NASA Contractor Report 3657

Development of a Multiple-Parameter Nonlinear Perturbation Procedure for Transonic Turbomachinery Flows: Preliminary Application to Design/Optimization Problems

> apvil/Sol Technical Linnary Lirtland ava, um 87137

S. S. Stahara, J. P. Elliott, and J. R. Spreiter

CONTRACT NA\$3-20836 JANUARY 1983

NASA Contractor Report 3657

Development of a Multiple-Parameter Nonlinear Perturbation Procedure for Transonic Turbomachinery Flows: Preliminary Application to Design/Optimization Problems

S. S. Stahara, J. P. Elliott, and J. R. Spreiter Nielsen Engineering & Research, Inc. Mountain View, California

Prepared for Lewis Research Center under Contract NAS3-20836

National Aeronautics and Space Administration

Scientific and Technical Information Branch

TABLE OF CONTENTS

_____....

Sec	Section					
SUMMARY						
1.	INTRODUCTION					
2.	ANALYSIS					
	2.1 2.2	Pertu: Simul:	rbation Concept and Previous Applications taneous Multiple-Parameter Perturbation	3 4		
	2.3	Appli	Application to Surface Properties			
3.	RESU		11			
	3.1 3.2	Simul Preli Parame Procee	taneous Multiple-Parameter Perturbations ninary Application of Combined Multiple- eter Perturbation Method with Optimization dures for Blade Design Applications	11 13		
4.	CONCLUSIONS AND RECOMMENDATIONS					
APPENDIXES						
	A - 1	USER'S	MANUAL FOR COMPUTER PROGRAM PERTURB	27		
		A.1	INTRODUCTION	27		
		A.2	PROGRAM DESCRIPTION	27		
		A.3	PROGRAM FLOW CHART	31		
		A.4	DICTIONARY OF INPUT VARIABLES	33		
		A.5	PREPARATION OF INPUT DATA	35		
			A.5.1 Description of Input A.5.2 Format of Input Data	35 37		
		A.6	DESCRIPTION OF OUTPUT	41		
		A.7	ERROR MESSAGES	42		
		A.8	SAMPLE CASE	42		
	FIGURES A.1 to A.3					

iii

B - LISTING C	OF COMPUTER PROGRAM PERTURB	88			
C - LIST OF S	SYMBOLS	100			
REFERENCES					
TABLE 1		104			
FIGURES		105			

DEVELOPMENT OF A MULTIPLE-PARAMETER NONLINEAR PERTURBATION PROCEDURE FOR TRANSONIC TURBOMACHINERY FLOWS: PRELIMINARY APPLICATION TO DESIGN/OPTIMIZATION PROBLEMS

Stephen S. Stahara, James P. Elliott, and John R. Spreiter

Nielsen Engineering & Research, Inc. Mountain View, CA

SUMMARY

An investigation was conducted to continue the development of perturbation procedures and associated computational codes for rapidly determining approximations to nonlinear flow solutions, with the purpose of establishing a method for minimizing computational requirements associated with parametric design studies of transonic flows in turbomachines. The results reported here concern the extension of the previously-developed successful method for single-parameter perturbations to simultaneous multiple-parameter perturbations, and the preliminary application of that multiple-parameter procedure in combination with an optimization method to blade design/optimization problems.

In order to provide as severe a test as possible of the method, attention is focused in particular on transonic flows which are highly supercritical. Flows past both isolated blades and compressor cascades, involving simultaneous changes in both flow and geometric parameters, are considered. Comparisons with the corresponding 'exact' nonlinear solutions display remarkable accuracy and range of validity, in direct correspondence with previous results for single-parameter perturbations. Initial applications of the perturbation method combined with an optimization procedure demonstrate the ability of the multipleparameter method to work accurately in a design environment and establish its potential for reducing the computational work required in such applications by an order of magnitude.

1. INTRODUCTION

With the continuing success of advanced computational methods to determine solutions to increasingly complex fluid dynamic phenomena, it has become clearly apparent that in order to employ these methods in applications requiring routine high-frequency use, a means must be found to reduce the computational demands necessary in their straightforward application. While this need exists across a spectrum of aerodynamic users, it is particularly high in turbomachinery applications. There both the basic aerodynamic computation is time-consuming and the number of variable flow and geometry parameters are large, making any turbomachinery parametric or design study computationally expensive under the best of circumstances, and in many instances using more advanced codes, prohibitively so.

The ultimate objective underlying this study is to develop the means of reducing substantially the overall computational requirements necessary for turbomachinery design or parametric studies by minimizing the actual number of "expensive" numerical flow solutions required. That such procedures are achievable has been successfully demonstrated in the previous phase (ref. 1) of this study. In that work, a perturbation method was developed and tested on a large number of nonlinear flow problems involving single-parameter changes of a variety of flow and geometric parameters. Subcritical and supercritical flows past isolated blades and compressor cascades were considered, with particular emphasis placed on supercritical transonic flows which exhibited large surface shock movements over the parametric range studied. Comparisons of the perturbation predictions with the corresponding 'exact' nonlinear solutions indicated a remarkable accuracy and range of validity of the perturbation method.

The work reported here describes the continued extension and refinement of that perturbation technique, and has focused on the development of its capability for actual application to practical turbomachinery design problems requiring the highly repetitive use of computational codes to determine a large number of related flow solutions. Two primary tasks were involved. The first consisted of the extension of the method to treat simultaneous multiple-parameter perturbations. The second involved the combination of the perturbation method with an optimization procedure, and the preliminary application of that combination to blade design/optimization problems. The nature of the present work is both exploratory and developmental in that aspects of the procedure--such as its validity, range of accuracy, and computational economy for multiple-parameter perturbation problems and its workability in an optimization design environment -- will be investigated, and a computational code for multiple-parameter perturbations will be developed.

2. ANALYSIS

2.1 Perturbation Concept and Previous Applications

The classical approach of performing a perturbation analysis -consisting of establishing and solving a series of linear perturbation equations -- appears an an obvious choice for the current applications. However, results from the initial phase of this study (ref. 2) demonstrate that for applications to sensitive flows such as occur in transonic situations, the basic linear variation assumption fundamental to the technique is sufficiently restrictive that the permissable range of parameter variation is so small to be of little practical use. An interesting alternative to the linear perturbation equation approach has recently been successfully examined in which a correction technique is used that employs two or more nonlinear base solutions. For that method, the basic perturbation solution is determined simply by differencing two nonlinear base flow solutions removed from one another by some nominal change of a particular flow or geometrical quantity. A unit perturbation solution is then obtained by dividing that result by the change in the perturbed quantity. Related solutions are determined by multiplying the unit perturbation by the desired parameter change and adding that result to the base flow This simple procedure, however, only works directly solution. for continuous flows for which the perturbation change does not alter the solution domain. For those perturbations which change the flow domain, coordinate stretching is necessary to ensure proper definition of the unit perturbation solution. Similarly, for discontinuous flows, coordinate straining is necessary to account for movement of discontinuities due to the perturbation.

In a number of recent applications of the method (refs. 1-7), results have been obtained which demonstrate the accuracy, range of validity, and versatility of perturbation methods based on such ideas. The most extensive and systematic of these are provided in references 1 and 7, where results are reported for a variety of flow and geometry parameter perturbation case studies of nonlinear subsonic and transonic flows past both isolated blades and compressor cascades. In those results, particular emphasis was placed on strongly supercritical transonic flows which exhibit large surface shock movements over the parameter range studied. Comparisons of the perturbation results with the corresponding 'exact' nonlinear solution display remarkable accuracy across the spectrum of examples studied.

The basis of this accuracy lies in the use of coordinate straining. This provides the means in determining the unit perturbation to account properly for the displacement of discontinuities and maxima of high-gradient regions due to a

parameter change. This in turn enables the perturbation method to maintain uncommon accuracy in regions of high gradients over large parametric ranges. In reference 1, a detailed examination was made of the effect of employing different classes of straining functions. Those results have illustrated deficiencies in certain classes of straining functions and have lead to the identification of a superior class of straining functions. These results are discussed in more detail in section 2.3.

2.2 Simultaneous Multiple-Parameter Perturbation Formulation

To provide the theoretical basis of the perturbation method as applied to simultaneous multiple-parameter perturbations of flows containing multiple shocks or high-gradient regions, consider the formulation of the procedure at the full potential equation level, since all of the results presented here are based on that level. Denote the operator L acting on the full velocity potential Φ as that which results in the two-dimensional full-potential equation for Φ , i.e.,

$$L[\Phi] = 0 \tag{1}$$

If we now expand the potential in terms of zero- and higherorder components in order to account for the variation of M arbitrary geometrical or flow parameters q_i

$$\Phi = \Phi_{0} + \sum_{j=1}^{M} \varepsilon_{j} \Phi_{1j} + \dots$$

$$q_{j} = q_{0j} + \Delta q_{j}$$
(2)

and then insert this into the governing equation (1), expand the result, order the equations into zero- and first-order components, and make the obvious choice of expansion parameters $\varepsilon_j = \Delta q_j$ we obtain the following governing equations for the zero- and M first-order components

$$L[\Phi_{o}] = 0$$

$$L_{1}[\Phi_{1}] + \frac{\partial}{\partial q_{j}} L[\Phi_{o}] = 0$$

$$(3)$$

Here L_1 is a linear operator whose coefficients depend on zeroorder quantities and $\partial L[\Phi_0]/\partial q_j$ represents a 'forcing' term due to the q_j th perturbation. Actual forms of L_1 and the 'forcing' term are provided in reference 2 for a variety of flow and geometry parameter perturbations of a two-dimensional turbomachine, and in reference 4 for profile shape perturbations of an isolated airfoil. An important point regarding Equation (3) for the first-order perturbations Φ_1 is that these equations m_j represent a unit perturbation independent of the actual value of the perturbation quantity ε_i .

Appropriate account of the movement of a multiple number of discontinuities and maxima of high-gradient regions due to the perturbation is now accomplished by the introduction of strained coordinates (s,t) in the form

$$x = s + \sum_{j=1}^{M} \varepsilon_{j} x_{1}(s,t)$$

$$y = t + \sum_{j=1}^{M} \varepsilon_{j} y_{1}(s,t)$$
(4)

where

$$x_{1}(s,t) = \sum_{i=1}^{N} \delta x_{i} x_{1_{i}}(s,t)$$

$$y_{1}(s,t) = \sum_{i=1}^{N} \delta y_{i} y_{1_{i}}(s,t)$$
(5)

and $\varepsilon_j \delta x_i$, $\varepsilon_j \delta y_i$ represent individual displacements due to perturbation of the q_j th parameter of the N strained points, and $x_{1_i}(s,t)$, $y_{1_i}(s,t)$ are straining functions associated with each of the N strained points. Introducing the strained coordinate Equations (4) and (5) into the expansion formulation leaves the zero-order result in Equation (3) unchanged, but results in a change of the following form for the jth perturbation

$$L_{1}\left[\Phi_{1}\right] + L_{2}\left[\Phi_{0}\right] + \frac{\partial}{\partial q_{j}} L\left[\Phi_{0}\right] = 0$$
(6)

Here the operators are understood to be expressed in terms of the strained (s,t) coordinates, and the additional operator L_{2j} arises specifically from displacement of the strained points. In references 3 and 4, specific expressions for L_{2j} are provided for selected perturbations involving transonic small-disturbance and full-potential equation formulations. The essential point, however, with regard to perturbation Equation (6) expressed in strained coordinates is that it remains valid as before for a unit perturbation and independent of ε_i .

In employing the correction method, Equation (6) for the jth unit perturbation is solved by taking the difference between two solutions obtained by the full nonlinear procedure after appropriately straining the coordinates. If we designate the solutions for some arbitrary dependent flow quantity Q as base Q_o and calibration Q_{cj} , respectively, of the varied independent parameter q_j , we have for the predicted flow at some new parameter value q_i

$$Q(x,y) = Q_0(s,t) + \sum_{j=1}^{M} \varepsilon_j Q_{1j}(s,t) + ...$$
 (7)

where

$$Q_{1j} = \frac{Q_{cj}(\bar{x}_j, \bar{y}_j) - Q_o(s, t)}{\bar{\epsilon}_j}$$

$$\bar{x}_j = s + \sum_{i=1}^{N} \bar{\epsilon}_j \delta x_i x_{1i}(s, t)$$

$$\bar{y}_j = t + \sum_{i=1}^{N} \bar{\epsilon}_j \delta y_i y_{1i}(s, t)$$

$$x = s + \sum_{j=1}^{M} \frac{\bar{\epsilon}_j}{\bar{\epsilon}_j} (\bar{x}_j - s)$$

$$y = t + \sum_{j=1}^{M} \frac{\bar{\epsilon}_j}{\bar{\epsilon}_j} (\bar{y}_j - t)$$

(Continued)

[Eq. (8) Continued]

$$\left. \begin{array}{c} \tilde{\varepsilon}_{j} = q_{c_{j}} - q_{o_{j}} \\ \varepsilon_{j} = q_{j} - q_{o_{j}} \end{array} \right\}$$

$$(8)$$

In the following section, applications of the correction procedure are made to predict surface properties. Also provided is the particular form of the straining functions Equation (5) found to be most effective in those applications.

2.3 Application to Surface Properties

For the current applications, we have employed coordinate straining with the correction method to predict distributions of surface properties for simultaneous multiple-parameter perturbations of aerodynamic flows. In that instance where flow properties are required along some contour, the strainedcoordinate solutions can be represented by

$$Q(x;\varepsilon) \sim Q_{0}(s) + \sum_{j=1}^{M} \varepsilon_{j} Q_{1_{j}}(s) + \dots$$
(9)

 $x \sim s + \sum_{j=1}^{M} \varepsilon_{j} x_{1}(s) + \dots$ (10)

where x is the independent variable measuring distance along the contour or a convenient projection of that distance, s is the strained coordinate, and ε_j a small parameter representing the change in one of M flow or geometrical variables which we wish to vary simultaneously.

In order to determine the first-order corrections $Q_{1j}(s)$, we require one base and M calibration solutions in which the calibration solutions are determined by varying each of the M arbitrary independent parameters q_j by some nominal amount from the base flow value while keeping the others fixed at their base values.

In this way, the first-order corrections $Q_{1j}(s)$ can be determined as

$$Q_{1j}(s) = \frac{Q_{cj}(\bar{x}_j) - Q_o(s)}{\bar{\epsilon}_j}$$
(11)

..

where Q_{cj} is the calibration solution corresponding to changing the jth parameter to a new value q_{cj} , \bar{x}_j is the strained coordinate pertaining to the Q_{cj} calibration solution, and $\bar{\varepsilon}_j = q_{cj} - q_{oj}$ represents the change in the q_j parameter from its base flow value. If we now desire to keep invariant during the perturbation process a total of N points corresponding to discontuities or high-gradient maxima, we can represent the solution by

.

$$Q(x,\varepsilon_{j}) = Q_{0}(s) + \sum_{j=1}^{M} \varepsilon_{j}Q_{1j}(s)$$
(12)

where $Q_{1_{j}}(s)$ is given above and

$$\bar{x}_{j} = s + \sum_{i=1}^{N} \bar{\epsilon}_{j} \delta x_{i} x_{1_{i}}(s)$$
(13)

$$x = s + \sum_{i=1}^{N} \varepsilon_{j} \delta x_{i} x_{1;}(s)$$
(14)

$$\bar{\varepsilon}_{j} = q_{c_{j}} - q_{o_{j}}$$
(15)

$$\varepsilon_{j} = q_{j} - q_{0_{j}}$$
(16)

$$\bar{\varepsilon}_{j} \delta x_{i} = (x_{i}^{c} - x_{i}^{o})_{j}$$
(17)

$$\varepsilon_{j} \delta x_{i} = \frac{\varepsilon_{j}}{\varepsilon_{j}} (x_{i}^{c} - x_{i}^{o})_{j}$$
(18)

Here $\bar{\epsilon}_j \delta x_i$ given in Equation (17) represents the displacement of the ith invariant point in the jth calibration solution from its base flow location due to the selected change $\bar{\epsilon}_j$ in the q_j

parameter given by Equation (15), $\varepsilon_j \delta x_i$ given in Equation (18) represents the predicted displacement of the ith invariant point from its base flow location due to the desired change ε_j in the q_j parameter given by Equation (16), and $x_{1_i}(s)$ is a unit-order straining function having the property that

$$x_{1_{i}}(x_{k}^{0}) = \begin{cases} 1 & k = i \\ 0 & k \neq i \end{cases}$$
(19)

which assures alignment of the ith invariant point between the base and calibration solutions.

In addition to the single condition Equation (19) on the straining function, it may be convenient or necessary to impose additional conditions at other locations along the contour. For example, it is usually necessary to hold invariant the end points along the contour, as well as to require that the straining vanish in a particular fashion in those locations. All of these conditions, however, do not serve to determine the straining uniquely. The nonuniqueness of the straining, nevertheless, can often be turned to advantage, either by selecting particularly simple classes of straining functions or by requiring the straining to satisfy further constraints convenient for a particular application.

The fact of nonuniqueness of straining function, however, raises a further question of the dependence of the final perturbation-predicted result on choice of straining function. An initial example of the effect of employing two different straining functions for a strongly supercritical flow was provided in reference 3, and in reference 1 a detailed examination was made of the dependence of perturbation results on several classes of different straining functions. Although it can be demonstrated (ref. 8) that the final perturbationpredicted result obtained when employing strained coordinates is formally independent of the particular straining function used--provided that the straining function moves the invariant points to the proper locations -- the results of reference 1 demonstrate that, under certain conditions, particular classes of straining functions can induce spurious perturbation results. The underlying reason is that, while the perturbation-predicted results at and in the vicinity of invariant points are independent of the choice of straining function (provided invariant point locations are preserved), some classes of straining functions have the undesirable property of producing unwanted straining in certain regions removed from the invariant points. The correction for this deficiency, which was found in reference 1 and has proven effective in all case studies undertaken, is to employ linear piecewise-continuous straining functions. This

both preserves the accuracy of the perturbation results in the vicinity of the invariant points, and introduces no excessive straining in regions removed from those locations.

For linear piecewise-continuous straining functions, the functional forms of the straining can be compactly written.

$$\bar{x}_{j} = s + \left\{ \frac{x_{i+1}^{o} - s}{x_{i+1}^{o} - x_{i}^{o}} \cdot (x_{i}^{c} - x_{i}^{o})_{j} + \frac{s - x_{i}^{o}}{x_{i+1}^{o} - x_{i}^{o}} \cdot (x_{i+1}^{c} - x_{i+1}^{o})_{j} \right\} H(x_{i+1}^{o} - s) \cdot H(s - x_{i}^{o})$$

$$(20)$$

where H denotes the Heaviside step function. As discussed above, it is usually necessary to hold invariant both of the end points along the contour in addition to the points corresponding to discontinuities or high-gradient maxima. Consequently, for the results reported here, the array of invariant points in the base and calibration solutions have been taken as

$$x_{i}^{o} = \{0, x_{1}^{o}, x_{2}^{o}, \dots, x_{n}^{o}, 1\}$$

$$x_{i_{j}}^{c} = \{0, x_{1_{j}}^{c}, x_{2_{j}}^{c}, \dots, x_{n_{j}}^{c}, 1\}$$
(21)

where the contour length has been normalized to unity and where n is the number of invariant points along the blade contour exclusive of the end points.

3. RESULTS

Because the ultimate utility of the perturbation methods being developed under this investigation is in engineering design or parametric analysis, the two primary objectives of the current study were to develop the simultaneous multipleparameter capability of the method and then to examine the accuracy and range of validity of the multiple-parameter method in situations characteristic of that environment. Toward that end, we have tested the method in a series of problems involving simultaneous multiple-parameter variations of both flow and geometric quantities. As with the testing of the single-parameter method (ref. 1), emphasis was placed on transonic flows past both isolated blades and compressor cascades that are strongly supercritical and exhibit large surface shock movement over the parametric range studied. Additionally, we have coupled the multiple-parameter method with an optimization procedure to test the method's ability to perform in an actual design environment. These preliminary case studies of the combined perturbation/optimization method actually resulted in the most demanding tests of the perturbation method under-taken to date for observing its ability to work accurately under extreme interpolation/extrapolation conditions.

3.1 Simultaneous Multiple-Parameter Perturbations

In Figure 1, we present a comparison of results for the simultaneous perturbation of thickness ratio and oncoming Mach number of highly-supercritical flows past a series of isolated NACA four-digit (OOXX) blade profiles. The base flow chosen for these results is at $M_{\infty} = 0.820$ and $\tau = 0.120$, and is indicated on both plots shown in Figure 1 as the dashed line. Those results were obtained by solving the full-potential equation based on the finite-difference relaxation approximatefactorization method of reference 9. The body-fitted mesh employed had 75 points on both upper and lower surfaces. The calibration solution selected to account for Mach number changes is at M_{m} = 0.800 and τ = 0.120, and is displayed as the dotted line in the plot on the left; while the calibration flow selected to account for thickness-ratio changes is at $M_{m} = 0.820$ and τ = 0.110 and is displayed as the dotted line in the plot on the right. The open circles represent the perturbation-predicted solution for M_{∞} = 0.790 and τ = 0.115, which is a parameter extrapolation in M_{ω} and interpolation in τ . Those results are meant to be compared with the 'exact' nonlinear results which is indicated as the solid line. We note that the indicated results for base, perturbation, and exact nonlinear solution in both plots in Figure 1 are the same; the reason

for presenting two plots is to indicate clearly the separation between the base, the two calibration solutions, and the perturbation-predicted result. The straining employed is linear piecewise-continuous [see Eq. (20)], with leading and trailing edge and shock point held invariant. The shock point locations for the base and calibration flows for this example, as well as for all the multiple-parameter perturbation results presented here, were determined as the point where the pressure coefficient passed through critical with comprehensive gradient.

