associated with the conventional encoder are the
polynomials in a appearing in Table 4. Corresponding to each polvnomial in a

is the representatiin in the dual basis oi symbols associated with the Berlekamp-
type encoder. Given

6

7
un =g a +u.a + °°* 4+u

7 6 0

the corresponding element is

z = 2020 + 2121 4+ e + z727

where
3!
[2gs 25 *ots 29] = luge wge =20y ugl Ty :
and
10001101
11101111
11101100
T,=|Lto0000110 (24)
11111010
10011001 :
10101111 :
01111011 :
b — R

Row 1, row 2, *°°, and row 8 in T are representations in the dual basis of u7
(10 ---, 0), ab (010 «-- 0), ===, and ao (00 =<+ 01), respectively. The inverse

of Tu! is
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J

O = =~ O

(25)

AR
H = O - - O O -
= i i i =
O = = e = =0 O
O O + = = O C O
H OB - O M~ O O
- = O O F +H O =

o ©C O O
Q O = C = ©C O =

r
|

Row 1, row 2, °++, and row 8 in Tu -1 are polynomials in a corresponding to ¢

[
(10 -+- 0), El (010 +-- 0), +++, and 17 (00 --- 01), respectively. Thus

0

g -
[z, 255 > 29 T o (ugs ug,s > ug]
Given a conventional and a Berlekamp type of an (N,K) RS encoder with a

common g(x). The transformational equivalence of codewords is illustrated in

Fig. 5.

B. TEST SEQUENCES

1. The Generator (Polynomial) Coefficient Sequence (GCS)

The generator polynomial and every scalar multiple of the generator poly-
nomial of an RS code are codeword polynomials of lowest degree. Consider the

information symuol sequence

Cy54 €253 "°" C33 3

associated with a conventional (255, 223) RS encoder. Only the last information

symbol C3 is nonzero. Thus

2

I(x) = o® (00 -+ 01)
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S

Figure 5. Transformational Equivalence of RS Codewords
with a Common g(x)
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and
k)
x321(x) z E (‘;ix1 mod g(x)
i=0
where 631, 030. e, Go as given in (22) are the check symbols. The encoded word
is
€32 630 C30C9 " G366 G

0 249 59 o6 66 59 249 O
a a a  a *ra o a a

the GCS where the leadir , all-zeros symbols are not shown.

Every codeword polynomial

254 + C x253 + - 4+Cx+C

COx) = Cpqy X 253

contains g(x) as a factor and is a member of a principal ideal of the ring F[x] /
255
x

( ~1) over GF(ZB) wvhere g(x) is a generator of the ideal (see Ref. 2). Thus
254 2 255
xC(x) = C253 x + + C1 x + Cox + CZS& x
254 2
= C253 x + - 4+ C1 x + Cox + C254
since
x255 Z 1 wmod xzss—l.
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The coefficients of xC(x) are a cyclic permutation one place to the left of
those of C(x). It follows that cyclic permutations of a GCS are codewords.
Furthermore, linear combinations of GCSs and cyclic permutations of GCSs are

also codevords.

Exanmple 9

The results of a GCS-type test on a BerleE;mp-type ercoder with symbol inter-
leaving to a depth of 5 appear in Table 5. Each of the 5 columns of 8-bit symbols
is a codeword. The encoder is initially cleared and the 5 sets of leading *n’or-
mation symbr.ls (c256 through C33) of all zeros are not shown. Information symbols
enter and check symbols exit row by row as shown in the deinterleaved arrangement
of Table 5. Note t 1t C32 of codeword 5 is the only nonzero information symbol.

The information symbol C,, with the resulting check symbols (C31 through Co) is

32
a representation of a scalar multiple of the GCS in the dual basis. From (25)

and (22),

-1 -93

e Gl Ty = 7 [Gy5, Gypp 777, Gy

(€335 Cays
Successive applications of the T2 functions in (23) on 2 (11 --- 1), 8z, **-, g’z
)
(for 8 in (19)) yield the like components {zo(l‘}, {21(2)}’ ., {27(2)} of the

C, of codeword 5 in Table 5. As in Table 3 for Example 8,

symbols C32, 031, s Cy

the GSC provides a simple check on the derived'rlfunctions and zg (i.e., Tr(Baan)).

