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Abstract

A bump-on-tail unstable reduced velocity distribution has been
constructed from data obtained at the upstream boundary of the electron
foreshock by the GSFC electron spectrometer experiment on the ISEE-1
satellite. This distribution is used as the initial plasma state for a
numerical integration of the 1-D Vliasov-Maxwell system of equations. The
integration is carried through the growth of the instability, beyond its
saturation, and well into the stablized plasma regime. A power specirum
for the electric field of the stabilized plasra is computed. The spectrum ;
is dominated by a narrow peak at the Bohm-Gross frequency of the unstable E
field mode but i%t also contains significant power at the harmonics of the
Bohm-Gross frequency. The harmonic power is in sharp peaks which are split
into closely spaced doublets. The fundamental peak at the Bohm-Gross
frequency is also split, in this case into a clcsely spaced triplet. The
splitting is due to slow modulations of the stabilized electric field
oscillations which, i% is thought, are caused by wave-particle trapping. ;
The wave length of the m'th harmonic of the Bohm-Gross frequency is given i
by xu/m where Au is the wave length of the unstable mode. The mechanism |
for excitation of the second harmonic is shown ‘o be second order wave-wave
coupling which takes place during that period in the evolution of the
instability which would otherwise be called the linear-growth phase. It is
conjectured that the higher harmonics are excited by the same mechanism.

It is further argued that harmonic excitation at the boundary of the
electron foreshock shculd be a common occurrence,
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The theory for the generation of electrostatic plasma waves near the
electron plasma frequency upstream of the Earth's bow shock, as presented
by Scarf et al. (1971), Fredricks gt al. (1971) and by Filbert and Kellogg
(1979), has been generally accepted. This acceptance developed regardless
of the fact that the unstable electron velocity distributions predicted by
the theory had never been cbserved (Feldman ef al., 1973). Recently,
observations made on the ISEE spacecraft (An.crson et al., 1981) have
confirmed the presence of the necessary unstable distributions in the
electron foreshock at times when significant electrostatic plasma waves
were being detected. A further observation of an unstable velocity
distribution in the electron foreshock is presented here; it was obtained
by the GSFC electron spectrometer on the ISEE-1 spacecraft (Ogilvie et al.,
1978). Simultaneous measurements of the electrostatic wave intensity
obtained by the ISEE plasma wave investigation (Gurnett et al., 1978) and
the ISEE electron density experiment (Harvey et al., 1978) are also
presented. These measurements indicate that the unstable distribution was
observed just as the spacecraft was passing through the upstream boundary

of the electron foreshock.

The ISET electron and plasma wave observations both motivate and enable

a more detailed study of the unstable plasma evolution in the electron
foreshock. The results of such a study are presented here,

A numerical code developed by Klimas (1982) has been used to integrate
the Vlasov-Maxwell equations for a one-dimensional electron plasma forward
in time from an assumed initial plasma state. The unstable velocity
distribution observed by the GSFC electron spectrometer was used for the
initial velocity distribution. The initial electric field was simply
"seeded"” with very low amplitude wave modes. The results which are
presented show the evolution of the plasma from its initial "bump-on-tail®
unstable state through saturation of the instability and considerably
beyond.
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An unexpected featurg:éffqhe eleot-ic field evolution has been
discovered. It was expectéd that gﬁ: gﬁturated electric field would simply
oscillate at the Bohm-Gross frequency (essent’ally the electron plasma
frequency) provided by the linearized electrostatic plasma dispersion
equation (Bohm and Gross, 1949). It was found that not only the Bohm-Gross
frequency but also all of its harmonics that could be included in the
numerical code, given its present size, were excited to significant levels
in the saturated field. The resulting power spectrum for the saturated
electric field which is presented here shows a dominant peak at essentially
the plasma frequency plus peaks near the pr, 3fp and pr positions which
are further split into closely spaced doublets. The splitting is due %o
low frequency modulations of the harmonic field components presumably
caused by wave-particle trapping effects. The peak a* the plasma frequency
is also 3plit, in this case into three closely spaced peaks, but the
central peak is so dominant that the other two are difficult %o pick out.

An explanation of the harmonic excitation is given in section IV. A
simple verbalization of that explanaticn is as follows: The initial plasma
evolution is qualitatively as predicted by linearized plasma theory (Krall
and Trivelpiece, 1973). Field modes whose phase velocities lie on parts of
the initial electrin velocity distribution with positive velocity and slope
are unstable and grow exponentially with time. Other field modes Landau
damp and therefore decay exponentizlly with time. All modes remain small,
but the growing modes become very large compared to the decaying modes. At
some point in the plasma evolution wave-particle coupling terms in the
governing Vlasov equation which are quadratic in the growing modes become
larger than other similar terms which are linear in the decaying modes. At
that point the linearized description of the plasma fails and non-linear
phenomena take over. Field modes which had earlier been decaying then are
pumped by the dominant unstable mode which continues to grow. These pumped
modes experience sudden shifts in their oscillation frequencies to
harmonics of the unstable mode frequency. Interestingly, all of this
occurs long before the saturation of the instability, during its "linear
growth" phase when non-linear phenomena are no' expected, By that time
when the instability does saturate the pumped modes have grown considerably

and the field is lef*t with significant power a% the harmcnic frequencies,

A 1 5




ORIGINAL PAGE I8
OF POOR QUALITY

The plasma model which is integrated numerically is a generalization of
the usual Vliasov-Poisson system of equations obtained in the electrostatic
limit,. Maxwell's equation for the displacement current is added to the
Vlasov (collisionless Boltzmann) and Poisson equations to provide a
complete description of the p.asma. The generalization and the motivation
for it are discussed in detail in section II. Section III contains a
discussion of various aspects of the numerical integration. First, the
initial electron distribution obtained from the ISEE-1 electron
spectrometer experiment is introduced. Through a comparison of electron
heat flux measurements and simultaneous plasma wave observations it is
argued that the bump-on-tail unstable initial distribution was obtained
Just as the ISEE-1 satellite was passing through the upstream boundary of
the electron foreshock. Next some detazils of the calculated electric field
are presented and finally the electric field power spectrum discussed above
is presented. In section IV a calculation of the second harmonic
excitation is given which is based on a linear plasma theory with second
order wave-wave coupling included where necessary. A compariscon of the
results of this calculation with the numerical results indicates that the
second harmonic excitation is due entirely %o second order wave-wave
coupling which takes place during the otherwise linear growth phase of the
instability. It is conjectured that the higher harmonics are excited in a
similar manner.