With regard to the results, we note that the comparison between the perturbation-predicted and the exact nonlinear result is, as in the case of single-parameter perturbation of these flows (see Figs. 4 to 6, ref. 1), extremely good, in particular in the region of the shock. The multiple-parameter perturbation result is able to accurately predict both shock location and the critical post-shock expansion behavior. Results for the region from the stagnation point to points just ahead of the shock are essentially identical to the exact nonlinear solution, as are results aft of the post-shock region. We note that the particular parameter values of $(M_{\infty}, \tau) = (0.790, 0.115)$ selected for the prediction solution represent reasonably substantial extrapolations and interpolations from the base and calibration values. Nevertheless, the perturbation method is able to treat simultaneous parameter variations over this range accurately.

Figure 2 presents analogous three-parameter perturbation results when angle-of-attack variations are included for the flows shown in Figure 1. Here, the base flow selected is at $\alpha = 0.2^{\circ}$, $M_{\infty} = 0.800$, $\tau = 0.110$, and is indicated in all of the three plots provided as the dashed line. The calibration flow to account for angle-of-attack change is at $\alpha = 0.25^{\circ}$ at the same (M_{∞}, τ) as the base flow, and is displayed as the dotted curve in the plot on the upper left. The corresponding calibration flow to account for Mach number change is at M_{∞} = 0.810 at the same (τ , α) as the base flow, and is displayed in the upper right plot; while the calibration flow for thick-ness-ratio change is at $\tau = 0.115$ at the same (M_{∞}, α) as the base flow, and shown in the lower plot. The predicted result is for parameter values of $\alpha = 0.3^{\circ}$, $M_{\infty} = 0.820$, $\tau = 0.100$ and again represents substantial extrapolations of all three parameters, as can be observed in Figure 2 from the relative differences between the base and calibration flows. The reason for selecting such small angles-of-attack for these flows was to preserve the shock wave on the lower surface, and thereby create a set of multiple-shock flows which were highly sensitive to parameter changes. The comparisons between perturbation and exact nonlinear results for this case is again extremely good, with the prediction of both the locations of the shocks on the upper and lower surface given very well, as well as the pressure distributions in the regions immediately ahead and behind those shocks. For these results, linear

piecewise-continuous straining was employed with the invariant points being the lower surface trailing edge, lower surface shock, stagnation point, upper surface shock, and upper surface trailing edge.

The final multiple-parameter perturbation result is provided in Figure 3 for a four-parameter perturbation of stronglysupercritical full-potential flows past a cascade of blades having NACA four-digit profiles. The base flow is for an oncoming Mach number of $M_{\infty} = 0.780$, thickness-ratio $\tau = 0.110$, gap-to-chord ratio t = 3.2, and oncoming inflow angle $\alpha = 0.3^{\circ}$, and is indicated on the four plots as the dashed line. Those results were obtained using the full-potential equation finite-area relaxation procedure of reference 10. The four calibration solutions to account for changes in the four varied parameters are provided in the four plots shown where the individual values of the calibration parameter varied are also indicated. Thus, the calibration solution for Mach number change is at $M_{\infty} = 0.790$ with (τ, t, α) at the base flow values, and is indicated as the dotted result in the plot at the upper Corresponding results for the other three parameters left. are shown in the remaining plots. The comparison of the predicted and exact nonlinear results are for parameter values of $M_{\infty} = 0.785$, $\tau = 0.115$, t = 3.1, $\alpha = 0.4^{\circ}$. This particular set of flows was again selected because of the presence of multiple-shocks and high sensitivity to parameter change. As with the previous results for two- and three simultaneous parameter variations, we note that the perturbation predictions are once again remarkably accurate. The perturbation method is able both to track the location of the upper and lower surface shocks, as well as to predict the pressure characteristics in the pre-shock and post-shock regions.

> 3.2 Preliminary Application of Combined Multiple-Parameter Perturbation Method With Optimization Procedures For Blade Design Applications

The ultimate utility of the perturbation methods developed and evaluated here lies in their application to problems involving the high-frequency use of computational codes to determine a large number of related nonlinear flow solutions. In order to test the capability of the approximation method to work effectively in such practical applications, we have combined the method with the CONMIN optimization procedure (ref. 11) and have then made several preliminary case studies of the combination on isolated blade and compressor blade design/optimization problems. The objectives of these initial applications were to examine the feasibility and potential computational savings of the combined approximation/optimization procedure for some typical design problems, and to determine the accuracy of the perturbation-predicted optimization results. The particular isolated blade design optimization problems selected for study involved the alteration of a baseline profile shape by adding to the baseline profile a set of shape functions according to the relation

$$Z(x) = Z_{o}(x) + \sum_{i=1}^{M} (DV_{i} - 1) F_{i}(x)$$
(22)

where Z_0 are the ordinates of the baseline profiles, F_i are the shape functions, and the coefficients DV_1 are the design variables whose values are determined by the optimization program as a result of a search through design-variable solution space to achieve a desired design improvement. Here for convenience we have chosen the coefficients of F_i to be (DV_i - 1) rather than DV_i. The general class of geometric shape functions employed here, and which have been found to be successful in previous applications involving optimization of supercritical airfoil sections (ref. 12), consists of exponential decay functions and sine functions. These are of the general form $(1 - x) \cdot x^{p/e^{qx}}$ and sin $(\pi x^{r})^{n}$, where the exponents p, q, r, and n are selected to provide a desired maximum at a particular chordwise location. The exponential functions are generally employed to provide adjustments near the leading edge, while the sine functions are used to provide maximum ordinate changes at particular chordwise stations. Illustrations of the chordwise variation of typical members of these shape functions are provided in Figure 4, and it can be seen that these functions smoothly concentrate ordinate thickness at selected locations.

For the initial application of the combined perturbation/ optimization method, we have examined subcritical flow at $M_{\infty} = 0.10$ and $\alpha = 5^{\circ}$ past a modified NACA 64A007 profile involving the nine profile shape functions

$$F_{i} = 6(1 - x)x^{p_{i}}/e^{q_{i}x} \quad i = 1,2$$

$$F_{i} = \sin(\pi x^{r_{i}})^{2} \quad i = 3,9$$
(23)

where $(p_1,q_1) = (0.5,15)$, $(p_2,q_2) = (0.25,10)$, and $r_i = (0.37, 0.50, 0.66, 0.87, 1.16, 1.61, 2.41)$. The exponential functions achieve their maxima within 5% of chord, while those for the sine functions are at (15%, 25%, 35%, 45%, 55%, 65%, 75%) of chord.

A strategy which has proved convenient for performing optimization studies involving aerodynamic performance parameters (ref. 12) has been to recontour the profile shape so as to tailor the surface pressure distribution to conform to

a desired distribution. This type of objective provides local control over the basic aerodynamic surface flow property of importance, and provides a means of attempting to achieve aft pressure gradients sufficiently weak to avoid separation. An important corollary advantage of using such an objective is that viscous separation can be minimized. This allows use of an inviscid aerodynamic flow solver in the optimization process rather than a much more computationally-expensive viscous solver, and assures that the optimization result thus obtained at the inviscid level is representative of the actual flow.

Consequently, for this initial case study the overall performance objective was, through modification of the surface contour, to tailor the pressure distribution along a portion of the upper surface so as to conform to a desired distribution. In particular, it was desired to minimize both the peaky behavior near the leading edge and the compressive gradient on the aft portion of the upper surface which existed at $M_{\infty} = 0.10$ and $\alpha = 5^{\circ}$ on the NACA 64A007 baseline profile. This is illustrated schematically in Figure 5. The objective function was taken as the minimization of the mean squared error between the predicted and desired surface pressure distribution, i.e.,

$$OBJ = \sum_{k=1}^{K} \left[C_{P_{\text{predicted}}}(x_{k}) - C_{P_{\text{desired}}}(x_{k}) \right]^{2}$$
(24)

where K represents the number of chordwise locations x_k where desired and calculated surface pressures are compared.

Recall that in order to initiate the perturbation procedure in situations involving the simultaneous variation of M individual parameters from a baseline point, a matrix of M calibration solutions are required, each representing the solution change for a separate variation of each of the M parameters from its baseline value. Because optimum, or sometimes even typical, stepsizes for a particular optimization problem would not generally be known a priori, one of the primary goals of these initial studies was the demonstration that the perturbation method was capable of working effectively even under severe conditions imposed by a poorly-selected initial calibration solution matrix. This was accomplished by examining the sensitivity and accuracy of the perturbation predicted optimization results as a function of the initial design variable stepsizes of the calibration solution matrix.

The overall strategy, then, consisted of: (1) employing the perturbation method, based on some initial matrix of nonlinear aerodynamic solutions determined by an independent variation of each design variable, to provide all of the subsequent nonlinear aerodynamic solutions required by the optimization method for

searches through design space, and (2) comparing the final perturbation-predicted optimization results for final design variable and objective function values with those determined by using the full nonlinear aerodynamic solver throughout. Figure 6 shows the results of such a sensitivity study, and indicates that even under extreme test case conditions caused by deliberately-selected poor choices of design variable stepsizes, the perturbation method performs exceptionally well, never breaking down or yielding spurious results. Indicated on the plots are the final optimized design variable values after five search cycles as predicted by the perturbation method (ullet) for four different choices of the initial stepsize for the design variables, i.e., $\delta DV_i = (0.05, 0.02, 0.01, 0.001)$. Also shown are the corresponding final design variable values predicted when employing the nonlinear aerodynamic solver (ref. 13) throughout (O). As can be seen, for the extreme interpolation case $\delta DV_i = 0.05$, except for design variables 3 and 5, the perturbation prediction compares very favorably with the full nonlinear result. For $\delta DV_i = 0.02$, a more reasonable stepsize choice, the comparison of the perturbation result is quite good for all the design variables, while for $\delta DV_i = 0.01$, the perturbation prediction is essentially identical to the full nonlinear aerodynamic result. As a final illustration of the behavior of the perturbation method under extreme extrapolation conditions, the lower right-hand plot displays the perturbation predictions for $\delta DV_i = 0.001$. We note that for several of the design variables, the extrapolation range is of the order of 25 times the initial stepsize; yet, the perturbation predictions are quite reasonable and not spurious, which is remarkable and indicative of the robustness of the procedure.

Finally, we point out that all four of the perturbationpredicted results illustrated in Figure 6 are satisfactory in terms of the final objective function value obtained. These values are illustrated on the right of each of the plots. Provided for comparison are the initial (O Initial) and final (O Final) values obtained when using the nonlinear aerodynamic solver throughout. The value of the objective function evaluated at the final design variable point when using the perturbation method is indicated by the solid circle (ullet). However, the objective function value of real interest is the result indicated by the solid square (\blacksquare) which represents that obtained by running the nonlinear aerodynamic solver at the perturbationpredicted final design point, and then using that solution to evaluate the objective function. This provides the overall ultimate check of the perturbation-predicted result. As can be seen from Figure 6, those results lie essentially on top of the final objective function result (O Final) obtained when using the nonlinear aerodynamic solver throughout.

The computational savings attained for this application are shown in Figure 7. Here, a comparison of the computational work versus reduction in objective function per optimization

cycle is provided when using the perturbation procedure (\bullet) and when not using it but employing the nonlinear aerodynamic code (O) for each flow solution required by the optimizer. As can be seen, the computational time required for both the perturbation method and when using the full nonlinear aerodynamic solver throughout are the same for the first cycle, since both require a matrix of M + 1 (M=9 for this example) nonlinear aerodynamic solutions. After that, the perturbationpredicted results required essentially no computational time for cycles 2 through 5, and then a slight amount for the one additional call to the aerodynamic solver for the final check The reduction in the ratio of final to calculation (.). initial objective function is $OBJ/(OBJ)_i = 0.22$ and required approximately 20 CPU seconds on the CDC 7600. In comparison, the result when not employing the perturbation method required approximately 80 CPU seconds for the same reduction in objective function, indicating the perturbation method is able to save 75% of the computational work in this example.

Similar testing of the performance of the perturbation method for supercritical situations has also been carried out and has demonstrated a corresponding capability and potential computational savings. Because of the greater sensitivity of these shocked flows, two separate case studies were carried out in depth. Both of these involved recontouring of the upper surface of a NACA 0015 profile operating at the supercritical conditions of $M_{\infty} = 0.55$ and $\alpha = 6.7^{\circ}$, and employed four design variables related to the shape functions.

$$F_i = \sin(\pi x^{q_i})^3$$
 $i = 1,4$ (25)

with $q_i = (0.301, 0.431, 0.576, 0.756)$. These functions have maxima at (10%, 20%, 30%, 40%) of chord. For the first of these supercritical studies, the objective function was chosen to be the drag coefficient squared, i.e.

 $OBJ = CD^2$

For this problem, an evaluation of the accuracy of the perturbation-predicted optimization results as a function of initial calibration solution matrix was also made. The results of this study are provided in Figure 8, which displays the results of the perturbation-predicted final design variables (\bullet) after eight search cycles for three different choices of the initial stepsize for the design variables, i.e., $\delta DV_i = (0.001, 0.002, 0.004)$. Also shown are the corresponding final design variable values predicted when not using the perturbation method but employing the nonlinear aerodynamic solver (ref. 13) throughout (O).

Because drag minimization, particularly at supercritical conditions, is an extremely sensitive optimization problem, this study provides one of the most severe tests of the perturbation procedure in a design optimization environment. This is so because the accurate prediction of drag at supercritical speeds depends almost entirely on the resolution of the flow behavior at and in the vicinity of the shock waves present on the surface of the profile. Hence, what is ultimately under evaluation in this example case study is the ability of the perturbation method to predict, under extreme extrapolation conditions and with simultaneous multiple-parameter perturbations, the location and strength of all surface shock waves and the flow behavior in the pre- and post-shock regions.

The most important results to emerge from the calculations involved in this case study were the discovery of a particular deficiency of the perturbation method in this regard, and the subsequent development of the means to improve the accuracy of the perturbation predictions in shock regions and other high gradient regions under extreme extrapolation conditions. The improvement in the basic procedure developed to meet these requirements consists of employing additional invariant points in those high gradient locations. For example, it was found that by characterizing a shock which has a post-shock expansion region, as sketched below,

with five invariant points--which correspond to: (1) pre-shock minimum pressure, (2) maximum gradient point, (3) post-shock maximum pressure, (4) post-shock minimum expansion pressure location, and (5) point of inflection between points (3) and (4) --rather than just the one point corresponding to the critical pressure location, which was standardly done in the past; that significantly improved perturbation results are obtained in the shock region for extreme solution extrapolations. This five invariant point characterization of the shock has been employed in determining the results of the two supercritical case studies reported here. With regard to the drag minimization results indicated in Figure 8, we note that when selecting an initial design variable stepsize of $\delta DV_i = 0.001$, the agreement between the final perturbation-predicted design variable values and the exact nonlinear result is reasonable. The solution extrapolation indicated for design variables 2 and 3 are of the order of 5 times the initial design variable stepsize, but the perturbation method does not break down or provide spurious results for these strongly supercritical flows. We note that the optimization procedure working with the perturbation method is able to drive the perturbation-predicted drag (ullet P) to essentially zero. Although the final check of the perturbation-predicted design using the nonlinear solver (ullet A) indicates a drag coefficient of 0.005, that represents nevertheless almost a factor of 3 in drag reduction from the baseline configuration.

When a somewhat more reasonable initial design variable stepsize of δDV_i = 0.002 is used, which reduces the solution extrapolations over that for $\delta DV_i = 0.001$, we note that the perturbation results closely approach those obtained when using the nonlinear aerodynamic solver throughout. The final drag value based on the perturbation design (**B** A) is also improved, displaying over a factor of 5 in drag reduction. final perturbation result obtained for an initial stepsize The δDV_i = 0.004 and illustrated in the bottom plot displays almost exact agreement with the full nonlinear aerodynamic result. This particular choice of stepsize is the most reasonable of the three shown, since the design variable solution range to be searched by the optimizer requires moderate interpolation/ extrapolations from the calibration solution matrix. The final drag value (A) indicates over a factor of 5 drag reduction, and is very close to the final full nonlinear aerodynamic (⊙ Final) result.

The computational savings obtained for this application are indicated in Figure 9. Here a comparison of the computational work versus reduction in objective function per optimization search cycle is given for eight search cycles when using the approximation procedure (ullet) and for four cycles when using instead the full aerodynamic solver (O). We note for this example that when using the perturbation method, the optimization procedure requires approximately 40 CPU seconds for search cycles 2 through 8. This is in contrast to the essentially zero time needed for search cycles in the pressure distribution tailoring case study presented in Figure 7. The reason for the additional time in this minimization case study is that in order to evaluate the drag at the points in the design solution space required by the optimizer, additional geometry calculations are needed to determine the new surface slopes. Consequently, even though the perturbation procedure provides the means to determine the new pressure distributions at essentially no computational cost, because surface pressure integrations are required to evaluate the drag, calls to the geometry portion of the aerodynamic code are necessary to

determine the new profile shapes. These geometry calculations cause the CPU time increase indicated. Finally, another 20 CPU seconds are needed for the final aerodynamic check solution (\blacksquare), totaling 120 CPU seconds. That total represents just under a 60% computational savings of the 4 search cycle CPU time required when not employing the perturbation method.

The final supercritical case study presented in Figure 10 involved tailoring of the surface pressure distribution as done in the previous subcritical case, but this time specifically concentrating on alleviating the sharp gradient at the shock. It was specified in the following fashion. Using the pressure distribution from the optimized profile of the previous drag minimization case study, we returned to the original NACA 0015 baseline profile. Then, with that previous pressure distribution as the desired objective, by using the optimization method we attempted to reproduce the same optimized profile that resulted from the drag minimization problem. What resulted from these calculations was a demonstration that the perturbation method is capable in certain cases, of not only providing an enormous savings in computational cost but also an improved optimization result. In Figure 10, we provide the results of the sensitivity study of the perturbation method as a function of the initial design variable stepsize of the calibration solution matrix. In the plot on the left, the comparison is provided of the perturbation-predicted final design variables (\bullet) based on an initial design variable stepsize $\delta DV_i = 0.001$ together with that obtained when using the full nonlinear aerodynamic solver throughout (Δ). Also shown is the 'optimum' full aerodynamic result (\odot) obtained from the drag minimization case study which is the result that is sought to be reproduced. What the results indicate is that the prediction obtained by not using the perturbation method is inferior to that obtained when employing Also, we note the large extrapolations involved in this it. perturbation result, i.e., about 4 times or 400% of the initial stepsize for design variables 1 and 2. These results are emphasized even more in the plot on the right which shows the corresponding perturbation results when using a more reasonable initial design variable stepsize of $\delta DV_i = 0.002$ to define the calibration solution matrix. In this instance, the perturbation prediction is essentially identical to the optimum result. We note that comparisons of the objective function reduction, shown on the scales to the right of the plots, display a reduction in objective function to almost zero for the perturbation result, while only an essentially 50% reduction for the full aerodynamic result.

This reduction in objective function is emphasized in Figure 11, which displays the comparison of computational work and objective function reduction per optimization cycle for the perturbation procedure and the full nonlinear aerodynamic result for this case study. Here, we see clearly that the perturbation method is able to drive the objective function to essentially zero, while the full aerodynamic procedure becomes fixed in a local minimum and is only able to reduce the objective function to 50% of its initial value. If we had carried the full aerodynamic result to eight optimization cycles, as was done with the perturbation result, the time savings would have been over an order of magnitude.

This result demonstrates that it is possible in certain instances for the perturbation method to provide not only an enormous savings in computational cost but also an improved optimization result. The latter is undoubtedly accomplished by the selection of a reasonable initial calibration solution matrix which permits the optimization method an enhanced rather than local view of the design solution space, thereby avoiding shallow local minimas in favor of a more global minima.

The final application, which has been carried out as far as possible in this phase, was directed toward laying the foundations of a practical turbomachinery blade design/ optimization procedure coupled with the perturbation method. This preliminary version is based on TSONIC blade-to-blade solutions (ref. 14) with generalized circular-arc blade geometry routines BLADE (ref. 15) describing the blade profile, and employs the COPES/CONMIN optimization procedure (ref. 16).

