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COMPUTATION OF THE INTERVALS OF UNCERTAINTIES ABOUT 
THE PARAMETERS FOUND FOR IDENTIFICATION 

p. Mereau and J. Raymond I 

1. Introduction /1* 

Practically the procedure of identification leads to a slanted 

estimate of the parameters of the model, this slant is due to various 

causes: 

uncertainty about measurements: unmeasurable secondary inputs, 

measurement noises, errors because of quantization; 

error of characterization of the model: the model is generally 

characterized with a certain number of simplifying hypotheses 

in which certain behaviors are disregarded; 

numerical errors: the numerical methods used lead to a neces

sarily limited precision. 

'- Thus, in these conditions, it is illusory to seek to determine the 

'. 

"true" values of the parameters. On the other hand modeling assumes its 

total reality as an experimental method if its final goal is to achieve 
• '!" • 

values of parameters completed with an estimate of an uncertainty interval 

around these values, taking into account the effect of the various causes 

of error. 

2. Region of Confidence /2 

The modeling method leads to the minimizing of a criterion of quad

ratic spread which is written as follows: 

IAssociation for the Development of Teaching and Research in Applied 
Systematics; Group for Study and Research in Bio-Systems. 

*Numllers ill the margin indicate pagination in the foreign text. 
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D(p)= >:=1 [Sm(tk,P) - SO(tk)]T [SID(tk'P)-SO(tk~ 

N = identification level 

Sm(tk,p) = value of the model outlets 

So(tk,p) = value of the object outlets 

p = parameter vector 

tk = sampling time. 

(1) 

The effect o~ the different sources of errors indicated above is 

to lead to a result p . , at the time of minimizing of the criterion (1), 
rnln , 

differing from thenominal point PO ·(point minirni~rn~'~rid Uide~l" distance 

of the object to the model in the absence of noise) (compare Figure 1). 

D(p) 

D min + llD 

Dmin 

\ 
,~distance 

\ , 
id~ale(l) 

I 
I 

I 
I 

I 
I 

-----~--_\"""' ' \" -K ------' \ --/'-
rcelle 

Figure 1: 

Key: (1) 

\ 

, , 

P-

.. '" .. .. 

Po Pmin 
p+ 

Distance of the object to the model. 

ideal distance; (2) real distance. 

P 

(2' 

Thanks to the statistical interpretation of the problem of the 

identification (maximum likelihood) the theory gives us a value of 

the distance of the object to the model (D. +~D) representing a 
mln 

threshold of confidence for the value of the parameters. This means 

2 

/3 
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that the segment /p , p+/ (in t~~ case of a parameter like Figure 1) 

should contain the nominal parameter with a certain error risk. 

Thus we obtain by means of the theory a region in the parametric 

space defined by the isodistance D. +AD whose limits establish the 
m1n 

r intervals of uncertainty about the parameters (see Figure 2 for min~-

'. 

mization with two parameters). 

+ 
·2 

P2min 

• P2 

·2 

·2 
i50 (0 • + ~D) 

TTIoln 

• _ 0 I ;)oP 
P P pmin p+ 1 

1 111 

Figure 2: Intervals of uncertainty. -< 0/ + 
PI Pl,",Pl 

-..., 0..., + 
P2~P2~P2 

3. Overall Approach to the Computation of the Intervals of Uncertainty /4 

The problem raised is therefore to calculate the limits (extreme 

values in each direction) of the domain defined by the iso (D. +AD) 
m1n 

(compare Figure 2). 

3 
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This problem may be solved locally by approximating the iso dis

tances to their osculating quadrics; we will give here an overall sol

ution which is not based on any approximation and which is based on 

aleatory drawings of points in the parametric space. 

In the following subparagraphs we will give in detail iteration by 

iteration the calculations carried out and show on example the method of 

progressing to the limits of the above-defined region of confidence. 

3.1 First Iteration 

The purpose of the first iteration is to seek the extremes along 

the direction of the axes making it possible to obtain a first cali

bration of the iso D* sought around the starting point (point obtained 

by identification). The points p~ (extreme point along the direction 
~ 

i in the negative sense), p~ (extreme point along the direction in the 
~ 

positive sense) are retained as well as the characteristic length defined 

by: 
1 ~= UP 1-P~ II, 1 ~= lip i -p~1i 

the extreme points p~, p~, ant P~, P~ are sought by dichotomy, these 

points represent the result of the dimensioning after the first iteration. 

The lengths l~, l~, l~, l~, are the characteristic lengths. 

P2 

1M 
2 

1m 
1 I P in1 

1M 
1 

1
m 
2 

I \ I 

Figure 3: First iteration. 

4 

0* Iso D 

PI 
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3.2 Iterations in One Direction 

L t . k th t . r.1A. ., d . . ... . f e us see e ex reme p01nt P. , 1n th0 pos1t1ve l~eC~lon o. 
1 

the axis.i: 

-- we take the ~est point found p~ 
1 

we carry out in this point an aleatory drawing of a grQup of 

points in a slag. 

To this end the components of each of these points will be drawn 

according to a uniformly distributed law on /-v~+v/, the drawings being 

independent. Several cases may be considered: 

the component j considered is not in the direction in which 

the extreme is sought (J ~ i) 

+ if the value drawn X is positive then the component j of the new L~ 

point will be: 
H H 

P j =X:Irl j +P1 j 

in which l~ is the characteristic length defined previously. J . 
component j of the point p~ 

1 

pM 
i. 