1I. Ihe Plaspa Model

The results which are presented in this paper have been obtained using
the following one-dimensional electron plasma model for the reduced
electron distribution function, F(x,v,1), and the electric field, E(x,r):

S Y af
) + v %%{;; - EE :S~;;- = () 1.
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These equations are dimensionless. In the following let the starred
quantities be the original dimensional ones. Then x = x‘/L where L is an
arbitrary length scale. Solutions which are periodic in x. over the
interval -L < x' < L will be considered. Therefore 2L is the longest
wavelength o0 be considered. Time is measured bz T=w t. = thpt. where
f, is the electron plasma frequency. Then v = v /u L and g-¢ /4ven L
where no is the electron density averaged over the intepval of periudicity;
it is a property of periodic solutions of equations 1-3 that n0 is a
constant in t. The longest *ime scale of interest is approximately 10 ms
and the longest length scale is several tens to perhaps approximately 100
Debye lengths. Thus, the ion density is assumed constant and equal to n,;
the one in equation 2 stands for the dimensionless ion density. The
magnetic firld is also assumed constant in t and only weakly dependent on
position. The variable, x, measures position along the local magnetic
field direction and the electric field is assumed linearly polarized in the
magnetic field direction. The evidence that is available is consistent
with the assumption that the electron plasma oscillations in the foreshock
are indeed polarized along the local magnetic field (Anderson, et al.,
1681). The weak spatial dependence of the magnetic field is ignored in
equation 1; this is equivalent to ignoring the electron drifts, Equation 3
is derived from Maxwell's equation,
B
- \VE L -
4T J o+ It c (¢ x B)
If ¥ x B were exactly zero then U, in equation 3, would be the
dimensionless ion velocity component along the magnetic field, Because of
the factor, ¢, in this equation, however, even small values of VxB might
be expected to contribute. Thus, in equation 3, U is the ion velocity
component modified by “he component of ¢ (5 X ﬁ) along E, In any case U is
treated as a constant. The ne*t result is a model for high frequency and
small waveleng-h electron plasma phenomena superimposed on a neutralizing
ion-magnetic field background which varies only very weakly on those small

scales. Solutions are sought subject %o initial data F(x,v,0) with
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%:d.v Flx,v,0) = |

and Eo(o) where Eo(r) is the spatial average (or zero'th Fourier mode) of
the electric field.

It is perhaps more traditional when studying electron plasma phenomena
to study the electrostatic liri* governed by the Vlasov-Poisson systeam of
equations, equations 1 and 2. But equations 1 and 2 do not determine
Eo(r). Within the Vlasov-Poisson tradition Eo(r) is normally set to zero
and ignored. It was felt that this assumption would be a poor one in the
foreshock which is strongly influenced by the bow shock and hardly contains
homogeneous plasma. It would certainly be a completely untenable
assumption when, as intended, non-periodic solutions are considered. Thus,
the additional equation 3 has been included to complete the description of
the plasma, including its space-averaged elsctric field mode. Any solution
of equations 1-3 is also a solution of the Vlasov-Poisson system, but, with
its space-averaged electric field governed by another of Maxwell's
equations. Equations 1-3 will be referred to as the Vlasov-Maxwell system

of equavions for a 1-D electron plasma.

Klimas and Cooper (1782) have shown “hat any periodic solution of the
Vliasov-Maxwell system of equations of the type discussed above can be
transformed into a similarly periodic solution of the Vlasov-Poisscn system
with Eb(f) = 0 for all 1, and visa-versa. The numerical integration
results which are presented in section III are for solutions of equations
1-3 which are appropriate, as discussed above, for the foreshock region.

Ir section IV, however, where an analytical analysis of the numerical
results is given, the Vlasov-Poisson system (equations 1 and 2 with Eo(t) =
0) will be used in order to take advantage of the many techniques which
have been developed for analysis of that system, Then the transformation
of Klimas and Cooper will be used to ‘ransform the results of that analysis

to predictions for the behavior of the numerical solutions.
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III. Nuperical Results

In this section a solution of equations 1-3 will be presented using an
initial dist ‘ibution, derived from data obtained by the ISEE-1 Electron
Spectrometer Sxperiment, which is unstable to the bump-on-tail instability.
The numerical integration method developed by Klimas (1982) has been used
to obtain these results. This is a periodic solution which is presented
here as only a first step in a program of research leading %o non-periodic
solutions which can include the . fluence of the nearby bow shock in a more
cogent manner.

a), Electric Field

The numerical predictions for the electric field will be presented
here in terms of E(t) = (L/).p) 8(1). This scaling for the electric field
leads to the following useful rule: When E(t) = 1, then the energy density
in the electric field equals the total kinetic energy density in the
initial state of che plasma. Since the kinetic energy of the plasma does
not vary signifi~antly it is ¢rue that w..en E(1) = 1 then the field and
particle energy densities are essentially equal. In the foreshock, if this

plasma state were reached then the electric field intensity would be
roughly 1 V/m.