The initial case study for the combined procedure involved, as a design objective, the minimization of the velocity diffusion on the blade suction surface, $q_{max,suction}$, i.e.

$$OBJ = \frac{q_{max, suction}}{q_{avg, exit}}$$
(27)

is the average exit velocity in the freestream. where q avg, exit Six design variables were employed and correspond to the following blade geometry parameters used to characterize NASA circular arc blade section profiles (ref. 15): blade outlet camber angle, transition location between fore and aft circular arc sections, maximum thickness location, inlet to outlet turning rate ratio, maximum thickness, and radius of the leading edge circle. During the optimization process, each of the design variables was constrained to remain within certain prescribed bounds in order to prevent a physically-unrealistic blade design from occurring. Furthermore, several active side constraints were additionally imposed both to insure design of a physically realistic blade and also to achieve certain desirable flow characteristics on the blade. The active side constraints employed were: (1) maintenance of nonzero local blade thickness, (2) maintenance of low velocity diffusion on the blade pressure surface, and (3) trailing edge closure. These constraints were enforced by employing bounding criteria on the following quantities according to:

$$0. < \frac{\text{thick}(x) - d_{tc}}{d_{t_c}} < 10.$$
 (28)

$$0. < \frac{q_{\text{max, press}}}{q_{\text{min, press}}} < 1.3$$
(29)

$$-1.0 < \frac{q_{\text{ITE-2,suction}} - q_{\text{ITE-2,press}}}{25.} < 1.0$$
 (30)

Here, thick(x) is the local blade thickness, d_{tc} is the diameter of the trailing edge circle, $q_{max,press}$ is the maximum blade pressure surface velocity over the front half of the blade, $q_{min,press}$ is the minimum blade pressure surface velocity over the last two-thirds of the blade, and (q_{ITE-2} , suction, $q_{ITE-2,press}$) are the third last surface velocities on the grid near the trailing edge on the suction and pressure surface, respectively.

We have successfully completed a preliminary series of calculations of the new combined PERTURB/TSONIC/BLADE/COPES/ CONMIN procedure in which the accuracy and sensitivity of the perturbation method was tested as a function of choice of the initial calibration solution matrix. The initial or base values of the design variables for the baseline blade profile, and the upper and lower bounds of the design variables that were specified for this test problem were:

Design Variable <u>Number</u>	Description	Lower Bound	Upper Bound	Initial Value
1	Outlet blade camber angle-KOCR	-15.0°	0.0°	-10.0°
2	Transition loc./chord-T	0.20	0.60	0.25
3	Max. thick. loc./chord-ZM	0.20	0.55	0.45
4	Inlet/outlet turning/chord-P	0.50	4.00	1.50
5	Max, thick./chord-TMX	0.03	0.10	0.05
6	L.E. rad./chord-THLE	0.003	0.012	0.005

The results of these calculations are summarized in Table 1. There we have provided comparisons of the final design variables and objective function predicted when employing full nonlinear TSONIC solutions throughout the optimization process with

****** * * *

corresponding results when using the perturbation method. For the perturbation results, six different choices of the calibration solution matrix were made and are noted in the table. All the results represent converged solutions, with each calculation employing 10 optimization search cycles or less if no change in objective function should occur in three successive iterations.

Two separate results are presented for the case when the perturbation method is not employed and TSONIC solutions are used throughout the optimization search process. These were obtained on the Ames Research Center CDC-7600 and Lewis Research Center IBM 3033 employing the same TSONIC/BLADE/COPES/CONMIN code. The differences in the two final design results provides an indication of the sensitivity of this particular optimization problem with regard to choice of objective function, since the difference between these two results is due solely to the number of significant figures maintained in the respective calculations, i.e., 8 for the IBM 3033 and 14 for the CDC 7600. As is evident, there clearly is a sensitivity to search direction and final design result in this problem. We note that of the six design variables, the two which agree between the two results (ZM,TMX) have reached a limit boundary. The others have all trended in the same direction from the baseline value, but have reached somewhat different values at the final design point. We note that the objective functions have reached essentially the same level, indicating, as is often the case in such optimization problems, the existence of multiple local minimums.

The analogous results obtained employing the perturbation method with various choices of calibration solution matrix are exhibited as cases 1 to 6. We note that, with the exception of the design variable ZM which consistently moves to its upper bound regardless of the choice of calibration solution matrix, the final design variable predictions via the perturbation method basically exhibit a behavior quite similar to that obtained from the full nonlinear result when TSONIC solutions are used throughout. That is, the optimizer drives the design variables in generally the same direction from the baseline values as the full nonlinear result, but to somewhat different The exception to this is noted in cases 4 and 5, values. where the calibration solution matrices were selected such that TSONIC solution extrapolations rather than interpolations were involved for all or most of the design variables during the search procedure. In those two cases, we note further that the final objective function values obtained are somewhat inferior to those obtained in Cases 1, 2, 3, and 6, where solution interpolations were primarily involved. For those four cases, the final objective function result is almost identical to that obtained by the full nonlinear result.

The computational time needed to obtain the perturbation results in Cases 1 to 6 were 76-78 secs. of CDC 7600 CPU time per case. The benchmark full nonlinear CDC 7600 result shown in Table 1 required 644 secs. Thus, the perturbation method provides a savings of (644-78)/644 = 88% of the computational time for this example.

The primary conclusions to be drawn for this preliminary study are that the perturbation method can work effectively even for sensitively-defined optimization problems such as this and provide both meaningful final design results and large computational savings over not using the method. The choice of objective function such as was made for this case study, i.e., a point quantity located in a high-gradient region, requires that a reasonably good choice be made of the calibration solution matrix. This is so since if large solution extrapolations are required by the optimizer for minimization searches through design space, the final design result will most likely be less improved than would otherwise result if only modest solution interpolations/extrapolations were involved.

- .. -

4. CONCLUSIONS AND RECOMMENDATIONS

An investigation was conducted to continue the development of perturbation procedures and associated computational codes for rapidly determining approximations to nonlinear flow The ultimate purpose is to establish a method for solutions. minimizing computational requirements associated with parametric design studies of transonic flows in turbomachines. The procedures being developed employ unit perturbations, determined from two or more nonlinear 'base' solutions which differ from one another by a nominal change in some geometry or flow parameter, to predict a family of related nonlinear solutions which can be either continuous or discontinuous. The results reported here relate to the extension of the previouslydeveloped successful method for single-parameter perturbations: (1) to simultaneous multiple-parameter perturbations, and (2) to the preliminary application of the multiple-parameter procedure in combination with an optimization procedure and applied to blade design problems.

Calculations based on full-potential nonlinear solutions have been carried out to establish the accuracy and range of validity of the multiple-parameter capability. These involved flows past both isolated blades and compressor cascades involving simultaneous changes in both flow and geometric parameters, with attention focused on strongly supercritical situations involving large surface shock movements over the parameter ranges studied. Preliminary applications of the multipleparameter perturbation method coupled with an optimization procedure were made for blade design problems in order to examine the capability of the method to produce accurate results in a typical design environment, and also to evaluate its potential for computational savings. Both subcritical and supercritical case studies were carried out involving multipledesign variables. Sensitivity studies were also performed to examine the accuracy dependence of the perturbation method on the choice of the initial calibration solution matrix.

Comparisons of the multiple-parameter perturbation results with the corresponding 'exact' nonlinear solutions display remarkable accuracy and indicate a large range of validity, in direct correspondence with previous results for single-parameter perturbations. The preliminary case studies of the multipleparameter perturbation method combined with optimization procedures have clearly demonstrated the capability of the method to work accurately in a design environment where large solution extrapolations are often necessary, and have also established the methods' potential for reducing the computational work required in such applications by nearly an order of magnitude. The sensitivity studies indicate that for certain subcritical applications, the perturbation method is able to work quite accurately and effectively in spite of poor choices of the initial calibration solution matrix which require large extrapolations or interpolations. For supercritical flows, the

initial calibration matrix choice is more important, but when employing multiple invariant point clustering about highgradient locations (shocks, stagnation points, etc.), the perturbation method predictions can nevertheless maintain high accuracy in certain supercritical situations for extrapolations as large as 4 to 5 times the parameter separation between base and calibration solutions.

Based on these results, we conclude that perturbation methods formulated on these ideas are both accurate and clearly workable in design environments, and can provide the means for substantially reducing the computational work required in such applications. We suggest the development of the combined multiple-parameter perturbation procedure and optimization methods into a robust design tool for subcritical and supercritical turbomachinery blade design.

APPENDIX A

USER'S MANUAL FOR COMPUTER PROGRAM PERTURB

A.1 INTRODUCTION

The purpose of this appendix is to describe the operation of the computer code which was developed in conjunction with the theoretical work presented in this report, and to provide sufficient detail to permit convenient use and change of the program. The program computes and plots an arbitrary flow variable on a contour surface by employing the strained-coordinate perturbation method discussed in the main text.

A description of the general operating procedure of the program is given, together with complete description of both input and output. The program is written in FORTRAN IV and has been developed on the Ames Research Center CDC 7600 computer facility. Consequently, the plot package included in this version refers to system routines at that facility. In general, the plotting software must be supplied by the user according to the requirements of his operating system. This can be accomplished directly by replacing or modifying the subroutine DRVPLT. Typical program run times for flows involving approximately 150 surface mesh locations are 1 to 3 CPU seconds. The storage requirements are 105K₈ for small core memory and no large core memory.

A.2 PROGRAM DESCRIPTION

The program calculates both continuous and discontinuous nonlinear perturbaton solutions which represent a multipleparameter change in either geometry or flow conditions by employing a strained-coordinate procedure. The method utilizes unit perturbations, determined for each parameter from a previously-calculated common base solution and a calibration solution displaced from it by some reasonable change in the relevant parameter, to predict new nonlinear solutions over a range of parameter variation.

This current version of the procedure is configured to predict and plot an arbitrary flow variable (e.g., pressure coefficient) on the surface of a blade or airfoil, and can account for the motion of:

1. one or more critical points (shock points),

- 2. a stagnation point,
- 3. a maximum-suction-pressure point,

or simultaneously for any combination of these.

The program is also configured to compare the perturbationpredicted solutions with the corresponding 'exact' solutions obtained by employing the same 'expensive' computational procedure used to determine the base and calibration solutions.

The coordinate straining employed is piecewise linear with the end points and up to six interior points held invariant. At the option of the user, these additional interior points may be arbitrarily preselected, or chosen from among the minimum, maximum, and critical points automatically located by the program itself.

Critical or shock points are located on the basis of a usersupplied statement function defining the critical value of the dependent variable as a function of some single flow variable. The program default is with dependent variable y defined as pressure coefficient, with the independent variable being Mach number. In this case, the critical value is defined as

$$Y_{\text{crit}} = C_p^{\star} = \frac{2}{\gamma M_{\infty}^2} \left(\frac{2 + (\gamma - 1)M_{\infty}^2}{\gamma + 1} \right)^{\frac{\gamma}{\gamma - 1}} - 1 \quad (A-1)$$

where γ is the ratio of specific heats. If instead of surface pressure coefficient, the surface velocity distribution were used, then the value of γ_{crit} would be given by

$$y_{\text{crit}} = \frac{V^{\star}}{V_{\infty}} = \left(\frac{\gamma + 1}{2 + (\gamma - 1)M_{\infty}^{2}}\right)^{\frac{1}{\gamma - 1}}$$
(A-2)

Data for base, calibration, and comparison solutions (if available) are input as an array x(I) of coordinates a corresponding array y(I) giving the dependent variable at each coordinate location, where 1 < I < N and N < 200.

The leading edge is at x = 0; the data are read in beginning on the lower surface at the point farthest from the leading edge and proceeding clockwise around the surface as shown in the sketch. Data for the different solutions need not correspond to identical locations on the surface, except for the initial and final points, i.e., x(1) and x(N) must be the same for all cases. The program normalizes the x coordinates (0 < x < 1) such that x = 0 corresponds to I = 1 and x = 1 to I = \overline{N} .

The base and calibration solutions are searched for minimum, maximum, and critical points, e.g.,

Note that the sign of dy/dx in <u>physical</u> coordinates is used in determining the critical points. For example, both critical points indicated on the above figure correspond to dy/dx < 0 in physical coordinates, since at point #1 the physical coordinate increases in the direction from right to left, whereas at point #2 it increases from left to right.

The points to be held invariant in straining are either selected from among those (1) located by the program or (2) individually specified by the user, after which the unit coordinate straining and unit perturbation are computed.

Data for the test cases is then read in and nonlinear perturbation solutions constructed from the unit perturbation. A 3. PROGRAM FLOW CHART

т.

1 1011

A.4 DICTIONARY OF INPUT VARIABLES

- A Scaling parameter in straining procedure. A = -x(l), where x(l) is location of first data point on lower surface (see PROGRAM DESCRIPTION).
- B Scaling parameter in straining procedure. B = x(N), where x(n) is location of last data point on upper surface (see PROGRAM DESCRIPTION).
- LCHEK Specifies whether or not perturbation solution is to be checked against an exact comparison solution. A printer plot is made in either case.

LCHEK = 0 ... no comparison LCHEK = 1 ... comparison

LECHO Controls whether or not input deck is printed.

LECHO = 0 ... no print LECHO = 1 ... print

- LOC0(I) Array of length 6 of which NSELCT elements are read in. Specifies subscripts of those user-specified base flow points which are to be held invariant; operational only when LSPEC = 1.
- LOC1(I) Array of length 6 of which NSELCT elements are read in. Specifies subscripts of those user-specified points in the Kth calibration solution which are to be held invariant; operational only when LSPEC = 1.
- LPLOT Specifies whether or not an additional plot by a peripheral device is to be made. Software must be supplied by user in subroutine DRVPLT.

LPLOT = 0 ... No peripheral plot LPLOT = 1 ... Peripheral plot

LSELCT(I) Array of length 6 of which NSELCT elements are read in; operational only when LSPEC = 0, and specifies nature of points to be held invariant according to the code:

> 1 ... minimum point held invariant 2 ... maximum point held invariant 3 ... lst critical point held invariant 4 ... 2nd critical point held invariant 5 ... 3rd critical point held invariant 6 ... 4th critical point held invariant

Note that critical point ordering is determined from order of occurence starting at the lower surface at the point furthest from the leading edge and proceeding clock-wise around the surface (see PROGRAM DESCRIPTION).

	Note that the code numbers can be assigned in any order, e.g.,
	LSELCT(1) = 1LSELCT(1) = 4LSELCT(2) = 3andLSELCT(2) = 1LSELCT(3) = 4LSELCT(3) = 3
	are equivalent, both corresponding to NSELCT = 3, with the minimum, and first and second critical points held invariant.
LSPEC	Controls how invariant points in straining are specified.
	LSPEC = 0 invariant points selected from among those located by the program using the array LSELCT(1)
	LSPEC = l invariant points preselected by user, using the arrays LOCO(I), LOCL(I)
LUNIT	Controls whether or not unit coordinate strainings and unit perturbation(s) are printed.
	LUNIT = 0 no output LUNIT = 1 output
M0,M1,M2	Oncoming Mach numbers in base, calibration and computed perturbation solutions.
N	Number of locations for which data are input for base, calibration, and comparison solutions.
NCASE	Number of cases for which perturbation solutions are to be computed.
NPARAM	Number of parameters perturbed.
NSELCT	Number of points (in addition to end points) to be held invariant in straining; note: $1 \leq \text{NSELCT} \leq 6$.
PARNAM(K)	Array of 8-character strings which identify the parameters varied. NPARAM elements of the array are read in.
Q0(K)	Array of length 8 giving values of perturbation parameters in base solution. NPARAM elements of the array are read in.
Ql	Value of Kth perturbation parameter in Kth calibration solution.
Q2 (K)	Array of length 8 giving values of the perturbation parameters in the solution to be computed. NPARAM elements of the array are read in.

- TITLE Character string of length 80; identifies job and is printed as headline on first page of output. First nine characters are printed in upper-rightcorner of banner page, and in upper-left corner of summary page.
- VNAM Character string of length 2 which symbolizes dependent variable, e.g., "CP" for pressure coefficient.
- XBASE(I), XCALB(I), XCHEK(I)...

Arrays of surface coordinates in base, calibration, and comparison solutions.

YBASE(I), YCALB(I), YCHEK(I)...

Arrays of dependent variables in base, calibration, and comparison solutions.

A.5 PREPARATION OF INPUT DATA

A.5.1 Description of Input

- Item 1 One card, identifies job-printed as headline on first page of output. First nine characters are printed in upper-right corner of banner page, and in upper-left corner of summary page.
- Item 2 One card, containing the parameter, LECHO
- Item 3 One card, containing the parameters N, NCASE, NPARAM, NSELCT, LSPEC, LUNIT, LCHEK, LPLOT.
- Item 5 One card, containing the character string VNAM.
- Item 6 One card, containing the character strings, PARNAM(K), K = 1, NPARAM
- Item 7 One card, containing the scaling parameters A and B.
- Item 8 One card, containing the parameter MO
- Item 9 One card, containing the parameter array QO(K), K = 1, NPARAM

- Item 11 One set of J cards, J as above, containing data for the dependent variable in the base solution, YBASE(I), I = 1, N
- Item 12 One card, containing the parameter array LOCO(I), I = 1, NSELCT. This item omitted if LSPEC = 0
- Item 13 One card, containing the parameters M1, Q1
- Item 15 One set of J cards, J as above, containing data for the dependent variable in the Kth calibration solution, YCALB(I), I + 1, N
- Item 16 One card, containing the parameter array LOC(I), I = 1, NSELCT. This item omitted if LSPEC = 0
- Item 17 One card, containing the parameter MC
- Item 18 One card, containing the parameter array Q2(k), K = 1
 NPARAM
- Item 19 One set of J cards, J as above, containing data for the coordinates in the comparison solution, XCHEK(I), I = 1, N. This item is required only when LCHEK = 1.
- Item 20 One set of J cards, J as above, containing data for the dependent variables in the comparison solution, YCHEK(I), I = 1, N. This item is required only when LCHEK = 1.
- NOTE: One set of items 13 through 16 is required for each of the NPARAM calibration solutions.

One set of items 17 through 20 is required for each of the NCASE solutions to be computed.

A.5.2 Format of Input Data

Item no. 1:	1 card (8A	10)						
Variable				Title				_
Card column	10	20	30	40	50	60	70	80
Format Type				A				

Item mo. 2:	<u>1 card (15</u>)
Variable	LECHO	
Card column	5	
Format type	I	

Item no. 3: <u>1 card (1615)</u>

Trem no. D.	T Cara (10	13/							
Variable	N	NCASE	NPARAM	NSELCT	LSPEC	LUNIT	LCHEK	LPLOT	7
Card Column	5	10	15	20	25	30	35	40	7
Format Type	I		I	I	I	Т	I	I	\Box

Item no. 4:	(LSPEC=0)	: 1 card	(1615)		LSEL	T.(NSELCT)		
Variable	LSELCT(1)	LSELCT (2	LSELCT (3					
Card column	5	10	15	20	25	30	35	7
Format Typr	I	I	I	I	I	I	I	R

Item no. 5:	1 card (2	Al)
Variable	VNAM	$ \neg $
Card column	2	
Format type	А	

Item no.6	1 card (10.	A8)			PARNAM (NPARM)				
Variable	PARNAM(1)	PARNAM(2	PARNAM(3		*			D	
Card column	8	16	24	32	40	48	56		
Format type	Α	A	A	A	A	А	А	Δ	

37

Item no. 7. 1 card (8F10.6)

Variable	A	В	7
Card column	10	20	\square
Format type	F	F	

Item no. 8. 1 card (8F10.6) Varible M0 Card column Format type F

Item no. 9.	l card (8F10.6)	QO (NPARAM)						
Variable	Q0(1)	Q0(2)	Q0(3)					<u> </u>	
Card column	10	20	30	40	50	60	70	3	
Format type	F	F	F	F	F	F	F		

Item no. 10. J cards, J=1+INT(N/8), 8 values per card (8F10.6)

Variable	XBASE(1)	XBASE(2)	XBASE (3)					
Card column	10	20	30	40		60	70	
Format type	F	F	F	F	F	F	F	F

Item no.11. J cards, J as above, 8 values per card (8F10.6)

						· · · · · · · · · · · · · · · · · · ·		
Variable	YBASE(1)	YBASE(2)	Yba se (3)					
Card column	10	20	30	40	50	60	70	80
Format type	F	F	F	F	F	F	F	F

Item no. 12.	(LSPEC=1): 1 card	(1615)			(NSELCT)		
Variable	LOCO(1)	LOC 0(2)	LOC 0(3)		*			
Card column	5	10	15		25	30	35	\Box
Format type	I	I	I	I	Ι	I	I	IJ

1 card (8F10.6) Item no. 13

Variable Card colum Format typ

.J.	I Curu	(01)	10.07		
	Ml		Q1		
un 🛛		10		20	
e	F		F		

Item no. 14. J cards, J as above, 8 values per card (F10.6)

Variable Card column Format type

KCALB(1)	XCALB(2)	XCALB(3)					
10	20	30	40	50	60	70	80
F	F	F	F	F	F	F	F

80

Item no. 15. J cards, J as above, 8 values per card (8F10.6)

Variable Card column Format type

		,	- <u>1</u>		<u>, </u>		
YCALB(1)	YCALB(2)	YCALB(3)					
10	20	30	40	50	60	70	
F	F	F	F	F	न	म	

Item no. 16.	(LSPEC=1):	l card (1615)		LOC1 (I	NSELCT)		
Variable	LOC1(1)	LOC1(2)	LOC1(3)		*			
Card column	5	10	15	20	25	30	35	\square
Format type	I	I	I	I	I ·	I	I	

Item n	no. 1	17.	1	card	(8f10.	6)
--------	-------	-----	---	------	--------	---	---

Variable Card colum Format typ

- • •		,	,
	M2		{
m		10	7
pe	F		

Item no. 18.	l card (8	BF10.6)			Q2 (N	PARAM)		
Variable	Q2(1)	Q2(2)	Q2(3)					
Card column	10	20	30	40	50	60	70	
Format type	F	F	F	F	F	F	F	\Box

<u>Item no. 19</u> (LCHEK=1): J cards , J=1+INT(N/8), 8 values per card (8F10.6)

Variable	XCHEK(1)	XCHEK(2)	XCHEK(3)					
Card column	10	20	30	40	50	60	70	80
Format type	F	F	F	F	F	 -	F	F

	(2011111(1)	l o carab	, 0 40 40	010, 0 14	racs per	cura (orre		
Variable	YCHEK(1)	YCHEK(2)	YCHEK(3)					
Card column	10	20	30	40	50	60	70	80
Format type	F	F	F	F	म	F	F	F

Item no. 20. (LCHEK=1): J cards, J as above. 8 values per card (8F10.6)

A.6 DESCRIPTION OF OUTPUT

The first output item consists of a banner page, and the card images of the input data, the latter only if LECHO = 1.