J 

+ if the value drawn X is negative then the component j of the new' 

point would be: 

m H 
P j=X:Irlj+Pi j 

in which l~ is the characteristic length defined above previously. 
J 

the component j considered is in the direction in which the 

extreme is sought (j = i) 

+ if the value drawn X is positive then the component i of the new 

point will be: 

H H 
P i =X*l i +Pi

i 

5 
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(we are proqressing in the direction sought positive sense) 

+ if the value drawn X is negative then the component i of the new 

point will be: 
ID H P1 --X:tIl i +P1 1 

(symmetry is taken to be in the d~rection of the search). 

Remark: in case we are seeking the extreme P~i in the negative 

direction .of the axis i, the last two cases will bl..: :'~lodified: 

if x is negative 

if X is positive 

m ID 
Pi=X:tIli+Pi i 

p = -X~lM+pH 
1 i ii 

Then we estimate the criterion D (P) at the point P thus dral'Tn and /7 

if it belongs to the iso sought (D(P)6D*) it is "classified", that is 

we see whether one of the components becomes an extreme (maximum: positive 

direction, minimum: negative direction) and it is retained if this case 

occurs. 

After the drawing of the group in the small slab we estimate the 

rate of success of the drawing:1: which is a percentage of points drawn 

inside the iso. 

According to the value of L, the value V (drawing interval of the 

aleatory variable X) is modified. If ~ is high, a large number of 

points are inside the iso; therefore V must be increased to hope to 

progress to the extreme sought; on the other hand if "Cis small, a few 

points will be found inside the iso; therefore V must be decreased not 

to "go far" from the boundaries of the domain. 

When this new value of V is calculated, the drawing process is 

repeated taking the best point found (extreme in the positive direction 

i) • 

Each of the directions is traveled ip the same way (in both dir

ections (see previous remark for the case of search in the negative 

direction). 

~ 

i: Ii 
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3.3 Example of Progression of the Algorithm in the Case of a Parametric /~ 

Space of Dimension 2 

Let us assume that the dichotomic search of 3.1 has been carried 

out (Figure 3) and that we are in the case in which the search begins 

? with a progression in the positive direction Pl: the initial value V 

being taken equal to 1 (the formula of modification of V is a function 

of~wi11 be seen subsequently). On Figures 4, 5, 6 an enlargement is 

achieved making it possible to follow more precisely the progressi0: 

The starting point is P~ result of the dicho~~m,~~ search accorc •. · "q 

to the direction of the axes. 

P2 

1M 
2 

1;1 

MA 
1 (en recher-

che) (1) 

x 
® 

X 

X 

X X points tir~s de fa~on 
(2) 

1M 
a1~atoire. 

X 
1 
x ® meilleur point trouve5 3 ) X 

X 

X 

PI 

Figure 4: First step of the progression. 

Key: (1) sought; (2) points taken in an 
aleatory manqer; (3) best point found. 
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On Figure 4 we see the result of the drawing of a first group 

(points marked X) the point marked as (€D ) is the best point found 

in the search for p~, this point will be the starting point of the 

second step of the progression, here the value of ~a11ows only a 

slight increase of V (see paragraph 4.1.1.) • 

Remark: + the effect of symmetry permits an acceleration of the 

progression along the direction considered. 

/9 

+ the fact that the points drawn in the lower half of the slab are 

not useful is only a consequence of the geometry of the isodistancesand 

no hypothesis can be made in this matter beforehand. 

8 

The starting point will be noted p;1 ( €> on Figure 4). 

P2 

M V.l
2 X 

® 

X 

M 

P: I y. 
x 

x 

..... 

x 

p M1(en recherchel l ) 
I 
X 

x 

PI 
Figure 5: Second step of the progression~ 
Key: (1) sought. 
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In the same way as before the new starting point is the point 

designated as G9 which will be called P~. On Figure 6 we show the 

third stage of progression; it may be noted that the value of V here 

is decreased because of the low rate of success of drawing. 

P2 

X 

VlM I be r:A 

2 

x 
pM 

1 

I Y 
vJ. 1 X 

Vl M X 2 

X X 

Figure 6: Third step of progression. PI 

,"I 

/10 .. -

In the third stage of progression we can also note a relatively lo~ 

rate of success and thus as we approach the point P~ the size of the 

slab decreases and the precision increases. 

It may be noted that in this search many interesting points for 

the other directions are found, it is therefore important to retain 

them as starting point of searchs in these directions. 

But it is possible to find cases in which the progression along a 

direction does not offer as much satisfaction: these cases will be dis

cussed in paragraph 5.1. 

9 
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4. Sub-programs for Determini~g Dimensions L 

4.1 Introduction - General Presentation of Dimensioning 

4.1.1 DlMENS Sub-programs (called: see paragraph 6) 

The DlMENS sub-program involves four sub-programs: 

DILOC, XCLASS, FORMU, BRBL , '.~ . . 
" .~. 
-'t,' 

,,::,. ...... 

and makes it possible to calculate the extreme points along each dimens.i:on~: 

The user transmits to the sub-program the parameter vector peN) found . " 

by identification and the CROP criterion in this point, as well as the lso 
XISO level which he seeks. Meanwhile he chooses the characteristics 

inherent to the search: 

-- number of iterations along a given direction and sense: NBMAX(3) 

number of individuals drawn in an aleatory manner during an 

iteration: NBMAX(l) 

the segment on which the aleatory variable will be drawn during 

the first iteration: if VAl is ,the value transmitted by the 

user the segment will be I-VAl, +VA7/ 

As well as the characteristics inherent to the monodimensional 

search (compare paragraph 3.1) carried out around the initial point: 

10 

-- characteristic length estimated by the user XL(N,2) 
XL(I,l): characteristic length of the positive direction I 

XL(I,2): characteristic length of the negative direction I 

/12 

number of iterations carried out for this monodimensional searc~ 
for a given dimension and sense: NBMAX(2). 