The output of the numarical integration scheme for the electric field
can be writen,

E:.( X ,'\r\\ = EZL(;(,T’)
4).

M
*)m_;g Am('\'\ cos mT{x +U¥ )+ BN mT (x+Uv ) ]

where

Fol¥) = (“Li.j,\tio(o) cos Y +-(uoto\-u3 Sin "r} 5).

AL el o
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in whion u, is the space average of

oQ

ulx v) = \dv v F
S
The quantity, ¢(t), is given by,

Y
dly) = \ds {v-9) £, () 6.

o

The quantity, E 0(0), is part of the initial data; it could be set to zero.
1t F(x,v,0) is such that uo(O) - U =0, and it‘Eo(O) is set to zero, “hen
Eo(t) = ¢/t) = 0 and the expression for the electric field given by
equation U4 reduces to the electrostatic limit. The solution presented here
follows from an electron speccrometer observation for which uo(O) -U#£0,
Thus, the electrostatic limit cannot be reached for this solution even if
it is assumed that EO(O) =z 0. The Am(\') and Bm(t) are obtained 2irectly
from the numerical calculation. These coefficients will be presented here;
the total field can be reconstructed using equation 4., Only ‘ne field
modes have been included in the solution which will be presented. Of
course more modes are desirable and it is expected that more will be
included in the future. On the other hand various solutions have been
computed using varying numbers of modes and varying related phase
velocities t» ensure that the interpretation of the results which will be
presonted is not an artifact of the small number. It is 1ot expected that
an increased number of modes will lead to any significant cl.ange.

b). The Initial Data

The dots in Figure 1 represent a reduced distridbution function
which has been constructed from GSFC electron spectrometer data taken
aboard the ISEE-1 spacecraft on November 6, 1977 at 11:38:13-16 UT. The
construction of the reduced distribution function reguires integration over
the velocity components perpendicular to the local magnetic field. The
spread in the dotted curves, where {t oocurs, is due %0 the difference in
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integration results using two methods of integration. 1In principle the
integration should be carried to infinite perpendicular velooity bu%t, of
course, the clectron spectrometer has a finite upper energy limit. The
upper dotted curve was obtained by extrapolating the electron spectrometer
data smoothly to zero for very .arge velocity and the lower ocurve by
setting the electron distribution to zero for all high velocities where it
was not measured; in each case the intzgration over the perpendicular
velocity components was then carried out. From the results it appears that
at least in this case, the reduced distribution is very well determined by
the electron spectrometer data over “he parsllel velocity interval of
significance to the evolution of plasma wave phenomena; i.e., the velocity

interval containing the bump on the tail of the reduced velocity
distribution.

The data in Figure 1 were appirently collected as %he spacecraft was
passing through the boundary of the electirun foreshock into interplanetary
space, Figure 2 shows the electron heat flux determined from the electron
spectrometer data over a one-hour interval which contains the %ime of the
observation in Figure 1. The upper panel shows the heat flux magnitude,
the middle panel the component of the heat flux vector in the é¢-direction
measured in the ecliptic plane from the Earth-Sun direction, and the bottom
pan3]l the component in the 8-direction measured from the ecliptic plane.
The horizontal dashed lines in th~ middle and bottom panels show the
directions parallel or anti-parallel to the nominal Parker spiral magnetic
field. The heavy horizontal line segments give one minute averaged
magnetic field data from the ISEE data pool tapes. The heat flux veactor
can be seen to be either parallel or anti-parallel to the magnetic field
with abrupt transition2 between. Figure 3 shows electric field data
obtained by ¢he lowa Plasma Wave Experiment abcard ISEE-1 during the same
time interval. The electron plasma frequency lies in the 31.1 kHz channel
during this time. Figures 2 and 3 together show “he high correlation
between intense plasma wave noise in the vicinity of t'ie plasma frequency
and reversals of the hea®t flux vectour away from its norwal interplanetary
direction along the field and away from the sun, This correlation has been
known for some time (Ogilvie g% al., 1971; Scarf g% al., 1971; Fredricks g%
al., 1971; Feldman g% Al., 1973) and is generally interpreted as en%try into
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the electrcn [oreshock. The reduced distribution in Figure 1 was
constructed from data obtained during the heat flux reversal which can be
seen in Figure 2 at appruximately 11:38, Probably because this short
reversal occurs just at the edge of a gap in the plasma wave data, it is
rot clearly evident in that data. Figure 4 contains a more detailed
spectrogram obtained by the ISEE-1 electron density experiment over a
fifteen minute period starting at 11:30 and containing the time of the
electron observation. The frequency scale of t‘he spectrogram range: from
essentially 0 to 50 kHz and the grey scale indicated on the 1:zi't of the
figure is adjusted Lo cover from 16 to 72 dB above the 1 nV n-1 Hz'1/2
level. The short black bar on the top of the figure indicates a tiwc
period during which the electron density sounder transmitter was on; this
18 the cause of the coincident data gap in Figure 3 in the plasma wave
data. A scan of the heat flux da%ta and ‘he plasma wave data in Figures 2
and 3 shows tha® the satellite was in the electron foreshock a% the start
of the spectr~gram. Tho general increase in the level of noise in the
pasma wave experiment 31.1 kHz channel at about 11:34 is clearly evident
in the spectrogram, and in all of Figures 2, 3 and U4 the exit from the
foreshock between 11:42 and 11:43 is very clear. The short! heat flux
reversal which starts, accereding Lo the electron spectrometer data, during
11:38:13-16 is also clearly evident in the spectrogram. The spectrogran
contains 128 frequency steps, each of 400 Hz bandwidth, which are swept in
a time period of 16 seconds starting at the lowest frequency and ending at
the highest. The arrows lahbeled start and stop indicate the positions in
two consecutive frequency sweeps a* which “he electron spectrometer
observation of the unstable velocity distribu‘icn began and ended. About
six seconds before the electron spectrometer observation the satellite was
clearly imbedded in the foreshock. About six seconds after the electron
spectrometer observation the spectrogram indicates a quizt field except for
an intense peak at the plssma frequency. Presumably, due to velocity
dispersion in the foreshock boundary, by the time at which this intense
peak is observed the satellite has passed out of “he foreshock as defined
by the low energy electrons detectable by the electron spectrometer but it
remains in *he foreshock boundary defined by the beam of higher energy
electrons arriving from the bow shock. This beam of higher energy