The second item is a page headed by the job title, listing;

- 1. the input parameters N, A, B and NPARAM relevant to the actual calculaton;
- 2. the straining option selected and the classifications of the straining points selected.

The third item is the results of the computations on the base solution. These include: the Mach number MO, values of the perturbation parameters of the base solution QO(k), K = 1, NPARAM, and the critical value of the dependent parameter, the locations of the minimum, maximum and critical points, and the locations of the invariant points. These results are then repeated for each of the NPARAM calibration solutions.

Results for unit straining of XBASE, and unit perturbations of the dependent variables are the fourth output item. This is done only if LUNIT = 1.

The fifth item (repeated for each case computed) summarizes the results of the perturbation calculation. The Mach number, the values of the perturbation paramters, and the critical values of the variable are printed first, followed by the locations of the minimum, maximum, and critical points in the perturbation solution and comparison solution (if any). Next, a legend is printed providing the maximum, minimum, and critical values of the dependent parameter and corresponding point symbols. Print symbols are also provided for the printer plot of the perturbation solutions P, comparison solution C (if any), and a common symbol (\$) when there is agreement within printer plot accuracy between the two. Then follows a table listing XBASE, YBASE, XPERT (the strained coordinate), and YPERT (the computed value of the dependent variable). If LCHEK = 1, three additional columns list XCHEK (the computed solution) at the points given This allows direct numerical comparison of YPERT with by XCHEK. YCHEK, since the values of XPERT and XCHEK will not in general coincide. A printer plot is then provided of the perturbation result, together with the comparison solution (if any).

The final item is a table which summarizes the perturbation parameters for the base, calibration, and all predictive solutions.

Ţ

A.7 ERROR MESSAGES

NUMBER OF CRITICAL POINTS IN BASE AND CALIBRATION SOLUTIONS ARE UNEQUAL - CALCULATION ENDED

This message will be printed if critical points are specified in straining (LSPEC = 0) and the number of critical points in base and calibration solutions are unequal. The remedy is to avoid use of critical points in straining, or to use base and calibration solutions having equal numbers of critical points.

> NUMBER OF CRITICAL POINTS SELECTED EXCEEDS NUMBER ACTUALLY LOCATED - CALCULATION ENDED

This message will be printed if more critical points are specified in straining (LSPEC = 0) than the number located by the program. The remedy is to specify a number of points less than or equal to the actual number.

ORDER OF SPECIFIED POINTS IN BASE AND CALIBRATION SOLUTIONS DOES NOT CORRESPOIND - CALCULATION ENDED

This message will be printed if the fixed points specified (LSPEC = 0) occur in a different sequence in the base and calibation solutions. The remedy is to use base and calibration solutions having the same qualitative features.

A.8 SAMPLE CASE

The sample case presented in this section provides some example results of perturbation calculations and comparisons with 'exact' nonlinear solutions for a multiple-shock flow for which partial results were provided in figure 3 of the main text. The calculation is for the simultaneous four-parameter $(M_{\infty}, \tau, t, \alpha)$ perturbation of strongly-supercritical full potential flows past a cascade of blades having NACA four-digit profiles. The base flow is for oncoming Mach number $M_{\infty} = 0.780$, thickness ratio $\tau = 0.110$, gap-to-chord ratio t = 3.2, and oncoming inflow angle α 0.3°. The calibration flows to account for perturbations in these parameters are at the following values of these

parameters) $(M_{\infty}, \tau, t, \alpha) = (0.790, 0.110, 3.2, 0.3), (0.780, 0.120, 3.2, 0.3), (0.780, 0.110, 3.0, 0.3), (0.780, 0.110, 2.3, 0.5).$ Perturbation results have been determined for 19 different solutions, which are summarized in the summary table after the print output. Results for several of those cases are presented here.

The input data is tabulated in figure A.L. with item numbers corresponding to those identified in Section A.5.1 and A.5.2. The first card, item 1, provides the title of the run. The next card, item 2, indicates that the input deck will not be printed (LECHO = 0). The next card, item 3, indicates that there are 191 points (N = 191) at which data will be input for the base, calibration, and comparison solutions; that there will be 19 cases (NCASE = 19) for which perturbation solutions are to be computed; that the number of parameters to be perturbed are 4 (NPARAM = 4); that there will be three invariant points (NSELCT = 3) in addition to the end points; that the invariant points will be located by the program (LSPEC = 0); that the information regarding the unit perturbation will be printed (LUNIT = 1); that there will be a comparison of the perturbation results with the exact solution (LCHEK = 1); and that there will be plots by a peripheral device of the output (LPLOT = 1). The next card, item 4, specifies that the three invariant points to be selected by the program are to be: the medium point (LSELECT(1) = 2), i.e., the stagnation point; the first critical point (LSELCT(2) = 3), i.e., the lst shock point found when moving forward on the bottom surface from the leading edge; and the second critical point (LSELCT(3) = 4), i.e., the end shock point.

The next card, item 5, indicates that the dependent variable for print output will be symbolized by a 'CP' denoting the pressure coefficient. The next card, item 6, indicates that the parameters to be varied are "PARNAM(1) = MACH NO., PARNAM(L) = TAU, PARNAM(3) = PITCH, PARNAM(4) = ALPHA1. The next card, item 7, indicates that the coordinates of the data points to be read in will start at x = 1.0 on the lower surface and will end at x = 1.0 on the uppper surface, i.e., A = -1, B = 1. The next card, item 8, provides the oncoming Mach number of the base flow MO = 0.780. The next card, item 9, provides the base flow values of the parameters to be perturbed: QO(1) =0.780, QO(2) = 0.110, QO(3) = 3.2, QO(4) = 0.30. The following 25 cards, item 10, provide the 191 base flow values of the surface coordinates XBASE(I), I = 1, N, while the next 5 cards, item 10, provide the 191 base flow values of the surface coordinates XBASE(I), I = 1, N, while the next 25 cards, item 11 provide the 191 base flow values of the dependent variable (pressure coefficient) YBASE(I), I = 1, N. The next card, item 13 provides the values of the oncoming Mach number Ml and the value of the lst-perturbation parameter in the first calibration solution. Items 14 and 15, which correspond to the arrays

of 191 points of coordinates XCALB(I), I = 1, N and dependent variable YCALB(I), I = 1, N, are provided as for the base flow in two sets of 25 cards each. Items 13, 14, and 15 are then repeated 3 more times corresponding to the total of NPARAM = 4 calibration solutions required. Items 17, 18, 19 and 20, of which there are 19 sets corresponding to the 19 cases to be studied, provide analogous information as items 8, 9, 10, and 11 of the base flow, but now refer to the 'exact' nonlinear results. Items 19 and 20, which correspond to the XCHEK(I), I = 1, N and YCHEK(I), I = 1, N arrays, respectively, have of course been previously compted at the indicated values of the perturbed parameters, and are included here for comparative purposes to enable assessment of the perturbation results.

Figure A.2 provides an abbreviated print output for sample case, while figure A.3 provides an abbreviated plot output of the results for the 19 cases, and display the base (----), calibration (...), perturbation (****), and 'exact" nonlinear (____) flow solutions. In these plots, the calibration solutions denoted "calibration no. 1 of 4", etc. correspond to those indicated in the summary table provided at the end of the print output for this case shown in Figure A.2. SUPERCRITICAL CASCADE FLOW ∢ 9 P 4 PARAMETER PERTURBATION ı CASE TEST

--0 m 4.4 6<u>1</u> M 191 2

-.016364 .069860 .263287 983028 986938 941622 9663302 766302 766302 599718 559972 559922 267295 764806 7648095 765295 7679265 1738562 7585265 7585865 7586886 758585 7586886 758585 7586886 758585 7586886 75868686 7586866 7586866 7586866 7586866 7586866 758686 758686 758686 758686 758686 75866 .993212 .955908 .955908 .678926 .9552909 .552300 .9552300 .9552300 .9552300 .9552300 .9552300 .035655 .0123665 .0123665 .0123665 .0123665 .0123665 .0123665 .0123665 .0123665 .0123665 .0123668 .01232 .01265186 .0123265 .01265709 .01265709 .01265709 .0231673 .01265709 .0271672 .0271672 .0272067 .0251657 .0251657 .0251657 .0251657 .0252657 .02567 .02567 .025657 .025657 .025657 .025657 .0256577 .0256 3.200000 -.726777 -.817508 -.817508 -.297215 -.191285 -.0878998 .1201456 .1201456 .368645 PITCH ALPHAI 1.0 780000 999495 999495 999495 999495 999495 998608 998608 998608 94813455 9481662 9481416 94816474 9486474 9486474 946474 946474 946474 946474 946474 946474 946474 946474 946474 946474 946474 946474 94687510 975520 9755520 9755520 9755520 9755520 9755520 9755520 9755520 9755520 9755520 9755520 97555520 97555500000000000000000 CP MACH NO. -1.0

Figure A.1- Card input data for sample case

.79000	. 790000	1					
010400	61/866°	907/66°	995569°.	• 993212 055000	*EE066*	969999	.983028
.925451	100014.	102004.	C3C3C7.	74748.	+004+6 •	7701+4.	933108
.843453	464168.	.819062	806349	60EE61	.779955	.766302	49F752.
738155	599521.	708989	.694061	678926	.663598	648095	.632431
.616624	.600691	.584648	.568512	.552300	.536030	.519718	.503382
487040	.470708	.454404	.438147	• 421952	405838	.389822	.373922
4C19C5	410566 ·	08(1/2F.	-108785	+C/06/2+	006182.	.267292	.252928
137416	.126369	.115725	.105497	.095694	.086328	.077406	.068939
\$E6090	.053397	•046336	.039757	.033665	.028066	.022965	.018360
014246	•010617	.007481	•004859	.002775	•001255	.000321	• • • • • • • • • • • • • • • • • • • •
022860	C72100.	753550.	2024000	114/00.	05CUIU.	028090	102810.
077353	086293	289560°	105510	-115766	044421-	.137520	• 148495
160851	.173077	.185658	198581	169115.	.225393	239252	253392
267798	.282454	.297342	.312446	.327750	.343235	.358886	.374684
390612	• 406652	.422787	•438999	.455271	.471585	.487923	.504268
500050	40495C.	0/1FCC.	• 569369	•585489 700594	.601512	.617422	•633202 752025
766729	.780338	793648	806645	.819315	831645	500001.	R5527
866474	677323	.887774	.897815	907436	.916626	.925376	.933675
941515	.948886	.955781	.962194	.968118	.973549	.978480	•982907
986826	EE2066.	•21699.24	.995497	8467948	.998675	.999476	
101020	110050.	846/46*	226064.	6/8/94°	.397637	.357690	.320576
106952	.098420	.090288	081443	071357	060285	048625	.036652
024649	.012825	.001354	009465	019256	027841	035248	041464
046383	049859	051728	051769	049558	044424	035505	021635
000140	.033790	-,272131	797329	989708	996302	996581	996271
966842	149544	953063	11484	CO8C86	640286	016205	972611 005173
893227	880406	866638	851835	835915	818807	800429	780706
759623	737168	1/101/-	687274	659135	628635	595586	559557
022051	1000144	C24624°	2/36/5	C16226	255985	-,175553	- 082014
123192	.991649	.804492	+16809.	435017	121262	172715	1.154543
028452	110695	180112	239458	291613	338613	- 381922	- 422426
461504	499119	533047	563342	591381	617542	642001	664798
686010 810203	705736 821160	- 831244	- 741189 - 840708	757073	771837 - 055054	785573	798348
871795	875184	877640	-879096	462628		- 869530	714721
329401	117701	151619	170257	180343	184574	184622	181605
176313	-,169347	161181	-152259	142803	133002	-,122787	-112126
100101	-015860			447040 • •	037019	023296	009799
084631	.100396	.120360	144252	.170602	.198812	.228312	.258942
290546	.323158	.357105	• 391082	.425405	• 458203	.296419	
000000	. 120000	001101	906676	000000	77C000	110,000	
978636	.973715	566896 ·	416446.	022044 ·	0450640	CC4086.	120584.
925533	.916769	.907562	.897920	.887856	877380	.866502	FF00004
843587	.831573	.819206	.806497	.793460	.780109	.766457	.752520
738311	723846	.709141	.694210	.679070	.663736	.648225	.632552
457010	-470667		.568584	•552357	.536070	.519740	.503384
357927	342279	326797	900000	296401	129192 ·	200000.	- 25 2 C -
238347	•224498	.210945	.197705	.184792	.172219	.160001	.148150
136681	.125605	.114935	.104681	.094854	.085465	.076523	.068038
0100010	894240.	.045400	.038819	.032731	.027141	.022055	•017479
124010	•001087	.002453	•00+364	.002497	•001117	0002830.	• 0000000 1 85 7 1 0 -
021952	.027035	+292E0.	.038714	0063900	.052375	156650.	1067969
076471	• 085433	.094844	.104695	.114977	.125678	.136786	.148290
160115	•1724JF	.185045	.198000	.211282	.224876	"71 BFS"	1511/36

6506 422668 438906 455202 41 6945 553223 569438 585571 601 4441 657740 694643 709735 724 10491 779790 806792 819458 833 727019 007532 00753
1491
0246 .993133 .995503 .0246 .993133 .995503 .3254 .577572 .514959
.9002 .237151 .207670 5725 .097068 .087718
4504 •002216 ••009382 • 3437 •055667 ••055951 •
(3819241204799151 -1 0667 -1.068273 -1.066341 -1
3798 -1.015828 -1.007010 -
.3303429287370502 -
6020 869853 693094 0
8718165230233282
5206 - 775412 - 794224 -
1972 892984 902988 -
.1207943993945726 - 8785148300149880 -
3899165628156444 -
060]077684064024 - 0701 033304 044150
1067 .132206 .157348
5517 .381103 .417216 0000
6709 .997395 .995553
3590 .968145 .962201 6440 .907206 .897540
1071 .818690 .805971
3320 .708626 .693710 0450 584431 548320
2685 .327250 .311997
5235 .211716 .198506 6552 .115899 .105660
3491 .046419 .039828
0637 .007494 .004868 1228 .002738 .004812
8019 .033629 .039735
6467 .095872 .105716
068861° 859561° /065 2779 297665 212760
6882 .422996 .439186
6939 . 553173 .569344
4132 60/9404 6094484 0054 703360 806354
7063 .887524 .897578
8740 .955651 .962079
0199 .993100 .995481
3881 .515448 .460229
8218 .197536 .168979
1169 .062745 .053481
2705036237049388 - 3547 - 132634 - 136665 -
50460 -122034 -123451 - 54660 -137715 -123451 -
5637987080987308 -
9621963601956710 -
7339844239870059 -

740518	758491	734847	709222	681345	-+651131	618334	582483
1256	.119930	2652490	448975	.665397		1.065269	1.150244
8913	.985640	.196132	.596308	.422638	144812.	.157926	• 050969
4856	127566	197281 - 548082	536824	309101 - 407124	356156 - 632570	399439	439783
9603	E69817	736277	752499	767449	781197-	0/ +950	805309
5729	825080	833338	840434	846289	850815	853885	855303
4769		840175	740515	426762	230610	267195	284058
10201	PF8482	406482°-	510112	965/02	C#20C2		
8857	105875	092470	078517	064113	- 049551	035087	020698
07143	.005997	.018236	.029023	.038051	.046107	.054618	.064759
17547	270400.	.114948	.139593	.166841	•195931 •	.226507	.258379
4 4 C T A	610075 ·	+67705*	165004.	• • • • 0 • 0 0	1996/	804664	
99495	.00000	997404	.995569	.993212	990334	.986938	.983028
18608	.973681	.968251	.962325	.955908	+006+6.	.941622	.933768
25451	.916680	.907466	.897818	.887747	-B 77264	.866380	.855106
19453 155	454168°	-819062	.806349	406697.	.779955	.766302	.752364
16624	600691	584648	-568512	.552300	050962.	C40040.	CHEE02.
97040	.470708	454404	438147	.421952	+05838	.389822	373922
58154	•342536	.327086	.311819	.296754	.281906	.267292	.252928
08830	.225014	211494	.198286	.185405	172863	.160676	•148856
92609	• 1 60 30 4	62/611.	164601.	479540.	.086328	.077406	0966890°
14246	.010617	.007481	.004859	.002775	.001255	000321	000000
00306	.001225	.002732	.004802	.007411	.010536	.014156	.018261
22860	.027959	.033557	.039651	• 0 + 6 2 3 5	.053303	.060850	.068869
77353	.086293	.095682	.105510	.115766	126440	.137520	•148995
10000	282454	5457342	312446	.327750	1040040 104035	358886.	374686
90612	.406652	422787	•438999	.455271	.471585	.487923	.504268
20603	•536909	.553170	.569369	.585489	.601512	.617422	•633202
00000	100400.	109610°	860460.	08560/ ·	842421.	• 138669 • • • • •	368237. 766339
56474	.877323	.887774	.897815	907436	.916626	925376	753669.
41515	.948886	.955781	.962194	.968118	.973549	.978480	.982907
86826 50353	.990233	•993124 505255	995497	942466	998675	.999476	
100845	261616.	61740C.	450760		362946	.324633	.288195
16676	.067604	.059072	.049710	177850.	.026541	.013537	159/80.
3795	027783	041754	055442	068551	080977	- 092829	104214
15172	-125737	135965	145916	-,155508	- 164478	172495	-179185
12864	947484	546591°-	953880		- 153313 - 056074	128825 - 045101	- 053153
46000	945830	940601	- 934372	927163	- 919007	161004 -	899950
39027	877137	864232	850244	835100	818717	800990	781618
1181	160661	- 115433	689911	662161	631824	598602	561885
1111	500171°	*1020***	225385.	02402F	110862		- 082772
13717	.975519	.782607	.582718	406031	.261570	412141	034520
1031	143446	212778	271860	323642	370203	- 413026	452999
195191	528263	561422	590832	617893	643000	666471	688328
19092	726964	743941	759534	-,773825	786882	798764	809499
4747	832277	444047	121010	0C3C40	107040*-	- 200170	7000400
3452	297680	- 289019	278493	- 266799	254426	241684	- 228717
5607	202439	189306	176332	163616	-151102	138627	-126062
13324	100323	086919	072983	058612	044096	029682	015537
1814	•011308	•053549	• 034378	.043518	.051758	.060481	•070823
12680	053455	371701	CIACHI.	e1/26/1.	254202. [80664.	061652. 520980	665692.
0005	1		1				
5000	.120000	1.00000	.50000				

Figure A.1- Continued

· · · · - - - -

Figure A.1- Continued

374447
6504355
6504355
6504355
633536
933536
933536
933536
933536
933536
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
914435
91 •983025 •933757 •933757 •933757 •503344 •032427 •01344 •068083 •017396 •017396 •017396 •017396 •017396 •017396 •017396 •017396 •017396 •152877 •152877 •152877 •152877 •152877 •152877 • 337064 • 124649 • 124649 • 038912 • 043946 • 072892 • 1• 056213 • 1• 056213 . 1359050 . 488023 . 488023 . 617372 . 728490 . 883490 . 978453 . 978453 . 951826 . 9186423 . 118636 . 118636 . 118636 . 118636 . 1186423 . 1186424 . 1186424 . 152821 . 15282 .941613 941613 .941613 .966350 .7666290 .648091 .519688 .2389686 .2389686 .0103283 .0133842 .0133842 .0133842 .136889 .238915 .136889 .238777 .238777 .136889 .136889 .136889 .1368961 .1368861 .136861 .136861 .1368861 .1368861 .136889 .136861 .136889 .136889 .136889 .136889 .136889 .136889 .136889 .136889 .136889 .136889 .136889 .136889 .136889 .136889 .136889 .136886 .136886 .136886 .136886 .136886 .136886 .137869 .136886 .136886 .137869 .136886 .136886 .136886 .136886 .137886 .138 . 1343397 . 724080 . 724080 . 724080 . 831428 . 916463 . 916463 . 916463 . 136418 . 136418 . 136418 . 136428 . 136428 . 136428 . 136428 . 136428 . 136428 . 136428 . 136428 . 136428 . 109027 . 109032 . 1161032 . 1261839 . 1261839 . 1261838 . 1161032 . 1261838 . 1161032 . 12618388 . 12618388 . 1261838 . 1261838 . 126 T 1 •50000 •995568 •962320 •962320 •962321 •962321 •962321 •962333 •966333 •966393 •198168 •198148 •198148 •198148 •198148 •198148 •198148 •198148 •198129 •955194 •955194 •955194 •955194 •955194 •955194 •965194 •965194 •965194 •965194 •965194 •965194 •965194 •965195 •995456 *282584 *282584 *536958 *536958 *664201 *87722 *87722 *948772 *948772 *948775 *948395 *0081395 *008494 *00762145 *00944895 *1294595 *1294595 *129492 *129492 *129492 *129492 *129497 *