0
Example 10

A test run on a Berlekamp encoder resulting in a cyclic permutation of the
GCS in Example 9 is given in Table 6. The information symbols C33 and C32 of
codeword 5 result in a GCS that is cyclically shifted upward one symbol.
(a*) in Example 9 is Co

this example are all zeros.

CZSA
ir Example 10. The leading 222 information symbols in

Clearly, an all-zeros symbol (information and check) sequence is a codeword

(e.g., codewords 1 through 4). It is the identity element of the linear (code)

*
space and is representable as a g(x). O
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Table 5. GCS Test for a Berlekamp Encoder
Codeword
1 2 3 4 5
o %
00000000 000000920 00000000 00000000 11111112 632
00000000 00000000 00000000 00000000 00100010
00000000 00060000 00000000 00000000 00000111
00000000 00000000 00000000 ; 00000000 00011101
00000000 00000000 00000000 00000000 01010001
00000000 00000000 00000000 00000000 10000001
0000C000 00000000 00000000 00000000 00111111
00000000 00000000 00000000 00000000 11110110
00000000 00000000 00000000 00000000 10000110
00000000 00000000 00000000 00000000 11100111
' 00000000 00000000 00000000 00000000 0.011101
06000000 00000000 00000000 00000000 11110101
00000000 00000000 00000000 00000000 01100100
00000000 00000000 00000000 00000000 00011101
00000000 00000000 00000000 00000000 00110111
006000000 00000000 00000000 00000000 10111000
00000000 00000000 00000000 00000000 11010111
00000000 00000000 000000n0 00000000 10111000
00000000 00000600 00000000 00000000 00110111
00000000 00000000 00000000 00000000 00011101
00000000 00000000 00000000 00000000 01100100
00000000 00000000 00000000 00000000 11110101
00000000 00000000 00000000 00000000 01011101
00000000 00000000 00000000 00000000 11100111
00000000 00000000 00000000 00000000 10000110
05000000 00000000 00000000 00000000 11110110
00000000 00000000 00000000 00000000 00111111
00000000 00000000 00000000 00000000 10000001
0000000C 00000000 00000000 00000000 01010001
00000000 00000000 00000000 00000000 00011101
00000000 00000000 00000000 00000000 00000111
00000000 00000000 00000000 00000000 00100010
00000000 00000000 00000000 00000000 11111111 o
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Table 6. A Cyclic Permutation of the GCS in Table 5 OF FOO° QUALTY
Codeword
1 2 3 4 5

zo 27
00000000 00000000 00000000 00000000 11111111 C,,
00000000 00000000 00000000 90000000 00100010 C,,
00¢00000 00000000 00055000 00000000 00000111
00000000 00000060 00000000 00000000 00011101
00000000 00000000 00000000 - 00000000 01010001
00000000 00000000 00000000 00000000 10000001
00000000 00000000 00000000 00000000 00111111
00000000 00000000 00000000 00000000 11110110
00000000 00000000 00000000 00000000 10000110
00006000 00000000 © 00000000 00000000 11100111
00000000 00000000 00000000 00000000 01011101
0000000 00000000 00000000 00000000 11110101
00000000 00000000 00000000 00000000 01100100
00000000 00000000 00000000 00000000 00011101
00000009 00000000 00006000 00000000 c 110111
00000000 00000000 00000000 00000000 10111000
00000000 00000000 00000000 50000000 11010111
00000000 00000000 00000000 00000000 10111000
00000000 00000000 00000000 00000000 00120111
00000000 00000000 00000000 00000000 00011101
00000005 00000000 00000000 000000C0 01100100
00000000 00000000 00000000 00000000 11110101
00000000 00000000 00000000 00000000 01011101
00000000 00000000 00000000 00000000 11100111
00000000 00000000 00000000 00000000 10000110
00000000 00000000 00000000 00000000 11110110
00000000 00000000 00000000 00000000 00111111
00000000 00000000 00000000 00000000 10000001
00000000 00000000 00000000 00000000 01010001
00000000 00000000 00000000 00000000 00011101
00000000 00000000 00000000 00000000 00000111
00000000 00000000 00000000 00000000 00100010
00000000 05000000 00000000 00000000 11111111
00090000 00000000 00000000 00000000 00000000 €
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Example 11