particles cont. ies to excite plasma noise &t “he plasma frequency. Thus,
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it i3 concluded that the iSEE-1 satellite passad out of the foreshook
shortly after 11:38, as the data for Figure 1 were being collected, and
soon after passed back into th foreshock. It is assumed that this passage
is not clear in the plasma wave experiment data because of the da‘* gap.

The unstable bump-on-tail reduced distribution shown in Figure 1 is an
example of a phenomenon which has been presumed to exist at the boundary of
the foreshock for quite some time (Filbert and Kellogg, 1979). The
electron spectrometer onboard the ISEE-1 spacecra.t is the firast experiment
with high enough time and velocity resolution to yield that result, A
search through the 2lectron spectrcmeter da.a for other such examples is in
progress; detailed results will be presented later. Time alising during
tne electron spectrometer three sero-nd data collection interval is still a
possibility. However, a%t this point it appears that many of the foreshock
boundary crossings have been resclved by the electron spectrometer and have
been found to coincide with bump-on-tail unstable reduced Aistributions.

The solid curve in Figure 1 is a three Gaussian fit to the electron
spectrometer data which has been used a3 the initial veloeity distribution
for the numerical solution to rollow. This initial data contains a cold,
dense core, a high temperature halo, and a beam of approximately 150 eV
electrons moving away from the dow shock along the iocal magnetic field.
The electric field was assumed %o initially contain very low amplitude
waves with phase velocities at the positions of the thin vertical lines in
Figure 1, The wavelengths of “he modes ranges from approximately ‘0 down
to 2.5 Uebye lengths (apprcximately 70 down to 18 meters). The modes with
the largest phase velocity magnitudes are “hose with the longest
wavelengths and the modes with phase velocities nearest the origin in
velocity in Figure 1 are the ones with the shortesst wavelength. Other
solutions have been computed con*taining longer waveieng“h modes (Klimas,
1982), whose phase velocities were outside the position of the beam
velocity. Those modes were found %o simply damp away with increasing time
and t~ play no role in the evolution of the instabilj%y. From linear
plasma theory, iield modes vwith phase velocity at %he position of the far
right vertical line, on “hes rising portion of the bump, are expected to be

unstable and %o, thereflore, grow exponentially with time until the
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instability saturates due to non-linear phenomena. All other modes are
expected to decay exponentially with time (to Landau damp). The actual
evolution of the field modes turned out to be considerably more complex.

¢). The Solution

Figures 5a-d contain plots of the absolute values of B,(t) through
BQ(T) over more than one hundred plasma periods (approximately 3 ms. total
elapsed time) starting at the initial plasma state. The A-coefficients
differ from the B-coefficients only in details and therefore space will not
be taken to present plots of them. A close examination of these figures
will reveal that the curves are made up of a sequence of peaks of slowly
varying amplitude. Each pair of peaks represents a single period of
harmonic oscillation on this semi-log plot of the absolute values. Figure
5a, for B1(1), shows a classic example of instability growth and
saturation. Following an initial transient the amplitude of B1(r) grows
exponentially at a rate which can be predicted very accurately using a
dispersion relation from linear plasma %heory. The oscillation frequency
of this mode is also very accurately predicted by the Bohm-Gross relation
from linear plasma theory. (These issued wi'l be discussed in detail in
the next section.) The instability saturates at 1t = 200 leaving this mode
oscillating at the Bohm-Gross frequency, very close to the plasma
frequency, with slow modulations of the amplitude which are due presumably

to particle trapping effects.

A detailed description of the computed electric field will be given in
the following subsection. At this point, however, a brief argument can be
given which shows that the dominant feature of the electric field is in
good agreement with the field detected by the plasma wave experiment: The
total field, following saturation, is dominated in the vicinity of the
plasma frequency by the contributions of B1(r) and A1(t). From this
numerical solution jt would be expected that plasma wave noise near the
plasma frequency witn amplitude = 100 mV/m and wavelength close to 70
meters should be detected by the plasma wave experiment, The calibration
of the ‘lasma wave experiment is such that the plct of the 31.1 kHz channel
in Figure 3, which contains the plasma frequency, shculd reach full scale
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at several tens of millivolts/meter (private communication, D. A. Gurnett,
P.I., Plasma Wave Experiment). An examination of Figure 3 reveals that the
period just preceding and following the time of the electron spectrometer
observation is ch=—~acterized by unusually strong plasma wave activity near
the plasma frequency. The 31.1 kHz channel appears full scale or near full
scale almost continuocusly. The 70 meter wavelength predicted by the
numerical solution is smaller by about a factor of three than the 215 meter
antenna used to obtain the data in Figure 3. Thus, the plasmu wave
experiment wouvld be expected to detect an electric field oscillating near
the plasma frequency with ampli.ude roughly 30 mV/m, Jjust about its full
scale field level and in agreement with the data presented in Figure 3.