Figure A.1- Continued

.986909 .941512 .941512 .941512 .941512 .941512 .949528 .949528 .9170749 .0105095 .013359 .013359 .013359 .013359 .925268 .9265615 .926568 .91866215 .92652743 .00290458 .926568 .91866215 .91966215 .91966216 .919666216 .9196621 -.833170 -.600780 -.600780 1.093184 1.093184 -.416085 -.946686 -.9736586 -.1153053 -.1153053 -.115490 -.115490 -.115490 -.115490 -.115490 -.115490 -.115490 .990312 .948907 .779730 .6779730 .6779730 .6535932 .535932 .0815761 .085599 .072599 .0172628 .0172628 .0172628 .0172628 .0172628 .0172628 .0172628 .0172628 .01765336 .0271532 .0979610 .0979610 .0172519 .0172519 .07261332 .0172519 .017251 .993196 .955822 .955822 .955822 .9552194 .552194 .552194 .552194 .552194 .9259283 .0025029 .0025029 .0025029 .0025029 .0125189 .907312 .9068326 .9068326 .907312 .907312 .907312 .907312 .9073622 .9073623 .9073628 .9073628 .9073628 .9073628 .9073628 .9073628 .9073628 .907375 .907375 .907375 .907375 .907375 .907375 .907375 .907375 .907375 .907375 .907375 .907375 .907375 .907375 .907375 .907472 .907 -.73+481 -.73+481 -.73+481 -.411349 .396011 .3966124 -.1866124 -.1866124 -.1866124 -.1866124 -.1866126 -.120123 -.120120 - 787335 - 787335 - 787335 - 787335 - 787335 - 78081395 - 7501345 - 750124 - 750125 - 750124 - 750125 - 750126 - 750125 - 750126 - 750126 - 750167 - 750166 - 750166 - 750167 - 750166

Figure A.1- Continued

	.98296H	.933567	•854765	• 751980	•632146	147504.	550475. 541535.	149057	.069056	•018393	.000000	.018300	.06901	• 1 4 9 2 6 0	021562.	504420	E705EA.	. 752565	.854959	164556.	• • 8284 •	000400	0474074 961001-	016120	075043	165990	984269	967090	901307		072622	1.153862	+6+160-	-+51206	821960	887525	476915	195457	118707	014010	. 241146	0411030			.983013	.933718 	070668.	512201	503342	.373867	.252793	.148590	• 068541	164710.	000000.	• 0 L / 8 J 0
	.986891	144146.	.866053	.765916	.647790	C1000C	047500	.160A84	.077535	.023006	-000322	.014186	.060977	137771	8/56F2.		715713.	738410	96556484	.925182	978409	614666.		028930	066335	-,103685	978642	971718	912349	477075 -	- 166760	1.076827	.143962	410534	- 8008338	- 882713	868801	-,200695	-,129798	027766	045450	100232.			.986926	.941577	162008*	0120014	.519676	.389773	.267170	.160427	.077023	.022527	206000.	201610.
	.990299	.94843	.876952	.179570	.663277	068656*	104604	.173076	.086468	.028117	.001257	•010559	.053415	.126676	C[]C22.		601433	.724002	.831357	.916417	494676°	1,0044.	00000C.	925140.	056766	104811	854366	975622	- 923576		247667	.905447	.263961	367399	796012	876903	893007	203557	140509	++/1+0		473365			.990325	295846°		. 17000	535985	.405793	.201797	.172632	.085959	• 027626	-001183	C/IUIU.
	.993187	.955765	.887452	.792926	.678589		206044	.185622	.095846	•033726	.002780	•007427	.046333	115987	141212.		585437	.709355	.819024	- 1210A	610896 ·	1070755°	152432	.053035	046298	103431	360073	978867	- 932009		315111	.689669	EE6704.	320637	781497	870120	896021	2 03196	150898	055743	170452	.436413			502666.	679566.	210100	919541	.55253	.421910	.296656	.185191	.095341	.033226	.002633	-004113
000005.	.995553	.962201	.897540	.805971	.693710	UJ604C.	10105	198506	.105660	.039828	.004868	.004812	.039735	.105716	068861-		569344	.694484	.806354	.897578	• 962079	1000007	178160	063584	034855	100152	016651	981458	940638		- 372126	.476922	.584150	268725	107166	862376	896680	198348	161039	069463	0000000	E22004		-50000	.995565	562296.	101160.	080504.	.568461	+38107	.311733	.198089	.105160	126960.	• 004637	022400.
3.00000	.997395	.968145	•907206	.818690	.708626	154486.	77575F	.211716	.115899	.046419	.007494	.002738	.033629	.095872	866681.	500CC7	.553173	679404	.793360	•887524	169664.	101644.	F17405.	072679	022577	095473	054844	- 983355	948456 - 862760	708512	422015	.295200	.783784	209585	151041 -	- 853673	895968	187183	170869	082696 ^24686	00142A	363281		3.100000	104799.	C72804.		70800	.584593	•54366	.327009	e16115.	.115406	.045906	-007182	V00200.
.110000	998709	093590	.916440	170168.	.723320	0540094	110014	252522	.126552	.053491	.010637	.001228	.028019	.086467	105671.	6113034	536959	664132	180054	.877063	047846.	441944.	UDLIC.	.080955	-,009813	089673	076823	984499	955467	-132807-	- 468045	.150679	.976821	140271	0/0/2C"-	- 844029	894146	-,166810	180120	-,095235	AF13104	327854		115000	21/866*	850516	120014	723605	.600633	.470670	.34246R	.224849	.126067	• 052975	+52010.	+CII00+
.785000 .785000	404000	,978533	.925230	.843100	.137776	105010.	104000	6706EC -	137609	.061039	.014272	.000307	• 022909	.077511	•161129 240126	0910020	.520660	648683	.766451	.866204	265146.	101084	269961	.089705	.003144	082845	090820	984822	961679	- 755441	512248	.032227	1.115557	057937	112112	833462	891330	130375	188443	+02/01		293883	.785000	.785000	564666	4050/4.	3965.48	.738066	.616562	.487001	.358093	.238680	•137132	.060523 0106053	198517.	• • • • • • • •

																		•																																						
94/841.	1165321	101476.	906405.	197527.	.855181	169569.	.982893	130300	404076.	722920	- 044433	024088	-1.022733	-,995343	922244	788684	045739	1.154647	061846	451467	-,705146	845717	920516	*68866 *	-,]47634 	100200-	080451	273262			010100	414284.	.854830	.752061	632209	.503298	E56575.	1122210	CU10414	13610.	000000	.017859	000001	553493	.374847	.504352	.633133	• 752644	120000.	.982861		.337910	128894	1000010-	020562	-1.037151
.137264	.239153	.358895	•487964		843568	.925334	.978463	• 999476	2/##9F •	.048632	038005	+038404	-1.023440	-1.000927	934255	809680	290209	1.087172	174308	408846	681323	832165	914359	940188	- 111006			241598	.465808			004986°	.866115 .866115	765996	.647858	.519617	.389827	.267290	100240 ·	022552	.000302	.013769	225000°	255955.	.359050	.488023	.617372	.738490		978423	.999475	.376548	.142475	115000	.000676	-1.038750
.126164	.225276	• 343235	•471626	620100	.831591	.916581	.973529	•998674	900404°		030350	047569	-1.023550	-1.005832	945417			.935032	.304762	363011	655920	817586	907299	+010+6	- 132691	110020-	.061782	.211150	.480512			202022	877011	779649	.663347	.535911	.405835	-281912 	CC/2/1.	.027656	•001185	.010187	CC42C0 .	.225456	79564E.	.471699	•601482	.724080	034150.	973481	.998671	•416656	.159929	726310	012238	-1.039858
.115470	.211695	.327739	,455311	114686.	. 81926Z	907388	.968096	.997345	101844	. 072058	- 021480	- 052834	+1.019274	-1.010133	955761	847523	306367	738207	458138	-,312559	628809	801936	- 899333	938932	- 115978	373271 -	190420 -	.182132	.448035			161566.	24/564 ·	193004	.678663	552164	•421939	.296766	016551.	033261	.002636	.007122	Y08240 -	-211872	327907	455399	.585479	164010	040410	968040	0467940	.460035	.182030	C16200.	- 020594	-1.040447
.105195	.198426	.312423	120624	966695.	806594	.897764	.962169	.995493	019801	140410	634300 -	055094	886977	-1.013857	965286	864613	688119 - 354836	535650	.635189	-,256299	599429	785161	- 890454	++8966*-	- 1000019	10/6510 -	538667°-	154983	.411358		. 400000	944496.	697598.	806047	.693787	.568357	.438122	.311836	012841.	.039362	•004642	.004586	0/2680.	198599	.312597	8E16E**	.569379	.694558	054000.	.962104	995484	.511788	.208344	124240.	025577	-1.040202
.095348	.185484	•297306	.+22822	505624.	009667.	.887721	.955753	• 993118 	505664°		421000	- 055039	345250	+66910.1-	973992	880575	716034		824454	-,192797	-,567246	767204	880649	626266	EEE#EI*-	7201414-	040250.	130386	.374955		3.000000 000000	.997396 040145	292706.	818764	.708704	.584476	.454367	+01/2E*	144112.	.045954	.007190	•002593	-013105 005454	.185652	297484	422935	.553200	679476		955679	+01600	.569903	.237119	0/51/1°.	- 027969	-1.002884
.085442	.172683	.282403	• • 0 6 6 8 2	•536944	100400.	.877269	.948854	.990224	•628684		-011678	053106	.035163	-1.019524	+68186	895461	741969	196054	.999766	120048	-•531731	747981	869924	1930241	568149	007041*-	101100-	.109714	.339921		-115000	60/966.	9164916 ·	541168.	.723399	.600502	.470656	*342554 ****	0/6422.	060630.	•010265	•001156	844/20 •	1400021	.282584	.406807	•53695B	.664201	2010010	948772	9902060	.679673	.268082	510401 •	- 020233	442134
-076984	160631	.267733	.390636	.520640	.766400	.866419	941480	.986815	• 708054	641 142 ·	34001.	049518	002259	-1.021432	989007	166093-	766142 	202000°-	1.121995	035783	492619	727349	858288	925789	934260		-010486	ATEE00.	.306012	.785000	.785000	0185435	C10566.	843169	.737857	-616418	.486972	.358170	• 238806 • 137343	.050584	.013855	.000287	25422D .	160793	-267915	.390772	.520669	-648748 	945444 -	.941388	.986789	.662479	• 301426	105011.	- 026622	.056775

53

_

-1.005527	430861	797222	- 055230 - 055233	1.154236	.069979	444489	700201	448748*	- 947527	160661	099151	003356	• 017305	6CB/97*			.983051	448564 448564	. 752520	632552	•503384	+37372+	.252478	.148150	.068038	• 01 74 79 000000	195710.	.067969	.148290	.252941	.374482	99240C.	.7524AD	.855364	-933752 •	•982930	0000000	045355.	062308	002688	.086166	-1.056303	C/CT20.1-	199897	548570	017290	1.155336	.087845	450604	46291/*-	- 950155	981514	082755	078766	.011660 .092797
-1.011454	++6276	818266	*/0446*-	1.084056	.182496	401888	- 676152	100628	- 946937	125803	107837	016600	269/90.	101416			.986955	-941691 944603	200000	648225	.519740	.389653	.266874	.160001	•076523	220220.	.013330	•059934	.136786	.238768	.358655	.48/900	736823	.843756	.925460	.978508	114466.	.155526	.073817	176000.	.049898	-1.058293	868750-1-	822155	589144	116397	1.096012	.206724	- 405929	071850°-	- 942982	980005	066983	085833	001347 .0A2616
-1.016743	954221	- 6337905	C48550	.929410	•312894	355883	514040°-		945471	112787	115636	02958	4/05C0+	-480946			945056	100444	7A0109	663736	.536070	+05697	.281521	.172219	694680. 	141/20.	-009807	052375	.125678	.224876	416245	7071091	.724400	.831783	•916716	•973584	929127	.173576	.085154	005315	.0288888	-1-05461/-	966879	842884	626443	200899	.960601	.346476			546466 -	E97779	E54[40	091637	
-1.021475	964716		304548	.730690	.466004	305237	- 7063031	898283	943185	091545	122491	012540	-178700	967554.			022544	. 887856	.793460	.679070	.552357	.421838	296401	184792		101200	.006817	.045300	.114977	-211282	864/254	585571	.109735	.819458	-907532	.968160	4166144	195997	.096014	.011871	•014865	-1-000830 -	978066	862242	661162	274958	.781097	c1 490 c.	63756B		926030	974876	-,131607	-,096028 +.027238	.066842
-1.025681	974426	606757	- 366002	526932	• 642463	248778	- 781196	- 888978	940141	186080 -	128323	050950. 7775.00	151250	8400348		.500000	C/CC/4	- 929799.	.806497	.694210	.568584	• 438058	• 31 1 4 9 9	101105		4100co.	+9E+00+	•038714	.104695	000861.	62121C+	569438	E+8+69.	.806792	.897918 01010	962243	.527478	.22221	.105950	.020011	184600.1	- CAFE40.1.	988404	880361	693239	340790	•589317	226190.	606392	802992	916214	971273	002843	039546	.05843A
-1.029356	746699	124740	- 420476	.342455	.830687	-,185085 - 540875	C1000C+-	878781	936389	511288	- 132878	461000	.126516	365941		3.200000		-907562	.819206	141601.	.584735	+54340	.326797	546012°	004240	.006887	.002453	.032624	•00+844	C+0070C	-42266B	.553223	.679740	861E61.	.887883 	168004.	.585987	.251496	.114686	.029502	- 000424	E04740.1	997900	897327	722870	399719	111004.	- 175140	572243	783915	905476	967007		050963	.048287
-1.03248A	- 00001	750628	- 470680	.186457	1.004381	525075	- 743512	867694	931961	940178	249451•-		105571	1006EE.		.120000	-1044.	.916769	.831573	.723846	.600791	.470667	612246.		.052468	.009888	.001087	.027035	• 085433		+06506	•536945	•66444]	780491	654178°	446944.	.678267	.283125	.122800	626660 -		1.050898 -	1.006578	913204	750364		*575 * 2*	C3100	534662	763529	893814	962090		061299	036736
-1.035076	998844	#24/14 -	518083	.056027	1.124336	7447120	722639	855724	926847	94674]	509651	.009579	.089552	.300318	.785000	00058/ •	978696	.925533	.843587	116867.	.616735	120/84.	126166.	136681	060016	013421	• 000268	.021952	1401041	011701	390439	.520620	• 648962	•766883	• 800596 • 941585	448986.	.661722	.316752	•131485	0560C0	343447	-1.053852 -	-1.014464 -	928048	6666// -		1.127454	012724	- 493569	741689	881230	956499	107744 -	070564	.024418

Figure A.1- Continued

• 285364		.983025	•933757	.752353	632427	503344	.373766	2002020	068083	564710.	• 000000	•017396	008001	252072 -	374598	504306	.633269	118241.	142668.	.982905		• 362973	.154819	•078254	C \$ 0 \$ 0 \$ 0 \$ -	-1.068798	-1.030906	- 950187	567771	026512	1.154931	•096079	713033	076438	949623	-,085386 04546	068475	.014059	101160.	.278242			982991	.933645	040400	C+13C/ +	503505°	.373830	.252683	.148342	• 1 9 9 1 9 • • • • • • • • • • • • • •	1101100
.253537		.986935	.941613	.766290	648091	.519688	.389686	004007	200001.	.022071	.000283	•013342	09964C0.	2100051.	.358777	\$487952	.617489	138716	150548. 775350	978478	.999476	400967	.168342	.089038	505450°	-1.071393	-1.037548	963111	- FORIJ3	-125532	1.093194	- 208707		849572	942014	906586 . -	908510	.001662	.081680	.247932	.279647		.986909	941512	6/ TOOR*	810001	641420 519628	389739	.267074	.160199	049940	· () 2 2 1 - 1
.223200 .483402		166066.	948997 57275	C+0622	663595	.536006	405720	666192.	045520	.027161	.001117	.009816	054260	C110366 -	.343101	•471602	•601578	.724298	-831662 01427	73547	.998674	.441338	.185799	.099787	07170	-1.073596	-1.043556	975191	<20148	209914	.955541	• 354541	660629	833729	933568	980847	1007594	010690	• 074005	• 218635	• • 22556		.990312	.948907	2/1//8.	051611.	024500.	.405761	.281712	.172423	994448D•	• 1 2 1 2 1
.194234 .453360		.993210	.955901	881188 ·	.678922	.552282	.421851	0/ 4067.	19491 ·	032754	.002499	.006823	.045339	AlAlle.	327589	.455275	.585554	.709640	•819336 •••••	968118	79E799.	.485623	.207588	.110181	546760. 715530.	-1.075380	-1.049017	986462	- 440770	283857	.774304	.514167 - 306764		816788	- 924269	454038	+29620	022756	.066863	.190415	.422983		961566	.955822	COC/88.	+8056/ •	-0/8/38	421879	296583	.185000	666760.	• D 2 C 1 0 4
.167102	40000	.995568	.962320	008/68.	150469	.568499	.438061	895115.	104744	038846	.004425	.004368	•038748	6// 601°	312258	438989	.569432	.694756	.806670	10160.	995496	.533033	.233588	119671	S18620.	-1.076717	-1.053968	-,996924	- 301201		.581348	- 035120	020009	798693	914095	- 972889	079620	- 034196	.058838	.163718	+0051+	.30000	.995559	.962250	949/68.	571909°	608590.	438075	.311669	.197916	.104836	· 00007 •
.142429 .385872	000001-5	E04799.	.968247	,907450 240014	108983	.584638	• +5+333	.326860	250112.	.045431	.006992	.002455	.032652	126460.	421262	.422760	,553229	.679661	.793678	955782	993123	.589321	.262568	.127946	161840.	609270.1-	-1.058415	-1.006580	-,905683		.397430	.866317	565676	779383	-,903023	968009	077066	044617	•0+0130	.139555	.370895	3.000000	.997398	.968187	.907306	048818.	C81801.	•54333	.326954	.211151	101211.	
.121717 .351580	000021-	.998712	973676	•916666 •31414	-723684	.600684	470649	.342336	.224584	.052504	.009895	•001088	.027059	504490.	.282205	.406607	• 536962	.664370	.780372	-048887	162066	.639623	• 293936	.135709	.057566	469920°	-1.062357	-1.015448	- 350543		E71665.	1.023851		758770	891051	962535	221120	053807	.038088	·119014	•340048	.120000	.998710	.973626	•916533	•831216	•723481	470634	.342420	224709	.125781	100001.
.105560 .318030	.785000	.99495	.978604	.925438 843434	4747404 941882 -	.616619	• 486992	.357976	.238433	720060.	164610.	.000268	.021971	6EG910.	.26751A	.390547	.520649	.648901	.766767	2040000	-986824	.704073	.327595	.144298	.067686	C12620.	-1.065803	-1.023551	936358		.091968	1.129584	CBC400	736706	878178	- 956435	- 988699	061767	• 026282	.103152	.309020	.785000	567666.	978562	•925316		969767 .	486962	.358051	.238556	.136865	111000.