.. 

;~ 
'" 
':~ 

., ., 

.~ 

.~~ 

'.it 

-j .... ~ 

1 
'{ 
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For each change,. of direction and/or sense, it is possible to im

prove the precision of the search by carrying out the local determination 

of dimensions (monod:lmensional searchs) around the starting point of 

iterations along this direction. The initial characteristic lengths 

involved in the iterations of the search are those issuing from the 

monodimensional search around the initial point, NBMAX (4) is the number, 

of iterations chosen for these investigations. 

The modification of the size VA of the segment of' drawing of'the 

aleatory variable as a function of the rate (RATE) of points of the group,' 

drawn which are in the area bounded by XISO, was chosen as linear function 

of this rate: 

-- if the rate is zero, this size is divided by two. 

-- if the rate is equal to 1, this size is multiplied by two. 

Therefore the function: VA-VA by (1.5 by RATE + 0.5). 

The user may limit the number of iterations with a threshold XMU /13 

such that 0 XMU 1, the purpose of this threshold is to limit the 

decrease of VA (when the algorithm reaches convergence) indeed the 

iterations (if NBMAX(3) does not limit them) are stopped when VA XMU·VAI. 

The DlMENS sub-program restores: 

+ XMA(N,N): points of which one component represents a maximum for 

the points of XISO, XMA (I,J) component I of the point whose com

ponent J is maximum: 

the upper limits of the intervals of uncertainty are therefore the diag

onal terms XMA (J,J). 

+XMI (N,N): points of'which one component represents a minimum for 

the points in XISO, XHI (I,J) component I of the point of which the 

component J is minimum. 

the lower limits of uncertainty intervals are therefore the di~gdnal 

terms XMI (J,J). 

11 
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+ XOPT(N): best point found in the sense of the value of the 
criterion. 

+ CROP: value of the criterion at the point XOPT(N). 

+ NIT: the total number of calculation of the criterion. 
~' .. 

The total nurnb~r of computation of the criterion maY,be calculated 
(in the case in which XMU = 0) from the values transmitted in NBMAX and 

the value N dimension of the parametric space: 

, ' , ' 

NIT=2*N(NBMAX(2)+NBMAX(3)*NBMAX(1)+NBMAX(4». 

4.1.2 DILOC Sub-program (call: see paragraph 6) 

The DILOC sub-program carries out a monodimensional search around 

a point surrounding each axis and according to the two directions of 
this axis. The purpose of these monodimensional searches are to cal

culate the characteristic lengths defined in paragraph 3.1. To this 

end we give to the sub-programs an estimate (even a rough one) of these 

lengths (Table XL(N,2» and the sub-program improves the values by a 

dichotomic procedure and restores them in the same Table XL (N,2). 

The initial length may be,div~ded 9r multiplied at most by 2NBCR 

(NBCR: number of iterations for the search). 

4.1.3 XCLASS Sub-program (call: see paragraph 6) 

This sub-program makes it possible to "classify" a point, that is: 

calculate the CRI criterion in this point by calling the FORKO 

sub-program (compare paragraph 4.1.4). 

place the IN flag 

IN = 0 the point is in XISO (CRI < XISO) 

IN = 1 the point is outside XISO (CRI ."XISO) 

~"...",,:',5 

".-::·:1 

~t 
" 

", 

;1 
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modify XOPT (N) if CRI <CROP 

modify the Tables XMA(N,N) and XMI (N,N) if one of the compone-ntp. 
of the points is maximum or minimum. 

4.1.4 FORMU Sub-program (call: see paragraph 6) ":'~f5 . 
" , 

Sub-program using the computation or~,the criterion in one point~ 

4.1.5 BRBL Sub-program (call: see paragraph 6) 

Sub-program for aleatory drawings. The variable is drawn accordi~g 
to a uniformly distributed law on /-0.5, +0.5/, the drawings being 

independent. 

4.2 Notations /16 

Varfiilile- Type .. .. _Meaning 

N . whole dimension of parametric space~ there are 

therefore 2 extreme N's to be sought: 
maximum N (positive direction), and 

minimum N (negative direction). 

peN) real initial parameter vector called by the 

sub-program (result of identification). 
It is used to store in the sub-program the 

best point found in a given direction and 

XISO real 

SMA(N,N) real 

sense. 

level of the iso sought (which must com

pulsorily be greater than the criterion 

calculated in P: see paragraph 2). 

table of storage of the extreme points in 

the positive direction (maxima). 

13 .... -:" 

. z~ ,~~ ." 
,., 
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Variable Type Meaning . . . . . . . . . . . 

XMI(N,N) 

VAl 

FORMU 

XL(N,2) 

XOPT(N) 

',14 

real 

real 

the XMA(I,J) element is the component 

number 1 of the point whose component J 
is maximum (XMA(J,J)' is the maximum 

found on the direction J of the points 

contained in XISO). 

table of storage of the extreme points in 

the negative dire~tion (minima). 
the XMI(I,J) element is the component 

number 1 of the point whose J component 
is maximum (XMI(J,J) is the minimum found 
of the direction J of the points contained 

in XISO). 

ini tial size chosen by the user of the .":.: /17 

segment of drawing of the aleatory variable. 