Tables 7 and 8 present test runs on a Berlekamp encoder whereby C32 of 8 GCS
type tests are the unit vectors (10 -+ 0), (010 ~-+ Q0), ---, (00 -+ 01), re-
spectively, in the dual basis. "Adding" corresponding symbols vields the (scalar
multiple of the) GSC in Table 5. The code's generator matrix can be obtained
from linear combinations of cyclic permutations of the GCS-type seguences. Each
of the 223 distinct codewords in the code's generaéor matrix has one and only one
nonzero information symbol. o

Consider the check symbol sequences for 20 information symbol sequences where
each information symbol is randomly selected. Those computed by the encoder could
be compared with those derived from the code's generator matrix. A symbol-by-
sywbol match for each of the 20 pairs of check symbol sequences would verify the
functional integrity of an RS encoder w#ith an extremely high degree of confidence.

Additicnal tests serve to increase that degree of confidence.

2. The Constant (Symbol) Sequence (CS)
255

The polynomial x““"-1 factors are as follows.

253

szS_l = (x-1)(x254 + x + v+ x + 1)

Since the roots of g(x) are among the 255 rocts of unity (i.e., the nonzero

elements of GF(28)), g(x) divides x255—1. Since

(g(x), x-1) =1

g(x) must divide the factor of degree 254. Thus f(x) and any scalar multiplie
Kf (x) where

254
£(x) = Z x and K ¢ GF(2%)

i=0

are codewords. The iniormation symbol sequence

54

_— '__‘._..



Table 7. CUS Type Tests with C.. One Set of Unit Vectors in the Dual Basis

32
Codeword
1 2 3 4 5
2 %

. 00000001 0000001¢ 08000100 00001000 00000000 C32
01100110 10101011 01010110 10101100 00000000
00001000 00011000 00110001 01100010 00000000
00100111 01101000 11010001 . 10100010 00000000
11110010 00010111 00101110 01011100 00000000
10000011 10000101 00001010 00010100 00000000
01000001 11000011 10000111 00001110 00000000
00011011 00101101 01011011 10110111 00000000
10001011 10011101 00111011 01110110 00000000
00101000 01111000 11110000 11100001 00000000
11100110 00101010 01010100 10101000 00000000
00011111 00100001 01000011 10000110 00000000
10101101 11110111 11101110 11011100 00000000
00100111 01101000 11010001 10190010 00000000

. 01011001 11101010 11010100 10101001 00000000
11701000 01011000 10110000 01100000 00000000
01111001 10001010 00010101 00101010 0000000
11001000 01011000 10110000 01100000 00000000
01011001 11101010 11010100 10101001 0000000
00100111 01101000 11010001 10100010 00000J00
10101101 11110111 11101110 11011100 00000000
00011111 00100001 01000011 10000119 00000000
11100110 001010190 01010100 10101000 0000 00
00101000 01111000 11110000 11100001 0000C:. 00
10001011 10011101 00111011 01110110 00000000
00011011 00101101 01011011 10110111 00000000
01000001 11000011 10000111 00001110 00000000
10000011 10000101 00001010 00010100 00000000
11110010 00010111 00101110 01011100 00000000
00100111 01101000 11010001 10100010 00000000
00002000 00011000 00110001 01100010 00000000
01100110 10101011 01010110 10101100 00000000
00000001 00000010 00000100 00001000 00000000 C0
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Table 8. GCS Type Tests with C,, a Second Set of Unit Vectors in the Dual Basis