The plot of 32(1) in Figure 5b provides the first evidence of quite
unexpected evolution for this bump-on-tail instability. Initially 32(1)
decays exponentially in time as expected with rate close to the Landau
damping rate predicted by linear plasma theory. The reversal of this decay
at v = 70, the subsequeni exponential growth, and the simultanecus shift to
a higher oscillation frequency were not expected. After all, none of the
usual assumptions wnich one maxes to justify the accuracy of the linear
plasma theory appear violated during this reversal but it is clear that the
linear plasma theory {(cr even quasi-linear theory (Davidson, 1972)) would
not allow such behavior, This situation is made even more difficult by the
plots of 83(r) and B, (1) in Figures 5c and 5d which show more d-amatio
examples of the same kind of behavior. I% would appear that the number of
modes involved in this behavior is limited here by the number of modes
included in the calculation and not by any feature of the physical
phenomenon involved. On the other hand it is important to realize tuat not
all possible field modes are invclved. Other numerical solutions have been
computed containing electric field modes with wavelengths longer than that
of the unstable mode :n this run; those field modes did not experience a
reversal of their Landau damping. In addition, it has been found that
field modes with wavelengths shorter than the unstable mode which, however,
do not satisfy Ap = xu/m, where Au is the unsable mode wavelength and m is
any integer greater ‘han one, also do not take par*% in the decay reversal
and frequency shift. The solution presented here has been arranged so that

tae unstable mode is at the longes:t wavelength, all other modes are at
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shorter wavelengths, and they all satisfy xn = Au/l. Thus, in this
solution, only those modes that can reverse have been included because, in
addition to the unstable mode, those are the only modes which rise to high
enough amplitudes to make measurable contributions to the electric field.

d). The Electric Field Power Spectirum

The spectral distribution of the computed electric field is
considerably richer than was expected. The electric field is not limited
to plasma oscillations at (or very near) the plasma frequency. The decay
reversals and simultaneous shifts %o higher frequencies discussed above
lead to a power spectrum with peaks at all the harmonics (limited only by

the numer of modes in the numerical calculation) of the fundamental
Bohm-Gross frequency. In addition these peaks are split into doublets or
triplets due to the amplitude modulations evident in Figures 5a-d following
saturation of the plasma instability at t = 200.

Figure 6 contains the electric field power spectrum computed from the
output of the numerical calculation and, alsc, a power spectrum of a model
electric field which is used to help interpret the numerical results. The
electric field was computed using equation 4 with U = 0; this is the field
in the reference frame moving with the solar wind. It will be shown below
that the wavelengths in the electric field are quite small., As a result,
the Doppler shifts associated with the ‘ransformation from solar wind %o
satellite frame of reference turn out to be very small corrections to the
frequencies of the important field modes and, in general, can be ignored.
The constant, Eb(o), nas been set to zero in order to present the simplest
case. The vertical tick marks at the %op of the figure give the positions
of the plasma frequency and two, three and four times the plasma frequency.
The spectrum was computed from that portion of the solution following %“he
saturation ¢f the instability, from v = 200 to t = 630, The field prior to
t = 200 is relatively much weaker and after 200 shows no evidence for
further qualitative evolution. Thus, it is felt thét this portion of the
solution yields the electric field that the plasma wave experiment should
detect when it detects peaks in the electric field at the foreshock

boundary. The heavy curve gives ‘he power spectrum ccmputed from the
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numerical solution. Because the time interval over which the electrioc
field was computed is short there is considerable leakage in this spectrum.
To evaluate this effect a power spectrum for a model of the num rical field
was also computed. A model electric field with pure harmonics at the
Bohm-Gross frequency of the unstable mode and at %two, three and four times
that frequency was constructed. The amplitudes of each of the harmonics
were chosen using the following reasoning: It was found that each of the
well separated groups of peaks in the power spectrum came from distinct
wavelengths iax the field. The peaks in the viecinity of the Bohm-Gross
frequency corresponded to the longest wavelength, or the m = 1 terms in
equation 4. The peaks in the vicinity of twice the Bohm-Gross frequency
come from the next shorter wavelength, half the longest, or the m = 2 taras
in equation 4, And so on. The following general rule seems to apply.
After the decay reversal and frequency shift at t = 70, each ~f the {ield
modes that satisfy xm = xu/m experiences a shift in oscillation frequency
such that its phase velocity, mm/xm, moves up to that of the unstable mode;
i.e., up to the rising portion of the buwp on the reduced velocity
distribution. All of these modes then have the same phase velocity and
their oscillation frequencies are given by o,z m o where w, is the
Bohm-Gross frequency of the unstable mode. None of these modes with m > 1
satisfy a dispersion relation; they are not normal modes of the plasma.
Because each group of peaks in the power spectrum had its source in a
single m-value in the sum of equation 4 it became a relatively simple
matter to choose the amplitudes of the harmonics in the model electric
field. The electric field contributions of each of the m-values in the sum
were scanned for a maximum value. These maxima were then used for the
amplitudes of their respective (same m-value) pure harmonics. The power
spectrum of this model field made up of pure harmonic oscillations was then
computed; the thin curve in Figure 6 is the result. The overall shift
upward from the heavy to the thin curve is due to the choice of the maxima
for the amplitudes of the pure harmonics, It is clear from the model field
spectrum that there is indeed considerable leakage. The true spectrum for
the model field, if ‘. were computed over an infinite time interval, would
oconsist of spikes at the Bohm-Gross frequency and its harmonics with no
power in between. 1I% is also clear from Figure 6 that the computed field

power spectrum is consistent with power in isolated peaks each of which are
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split into several closely spaced components. The second, third and fourth
harmonics are clearly split into doublets and the first harmonic appears to
be split into a triplet. This splitting of the peaks in the power spectrum
is due to the slow amplitude modulations evident in Figures l4a-d after 1t =
200 which are due probably to particle trapping in the electric field.