It is advised to give value VAI=l. 

SS.P (external) sub-program supplied by the user, calculating 

the criterion in a point. 

real 

real 

the dichotomic search assumes that an idea 

of a certain order of the characteristic 

length is known, these lengths are trans-

. mitted in this table XL(I,l) characteristic 

length of the dimension I positive direction. 
XL(I,2) characteristic length of the 

dimension I negative direction. 

The result of the dichotomic search is 
stored in the same form in this table. 

the initial P(N) vector transmitted to the 
dimensioning sub-program is not retained, 
on the other hand during the aleatory search 

a best point XOPT(N) of criterion CROP may 

II 
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Variable ~e ~ ___ '-_~ . . Meaning 

~ .. : .. 

XLl(N,2) real 

CROP real 

PP(N) real 

NIT whole 

NBMAX(4) whole 

NBCR whole 

be found and these values 
the user. 

are rerltored ,to 

'- ~-'-:'\ 

the resul t of the dichotomic seardr 
carried out on the basis of the first 

, . 
point peN) is stored in this table (s~e 

XL(N,2» 

in the input criterion at point peN) in 
the outlet criterion at the point XOPT(N' 

working vector whic~ is used to store the 
in an aleatory way during the progression 
in one direction 

total number of computation of the cri teriot:l., 

table containing the characteristics of 
determination of the dimensions supplied 
by the user. 
NBMAX(l)= number of elements in the group 
drawn in an aleatory way 
NBMAX(2)= number of monodimensional searches 
during the initial dimensioning 
NBMAX(3)= number of iterations for direction 
(number of groups drawn in an aleatory way 
during the progression in a given sense and 
direction) 
NBMAX(4)= number of monodimensional searches 
to be carried out for the best point found 
during each change of direction 

argument used by the sub-programs of local. 

dimensioning by monodimensional searches: . 

this is the number of searches to be carried 

out. 

r~ 

;, ". 

." 
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Variable Txpe -- -"----z.!"Eianing 

IN whole 

XMU real 

16 

flag used to recognize whet..het~·Cl ·point . is 

in XISO(IN=O) or outside XISO-(J:N=l)"' 
I • 

threshold of stopping in.percentage of. VAl . . 

(transmitted by the user) 

.~ 
, 
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,:':; 
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4.3 Organizational Chart of the DIMENS Sub-program 

Rey: (1) threshold; 

(2) local determin

ation of dimensions 

at the initial point; 
(3) no; (4) yes. 

',' 

Initialisation 

NJT-O 

SEUIL-XHUSVAI (1) 

XOPT (I) -P CI) (1(, I~N) 

XHA(J,I)"P(J)j (I..(I(.N) 

XMJ(J,.I)",P(J) U<:J.(.N) 

Dimens!onnement local au point 

initial(2) 

CALL DILOC(P,N,FORHU,XOPT,CROP, 

XHA,XHl,XL,XISO,NBMAX(2),PP,NIT) 

XLICI,J)=XL(I,J) {(l~I~N) 
(l~J~N) 

I IDIH=I I 

I Il>1R~1 J 
, -·--------c·---

" 

(3). (4) 
~ ~ oui ~BHAX(4)< 0 ? ~-

XL(I,J)=XLI(I,J) 

•• 1 ~ I ~ Nil <' J~N 

a b 

11:9 ... -.. --

I 

1 

I 
I 

11· 
" 
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Key: 

(1) no; 

(2) yes; 

(3) local 

a 

non(~ • .... 
IDIR-l ? 

determinatio~ P (I) =XMI (I, IDIM) 
of dimension 
at the best 1 ( 1.( N 

P (I) "XMA (I ,IDIM) 

l~ I.(:N 

point found 

'!l) 

dimensionnement local au meilleur point trou~d 
CALL DILOCCP,N,FORMU,XOPT,CROP,XMA,XMI, 

XL,XISO,NBMAX(4),PP,NIT) 

non 

PCI)=XMI(I,IDIM) 

l<.I-<:N 

IDIR=l ? 

NES=-O 

NAL=O 

NDIR=O 

X-2.~R*VA 

~ 

oui 

PCI)=XHA(I,IDIM) 

l~I~N 

." • 'j 

I!J If 



~ 

.. 

~I~:J 
I 

I 

~._OU1~ 

DP=X~XL(NDIR,2) I 

~ . 
X~O ? >_UUII 

I DP=XUL(NDIR,l)1 

\ ! (2\ (1) 
~.. NDIR=IDIM ? ........... ou-.!. ,out(V' NDIR=IDIM ? - .-n 

non(2) oui(l) non(2~ .It oui 
~DIR=l""'" IDIR=l ..-

~- ~ 
IDP=-DP I 

I PP (NDIR) =P (NDIR) +DP I 

L) 

(NDIR=N ? 
non 

I 
./ ~ 

.... • Classcmcnt du point(3) 

CALL XCLASS(PP,N,FORMU,XOPT,CROP,XMA,XMI,XISO, 

IN,NIT) 

(1), " (2) 
"""------Jl~=-:O_ ~ 1 r 

~ non 
NAL=NBMAXfl) ? 

oui(l) 

~ r-

.. ---

(1) 

, 

. . 