32
Codeword
1 2 3 4 5
. %
00012000 00100000 01000000 10000000 00000000 032
01011001 11010101 10101010 00110011 00000000
11000101 10000011 00000110 0000100 00000000
01000101 10101101 01011010 10010011 " 00000000
10111000 10000010 00000101 11111001 00000000
00101001 11010000 10100001 11000001 00000000
00011100 01111000 11110000 10100000 00000000
01101111 11000101 . 10001011 60001101 00000000
11101100 01010011 10100111 11000101 00000000
11000011 10101111 01011110 10010100 00000000
01010001 01000101 10001010 11110011 00000000
00001101 00000100 00001000 00001111 00000000
10111001 11011110 10111101 11010110 00000000
01000101 10101101 01011010 10010011 00000000
01010010 11111101 11111010 10101100 00000000
11000001 01001011 10010110 11100100 00000000
01010100 11010001 10100010 00111100 00000000
11000001 01001011 10010110 11100100 00000000
01010010 11111101 11111010 10101100 00000000
01000101 10101101 01011010 10010011 00000000
10111001 11011110 10111101 11010110 00000000
00001101 00000100 00001000 00001111 00000000
01010001 01000101 10001010 11110011 00000000
11000011 10101111 01011110 10010100 00000000
11101100 01010011 10100111 11000101 00000000
01101111 11000101 10001011 00001101 00000000
00011100 01111000 11110000 10100000 00000000
00101001 11010000 10100001 11000001 00000000
10111000 10000010 00000101 11111001 00000000
01000101 10101101 01011010 10010011 00000000
11000101 10000011 00000110 00000100 00000000
01011001 11010101 10101010 00110011 00000000
00010000 00100000 01000000 10000000 00000000 C0
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results in check symbols C31 through Co that are also equal to K.

In Table 9, codewords 2 through 5 are CS test sequences. Note that codeword
1 added to codeword 5 in Table 5 cyclically shifted downward one symbol is a CS
of 11 :++ 1's in the dual basis.

3. Iterative (Symbol) Sequences (ISs)

Over every field xd-l divides x"-1 if and only if d divides n. 1In any field

which contains a primitive 1'x-t--}l root of unity

1

x"-1 = (x-ui)

n—
i=0
as discussed in Ref. 1. Also if n = kd, then

2k a(d—l)k

0 k
a ’ a’ a » ...’

are roots of

xd-l = 0
Consider the polynomials
x255-1 (255/d)-1 o
Qd (x) = d = E (x)
x -1 3=0

where d divides 255 = 3:5-:17. Since

xzss-l = (xd-l) Qd(X)
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Table 9. One Nonconstant and Four CS Type Tests Applied to a Berlekamp Encoder

Codeword
1l 2 3 4 S

2 %

00000000 11111111 11111111 11111111 11111111 0254
11111111 11111111 11111111 11111111 11111111
11111111 11111111 11111111 - 11111111 11111111
11111111 11111111 11111111 11111111 11111111
11111111 11111111 11111111 11111111 11111111 C32
00000000 11111111 11111111 11111111 11111111
11011101 11111111 11111111 11111111 11111111
11111000 11111111 11111111 11111111 11111111
11100010 11111111 11111111 11111111 11111111
10101110 11111111 11111111 11111111 11111111
01111110 11111111 11111111 11111111 11111111
11000000 11111111 11111111 11111111 11111111
00001001 11111111 11111111 11111111 11111111
01111001 11111111 11111111 11111111 11111111
00011000 11111111 11111111 11111111 11111111
10100010 11111111 11111111 11111111 11111111
00001010 11111111 11111111 11111111 11111111
10011011 11111111 11111111 11111111 11111111
11100010 11111111 11111111 11111111 11111111
11001000 11111111 11111111 11111111 11111111
01000111 11111111 11111111 11111111 11111111
00101000 11111111 11111111 11111111 11111111
01000111 11111111 11111111 11111111 11111111
11001000 11111111 11111111 11111111 11111111
11100010 11111111 11111111 11111111 11111111
10011011 11111111 11111111 11111111 11111111
00001010 11111111 11111111 11111111 11111111
10100010 11111111 11111111 11111111 11111111
00011000 11111111 11111111 11111111 11111111
01111001 11111111 11111111 11111111 11111111
00001001 11111111 11111111 11111111 11111111
11000000 11111111 11111111 11111121 11111111
01111110 11111111 11111111 11111111 11111111
10101110 11111111 11111111 11111111 11111111
11100010 11111111 11111111 11111111 11111111
11111000 11111111 11111111 11111111 11111111
110111C1 11111111 11111111 11111111 11111111
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g(x) divides Qd(x) if g(x) and xd-l have no common roots (i.e., (g(x), xd-l) =1).
The roots {Rd} of