IV. A Mechanian for Higher Harmonic Excitation

It is thought that the decay reversals and frequency shifts discussed
in the previous section can be explained in terms of a second order
wave-wave coupling mechanism. This mechanism allows the unstable plasma
mode to pump the stable ones %o significant amplitudes with oscillation
frequencies tha% are narmonics of the unstable mode frequency. A specific
calculation of the amplitude, growth rate, and oscillation frequency of the
second harmonic is given in this section. The resuits of this calculation
are in excellent agreement with the numerical computation. 1I% is
conjectured that the higher harmonics are due to the same mechanism
involving many more wave-wave couplings but a detailed calculation of the

higher harmonics has not been done.

The calculation of the second harmonic excitation is essentially a

linear calculation with second order coupling added where appropriate. As
discussed above, the calculation will be done in the electrostatic limit
(i.e., solutions of equations 1 and 2 with the consirain® EO(T) = 0 will be
studied) and the results will then be transformed to allow a comparison
with the numerical computation. Therefore, consider solutions of equations
1 and 2 with EO(T) = 0 which are periodic in x over the interval - 1 <x s
1 and are subject to initial data F(x,v,0). As in the numerical
computation, let F(x,v,Tt) and E (x,T) be represented by ‘runcated Fourier
series expansions in x with coefficients given by
' —
) ~um {1 X
YS.lvvy = 7 \dx e - (x, v
all

and

enly) = 3 \dx e E(x, v)
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Then, these coefficients satisfy

35, , M 3§
37t imTvs, = Cma T .
ne -| .

€ = m_tfr dv s‘,m ( W\‘-\O\ 8).

and Gb = 0. Due to the truncation equatioas 7 and 8 govern those

coefficients which satisfy |=! < M and in tLe summation in equation 7 |[m-n|

ST ——

< M and |n] < M where M is some integer greater than zero. In the
numerical results presented in the previous section and for thc rest of
this calculation M = 4, All other coefficients are assumed zero.

To proceed assume that the plasma contains only very weak plasma waves,

i.e., assume that fm << fo for m # 0 and assume further that the fm are
well behaved as |v| + = such that the €& calculated from equation 8 are
simil..~ly small. These are standard assumptions which one would make in
order %o proceed with a linear “heoretical treatment of equations 7 and 8.
This will be the approach taken here until an obvious contradiction to the
linear theory is found. Since €_ m > Em. only m > 0 will be considered.
Thus, consider the linear approximation to equations 7 and 8 starting with

m= 0.

3§,
There are no linear terms in the summation of equation 7 because Go s
0. Thus, fo(V,T) = fo(v,O) = g(v).

b)), m = 3

This is one of the unstable modes. The linear approximation to

equation 7 is
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¥ + v T = E‘(} 10).

Of nourse the problem of finding a solution to equations 8 and 10 for f,
ande.' is a familiar one; the approach taken here is due originally %o
Landau (1946). Let f1(v.p) and &1(p) be the Laplace transforms of f, and
61 with the symbol, p, for the Laplace variable. Then,

~ §,(v,0) p)
S’.k",P\ = \3+'\1?v + (ic\lv \aw) -

and,

5 _\,_- 2 OQ ( g'\V‘O\_—‘
E‘\F) = TDAp de P+ Ty 12).

- 00

where,

( )
DM(P\ = | - wﬂT %dv P1-uvn'n'v\‘ 13).

With fo(v,o) and f,(v,0) given by the sum of three gaussians in v, as in
the case here, “he method of Jackson (1960) can be used to find the zero in

N
D,(p) which leads to the simple pole in 61(p) that dominates 61(1) as 1
grows large. With,

Q

et ——

é,(p) = P~ Po 14).

where Pp 2 0+ i w, the result of this calculation is o = ,0481, a positive
growth rate and therefore an unstable mode, and v = -1,07 (remember that in

these dimensionless units |w| = 1 corresponds to.oscillations at the plasma
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frequency). Generally, the method of Jackson, when it applies, gives a
more accurate result for v than does the Bohm-Gross expression. However,
in this particular case, with m = 1, the two results are essentially
identical and therefore this frequency has been referred to everywhere else
in this paper as the Bohm-Gross frequency of the unstable mode. The lowest
frequency peak in the model field power spectrum (the thin curve) of Figure
6 is a% this calculated Bohm-Gross frequency. The excellent agreement
between the position of this peak and that derived from the numerically
computed field (the heavy curve) indicates %tlhe accuracy with which the
linear theory predicts the oscillation frequency of this unstable mode.
Figure 7 shows the details of B1(t) during its linear growth phase. The
slope of the solid line drawn on tha% figure can be used to calculate the
actual growth rate of the instability; the resul% is .0530 as opposed to
the calculated o = .0481, Thus, the growth rate of the unstable mode is
also very well rcredicted by the linear theory. Generally, %he behavior of
the unstable modes during their linear growth phase is very well predicted
by the linear plasma theory.

¢). m=2

This is the first of the modes which experience the reversal of their
Landau danping and the subsequent growth and frequency shift which are
*>th in violation of the linear theory. It will be shown here that the
evolution of this mode during its decay and subsequent growth is governed
by

352 3 ¥ ¥,

——— . - . —_— hatlin %
)'\r + \J\ﬁ\/%‘l - ("_& é\/ "' G| \V 15).