9 

es; 
0; 
1assi
ion of 
oint. 

el If 
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. '. .1 [ 
TAUi!lLOAT(NES)/FLOAT(NBHAX(l) 

(2) (3) 
non 4 .c > ~ oui (4) 

, 
.: 

non oui--. 

non oui 
IDIR=l ? 

oui non 
? ~ ,.. >I IDIM=lDIM+l 

~(5) 
.J 

Figure 7: Organizational chart of the DIMENS Sub-program 

Key: (1) rate~ (2) threshold~ (3) no~ (4) yes~ (5) end. 
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.. 

4.4 Organizational Chart of the DILOC sub-program 

IDIH=O 

I 
PP(I)=P(I) 

l~I~N 

Key: 

(1) no; (2,) yes. 
\ , 

PP(JDIH)=PP(IDIH)+ISsYL 
,; 

.,i , 

CALL XCLASS(PP,N.FORHU,XOPT,CRO~.XHA,XMI, 

IN,NIT) 

(1 .. r--"_ non!J.l' 1N=0 .... oui(2) - ... ---
PP(IDIH)=PP(IDIH)-IS~YL 

YL-YL~O.S 

/23'-,', 

d 
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d 
a 

i (1) • ~ ou <' NCR=NBCR? ~ non(2) ~--____ ~ ______ ~~> ____________ -11 

Y=ABS(PP(IDIM)-P(IDIM» 

XL(IDIM,IDIR)=AMAX1(Y,YL) 

(2) 
non 

non oui( 1) 

• I *(3) 

Figure 8: Organizational Chart of the DILOC Sub-program 

Key: (1) yes~ (2) no~ (3) end. 
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/25: 
4.5 Organizational Chart of the XCLASS sub-program 

NIT=NIT+l 

(1). " 
no,!: -t:' CR> CROP ? 

CROP=CR 

XOPT (I) =PP ex) 

1 ~ I~ N' 

OU1(2) w--- • 

ou1(2) 

non(l) 
-.--~----

(2, • 
oui ' .... 

"' 
C~:.------. 

XHA'K.I)=PP(K) 

1.< K< N 

PP (I) <: XHI (I, I) 
no~l) 

b 

"." 

Key: 
(1) no; (2) yes. 

(3) "threshold 
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... 

c 

., .'f 

non 

XHI ex, I) =PP (X) 

1~ x ~N 

(2) 
oui 

b h6 

(3) 

Figure 9: Organizational Chart of the XCLAS~ ~ub-program 

Key: (1) no; (2) yes; (3) end • 



5. Tests Performed /27 

5.1 ParametricSpa~e of Dimension 2 

The purpose of ,this test is to show the points drawn by the su~-
" program in a concre:b~ manner: these points are visualized for different, 

cases on Figures 10 to 14 • 
.. 

These figures were obtained by giving beforehand the ellipse (iso 
level) and the' starting point, the points drawn by the program are then 

visualized by the s~IDbol • 
I!l' 

I 

Figure 10 shows ,the results obtained on a relatively favorable 
.: :' , : : 

case: well-condi.tioned ellipse, starting point close to the 
, , 

center. In this case the values obtained are in good approx-

imation of the "intervals of uncertainty". 

Figu~e 1'1" is also a case in which the ellipse is well-conditioned r 

but on the "o.ther- hand the starting point is in a very unfavorablr, 

position. The maximum value is PI and minimum in P2 close to th£ 
initial point are found without any trouble; the minimum value in 

PI is also found~ On the other hand, the maximum value in P2 is 
the worst obtained: it may be clearly seen that the algorithm 
was stopped in its search by a too low number of iterations. 

'I 

For Figures 12 and 13 the ellipse is relatively poorly conditioned 
but the starting, point is in a not too unfavorable condition: here 
too the values obtained are not poor even though, just as in 

Figure l~ for the maximum in PI' there is no accumulation around 
the "best" 'point, the difference existing between the points 
found and this best point being not very great for the coordinate 

Pl· 

Figure 14 is a very unfavorable case which unfortunately is not /28 . -
a "rare" case in identification since it is a type of conversion 

which may be found for certain algorithms progressing in the 

areas of low grz <1 ients ("valley") such as for example for the 

25 
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method of the gradient. The point found is therefore in a 

position actually very far from the center of the iso's bec~use 

of the. slowness 'of the progression of these algorithms in 'the 

region of low gradient. 

The minima and maxima close to the starting point are therefore 

easily found but a larger number of iterations would be needed for the 

determination of dimensions to hope to find the symmetrical maxima ana·

minima which for their part are nveryn far. It ts only by comparing the 

minima and maxima with regard to the initial point that we can realize 

these situations: here the maximum in P2 and the minimum in PI are very 

close to the initial point whereas the minimum in ,·.P2 and the maximum in 

PI are comparatively very far away. 

It should be hoted that the points drawn are not extremely far fro~ 

the region concerned and in most of the cases they are most "close" to 

the ellipse sought. 

5.2 Determination of the Dimension of an Ellipsoid in a Space of /31~ 
Dimension 4. ---

Let us consider the ellipsoid of equation. 

CRlaAL11)SX(1)2+AL(2)~X(2)2+AL(J)SX(3)2+AL(4)~X(4)2 

value of AL: AL = /0.01,1.,100.,10000./ 

We are going to take different points located on the ellipsoid of 

level CRI=l and seek the dimensions of the ellipsoid of level XISO=l.l, 

the dimensions following the axes of this ellipsoid ("interval of un
certainty") are: 

Axis 1 = 20.98; Axis 2 = 2.098; Axis 3 = 0.2098; Axis 4 = 0.02098. 