xd-l =0
for various values of d are
(R,} = {a' : 1= 0, 85, 170}
i

{Rs} = {a” : 4 =0, 51, 102, 153, 204}

Ry} = {al : 1 =0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170,

187, 204, 221, 238}

o, 15, 30, 45, 60, 75, 90, 105, 120, 135,
150, 165, 180, 195, 210, 225, 240}

(R ;} = a1

The roots of g(x) whose coefficients are given in (22) are

11,j mod 255

® Y= (@) : 112 < § < 143)

or (in ascending powers of a)

1. 4.1, 10, 12, 21, 23, 32, 34, 43, 45, 56, 67, 78,

89, 100, 111, 122, 133, 144, 155, 166, 177,
188, 199, 210, 212, 221, 223, 232, 234, 243,
245, 254}

= {a

Since {R3} and {Rg} have no common elements g(x) divides

84
255
X -1 33
Q,(x) 3 Z x
J=0
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and

C(x) = (szx2 +8;x + so) Q3(x)

where 8,, 8;, 5 € GF(ZB) is a codeword polynomial.

Denote the symbol sequence Sy9 834 5% by'§. Then C(x) corresponds to the
1s ‘
2 8 %p $§$S -8

§S:"Ss

223 symbols 32 symbols

which is a codeword. Similarly, {RS} and {Rg} have no common elements and g(x)
divides

50
255
Qg (x) = ls -1 E x>
x ~1 "
i=0

and

c(x) - (s‘.x4 + §3x3 + -+ so) Qs(x)

where s, € GF(28) is a codeword corresponding to an IS. Clearly, ISs of length
15 and 17 are not codewords since {RIS} and {R17} each have elements contained

in {Rg}. (Note that CSs are special cases of ICs.)

Cc. RELIABILITY TESTING OF A BERLEKAMP RS ENCODER

The 4 nonzero test sequences appearing in Table 10 were contrived by Berle-

kamp. None are valid codewords. The only nonzero row of information symbols

z z

0 7
00000010 00000100 00001000 00010000 00000000
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Table 10. A Realiability Test for a Berlekamp Encoder

Symbol Sequence

1 2 1 4 5
0 %
00000010 00000100 00001000 00010000 00000000 C, 1>>254
00000000 00000000 05000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 (all night run)
00000000 00000000 00000000 00000000 00000000 C,,
01001501 10010010 00100100 01001000 00000000
11001110 10011100 00111000 01119001 00000000
01011100 10111600 01110000 11100000 00000000
01000101 . 10001010 00010101 00101010 00000000
00011110 00111101 - 01111010 11110100 00000000
11001111 10011111 00111111 01111110 00000000
10100110 01001101 10011010 00110100 00000000
10100111 01001110 10011101 00111011 00000000
11111111 11111110 11111101 11111010 00000000
01001110 10011101 00111011 01110110 00000000
101006011 01000110 10001101 00011010 00000000
11011011 10110110 01101100 11011001 00000000
10111011 01110111 11101111 11011111 00000000
01000001 10000010 00000101 00001011 00000000
01111011 11110111 11101110 11011100 00000000
10101100 01011001 10110011 01100111 00000000
00001011 00010111 00101110 01011100 00000000
10011110 00111100 01111001 11110011 00000000
00110000 01100001 11000010 10000100 00000000
01001011 10010110 00101100 01011000 00000000
01010000 10100000 01000001 10000010 00000000
10010100 00101000 01010000 10100000 00000000
00111001 01110010 11100100 11001000 00000000
00111100 01111001 11110011 11100110 00000000
00100110 01001100 10011001 00110011 00000000
00001000 00010000 00100001 01000011 00000000
11010000 10100001 01000010 10000101 00000000
10001111 00011110 00111101 01111010 00000000
10011110 00111100 01111001 11110011 00000000
00111011 01110110 11101100 11011000 00000000
01000011 10000110 00001101 00011011 00000000
00110000 01100001 11000010 10000100 90000000 €,
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was entered after clearing the encoder. Given