At t =0, f, and f, are equal in amplitude as are €2 and €. All of these
quantities are very small. Thus, the las% term in this equation, which is
quadratic in *these small quantities, is initially completely negligible.
With the neglect of “his las* term, bho*h f2 and€L2 ovey the same linear
theory discussed above in the m = 1 case. A similar calculation of o and w

in %his case yields ¢ = -.151 and w = -1.27 in excellent agreemen® with the
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behavior indicated in Figure 8 of BZ(T) during its initial decay. However,
the neglect of the last term in equation 15 cannot remain valid. While the
linear theory applies e1 and f1 are growing exponentially in time and 62
and fz are decaying exponentially in time. A%t some point the last term
must dominate the right-hand side of this equation. In this subsection the
effects of the last term, when it dominates, are calculated. It is shown
that the decay reversal and frequency shift of Bz(t) are thereby completely
explained.

Using equations 15 aand 8, it can be shown that the Laplace transform of

€,(1) is given by,
oo

. i ( §,(v,0)
EatpYy = ATD,p M peedllv \

. o

* AHDW\ v (prialY 3 dP €,p 8 ypp)

16).

in which f"1 =z af /av and the path of integra*ion, C, is from -i= to +iw

with € (P analy*ic to the right and f' (¥, p-p') analytic to the left of
the path on the complex p'-plane. The first term in this equation would be
the sole result if a linear calculation were being done; it predicts the
initial behavior of B,(t) while it is decaying. Let &,(p) = L(p) + (p)
where f(p) is the linear first “ern in equation 16 and Q(p) is %he
quadratic second term. With equation 14 for 31(p),

oo

0

6\‘3\ = JWD‘\D\ dv(P*-LJ‘TV\&(V P Fo)

-0
If equation 11 is used for ¥, then it can be shown that 8(p) contains one
term with a pole at p = 2p°; this term is given by,

aa oo a(v)
Q (f’\ P aPo\D (P) Sd" \P*"-&‘TV)}(F Po"'LVV\




ORIGINAL PAGE 18
OF POOR QUALITY 22

Finally, the contribution of this pole %o 32(3) is given by,

o0 3¢
o ap, A
Qa(ﬂ 3\ g Datapa\ e P dv{ Jv? 7).

\\Do + My

This expression gives a contribution to BZ(T) which oscillates at exactly
twice w, the Bohm-Gross frequency of‘€,1, and grows exponentially with twice
the growth rate, o, of 81. The amplitude of this contribution to BZ(T) is
completely determined by the fit, in Figure 7, to the amplitude of€,(7)
which yields |a| and o and by the calculation of w done in the previous
subsection; there are no free parameters available. The prediction from
equation 17 for the amplitude of 82(1) is given by the straight line in
Figure 8. The prediction from equation 17 for the oscillation frequency,
2w, is given by the position of the second peak in the model field power
spectrum in Figure 6 which lies just in the middle of the corresponding
doublet determined from the numerical sclution. It would appear that this
contribution to 62(1) accounts entirely for the decay reversal and
frequency shift to the second harmonic in Bz(r) and thus, for the second
harmonic excitation in the electric field. The mechanism for this
contribution which has been examined above would normally be called second
order wave-wave coupling but this is, perhaps, somewhat confusing
terminology sirce it is actually the m = 1 mode interacting with itself
which produces this result; it is hard to imagine a wave interacting with
itself. Actually, the interaction is between the m = 1 wave in the
electric field and the m = 1 density fluctuations in the particles; the
terminology is simply inappropriate.

It is conjectured that the higher harmonics in the electric field are
produced by the same mechanism as that which produces the second harmonic
bu%, with more than jus% one mode doing the pumping. For example, after
its decay reversal ‘he third mode shifts to the third harmonic of the
fundamental Bohm-Gross frequency and grows exponentially with a growth rate
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which is three times that of the first mode. It is conjectured that this
mode is governed by equation 8 and

% ; 5
}T + L3y §, =e3%&\‘,‘ +c,}§- + e 9;—

The first term on the right-hand side of this equation would provide the
initial linear decay of 63(1) and the last two would do the pumping. .
the index, m, increases the number of possible mode-mode couplings
responsible f..r the pumping goes up rapidly.

V. Conclusion

The esseantial element which allowed the excitation of the harmonies in
the example discussed in this paper was the large ratio of free enzrgy in
the electron beam to the field energy prior to the growth of the
bump-on-tail instability. Thus, the unstable electric field modes grew by
several orders of magnitude before the free energy was exhausted thereby
leading to the important consequence that the linear growth phase of the
instability lasted for a long time. During this long linear growth phase
other shorter wavelength field modes which were Landau damping were able to
decrease their strengths by several orders of magnitude. The resul% was a
large imbalance between the strengths of the stable and unstable modes in
the plasma; so large, in fact, that the linear Landau damping of the stable
modes was eventually dominated by wave-wave coupling quadratic in the
unstable modes. Although a quantita%ive sta%tement cannot be mide, it does
seem safe to say that the thermal electric field noise level in the
undisturbed interplanetary plasma a* the frequencies and wavelengths of
interest here is very small, probably smaller than the approximately 10
V/m which was used to seed the field modes in the numerical computation
(Meyer-Vernet, 1979; Hoang e% al., 1980; Couturier e% al., 1981). Thus,
the free energy of an electron beam at the foreshock boundary should easily