.017419	.068106	• 148546	407FG2•	504351	633195	.752726	.855092	010000.		•377414	•169680	• 040680	-14500. -14500.	-1.080170	-1.039373	957549	0666[8	1040000	1.154435	.104242	436211	- 0,00,0	8+9008-	076046-	017305	054003	•018193	•090667	• 212030			.982957	• 933529	-854700 75,00	104141.	.503295	.374131	• 253362	•149397	064600 •	.000000	•018743	• 0 6 9 4 4 4	944441.	175,040	• 504355	.633014	•752488	.854895 023550	9045594 •		.293778	•004899	•013399	075714
43EE10.	.060057	.137029	4HU462.	.488011	.617428	.738571	.843478	978438	.999475	.415351	183231.	108637	- 834151	-1.083302	-1.046261	970539	0/8/68	134245	1.090412	.223077	391608	082120	42/C+8.	987815	322219	056901	.006544	.081809		rychri.		.986883	.941406	.865992	858501.	519594	.389996	.267704	.161209	VCV110.	.000.44	.014609	.061418	\$21951.	1959281	488047	.617264	.738333	.843272	141024.	999475	.329507	.107647	.025844	067133
. 009828	.052484	.125905	491077. Cyceye	.471675	.601532	.724160	.831501	010016.	.998672	.456405	.200841	CIEBII.	-203590	-1.086097	-1.052547	982710		218507	.950597	.362487	342692	+12+CQ+-	060620	59389	843553	057797	004953	•074707	026412.			.990293	.948812	-876894	202633.	.535870	405976	•282294	.173388	.028572	.001335	•01043	.053863	-12/045	.34365A	471745	•601385	.723926	831288	C12014.	.998670	.367688	•124324	206750.	057732
.006832	* 6E5 * 0 *	.115191	784112.	455363	.585522	.709510	.819173	968062	54E799.	.500571	.221916	18/121.	116600.	-1.088537	-1.058318	994088		306010	.767688	.521724	288277	254020*=	076210	954979	998749	056387	016044	.068111	019/91.			.99169	.955738	,887397 703050	• 7 7 8 5 1 6	.552105	.422054	.297116	.185918	2819E0.	.002936	•007747	•046785	000011.	328199	455468	.585395	.709280	.818953	- 1 1 1 0	166799	.409411	.145611	•0+9298	047471
•00+374	.038795	.104894	6624616	439089	.569415	.694635	.806507	-962130	.995486	.550634	.246807	676651.	• 106/8/2	-1.090601	-1.063613	-1.004673	H/ [069"-	357941	.573606	.695813	227524	PBC596	- 011808	974445	-1.000433	052267	026364	.060604	0101010	201000	.50000	.995551	.962177	.897489 805806	969609	.568283	438211	.312154	•198788	-040284	.005108	.005053	.040190	C11001 -	91951E	\$53232	.569310	.694411	.806281 407537	100100	.995478	.455919	.170683	•059533	042960
.002458	.032693	.095027	0002107	422873	1553227	.679550	.793516	.955709	e0166e.	.605101	.275876	591441.	088747	-1.092281	-1.068438	-1.014472			.389017	.872108	-,159561	FON4CC*-	000100	968917	998848	044746	035485	• 051435	284051.		3.000000	E6E166.	.968124	•01159 •12410	708549	584387	164434.	.327392	-211982	.046872	007814	•002894	•034084	. 186255	297836	.423055	.553147	679334	•793284 •779	559556 °	.993096	.510788	.198506	.068299	024317
.001089	£40750.	.085600	C1/2/1.	• • 0 • 7 3 1	.536976	.664271	.780213	.948805	512066.	• 665482	.307860	244101. 244101	<1c190.	-1.093610	-1.072792	-1.023507	- 766349		.224417	1.028040	••083211	C26020-	- 888100	- 962855	.996790	032675	043162	.040952	200011.		.105000	.998708	.973573	065016.	100100	.600400	.470697	.342011	584622 ·	.053940	.011020	.001307	• 028472	173678	.282968	+0695+	.536922	.664065	879978 . 877005	01840.	261066	.578248	.228405	- 016268	011808
.000269	• 05 I 6 4 4	.076624	.100447	390682	.520678	• 648814	•766611	1000000	.986798	. 692502	.34146.	586761.	.068428	-1.094785	-1.076686	-1.031800	100744	521557	.083094	1.131605	.003507	+01414*-	874976	- 956222	994243	014054	049360	•029754 • • • • • • • • •	120101.	. 790000	.790000	*6*666	.978519	481674 •	869757.	• • 1 6 3 0 5	.486991	.358397	583453.	.061481	•014696	.000329	926520 •	.161455	.268331	.390946	• 520652	648620	416001.	941318	.986772	.667033	.260195	541480. 847000	• 000 100

.

-

083445	09026 <u>8</u>	-096128	-•100942	104445	-,106158	105485	-101728
- 01039999	08)065 - 050035	060753	- 026463	- 284347	- 752934	941137	7449447
928876	923008	916375	- 908973	900798	891860	882171	871715
	848343	835317	821292	806192	-,789948	772485	753732
733694	712393	689665	665156	638574	-,60971]	578083	543163
272405*-			1050/5°-	JCJCUD -641659	876168	1.067841	1.154931
1.110278	953740	.142873	.535015	.363593	.232617	124434	.023671
070104	- 150552	216137	- 270583	317893	360914	- 401503	440596
	+69715	1404444	0626/C	- 753547	4157301-	*665*Q*-	- 701900
802789	812788	821908	830129	- 837430	843802	849229	853683
857146	859629	861115	861467	860358	854050	764934	394621
E#6EE1*-	169288	188216	198260	202266	202007	198712	193196
186032	- 177665	168454	158729	148743	-,138552	128076	117251
00236	1454400-	-021450	C16700	220040°	U+2+C3 .047586	.055580	612590•
.077513	.093360	.113360	.137144	.163492	.191655	.221213	.252014
-283952	•317116	.351698	.387767	.425190	.459269	.467165	
000004.	000011-	100000	. 50000				
.999495	.998711	.997400	.995562	.993201	.990318	.986918	200689.
.978575	149679.	,968205	.962271	.955845	+66846.	941542	.933680
.925354	.916575	- 907352	.897696	.887517	.877127	.866236	.854956
.843298	•15158•	.818898	.806182	.793140	.779785	.766131	.752194
196767	.72352	208628	• 693905	.678776	.663455	.647959	.632304
010010.	285000.	955495.	42489G.	+22266 ·	.535965 .05585	-519665 	1+FF04•
358207	140014F		20105.	004124 ·	+00001+•	808485.	006515.
103000	226105	211586	775801.	185404	172051	292091	.148430
137495	126444	.115796	.105564	19190.	.086385	017459	.068987
.060977	.053435	e 046370	.039786	033690	.028087	.022981	.018373
•014257	• 01 0625	.007486	• 004862	.002777	.001255	.000321	• 000000
•000307	.001226	+012734	•004806	•007418	.010546	.014168	•018277
199720.	4961204	185550.	- U39080	012040.	145660.	504000.	676990°
120091	202271.	50/07/09	14001.	0090110	150551	1201010	.253535
267941	.282596	297483	.312585	.327885	343366	.359011	.374802
.390723	.406755	.422881	+3066+.	.455345	.471648	487975	•504309
.520632	.536926	.553175	• 569362	.585470	.601481	.617380	641669.
•648772	+65439	.679518	.694607	.709488	.724144	.738559	.752720
0100010	12081.	223567°	075908* 512508	061618. 0666700	154168.	[04648.	711448. 907550
94145	948823	.955725	962144	.968075	513512	944679.	582882
.986806	.990218	+11699.	.995490	++6799.	.998673	.999476	
.707432	•612060	.542263	.484845	.436521	.393388	.354028	146716.
166282.	564052.	.220011	01161.	.166248	144614	.127576	•114562
146230.	064010*	001000	011818	021607	030195	037598	408640
048713	052183	054057	- 054124	051973	046943	038181	024501
003677	£19150.	-,335856	858215	985689	989718	989627	988962
987729	985911	983496	980498	976937	972826	968]40	962806
410086	- 867772	853661	011+54	020026°-	158408-	100406	101000
744885	722078	697625	671265	E073300-	612085	578863	- 542215
+61103	- 456724	410554	360701	303768	236462	155791	062019
•042356	.160253	.304057	157484.	.696033	.910094	1.079858	1.155850
1.117873	. 980227	.788544	• 590153	.414890	.271618	.152183	.046196
	504051	200108 - 551006	861962	2/6016 - 600766			80/100 -
064601	723142	741470	758601	774600	789516	- 803405	
828294	839386	849616	858973	867451	875057	881798	887673
892700	896936	900436	903189	905137	906189	906205	904864
150672	147472	142035	136636	+15151	175641	149558 - 111307	151691 - 101671
3100014	00014141		000001.	• 100100	• • • • • • •	115311°	110101.

ч

004627	075838	619592.			.982968	.933567	.854765	121480 241223	041300.	E60476.	-253142	.149057	.069056	•018393		110690	.149260	.253720	.374950	565404.	- 752545	.854959	.933497	.982849		020826.	.046281	023377	.018256	-1.003128	901615	774803	551138	U/1639	.054435	+34637	677287		913358	132768	098592	285000.	.258570				C10504.	855020	.752273	.632365	•503342	.373867	641363.	.068541
017796	.066078	208252.	564444		.986891	144146.	.866053	• 765916	510605	E1668E*	.267500	.160A84	.077535	900520.	226000.	779040.	177761.	.239578	.359167	CF0984.	1101100	843339	.925182	.978409	.999475	057605.	.057661	018716	000590	-1.0046/6		794827	587472		.160532	393799	654337		912834	126421	107073	2278 10. -	.228158	.275560			• 900920 . 041577	102998.	.766210	.648024	.519676	.389773	-2011ru	.077023
031116	•028039		97/198.		.990249	.948843	.876952	0/56//.	1 2000 . 5 35,800	.405907	.282106	.173076	.086468	.028117	10310n.	214520.	.126676	.225715	.343530	62/1/4.	- 724 AD	.831357	.916417	+94616+	.998671	885C0**	198861.	••012689	012892	- 003530 - 003530	923863	813476	620822	000000	.280020	350476	629931		911455	114896	114705		196787	446481		10000	270040	. A77185	.779862	.663524	•535985	• 4 05793	- 1 7 7 8 7 1 V	.085959
044381	.050553	N#14/1+	205664.		181699.	.955765	.887452	• 792920	100010	.421997	.296944	.185622	.095846	921550 .	101200	54190	.115987	.212147	.328055		10400C -	819024	512106.	.968019	•997339 •	56/0C+•	.079585	005331	020866	456900 - 1-	933867	830837	651635	041515 687050	16154.	303538	604004		- 909277	096097	121436	421440°-	170658	421657		300000	- 4436VJ	C10000.	793216	.678848	.552253			146560.
057307	•042155	2001241.	8/086F.	.40000	.995553	•962201	.897540	116508.	01/540.	•438167	.311997	.198506	.105660	039828	808400	2104000	.105716	.198890	.312760	991664.	++C60C*	806354	.897578	.962079	.995481	141464.	082640*	•003352	025620	402900.1-	943123	847012	680092		.597865	251481	576011	952421	906365	064894	127199	610050°-	144255	388801		000004.	0000040.	.897747	806257	.693980	•568461		-144040	.105160
069575	.032041	.124406	.362894	3.00000	202700.	.968145	.907206	.818690 708636	124492	666434	.327250	.211716	.115899	.046419	*********	05/200.	.095872	.185958	.297663	966774.	C1155C.	793360	.887524	.955651	.993100		.097654	.013185	027895	- 976536	951631	862089	706301	1084144-	.795220	192250	545442		902770	463761	131755	195990	120329	.356300		3.100000	104144	.907400	.818971	.708904	584593	9954C4.	211133	.115406
081044	•02029+	104227	• 328646	.110000	.998709	.973590	.916440	170168.	• 12335U	770677.	.342685	.225235	•126552	164650.	150010.	0280100	.086467	•173367	.282779	288904.	964066.	.780054	.877063	.948740	• • • • • • • • • • • • • • • • • • •	011040*	.105382	.023819	028133		959404	876158	730614	545034 -	.985224	- 122933	511682	740768	898528	896386	134626	202610-	100112	.322412		.115000	21/044.	-916620	+91134+	.723605	•600633	010014.	-224849	.126067
-+091786	.008211	.088254	.295635	.790000	464666	•978533	.925230	.843100	611214 612261	• • 86981	.356285	.239049	.137609	0E0190 .	2/2410.	000000	.077511	.161129	.268126	098065.	0000/200	766451	.866204	•941352	.986781	0149F0.	113807	.034932	026568	495250.	-1.966457	- .8 89311	753395	44/01c	1.120449	040730	474230		893632	912668	135201	010400 -	.084531	-290044	.79000	.79000	978589	925396	.843365	.738066	.616562	- 358092	.238680	.137132

,

162710.	.000000	.0584850 .058484	.148759	115535. 1	107476.	• 504308	• • 633208	141251. 1 855181	933637	1 .982893		1 .348771	100441. 1	•065284	007642	267419		921187	• • 785891	549148		1.178896	E26464 1	690575	835257	917163	- 053093	2/1040- 0	01/00- 0	.086811	.268132			082979	.933606	854830	752061	2022209 1	.373633	.252916	.148705	• 068609		017859	.068565	•148909	253493	14847	50540d. 1	2515504 S	855024	933536	. 982861	370005	2 2 11 11 12 12 12 12 12 12 12 12 12 12
.022527	20E000.	144040 -	137261	.239153	.358895	•+87964	VE V 19.	- 138030 	025334	.978463	.999476	.387583	.157043	.076747	001979	. 033867	-1-00,00,00,00,00,00,00,00,00,00,00,00,00,	163656	807096	586977			- 39160	666354	821100	909821	950602		22210.	942770.	.239480	.394885		, 98690	941476	.866115	.765996	505160. 117017.	389827	.267290	.160547	.07709		297610.	.060523	.137406	\$239335	.359050	20884.	-75110- -738400	104548.	.925222	978423		41174 a
.027626	.001183	C71010.	126164	.225276	• 343235	.471626	.601529	123427 .	916581	973529	.998674	166524.	.173973	.088030	.004780	. 000498	-1-010705	945098	826909	621943	096222*-	200554 .	345635	640565	805951	901683	- 947559	C61/07*-	747670	116010.	.211056	.429280		205000	948874	.877011	• 779649	146500.	+05835	-281912	.172755	.086040	301100-	-01010.	.052955	.126298	.225456	195346.	•471699 •01.497	284100.	831428	.916463	184679.	. 7000	
•23520•	.002633	.00/113	.115470	.211695	.327739	455311	.585511	5056018.	907388	968096	.997345	454998	.195587	.098836	.012660	011659	-1.041805 -1.016006	- 955895	845417	654566	292871	4610514	295074	613093	789753	892732	169649	110180	075//0*+	.063523	.183159	.440443		101500.	955793	.887507	103004	-018003	421939	296766	.185316	.095429	102000	221700.	045869	.115596	.211872	106156.	99533 9 9	414CBC.	1046014.	.907262	.968040	046799.	
126960.	.004637	084400.	105195	198426	.312423	* 439037	.569396	.09408 804504	447798.	.962169	£67566°	.502795	.221487	.108633	.021713	016126	-1.043158 -1.020795	965926	862702	- 684935	354181	8004FC.	238742	583365	- 772445	8A2948	041954-	CBIIC4	4/2//0°-	.055798	.157153	•413708	000000	. 995556	.962225	.897592	*806047	. 568357	438122	.311836	.198216	.105255	2054504	.004586	.039270	.105311	.198599	-312597	• 59138	9/649C.	064404 -	.897630	.962104	.995484	
.045906	.007182	484700°	871650°	185484	.297306	.422822	.553202	.0/9588 703500	. A87721	955753	911699.	.578073	.249769	111111.	•03180*	016836	-1-0-3369	975190	878838	713026	408561	8911CC.	- 175222	550862	753971	872310	934979	862/66		.046425	133997	.371941	000000 5	000000°C	.968165	.907255	.818764	- 108/0+	-+54367	+01/26.	.211441	.115506	+05640*	002693	033165	.095456	.185652	+84162.	• • 22935	002622.	754567.	.887580	.955679	\$0[E66*	
.052975	• 91 0 29 4	441100 •	C40260.	172883	.282403	.406682	• 536944	-664301 707303	. 877260	948854	.990224	•639555	.280187	.124989	• 042612	015300	- 1.03424 - 542420	983704	893907	739018	458854 3258854	+ 190054	-,102531	515034	734263	850819	- 929658	104064	262840	.035728	.114234	•329189	116000	000200	.973608	.916486	-+118- 	•/23399	.470656	.342554	.224976	.126173	346010	CO2010.	.027558	.086041	.173045	•282584	• 406807	8449F4•	CE1087.	.877122	.948772	• 990206	
.060573	013840	182000.	1242201	160637	667795.	.390636	.520640	•648836 744488	. 866610	941480	986815	.712384	al3145.	•133591	•053842	-•012137		- 991487	907998	763229	506443	199900	018431	- 475630	713187	848478	923747	100000	05/404	-024297	.098666	.295755	000002		978547	.925272	-943169 	108161.	486972	.358170	.238806	•137243	+0CD00.	2000287	022455	.0770.	.160793	•267915	511065.	90002C.	.766530	.866266	941388 941388	986/89 2007	

.

59

.157254	•149354	.142417	.135136	.126755	.117612	.108340	• 09260
.090556	.082476	.075370	.069612	.065550	.063428	•0+290•	. 065642
21EU10.	4109/0°	816490.	966501• 105557	711CE1.	CCCC26	248/66**	275090°1-
408240-1-	FG1950-1-	<10460.1-		10220-1-	-1-019570	-1-013510	-1-00-01-
- 999582	- 991604	982923	- 973520		- 952488	- 940854	- 928446
915216	901110	886058	869976	852776	834366	814625	793436
770749	746545	720675	692791	662530	629874	594864	557071
514931	467638	417005	••362583 55533	-,301383	+10162		053413
105/20.	541701.	.841514	.655645	• 129109	100826.	1204001 T	02/CCT+T
010176	094391	- 167231	230919	287428	-338159	- 384273	++692+-
468225	507922	544009	~.576739	606829	634609	660613	685034
707858	729149	749073	767762	785290	801715		831525
	857664	869466	880432	890566	899894	90844]	916229
- 940576	E4/626°-	000370		426546°-	505026 . -	0/[\$66	7/5/56°-
5/5004 ··	296150	112204 -	- 049855		- 055299	• 1007 •	100100 -
- 047599	041755	034446	025751	015904	005265	005813	017016
.028104	038880	.04908	.057818	.064944	-071212	.078029	.086557
.097+72	.112066	.131560	.154748	.180107	.206812	.234611	.263023
.291802	.320372	.347910	.372612	.389172	.378431	.102037	
	000051-	000005 5	50000				
000000	.008715	0111200	000000	000500	. 000358	170480	010500.
.978660	442240 ·	746830	A14540.	23544 ·	011040.	• 7007 •	
.925605	916847	907646	.898011	887952	877482	866609	855345
.843703	.831693	.819329	.806623	.793588	.780237	.766586	.752648
.738438	.723972	.709263	•694329	.679185	-663846	•648330	.632651
.616828	.600876	.584813	.568655	.552420	.536124	.519786	•503422
.487050	.470688	• 454 353	•438063	.421835	• 405687	.389637	-373702
.357899	.342245	.326759	.311457	• 296356	.281473	.266824	.252426
+62852.		168012.	269/61.	65/491 •	.172167	196691.	•148102
CC00030	200021.	469411°	249401.	918460°	554680.	464910.	• 068011
013415	100000	105CFU.	500050°	11250	061/200		
.000268	.001086	002451	004362	.006813	009802	.013323	175710.
.021940	.027020	.032606	.038692	.045274	.052346	.059901	166790.
.076429	.085385	.094791	.104638	.114915	.125611	.136714	.148213
.160095	.172347	.184956	.197907	.211186	.224777	.238667	• 252838
.267276	.281963	.296884	.312021	.327358	-342877	.358560	.374392
505045.	974004*	54524 .	95995 4 .	141664.	GB+1/+-	+C8/8+•	822 4 04.
060020	42405C.	112666.	45479C.	//6586.	779109*	199710.	055550. Fige 35
766964	180574	-7978A	.806878	. A19544	014421 .	- 463647	. 855448
.866678	.877518	.887959	.897990	907601	.916781	925519	108550
.941635	.948995	.955878	.962279	.968192	.973611	.978531	.982948
.986858	.990257	141666.	.995508	• 997354	.998678	11,9994.77	
.711768	•645392	.594448	539330	.491980	• • • • 8305	• • 08459	•371134
•11055•	841505°	140548		106812.	012/61.	•195951	165621.
1010010	11011	100290	110000	0102040	- 113414	0/40010	
.051947	057252	.065675	.077898	.095274	121348	100409 -	-1.080718
-1.064847	-1.064851	-1.063964	-1.062705	-1.061028	-1.058946	-1.056476	-1.053634
-1.050407	-1.046746	-1.042604	-1.037969	-1.032838	-1.027202	-1.021021	-1.014210
-1.006692	998429	989400	979577	968933	957458	+.945147	931965
+98/16*-	56/206*-	886708		851238	631708		788425
1454D1	1000514-	- 11108	- 3001384	- 242455	4/04/0"-	666//C*=	006986*-
-110888	101152	511414.	596149 596149	50502	100401-	C40501.1	1.157352
1.129748	1.022688	864665	687359	.512968	353863	-214830	.096516
003612	089689	165421	232817	-,293064	347038	395604	E8E044
483482	524526	562120	596212	627279	656062	683028	708300
	753891	774478 - 000235	- 793789	- 811900	- 828863		859557
	958653 958653	04432777	004404	CU1414		449166	104046 -
				ゴートフート・ 」	****	7 1070A+)	