z-zo 21 ree !7

then
Bz = z1 z2 *ttozg
where

‘- Tr(Bsz) =2z 42z +2.+z,.

g VIS W B

Thus each of the nonzero symbols starting with 2 is B times its rredecessor.
This row of information symbols followed by rows of all zeros far exce:-.ing 222
rows was entered intv the encoder in the message mode over a period of 15 hours at
a clock input speed of 1.6.MHz. Each clock time interval is comprised of 4
phases, resulting in an effective 4-kHz internal clork speed. Corresponding to
the row just below the row labeled C32, the cutput was switched to the check mode
(after the 1.6-MHz clock was switched to the single-step mode to reach the correct
phase by single-stepping the clock and monitoring the encoder's internal signals).
Each nonzero sequence of symbols from column 2 through 4 should be B8 times the
symbols of the preceding column. This may be readily verified visually because
of the simjle relationship between z and fz. The initial row was chosen whereby
2g for each Bz is zero. Any plausible sequence of malfunctions during the run

would very likely alter the expected outcome.

VIII. CONCLUSIONS

The IC part count of the (255, 223) RS encoder employing Berlekamp's archi-
tecture is 39, of which 9 are RAMs. RAMs are classified as Large-Scale Inte-
grated Circuits (LSIs). The.remaining 30 are Small-Scale Integrated Circuits
(SS1s). The conventional (255, 223) RS encoder contains 60 ICs of which 24 are

LSIs (i.e., RAMs and ROMs). Constraints of power, weight and volume clearly favor

Berlekamp's architecture in an IC implementation for spacecraft utilization

implementation.
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The comparison of Very-Large-Scale Integrated Circuit (VLSI) implementations

of conventional and Berlekamp-type RS encoders ir considerably less conclusive.

In a VLSI implementation, logical element< and connection paths reside on a
single chip. Logical elements provide processing and memory, and controlled
connection paths provide communication between a processor and memory.

Unlike the case for IC design, complexity is not a function of the number of
logical elements but rather of the active chip area they occupy. Patterns with
inherent regularity such as those associated with ROMs and RAMs are amenable to
VLSI designs where active chip area is at a premium (see Ref. 14). 1In IC desizns,
external interconnecting wires between I(s contribute insignificantly to propa-
gation delay in a reascnable layout. By contrast, connection paths in VLSI
designs can significantly 9ffect active chip area and propagation delays.

A figure of merit for comparing VLSI implementati-us is tle space-time
product. Space is a measure of active chip area, whereas time is a measure of
throughput. Parallelism in connection paths (where path-sharing is minimized)
increases throughput at the expense of chip area. A VLSI implementation of a
conventional RS erccdar can match the throughput of a Berlekamp type at the expense
of additional active chip area. For spacecraft applicaticas, however, the potential
throughput (speed) far exceeds the downlink telemetry rates anticipated for the
remainder of this century.

NASA and the European Space Agency (ESA) have formed the NASA/ESA Working
Group for Space Data Systems Standardization (NEWG). Telemetry channel coding
appears in the "Guidelines for Data Communicatior Standards" (Ref. 15), which
specify the (255, 223) RS code whose ma' aematical characterization appears in
Section V herein. The representation of RS symbols will be in the dual basis
(Table 4) in accordance with Berlekamp's architecture. The success of the
Berlekamp architecture is reflected in its adoption by NASA/ESA in the guide-
lines (Ref. 15).
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