-5

dominate the undisturbed field energy. Certainly the plasma wave
observations at the boundary of the foreshock are often consistent with a
growth of several orders of magnitude in the field strength during the
evolution of the instablity. 1% appears then that the excitation of
harmonics at the boundary of the electron foreshock should be a common
occurrence,
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The numerical results which have been presented have been computed
using only a small number of discrete field modes. However, various
unreported numeriocal solutions have been computed to test the conclusions
which have been given. It has been found that field modes with wavelengths
longer than tha% of the unstable mode do not play any detectable role in
the evolution of the unstable mode or the pumped modes. It has also been
found that the same can be said of field modes with wavelengths shorter
than that of the unstable mode whose wavelengths, however, do not satisfy
the equa%tion Xm z Au/n. The soluticn which has been presented 2ontains
only field modes which do satisfy this equation with 1 < m < 4, It is
thiought that only modes which satisfy this equation can possibly have a
significant part in the evolutinn of the instability. Thus, it is thought
that the solution which has been presented is essentially complete except
for the modes which satisfy Ag = Au/m with m > 4, But the wavelengths of
those modes, according to this equation, would be even ahorter than the
minimum 2.5 XD wavelength which is included here. It is not considered
likely that field modes with wavelengths equal %o *D or shorter would play
a significant role if they were included but this point will be checked in
the future when solutions with more field modes will be computed.

It is further not considered likely that the transition from the
discrete modes appropriate for the numerical computation ¢o a continuum of
modes more appropriate for an interpretation of the plasma wave data would
have any significant impact on the harmonic excitation. Following the long
linear growth phase of the instability the contribution to the electric
field from the continuum of unstable wavelengths should be dominated by
those wavelengths which 2re very close to the most unstable wavelength.
Because the field would therefore be dominated by a narrow range of
wavelengths, and because the wavelength dependent Bohm-Gross correction to
the plasma frequency is small, all of “he important unstable field modes
should oscillate a% very nearly the same frequency, near the plasma
frequency. With the resulting sharply peaked wavelength and frequency
spectra for the unstable field modes i* would be expected that the spectra
for the pumped harmonic modes would be similarly peaked. Thus, it is
expected that in the continuum, during the linear growth phase of the
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instability end while the harmonic pumping is occurring, the field would
evolve in a manner quite similar to that of the discrete mode calculation,

Then why have the harmonics of the plasma frequency not been observed
at the electron foreshoock boundary? The answer may be that they have been
observed but due to the nature of the plasma wave detectors it is difficult
to detarmine that this is the case. An unfortunate side e¢ffe2ct of the high
sensitivity of these detectors is their tendency to spill strong signals in
any one frequency channel over irito other nearby channels. A good example
of this phenomenon can be seen in Figure 3 in which a very strong signal at
the plasma frequency in the 31.1 kHz channel may be exciting many of the
other frequency channels in the detector. There may also be harmonics of
the plasma frequency in that data but that would dbe very difficult to
prove. This is an extreme example; there may be other times when harmonics
in the plasma waves could be separated from spillover in the detector. On
the basis of the results of this paper it would appear that they are there
to be found.
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List of Figure Captions

Figure 1

Figure 2

Figure 3

Figure U

The dots indicate an electron reduced velocity distribution
constructed from data obtained by the electron spectrometer
experiment on ISEE-1 as it passed through the boundary of the
electron foreshock. The solid curve is a three gaussian fit
used for initial data for the numerical integration. The
thin vertical lines indicate the initial phase velocities of
the field modes included in the numerical integration.

Electron heat flux determined through a moment fit to data
from the electron spectrometer experiment on ISEE-1 over a
one hour _nterval which contains the time of the observation
in Figure 1. The sudden shifts by approximately 187° in the

angle ¢ indicate passage through the bouadary of the electron
foreshcck.

Electric field measurements made by the plasma wave
experiment on ISEE-1 using the 215 m. antenna over the same
time interval contained in Figure 2, The plasma frequency
during this time interval is in the 31.1 kHz channel. Sudden
increases in the signal in this channel can be seen to be
very well corc/elat. d with the heat flux reversals in Figure
2. The periodic data gaps occur when the el~ctron density
sounder experiment is turned on.

Electric field spectrogram made from data oltained by the
electron density experiment on ISEE-1 over a fifteen minute
time interval containing the time of the electron
spectrometer observation in Figure 1. The spectrogram is
constructed from consecutive 16 second frequency sweeps
starting at the lowest frequency and ending at the highest.
The beginning and end of the electron spectrometer J

observation are at the points indicated by the arrows labeled
start and stop.




Figure 5

Figure 6

Figure 7

Figure 8
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Four of the electric field modes obtained from the numerical
integration of the 1-D Vlasov-Maxwell equations using the
bump-on-tail unstable reduced velocity distribution given in
Figure 1 for the initial plasma state. The mode labeled B1
contains the unstable fundamental. The other three modes are
initially stable but are later pumped by the unctable
fundamental. The pumped modes oscillate at frequencies which

are very close to the harmonics of the plasma frequency.

The heavy curve is a power spectrum constructed from the
computed electric field following saturation of the
bump-on-cail instability. The light curve is a power
spectrum constructed in a similar manner from a model
electric field containing power only at the Bohm-Gross
frequency of the fundamental unstable mode and its harmonics;
the power apparent in this curve between the peaks is due
solely to leakage. A comperison indicates that the computed
electric field contains power in isclated peaks, at the
harmonics of the Bohm-Gross frequency, which are further
split into closely spaced components.

The linear growth phase of the B1 mode plotted in Figure 5a.
The straight line is a fit which has been made to determine
the magnitude of the oscillations in this mode and their
growth rate. The growth rate determined in this manner is in
very close agreement to the growth rate predicted by linear

plasma theory.

The 82 mode from Figure 5b during the linear growth phase of
the bump-on-tail instability. The initial decay is as
expected from linear plasma theory. The reversal of that
decay and simultaneous frequency shift are due to pumping by
the fundamental unstable mode through quadratic wave-wave
coupling. The straight line is a no-free-parameter fit to
the amplitude of this mode, during the pumping phase,

calculated using the wave-wave coupling mechanism.
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