7 .036788 2038166	1 .031692	9 .104781	7 • 688613			120584. 0	855233	7 .752520	5 632552	0 •503384	43/3/24 43/3/24	0/50270 1 0/102120	3 .068038	5 .017479		067969	6 .148290	8 .252941	2044/C4 00	915EE9° 6	3 .752489	6 .855364	25/556.0		5 .379138	6 .176819	CUNBUL - 5	8 -1.080633	1 -1.064035	6939482	9 795965	2	0 1.156927		5702516	8855445	025746 - 4	7396480	E1+020 E	3 .038586	6 • 1000Ul	2001020		100000	C3UC04. C	0 .855086	0 .752353	1 632427	440000 A	
29261	02029	.095449	18865.			C6986.	86650	.76645	.64822	-51974(38968.	100041	07652	.02205	•00028	05993	.13678	.23876	00207	.61752	.73862	.843756	04676	14666	41840	18900	07465	-1.072818	-1.06729	95262	81832	11475	1.09610	1+523+1	6770+	84039	- 935454	11669 -	02084	02803	96/60"	22805		10100	94993	86636	.766291	60899	90415.	22727 .
818706	.008984	.088052	161952.			046064°	877380	.780109	.663736	.536070	16960 4 .	120102.	.085465	.027141	.001117	.052375	.125678	.224876	4/67404 053154	.601607	.724400	.831783	01/016.	.998676	458197	.205221	073579	674497	-1.070217	16496		198396	.959790	.362264	649900	824319	926583	946160	018950	.017763	211160.				1000440	877245	246677.	.663595	000056.	11 × 1 × 1 × 1
988242 039348	001832	.081297	-20102.			022696.	. AB7856	.793460	.679070	.552357	•21838	- 1940401	094854	.032731	.002497	.045300	.114977	.211282	004/25*	.585571	.709735	.819458	362106 .	136799.	.500602	.227282	c/6c51.	049555	-1.072800		658842	2720675	.780063	.520961	620A93	807153	916894	- 997814	014455	008049	168480.	125002.			012644	.887728	.193294	.678922	202266.	
034750	011844	.073707	E07271.	010111	.40000	.995575	897920	.806497	.694210	.568584	438058.	.107705	104681	.038819	.004422	.038714	.104695	.198000	571215.	569438	64843	.806792	816/68.	.995503	.550169	.253812	078728	.145729	-1.075026	987173	877203	3375AD	588537	694623	224/87	788843	906360	99638	006879	000738	.07/833	604204 ·		.300000	8000044	.897800	.806333	.694057	5560454	
026716	020661	064532	.151811 301600	66010F*	3.200000	104799.	699206°	.819206	141607.	.584735	.454340	. 326191	.114935	045400	.006887	429260	.094844	.185045	186962.	.553223	.679740	.793798	.887883	EELE66.	.611041	.282395	6/81c1.	167311.	-1.076894	+01166	894381	718687	148504.	.870766	554957	769332	894955	994515	.004670	008169	.069278	.376504		3.100000	- 94824 - 948247	907450	.819045	.708983	87949C .	
988653 014117	026035	.054121	.132019		.120000	.998714	C1/2/40	.831573	•723846	.600791	470667	61224E.	.125605	.052468	.009888	.027035	.085433	.172433	-282067	536945	.66444]	.780491	954778°	.990246	.655493	.312197	844841. .091385	.098316	-1.078437	-1.006265	910435	746325	.242572	1.027089	517125	- 748538	882675	+10/06	.022182	013983	624640 .	-1345300 -345390		.120000	211044	.916666	.831416	.723684	•99009•	
986706 -005036	033896	•043063	.116709	000064 .	. 79000	.99496		.843587	.738311	e16735	•487021	126126.	136681	.060016	• 013421	.021952	.076471	.160176	9/6/9Z.	.520620	.648962	.766883	.866596 041595		.677429	343855	126961.	.086183	-1.079708	-1.014682	- 925443	772017	.102132	1.131890	- 475792	726320	869517	989439	.052775	018116	2/1640.	.315615	. 790000	.79000	- 97860 -	925438	+E4E48*	.738146	419919. • • • • • • • •	~~~~~

013342 0110 059986 066 136889 146 238905 255
23 .009810 39 .052420 67 .125775 14 .225011
168 .00682 48 .04533 79 .11506
5 .00435 2 .03874 1 .10477
002455 032652 094921
• • • •
.001088 .027059 .085503 .172553

 . /94188
 . /34961
 .651940
 .590487
 .536725
 .500650
 .463153
 .422861

 . 316712
 .353493
 .323188
 .295173
 .269754
 .248643
 .232176
 .219941

 . 116072
 .146792
 .1146792
 .1146792
 .1146572
 .141623
 .159193
 .133624
 .248643
 .232176
 .219941

 . 115071
 .1466792
 .141623
 .131655
 .1106577
 .16002473
 .1900473
 .1904219
 .1601238

 -10018842
 -10014842
 -1001473
 -1904489
 .1004473
 .999365
 .1004473
 .999365
 .1004473
 .999365
 .9056427
 .1004219
 .10016577
 .10105471
 .1005575
 .10105471
 .1005471
 .1015478
 .1005471
 .1015478
 .1005471
 .1015476
 .1005471
 .105575
 .1015479
 .1005471
 .105575
 .1015476
 .1015476
 .1055647
 .060572
 .1015577
 .050879
 .050879
 .050879
 .050879
 .050879
 .050879
 .050879
 .050879
 .050879
 .050879
 .050879
 .050879
 .050879
 .050879
 .050879

Figure A.1- Concluded

• TEST CASE *

PROGRAM PERTURB
CALCULATES NONLINEAR MULTIPLE-PARAMETER
CONTINUOUS OR DISCONTINUOUS
PERTURBATION SOLUTIONS
WHICH REPRESENT CHANGES IN EITHER
GEOMETRY OR FLOW CONDITIONS
BY EMPLOYING A STRAINED-COORDINATE PROCEDURE
UTILIZING UNIT PERTURBATIONS DETERMINED FROM
PREVIOUSLY CALCULATED
"BASE" AND "CALIBRATION" SOLUTIONS
DISPLACED FROM ONE ANOTHER BY SOME REASONABLE
CHANGE IN GEOMETRY OR FLOW CONDITION
WRITTEN BY
JAMES P. ELLIOTT AND STEPHEN S. STAHARA
NIELSEN ENGINEERING AND RESEARCH, INC.
MOUNTAIN VIEW, CALIFORNIA

Figure A.2-Abbreviated print output for sample case

_ __

TEST CASE - 4 PARAMETER PERTURBATION OF A SUPERCRITICAL CASCADE FLOW

....LIST OF INPUT PARAMETERS

N = 191

A = -1.0 B = 1.0

NPARAM = 4

....STRAINING OPTIONS

NUMBER OF FIXED POINTS: 5

FIXED POINTS WILL BE AUTOMATICALLY DETERMINED BY THE PROGRAM FOR ALL SOLUTIONS AS FOLLOWS:

TWO END POINTS Point of Maximum CP CPCRIT (1st Point) CPCRIT (2nd Point)

•••••MACH NUMBER• VALUES OF PERTURBATION CRITICAL VALUE OF CP:	PARAMETERS	
M0 = .7800		
QO(1) = .7800	(MACH NO.)	
QO(2) = .1100	(TAU)	
Q0(3) = 3.2000	(PITCH)	
$Q_0(4) = .3000$	(ALPHA1)	
CPCRIT =4940		

.....LOCATIONS OF MIN., MAX., AND CRITICAL PTS.

(POINT NO. 53)

Figure A.2- Continued

MAXIMUM AT X = 0.0000 (POINT NO. 96) 2 CRITICAL POINT(S): 1ST AT X = .5001* (AFTER POINT NO. 48) 2ND AT X = .4273 (AFTER POINT NO. 139)LOCATION OF FIXED POINTS (* DENOTES POINT ON LOWER SURFACE) XFIX(1) = 1.0000* XFIX(2) = .5001*

XFIX(3) = 0.0000 XFIX(4) = .4273 XFIX(5) = 1.0000

(* DENOTES POINT ON LOWER SURFACE)

MINIMUM AT X = .4220*

RESULTS OF COMPUTATIONS ON 1ST CALIBRATION SOLN:

```
....MACH NUMBER,
    VALUES OF PERTURBATION PARAMETERS,
     CRITICAL VALUE OF CP:
         M1 = .7900
 (** DENOTES PERTURBATION FROM BASE VALUE)
        **G1(1) = .7900
                            (MACH NO.)
         Q1(2) = .1100
                            ( TAU )
         Q1(3) = 3.2000
                            ( PITCH )
         Q1(4) = .3000
                            { ALPHA1 }
         CPCRIT = -.4638
....LOCATIONS OF MIN., MAX., AND CRITICAL PTS.
  (* DENOTES POINT ON LOWER SURFACE)
    MINIMUM AT X = +5197*
                             (POINT NO. 47)
    MAXIMUM AT X = 0.0000
                             (POINT NO. 96)
    2 CRITICAL POINT(S):
        1ST AT X = .5788*
                             (AFTER POINT NO. 43)
        2ND AT X = .5149
                             (AFTER POINT NO. 144)
....LOCATION OF FIXED POINTS
 (* DENOTES POINT ON LOWER SURFACE)
         XFIX(1) = 1.0000*
         XFIX(2) = .5788*
         XFIX(3) = 0.0000
```

XFIX(4) = .5149 XFIX(5) = 1.0000
```
••••••MACH NUMBER•
VALUES OF PERTURBATION PARAMETERS•
CRITICAL VALUE OF CP:
```

M1 = .7800

(** DENOTES PERTURBATION FROM BASE VALUE)

Q1(1) = .7800 (MACH NO.) **Q1(2) = .1200 (TAU) Q1(3) = 3.2000 (PITCH) Q1(4) = .3000 (ALPHA1) CPCRIT = -.4940LOCATIONS OF MIN., MAX., AND CRITICAL PTS. (* DENOTES POINT ON LOWER SURFACE) MINIMUM AT X = .5197* (POINT NO. 47)

MINIHOH AL	A = +019/*	(PUINI NU. 4/)	
MAXIMUM AT	X = 0.0000	(POINT NO. 96)	
2 CRITICAL	POINT(S):		
15T AT	X = .5774+	(AFTER POINT NO.	43)
2ND AT	X = .5175	(AFTER POINT NO.	144)

*****LOCATION OF FIXED POINTS (* DENOTES POINT ON LOWER SURFACE)

> XFIX(1) = 1.0000* XFIX(2) = .5774* XFIX(3) = 0.0000 XFIX(4) = .5175 XFIX(5) = 1.0000

RESULTS OF COMPUTATIONS ON 3RD CALIBRATION SOLN:

.....MACH NUMBER, VALUES OF PERTURBATION PARAMETERS, CRITICAL VALUE OF CP:

M1 = .7800

(** DENOTES PERTURBATION FROM BASE VALUE)

Q1(1) = .7800	(MACH NO.)
01(2) = .1100	(TAU)
*•Q1(3) = 3.0000	(PITCH)
Q1(4) = .3000	(ALPHA1)
CPCRIT =4940	

*****LOCATIONS OF MIN** MAX** AND CRITICAL PTS* (* DENOTES POINT ON LOWER SURFACE)

MINIMUM AT	X = .4382*	(POINT NO.	52)
MAXIMUM AT	X = 0.0000	(POINT NO.	96)
2 CRITICAL	POINT(S):		
1ST AT	X = .5165*	(AFTER POIN	T NO. 47)
2ND AT	X = .4520	(AFTER POIN	T NO. 140)

•••••LOCATION OF FIXED POINTS (* DENOTES POINT ON LOWER SURFACE)

> XFIX(1) = 1.0000* XFIX(2) = .5165* XFIX(3) = 0.0000 XFIX(4) = .4520 XFIX(5) = 1.0000

••••••MACH NUMBER• VALUES OF PERTURBATION PARAMETERS• CRITICAL VALUE OF CP:

M1 = .7800

(** DENOTES PERTURBATION FROM BASE VALUE)

Q1(1) = .7800	(MACH NO.)
Q1(2) = .1100	(TAU)
Q1(3) = 3.2000	(PITCH)
**Q1(4) = .5000	(ALPHA1)
CPCRIT = -,4940	

••••••LOCATIONS OF MIN•• MAX•• AND CRITICAL PTS• (* DENOTES POINT ON LOWER SURFACE)

HINIMUM AT	X = .4058*	(POINT	NO. 1	54)
MAXIMUM AT	X = 0.0000	(POINT	NO.	96)
2 CRITICAL	POINT(S):			
15T AT	X = .4903*	(AFTER	POINT	NO. 48)
2ND AT	X = +4360	(AFTER	POINT	NO. 139)

•••••LOCATION OF FIXED POINTS (* DENOTES POINT ON LOWER SURFACE)

> XFIX(1) = 1.0000* XFIX(2) = .4903* XFIX(3) = 0.0000 XFIX(4) = .4360 XFIX(5) = 1.0000

UNIT PERTURBATION OF CP AND UNIT STRAINING OF XBASE FOM CALIBRATION SULUTIONS 1 THHOUGH 4

UINT	XBASE	 IST CAL XSTRUNIT 	B SOLN *	 ZND CAL XSTRUNIT 	B SOLN * CPUNIF	* 3RD CALB XSTRUNIT	SOLN + CPUNIT	<pre>4 4TH CALE XSTRUNIT XSTRUNIT</pre>	SOLN +
-	, 9995	9999.	-3.6772	.9996	13.0723	. 9995	0683	• 9995	0125
- ~	.9987	9989	5.8554	9999	10.2272	.9988	0697	.9987	4E10
ריי ו	◆ 265.	.9978	6.7075	.9978	8.9041	.9975	0590	+266.	0264
4	• 9956	.9969	5.8289	E966°	8.3875	.9957	0538	• 9955	-•0263
ŝ	2666*	E466.	5.6358	6466*	1.9171	•666 •	0508	1666.	0260
÷	• 9903	6166 .	5.5107	.9918	7.6585	• 9907	2640	1066.	0255
- 0	6986 .	06870 0667	1.44°U	1484.	+)(+)(+)	4/86.		1004.	1960 -
nc o	0584.	1686.		1004.	1076.T	05040		1707.	1020-
, ,	7570.	0704 •	10000 10000 10000	- 707	7.1532	.9745		5732	0273
25	9683	5679.	5.5788	5279	7.0535	.9693	6640	.9676	0270
2	.9623	.9683	5.5916	.9681	6.9361	.9636	0421	.9616	0262
Ē	.9559	.9628	5.5484	.9627	6.7704	•9574	0393	.9550	0242
14	0646*	.9570	5.3490	• 9569	6.4648	.9507	6460	.9480	0223
5	.9416	•9508	5.0069	.9506	6.0231	• 9435	0298	.9405	0212
16	9338	-9442	4.6407	.9440	5.5879	• 9359	0256	• 9325	0200
17	.9255	.9372	4.3709	.9370	5.2574	•9279	0227	.9240	0193
18	.916	.4298	4.2246	• 9536	5.0385	•616•	0211	.9150	0195
19	.9075	•9220	4.2128	.9218	4.9532	• 91 05	0213	•9056	0209
20	.8978	6616.	4.3770	•9136	5.0572	-9012	0238	.8958	0233
21	.8877	• 9054	4.7068	.9051	5.3353	•8914	0279	• 8855	- 0257
22	.8773	.8966	5.0993	.8962	5.6726	.8813	0317	•8748	0278
53	.8664	.8874	5.4668	.8870	5.9736	• 8708	0347	.8637	0297
*	.8551	.8779	5.7992	.8775	6.2320	• 8598	4160	• 8522	0316
ŝ	· 8435	.8681	6.1138	.8677	6.4713	-8486	6660 -	- 8+0+	0335
8	•831 •	•8579 •••	6.4157	.8575	6.7004	.8370	0422	.8281	0353
27	1618.	6449	6.7070	.8470	6.9180 7	.8650	***0 * -	CC18.	4970 °-
82	.8063	.8368	6.9161 	•8363	1.1126	.912/		5208.	2850
5	EE61 •	8528	1.2083	642 8 .	1.2004	1008.	2/ +0 • -	- 1896	****
2	.7800	-8146 2223	1.4079	8140	1000	. 1872		0511.	
≓ ;	.007.	1508.	7000°.					110/*	
2	*10		9149°/	0067 *					
	13861.	5611 •	8221.8	09//.	0264.1	1001.		00014	
	1001	1010				12014	00000-	2011	
۲ X	0601	D 4 C / *				CC1/*	4300	3601.	
	1440*	1001	0005°4	41414	0 4572	14014	1920 -	-0000 	1000 -
5 2	45.44	7145	10.2836	7156		- 4745 - 4745		.6570	
2	.648	2014	10.9615	. 7025	10.5565	.6596	0867	.6411	0705
40	6324	-6902	11.5372	.6893	11.1326	.6445	+E60	• 6252	0743
41	.6166	.6769	12.0919	.6759	11.7063	• 6292	1003	.609	0774
42	.6007	•6635	12.6054	• 6624	12.2629	•6138	1075	•5928	0793
64	.5846	.6500	13.0992	• 6489	12.7943	.5982	1142	•5764	0793
4	•5685	•6364	13.4932	• 6352	13.2977	•5826	1197	.5600	0772
4 10	.5523	.6227	13.7283	• 6215	13.6960	.5670	-1230	.5435	0755
0 1	. 0950	.6090	c/28.61	• 60 / B	C840*41	5144.	1638	597G.	
	1410.	1040.	1.0203		1/62	4070.		2016.	
	400C4	CTBC.	13.14/0	2086.	10.239/ E 0450	0710.	2005 ·	075 4 •	
				C 20C •		1205			
			00/0°7-	4040. 47040					0010
- 0 - 0	HE T	0203.	0200-0-	0 - 0 - 0 - 0	1411.4-	5654.	1000.0	5027	6960 ·
:5	0227	5884-	-2.0468	5 8 4 T	-8-7206	• • 35B	1190-	4136	.0953
) 1 1	950	4696	-1.9189	.4685	-8.5696	1614.	.0583	.3978	.0947
5.5	• 3898	.4511	-1.8124	.4501	-8-4372	.4026	.0561	.3821	.0946

Figure A.2- Continued

	7440. COOC.		.3206 .0969	• 3057 • 097B	• 2909 • 0986	+640, 6012.	.2479 .1012	.2341 .1021	-2206 -1031	.1944 .1052	.1817 .1065	•1695 •1081	1011. CYCL.	•1347 •1143	.1239 .1161	•1134 •1174	•1034 •1187	•0738 •1204 •0846 -1235	.0759 .1282	.0676 .1350	• 0597 • 1398	9/FI. ESCU.		•0330 •1443	.0275 .1498	.0225 .1533	•0180 •1542	1051 . 2010.	•0073 •1614	.0048 .1540	.0027 .1317	•0012 •0949	0.000 0.0076	•0003 -•0330	•0012 -•0754	•00491295	.00761382	•0108 -•1412	•0186 - 1436	.02331420	.02851387	-0342 -1351 -0405 -1310	.04721293	.05441273	• 0621 -• 1259	0010 1010.	• 0880 - 1314	.09761257	.10771198	•]181]169	-14031149	•1520 -•1142
	6400. 6670.	ç2ç0.	.0518	.0513	.0510	,050. 2020.	.0503	• 0503	.0504 .0505	.0505	.0503	66 7 0.	5640.	.0482	.0480	• 0482	• 0 • 8 · 0	4840	• 0477	.0478	• 0490	5640 ·	4040 ·	.0469	.0500	.0537	• 0547	- 0440	-0485 -0485	.0472	.0388	2220.	0028	.0144	•0513	.1081	.151	•1184	1283	.1263	.1206	•1154	.1109	1111.	1211.	-1142	.1203	.1171	.1141	•1122	.1131	PEII.
C.0C	90000	.3537	.3378	.3220	• 3065	1123.	-2612	• 2466	-2324	.2048	.1915	.1785	7531.	.1419	•1305	• 11 95	•1089	8860.	•0199	.0712	• 0629	1220.	1140.	.0348	.0290	.0237	• 0190	0110	.0077	.0050	• 0029	F[00.	00000	£000 •	.0013	•0051	• 0078	.0111	E610.	• 0242	.0296	• 0355 • 04 10	.0489	.0564	.0644	8210.	6160 ·	.1012	.1116	1224	.1455	.1576
	4020.4-	-8.1763	-8.1262	-8.0786	-8.0281	-1.4026	-7.7894	-7.6871	-7.5777	-7.3370	-7.2045	-1.0621	-0.7550	-6.5767	-6.3754	-6.1490	-5-9059	-5.3671	-5.0885	-4.8528	-4-6923	59 14 .4.	-3-0266	-2.4638	-2.1314	-2.2073	-2.3516	1241-1-	1.8499	2.7560	2.4403	1000-1	.2299	2795	- 6713	-1.2241	-2.3637	-4.1376	-6.0056	-5.7458	-5.628]	-5-8660	-6.7808	-7.1860	-7.5935	-8°1047	-8.8902	-8.9242	-9.0467	-9.2338 -9.4244	-9*5943	-9.7379
	7164.	.3955	.3776	.3600	.3426	0675.	.2920	.2757	-2598	.2289	.2141	•1996	CC81.	1586	.1459	.1336	.1218	2011.	.0894	•0196	•0103	9190*	0,00	.0389	.0324	• 0265	.0212		00.46	• 0056	.0032	4100.	0000000	•000•	• 0015	.0058	•0000	.0128	0221	.0277	.0339	0400-	.0560	.0646	.0737	+580.	1045	.1159	.1278	.1402 .1531	.1665	.1804
	-1.6864	-1.6084	-1.6712	-1.6843	-1.7024	0/1/01-	-1.7277	-1.7330	-1.7435 -1.7605	-1.7843	-1.8124	-1.8415	-1.807/	1.609.1-	-1.9117	-1.9295	-1.9/5J	0200.2-	-2.1597	-2.2410	-2.4085	+/00*/+	-2.4087	-2.5850	-2.9590	-3.4047	-3.6285 -3.6285	7055.5-	-3.4626	-3.5612	-3.0212	261/*1-	• • • • • •	5163	-2.6946	-5.8699	-6.1156	-6.1800	-6.6293	-6.3905	-5.8672	00FE.C-	-4.8464	-4.8099	-4.8938	7001°.7-	-5.0457	-4.7993	-4.6563	-4-5874	-4.5032	-4.4525
		.3964	.3785	.3608	4646.	2025.0	1262.	.2764	•2604	.2295	.2146	.2000	7251. 7271.	1590	.1462	•1339	1221.	1011.	.0896	•0798	.0705	9190.	0990	.0390	• 0325	.0266	.0212	CO10.	.0087	.0056	• 0032	CI00.	0000	+000+	.0015	.0058	•0089	1210.	.0220	.0275	1660.	• 0 • 0 •	.0557	-0642	0133	0000 -	.1040	.1153	.1271	•1524 •1524	.1657	• 1795
0.1.0	50,5°	3425	.3271	.3118	.2968	9182 •	.2529	• 2388	.2250	.1983	.1854	•1729	1001.	.1374	.1264	.1157		1640.	.0774	.0689	.0609	45CD 4	8010.	.0337	.0281	.0230	•0184 •0142	9010	.0075	•0049	•0028	5100°	0000	E000 .	-0012	•0048	• 100 •	•0105	0183	.0229	• 0280	7950.	.0462	• 0533	.0608 	• 000	.0863	.0957	.1055	•11264 •1264	.1375	.1490
	ر ب م	17	. .	60	۶ ۱	ע ת ע ת	n 4 5 4	ہ 5	66 7	6.8	69	01		10	74	75	2;	78	19	0 H	8) 4 (А5	д6	Р.	80		10	26	E6	1 U	28	16	86	100	101	201	104	105	901	104	109	110	11	211	114	115	116	116	119	120