26 
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_IDI~ 

P 

. , . . , 
.. 
: •... 

~. : ~ . j" . . ::; . 

., 

P2 

_~. ~ pMI 
• 

pID2 

PI 

Figure 10 

Caption common to Figures 10, 11, 12, 13, 14: 
M1 . f d P .= extreme po~nt oun: 

pml= extreme point found: 
M2 . f d p = extreme po~nt oun: 
m2 . f d P = extreme po~nt oun: 

Key: (1) starting point. 

maximwn in PI 

minimum in PI 

maximum in P2 

minimum in P2 

/29 
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The characteristics fixed for the determination of dimensions are: 

XL(I,J) == 1. (i ~1~4i 1"::::'J~2): initial characteristic lengths u'bcd 

for the local determination of the dimension arounp the initial 
point 

NB~mx(l) = 8: number of elements of the group drawn in an aleatory 

manner 

NBMAX (2) = 5:, number of iterations of the dichotomic search aro'md 

an initial point 

NBl1AX(3) = 10: number of iterations along one direction 

NBMAX(4) = 0: known local determination of dimensions for each 

change of direction. 

VAl = 1: 'segment of drawing of the aleatory variable during 

the first iteration: /-1,+1/. 

We will cause the variation of the threshold of stoppage xrm and /35 

give the number of computation of the criteria needed and the result 

obtained. 

(1) 
(:lJ "Intervalle d'incertitude"(3) 

nombre de calcul point de dl!part XMU du crit~re . 
DXl DX2 DX3 I>X4 

---------------- --------- ---------------- ------ ------ -------- --------

10. 0.0 680 20.07 1.586 0.1567 0.01795 

o. 0.1 526 19.85 1'.632 0.1527 0.01667 

o. 0.2 395 19.81 1.614 0.1342 0.01597 

o. 
0.3 322 19.51 1.540 0.1286 0.01590 

0.4 257 18.56 1.330 0.1242 0.01585 

0.5 190 18.06 1.095 0.11S0 0.01488 
--- - ---- -- --- ~~ --.- .-.- -. -

Key: (1) starting pointi (2) number of computation of the criterion: 

(3) interval of uncertainty. 

32 



o. 0.0 680 18.30 2.066 0.1508 0.01751 

1. 0.1 525 17.32 2.050 0.1449 0.01669 

o. 0.2 390 17.43 2.028 0.1408 0.01584 

O. 0.3 310 16.41 2.013 0.1339 0.01572 

" 
';. 0.4 239 14.40 2.007 0.1134 0.01386 

" 

0.5 154 10.61 2.010 0.08236 0.01435 
.. -

o •. 0.0 680 19.34 1.776 0.1875 0.01827 

o. 0.1 530 19.58 1.724 0.1860 0.01699 , 

0.,1 0.2 417 19.00 1.581 0.1767 0.01614 

o. 0.3 344 17.38 1.621 0.1787 0.01552 

0.4 2~6 15.19 1.378 0.1767 0.01559 

0.5 183 13.44 1.093 0.1664 0.01593 
.. 

~ 
o. 0.0 680 20.05 1.868 0.1700 0.01938 

o. 
" 

0.1 561 19.94 1.844 0.1779 0.01893 

o. . 0.2 466 19.57 1.751 0.1657 0.01866 

0.01 0.3 373 18.60 1.762 0.1505 0.01866 

0.4 288 18.21 1.488 ' 0.1366 0.01869 

0.5 239 15.74 1.475 0.1245 0.01853 

5 0.0 680 18.35 1.746 0.1849 0.01738 

.5 0.1 508 18.51 1.776 0.1723 0.01708 

.05 0.2 411 17.81 1.851 0.1709 0.01636 

.005 0.3 303 16.43 1.712 0.1553 0.01492 

0.4 232 15.79 1.437 0.1424 0.01503 

0.5 149 12.49 1.164 0.1397 0.01239 
---- - -
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The analysis of this table shows us that it is possible to achie~e 

a relatively satisfactory precision on the basis of very approximative 

data (XL(I,J)=l.); but a very high precision can only be obtained a~ '. 

the cost of a very large number of computation of the crite~on. 

The figure of 100 calculations of criterion per space dimension 

(50 for each direction) may be retained as the upper limit making it 

possible to achieve an acceptable precision, which gives with the valu~s 

of NBMAX given here an XMU threshold of 0.2. 

This rule cannot be considered as general and we see with this 

special case that the initial point transmitted by the user is very 

important. 

5.3 Tests Carried Out on the Basis of an Identification of Simulated 
Data 

'. 

a) The simulated object is an aircraft in longitudinal decoupled 

flight, the aerodynamic coefficients are developed in the form: 

C =0.1456-0.0030C -0.1500C2=CxO +AC +BC
2 

x z z z z 

Cz :=0.09151+2.470 ef +1.700 [' m 

C =0.007364-0.1970~-1.460 ~vl -0.4220 f 
• 0 m 

These developments make it possible for us to simulate measurements 

by means of equations of dynamics and mechanics of flight. 

/37 
:~--~ 

b) On the basis of these measurements through a procedure of idenei

fication by least squares, 8 terms of the developments of the previous 

aeronautical coefficients are identified (the others are assumed known). 

The identified terms and their values are: 

CzO 
.. 0.091519 

B - -0.15332 

C Z .( - 2.4699 . 
Cmll - -0.20140 

C z (. ,.. 1.6997 
C lDq - -1.0949 

34 
A - -0.OO2l86 

C.I. - -0.42012 
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The purpose of dimensioning is to give for each of the para

meters an interval of uncertainty. 

The criterion of the quadratic spread between the' obj ect and. th,e , , 

model in this point is 1433.0, after the dimensioning the best point 

was found and the uncertainty intervals are: 

0.088842 ~ Czo ~ 0.093657 

2.1660 ~ C z <. 2.8846 

1.5961 ~ CZ'ID' 1.8878 

-0.0063814 ~ A ~ 0.0041452 

,-0.20817 ~B, ~ -0.11191 

-0.21761 ~' Cmll 
~., -0.16992 

-2.1280 '< ClDg ~ -1.0449 

-0.42730 ~, ClDdlD ~ -0.40355 

Optimum Found 

0.090579 

2.5946 

" 

1. 7179 

-0.0015125 

-0.1636 

-0.20329 

-1.5142 

-0.42075 

The criterion for the optimum found is 168.49. 

The intervals of uncertainty indicated above were calculated for 

an iso level of 1433 by 1.1 = 1576.3. 

L:18 

The intervals of uncertainty found are relatively large because the 

results of the identification are poor: for this it'is sufficient to com

pare the criteria at the point found at the time of the determination 

of the dimensions and at the point found by identification. 

6. Listings of the Different Sub-programs /39 

6.1 Listing of the DlMENS Sub-program /40 

DIUENS /41 

Determination of Dimensions of an ISO-EPS 

35 
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.. 
." ",.r ,.!,' " ,: 

Input Variables 

P (N) 

N 

FORMU 

XL(N,2) 

XISO 

NBMAX(4) 

Initial parametric vector 

Dimensions of the parametric space 

SSP computation of the criterian 

Initial stage of nonodimensional searches 

Level of the iso sought 

Maximum number of iterations 

NBl-iAX(l): number of aleatory drawings 

NBMAX(2): number of initial monodimensional searches 

NB~AX(3): number of iterations per direction 

NBMAX(4): number of monodimensional searches for each change 
of direction 

VAT "Initial variance" 

XMU Threshold of stoppingin percentage of VAl 

Outlet Variables 

XOPT(N) Final parameter vector: optimum found 

CROP Criterion in XOPT 

XMA(N,N) Coordinates of the points representing a maximum of Y~m(I,J)~ 
I component of the point of which the rate component is maximum 

~lT(N,N) Coordinates of the points representing a mimum ~1I(I,J): 
I component of the point whose J component is minimum 

NIT Total number of calculation of the criterion 

Working Table 

PP(N) 

XLl(N,2) Result of the first local determination of dimensions 

Sub-programs Called 

DILOC 

XCLASS 

BRBL 

Remarks 

FORMU (X,CRI,N): SSP calculation of criterion, declare "External" 

X(N): parametric vector 
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CRI: Criterion in X 

BRBL(X): Drawing of the variable X in an uniformly distributed group 
on -.5,+.5 

Subroutine DlMENS(P,N,FORMU,XOPT,CROP,~~,XMI,XL,XISO,NB1~1,VAI,PP, 
XLl,XMU,NIT) 

'. Dimension P(N) ,PP(N) ,XOPT(N) ,NBMAX(4) 
Dimension XL(N,2) ,XLl(N,2) 

Dimension XMA(N,N) ,Xl-U (N,N) 

Initialization 

NIT=O 

Threshold= XMU*VAI 

NBl=NBl-1AX (1) 

NB3=NBMAX(3) 

DO 1 I=l,N 

XMA(J,I)=P{J) 

XUI(J,I)=P(J) 

1 Continue 
C* Local determination of dimensions at the initial point 

Call DILOC (P,N,FORMU,XOPT,CROP,XMA,Xl-tI,XL,XISO,NBMAX{2) ,PP,NIT) 

DO 10 T=l,N 

DO 10 J=1,2 

10 XL1(I,J)=XL(I,J) 

C* Init. aleatory variable 

R=.2 

C* Loop on the dimensions:IDIM 

C* Loop on the di~ections:IDIR 

C* IDIR=l: Positive sense 

C* IDIR=2: Negative sense 

DO 9000 IDIM=l,N 

DO 9000 IDIR=1,2 

IF(NBMAX(4» 1500,1500,1000 
C*NBMAX(4) different than zero 

C*Local dimensioning with each change in direction 

1000 Continue 

, I 

37 
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DO 12 I=l,N 

DO 12 J=1,2 

12 XL (I,J)=XL1(I,J) 

GO TO (31,32) TDTR 

31 Continue 

DO 33 T=l,N 

33 P(T)=XMA(J,IDIM) 

GO TO 35 

32 Continue 

DO 34 T=l,N 

34 P(T)=XMI(I,IDIM) 

35 Call DILOC(P,N,FORMU,XOPT,CROP,XMA,~·1I,XL,XISO,NBMAX(4) ,PP,NIT) 

1500 Continue 

VA=VAI 

C* Iterations on a direction:ITER 

ITER=O 

4000 Continue 

ITER=ITER+1 

GO TO (101,102),IDIR 

C* Position at the "best point" found 

101 Continue 

DO 20 I=l,N 

20 P(I)=XMA(I,IDIM) 

GO TO 103 

102 Continue 

DO 21 I=1,N 

21 P(T)=XMI(I,IDIM) 

103 Continue 

NES=O 

C* Drawing of a group 

DO 2000 NAL=1,NB1 

DO 3000 NDIR=l,N 

C* Drawing of a direction: Black 

Call BRBL (R) 

X=2.*R*VA 

IF(X)50,60,60 

38 
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" , \ .. . 
60 Continue 

DP=X*XL(NDIR,L) 

IF (NDIR-IDIM) 120,61,120 

61 GO TO (120,62) ,TDTR 

62 DP=DP 
.~ 

GO TO 120 

" 

,) 

50 Continue 

DP=X*XL(NDIR=IDIM) 120,51,120 

51 GO TO f52,120)TDTR 

52 DP=-DP 

120 Continue 

PP (NDIR) =P (NDIR) +DP 

52 DP=-DP 

120 Continue 

PP(NDIR)=(NDIR)+9P 

3000 Continue 

C* Classification of the point 

Call XCLASS(PP,N,FORMU,XOPT,CROP,XMA,XMI,XISO,IN,NIT) 

IF(IN) 2000, 70, 2000 

• 70 NES=NES+l 

. 2000 Continue 

" RATE=Float (NFS)/Float (NBMAX(l» 

C* Adjustment of the variance 

VA=VA*(l.5*Rate +.5) 

IF (VA=threshold) 9000,9000,4001 

4001 IF(NB3=ITER) 9000,9000,4000 

9000 Continue 

Return 

End 

6.2 Listing of DILOC Sub-program 

DILOC 

Local Dimensioning by Monodimensional Searches 

C* Input Variables 

P(N) 

N 

XL(N,2) 

Parametric vector 

Dimension of the parametric space 

Initial search steps 
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.' J NBCR Number of searches 

Outlet Variables 

XL (N,2) Results of local dimensioning 

Sub-programs Called 

XCLASS 

Working Table: PP(N) 

Remarks 

FORMU,XOPT,CROP,XMA,XMT,XISO,NIT: VOIR SSP DIr1ENS 

, , 

Subroutine DILOC(P,N,FORMU,XOPT,CROP,XMA,XUI,XL,XISO,NBCR,PP,NIT) 

Dimension P(N),PP(N),XOPT(N) 

, 'Dimension XMA(N,N) ,XMI (N,N) 

Dimension XL(N,2) 

C* Loop on the dimensions: IDIM 

C* Loop on the directions: IDIR 

DO 1000 IDIM=l,N 

DO 1000 IDIR=1,2 

IS=3-2*IDIR 

DO lI=l,N 

1 PP(T)=P(T) 

YL-XL (IDIM,IDIR) 
CI Loop on the number of iteratiqns: NCR 

DO 2000 NCR=l,NBCR 

PP(IDIM)=PP(IDIM)+IS+YL 

C* Classification of the point 

Call XCLASS(PP,N,FORMU,XOPT,CROP,XMA,~1I,XISO,IN,NIT) 

IF(IN) 21,20,21 

C* Length: 2 if point is in XI SO 

20 Yl=2.+Yl 

GO TO 2000 
~ C* Length: 2 if point outside XISO 

21 PP(IFIM)=PP(IDIM)=IS*YL 

YL=YL+.5 

40 '. 
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2000 Continue 

Y=ABS(PP(IDIM)-P(IDIM» 

! ' 

.· .. ·i ' 

C* Length=progression or last length attempted 

XL(IDIM,IDIR)=AMAX1(Y,YL) 

1000 Continue 
,I 

R~turn 

E~d 

XCLASS 

Comparison with the points already retained possible classification 

", 
Input Variables 

PP(N) Point to be classified 

XMA(N,N) Maximum found (see Dn1ENS) 

XMI(N,N) Minima found (see DIMENS) 

IN FLAG:IN=O PP is at XISO 

IN=l PP is outside of XISO 

NIT Number of calculations of the criterion 

)utlet Variables 

XMA(N,N) Maximum outlet classification of PP 

XMI(N,N) Minimum outlet classification of PP 

NIT Number of calculation of the criterion 

;ub-programs Called 

FORMU(See DIMENS) 

temarks 

FORMU,XOPT,CROP,XISO: See DIMENS 

~ 

I, 

uproutine XCLASS(PP,N,FORMU,XOPT,CROP,XMA,XMI,XISO,IN,NIT) 

liinension XOPT (N) , PP (N) 
" 

'imension XMA(N,N) ,XMI:(N,N) 

IT=NIT+l 

* Calculation of the criterion at the point: P, 

all FORMU (PP,CR,N) 
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IF (XISO-CR) 1,10,10 

CI PP is outside of XISO 
1 IN-l 

Return 

C* PP is in XISO 

10 IF(CROP-CR) 13,11,11 

C* PP is optimum 

11 DO 12 I=l,N 

12 XOPT('l')=PP(I) 

CROP=CR 

C* Loop on the dimensions:I 

13 DO 20 I=I,N 

IF (XMA(I,I)=PP(I» 22,21,21 

C* I Component is maximum 

22 DO 30 K=l,N 

30 XMA(I,I)=PP(K) 

21 IF +(PP(I)-XMI(I,I»32,20,20 

C* The component I, is miminum 

32 DO 40 K=I,N 

40 XMI(K,I)=PP(K) 

20 Continue 

t: IN=O 

Return 

End 

Sub-program of Aleatory Drawing 

subroutine BRBL(R) 

BB=l. 

R=ABS (R) 

Pl=R*317 

R=AMOD(Pl,BB) 

R=R-.5 

Return 

End 

42 
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