80503 .6694 40451 .6845 80400 .6992 210357 .7144

73

•0275 •0299	.9987 .9995	.0648 .1357	•9987 •9995	9395 -1-9799	9666. 9666	-7.6871 -24.6958	9666°	• 9995 • 9995	190 191
.0283	•9974 •9987	6150.	-9987 -9987	1.1609	8199. 8199.	-1.4918 -7.6871	8/66°	F166.	190
.0261	.9356	.0160	1200.	2.3418	• 9962	-4223	• 9962	• 9955	1 HB

Figure A.2- Continued

```
*****************************
* OUTPUT FOR CASE NO. 1 OF 19 *
***********************************
.... MACH NUMBER+
    VALUES OF PERTURBATION PARAMETERS.
    CRITICAL VALUE OF CP:
         M2 # .7750
         02(1) = .7750
                           (MACH NO.)
         Q2(2) = .1200
                           ( TAU )
                           ( PITCH )
         Q2(3) = 3.0000
         Q2(4) = .5000
                           ( ALPHA1 )
         CPCRIT = -.5095
....LOCATIONS OF MIN., MAX., AND CRITICAL PTS.
 (* DENOTES POINT ON LOWER SURFACE)
    PERTURBATION SOLN:
         MINIMUM AT X = .4771*
                                 (POINT NO. 52)
         MAXIMUM AT X = 0.0000
                                 (POINT NO. 96)
         2 CRITICAL POINT(S):
             1ST AT X = +5420*
                                 (AFTER POINT NO. 48)
             2ND AT X = .5065
                                 (AFTER POINT NO. 139)
    COMPARISON SOLN:
         MINIMUM AT X = .4870*
                                 (POINT NO. 49)
         MAXIMUM AT X = 0.0000
                                 (POINT NO. 96)
         2 CRITICAL POINT(S):
            1ST AT X = .5493*
2ND AT X = .5086
                                 (AFTER POINT NO. 45)
                                 (AFTER POINT NO. 144)
.....FINAL PRINTOUT AND GRAPHICAL DISPLAY OF CP
                                                                   H = MAXIMUM VALUE OF CP = 1.1517
                                                                   L = MINIMUM VALUE OF CP = -1.0527
                                                                   * = CRITICAL VALUE OF CP # -.5095
                                                                   P = VALUE OF CP PREDICTED BY PERTURBATION SOLUTION
                                                                   C = VALUE OF CP IN COMPARISON SOLUTION
                                                                   5 = AGREEMENT BETWEEN P AND C
PT XBASE
           CPBASE XPERT
                           CPPERT XCHEK
                                          .9995
             .6608
                     .9995
                                    .9995
                                           .7155
                                                                  Ρ
                            .8210
                                                   .8108
                                                                    С
                                                                                                           .
 1
                                                                       PC
                                                                                                           ٠
     .9987
             .5751
                    ,9988
                            .6594
                                    .9987
 2
                                           .6231
                                                   .6506
                                                                         PC
                                                                                                           ٠
     .9974
             .5086
                    .9976
                            .5706
                                   .9974
                                           •5555
                                                   .5626
 3
                                                                           PC
     .9956
                    .9960
                                                                                                           ۰
 4
             .4543
                            •5145
                                    .9956
                                           .4972
                                                   .5050
                                    .9932
                                           .4469
 5
     .9932
             .4077
                    .9938
                            .4637
                                                   +4533
                                                                             5
                                                                                                           ٠
                                                                              PC
                                                                                                           .
     .9903
                    .9912
 6
             • 3659
                            +4197
                                    .9903
                                           .4022
                                                   +4081
```

Figure Þ N 1 Continued

1 ر.


```
* (UTPUT FOR CASE NO. 19 OF 19 *
```

```
....MACH NUMBER.
         VALUES OF PERTURBATION PARAMETERS.
         CRITICAL VALUE OF CP:
              M2 = .7900
              02(1) = .7900
                                (MACH NU.)
              02(2) = .1200
                                ( TAU )
              Q2(3) = 3.0000
                                ( PITCH )
                                ( ALPHA1 )
              Q2(4) = .2000
              CPCRIT = -.4638
Ę.
gur
    .....LOCATIONS OF MIN., MAX., AND CRITICAL PTS.
      (* DENOTES POINT ON LOWER SURFACE)
0
≥
         PERTURBATION SOLN:
Ν
              MINIMUM AT X = .6154*
                                     (POINT NO. 51)
1
              MAXIMUM AT X = .0000*
                                      (POINT NO. 96)
              2 CRITICAL POINT(S):
Cont.
                  15T AT X = .6726*
                                      (AFTER POINT NO. 48)
                 2ND AT X = .6186
                                      (AFTER POINT NO. 138)
inued
         COMPARISON SOLN:
              MINIMUM AT X = .6939*
                                      (POINT NO. 36)
              MAXIMUM AT X = 0.0000
                                      (POINT NO. 96)
              2 CRITICAL POINT(S):
                  15T AT X = .7230*
                                      (AFTER POINT NO. 34)
                                      (AFTER POINT NO. 155)
                  2ND AT X = .6903
    .....FINAL PRINTOUT AND GRAPHICAL DISPLAY OF CP
                                                                        H = MAXIMUM VALUE OF CP = 1.1565
                                                                        L = MINIMUM VALUE OF CP = -1.1128
                                                                        * = CRITICAL VALUE OF CP = -.4638
                                                                        P = VALUE OF CP PREDICTED BY PERTURBATION SOLUTION
                                                                        C = VALUE OF CP IN COMPARISON SOLUTION
                                                                        s = agreement between P and C
     PT XBASE
                 CPBASE XPERT
                                CPPERT
                                      XCHEK
                                               CPCHEK CPPINT H------
                         .9997
                                        .9995
          .9995
                  .6608
                                 .7696
                                                .7942
                                                        .7631
                                                                        C٢
      '2
          .9987
                  .5751
                         .9992
                                 .7513
                                        .9987
                                                .7350
                                                        .7120
                                                                          5
                                                                                                             ٠
          .9974
                                                                            CP
      3
                  .5086
                         .9983
                                 .6791
                                         .9974
                                                .6519
                                                        .6249
                  .4543
                         .9971
                                 .6098
                                        .9956
          .9956
      4
                                                .5805
                                                        .5545
                                                                              $
          .9932
                                                                               C٢
      5
                  .4077
                         .9956
                                 .5560
                                         •9932
                                                .5367
                                                        +4993
```

СР

79

.9903

.3659

.9938

.5100

.9903

.5007

.4500

1 0	с т С	CP	C P	. .	۔ ۲	. a. 	. d.	с Ъ	с (С (. a.	e U	م د ن	<u>ل</u> م	۰ ب	۹ U	a. (. д. Э	C D	CP C	۰.	a.	L																												
	• 3639	• 3257	• 2894	4457. 1010	2122.	9471.	•1614	•153 4	•1486	1428	1252	•1150	•1044	•0933	- U860 - 0736	.0671	.0638	• 0638	.06/1 .0738	•0836	• 0 96 4	.1137	•1362	- 1605 -	5150 -	7695	-1.0096	-1.1107	-1.1113 -1 1000	-1.1054	-1.1039	-1.1010	-1.0979 -1.0015	-1.0909	-1.0871	-1.0830	-1.0/86	-1.0685	-1.0625	-1.0558 -1.0558	-1.0404 -1.0403	-1.0316	-1.0220	-1.0010 -1.0010	+686+	9772	9640	9497	9184	9012	- 8828	- 8629 - 2115	6918°-
9 .4632	0 .+229	5 .3867	5 • 3535	2626.	3C42 • 5	0 .2486 9446	5 .2322	6 .2200	3 .2109	1402.0	1912	5 .1837	1 .1760	2 .1681	01010 01510	1468	9 .1416	1 .1379	2051. 1	1 1406	1 .1459	9 .1512		81/0.1- 8	2011-1- 2	+ -1.1086	9 -1.1065	3 -1.1044	5 -1.1021	5 -1.0971	4 -1.0943	2 -1.0912	9 -1.0878	3 -1.0803	0 -1.0762	6 -1.0717	3 +1.000 + 5	9 -1.0556	8 -1.0494	7 -1.0427	1 ~1.0275	+ -1.0188	0 -1.0095		79769	1 9645	7 9513	5 - 0373	2 - 9064	9 8894	08713	• - 8519 • - 8312	38088
6 .986 ⁶	1684. 5	5 •97B(1 .9730				1.6	1 , 933(8 925	8 616 9	- 106 - 9	9 .887	0 .877	6 • 866		6 .831	6 •818(. B06	1 . 795 . 770	7 .766	5 . 752	9 .737	1 • 723		2 • 073	699	2 .647	2 632		1 .584	5.68	3 552	535 • • • • • • • • • • • • • • • • • • •		9 .487	5 70		421	6 • 405(.69C• E	7 .358	345. 5	4 .327	115.0	3 .201	5 .267	1 .252	9 • 238		161. 3	5 • 1 85	211. 2	
5 .45B	164. 0	2 .396	496.0		205. 1 375		3 .221	2 .199	9 1 91	2 • 108		140	9+1-8	041.		2 .118	-110	0 .102	560° 085	1 .077	2 .071		6 .064		7 .067	120. 6	8 .078	7 .086	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1221.0	5 139	0 .160	5 • 189	• • 235	6896	5 -1.110		5 -1.104	9 -1.100	9 -1.096	1 -1.086	9 -1.081	0 -1.075	000'l- 6	8 -1.052	0 -1.042	5 -1.031	+ -1.019		5978	1962	1 - 945 245 - 1	6 - 906
166. 4	646* *	5 .986	4 .483	2 .979	c/6• [290.067	1 .962	7 .957	0 .951	0 *6 * 0 *0			2 .920	E19. E	006. V 208. V		2 .883	7 .875	5 .866 878	949.0	0 +8+0	• • 831	6 .821	218. 4	200- I	6 .782	+ .172	6 .762	241 • B	91.131	1 .721	111. 1	5 .700	040° 040	8 .659	1 •637	14. I	0 .571	6 • 549	1 •527	2 .485	8 .463			4 .381	3 .362	546.	F2E• •		7 .268	6 •251	452. 4 272. 4	0 .201
152. 6	1.62. 1	195. 6	1 .225	3 • 195	101.		.103	980. 89	• • • 179	0/0.	101. 652	140.	3 • 029.	•016			038	9 051		990 - 6	660 - 4	109	119			5 154	161	• -•166	601 . - 0		160	3146	- 122		858	4964		- 975	974	973 - 973	2 - 967	5962	1957		9 - 935	3926	9 - 016		5 - 880	3866		C28 6	661 6
	16 84 31	97A	973	.968.				1669.	.925	916°	106. 0	.887	.817	.8664	1440 - 14	8314	.619	.906.	2802	766	.752	1 .738	.123	160/•	679.	1E99• E	64B	6320	-016	5846	568	.225	•5361	5034	.487	470		422	+051	1686.	.358.	.342	.327	5110	.281	3 .267.	- 525 - 525	1977		H .198	9 185	211.	
-	Ŧ	J	1	=.	<u> </u>		1	4	<u> </u>			<u>م</u>	22	A1 (5.5	27	2	2 4		ŝ	e.	4	5	ň	i m	ĕ	4	•	•		4	401	• •	*	ມີມ		<u>ام</u>	3	0, v 0 u	5 15	ល័	ι. Γ	ōō	Ģ	ία. Ι	ŏ	6 8	ð ið	õ	ŏř		~

۵.

٩

Figure A.2- Continued

************** * TEST CASE * ***********

* IST PAR. * 2ND PAR. * 3RD PAR. * 4TH PAR. MACH NO. *-----*--*--**

+ BASE SOLUTION: • .780 * .760 * .110 * 3.200 • .300 *

٠

.300 .500 • 300 .300 3.200 * 3.200 * 3.200 * 3.000 ***** ---------• 110 • • 110 • • 110 .120 + ******************************** * 062* -------.780 * .780 * • 780 • • 190 • • •780 + • 780 • .780 * • * ٠ IST CALIBRATION SOLN: 4TH CALIBRATION SOLN: ZND CALIBRATION SOLN: 3RD CALIBRATION SOLN:

* 19TH PERTURBATION SOLN: * .790 * .790 * .120 * 3.000 * .200 * ------------1 1 1 1 1 1 ---------.500 •400 .500 .500 .400 .500 .300 .500 .300 .500 .400 .500 .400 .400 ! .500 •400 .500 • 300 3.000 ***** ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ ٠ * ٠ ٠ * ٠ * 3.100 * -----3•000 3.000 3.100 3•000 3.100 3.000 3.100 3.100 3.200 3.200 3.000 3.000 3.000 3.000 3.100 3.300 .120 * ٠ * ٠ ٠ ٠ ٠ * ٠ ٠ ٠ * ٠ *****115 .120 .115 .120 .110 .110 .115 .120 .120 .110 .115 .120 .120 .105 .115 .120 .120 ----٠ . * * ٠ * * . * ٠ . ٠ ٠ ------. . ٠ . * į ***** ******* • 775 .780 .780 • 790 .780 .785 .785 • 785 .790 • 790 .790 .790 .790 .785 .785 .785 .790 .790 * ٠ * ٠ ٠ * * ٠ ***** 790 * . 775 -----.780 .780 • 785 .790 • 790 .780 .785 .785 .785 .785 • 785 • 790 .790 .790 . 790 . 790 -----* . * * ٠ * ٠ ٠ * * . ٠ . **IST PERTURBATION SOLN:** 2ND PERTURBATION SOLN: **3RD PERTURBATION SOLN:** 8TH PERTURBATION SOLN: 9TH PERTURBATION SOLN: 10TH PERTURBATION SOLN: **11TH PERTURBATION SOLN:** 12TH PERTURBATION SOLN: 14TH PERTURBATION SOLN: 18TH PERTURBATION SOLN: 4TH PERTURBATION SOLN: 5TH PERTURBATION SOLN: 6TH PERTURBATION SOLN: 7TH PERTURBATION SOLN: 13TH PERTURBATION SOLN: 15TH PERTURBATION SOLN: 16TH PERTURBATION SOLN: 17TH PERTURBATION SOLN:

Figure A.2- Concluded

Figure A.3- Abbreviated plot output for sample case

Figure A.3- Continued

Figure A.3- Continued

ľ

Figure A.3- Concluded

	PROGRAM PERTRE (INPUT.OUTPUT.TAPE1.TAPE5=INPUT.TAPE6=OUTPUT. % TAPE15)	MAIN MAIN	5	c	XLOCO(6) = CRITICAL PT. NO. 4 XLOCI(6) = CRITICAL PT. NO. 4 MAI	N 58 N 59
ž		MAIN	3	Š	THE CODDESDONTING CHECKED FROM THESE IS SPECIFIED BY ASELLI. MAI	N 60
		MAIN	2	ž	THE CONCEPTIONUING SUBSCRIPTS OF ALOUN AND ALOUN ARE SPECIFIED IN MAIL THE FIDES HERE AT ELEMENTS OF THE ADDAY LENCT. F.A. TA CELETITUE MAI	N 61
c	HAIN PROMAN PERIORB	MAIN	5	č	MAXIMUM POINT AND THE FIRST AND THIRD FRITICAL POINTS. ONF MAI	NAT
č	CALCULATES CONTINUOUS OF DISCONTINUOUS NOM INFAR PERTURBATION	HAIN	ž	č	SPECIFIES MAI	N 64
Ċ	SOLUTIONS WHICH REPRESENT & MULTIPLE-PARAMETER CHANGE IN EITHER	HATN	à.	č	MAI	N 65
ċ	GEOMETRY OR FLOW CONDITIONS BY EMPLOYING A STRAINED-COORDINATE	MAIN	ě.	č	NSELCT # 3 MAI	N 66
c	PROCEDURE. THE METHOD UTILIZES UNIT PERTURBATIONS, DETERMINED	MAIN	10	C	LSELCT(1) = 2 MAI	N 67
c	FOR EACH PARAMETER FROM A PREVIOUSLY CALCULATED COMMON BASE	MAIN	11	c	LSELCT(2) = 3 MAE	N 68
С	SOLUTION+ AND A CALIBRATION SOLUTION DISPLACED FROM IT BY SOME	MAIN	12	C	LSELCT(3) = 5 MAI	N 69
C	REASONABLE CHANGE IN THE RELEVANT PARAMETER. TO PREDICT NEW	MAIN	13	С	MAI	N 70
ç	NONLINEAR SOLUTIONS OVER A RANGE OF PARAMETER VARIATION.	MAIN	14	C	PROVISION IS ALSO MADE TO ALLOW THE USER TO SPECIFY THE POINTS IN MAI	N 71
ç		MAIN	15	c	THE BASE AND CALIBRATION SOLUTIONS THAT WILL BE HELD INVARIANT. TO MAI	N 72
c	THIS CUMPENT VENSION OF THE PROCEDURE IS CONFIGURED TO PREDICT AND	MAIN	16	ç	A MAXIMUM OF SIX. SEE THE SUBNOUTINE INPUT FOR DETAILS. MAI	N 73
C A	PLOT PRESSURE COEFFICIENTS ON A BLADE OR AINFOIL SURFACE, AND CAN	MAIN	17	C	[A]	N 74
ç	ACCOUNT FUR THE HUTLON OF	MAIN				N 75
ř	(1) A CTACHATTAN DAINT.	MAIN		t	THE	N 77
ř	(2) A MAXIMUSUFITAL POPERIOR DAINT.	MAIN	20		DIMENSION VERSE (200) ***********************************	N 78
č	OR STNUTANFOLISTY FOR ANY COMBINATION OF THESE.	MAIN				N 79
č		MATH	23		DIMENSION YBASE (200) . YCALB (200) . YPERT (200) . YCHEK (200) . YINTP (200) . MAI	N AD
č	THE PROGRAM IS ALSO CONFIGURED TO COMPARE THE PERTURBATION-	MATN	24		S YPATI(200) HAL	N 81
č	PREDICTED SOLUTIONS WITH THE CORRESPONDING EXACT SOLUTIONS	HAIN 2	5		DIMENSION XLOCO(6) + XLOCI(6) + XLOC2(6) + XLOC3(6) + XFIX0(8) + XFIX1(8) MAI	N 82
c	OBTAINED BY EMPLOYING THE SAME EXPENSIVE COMPUTATIONAL	MAIN 2	26		DIMENSION LCR0(4)+LCR1(4)+LCR2(4)+LCR3(4)+LOC0(6)+LOC1(6)+ MAI	N 83
С	PROCEDURE USED TO DETERMINE THE BASE AND CALIBRATION SOLUTIONS.	HAIN 2	27		\$ ISEQ0(8),ISEQ1(8),LSELCT(6) MAI	N 54
c	SEE THE SUBROUTINE INPUT FOR DETAILS.	HAIN'S	8		DIMENSION QD(8)+Q2(8)+DEL1(8)+XOUT(8)+ORD(8)+PARNAM(8) MAI	N 85
С		MAIN 2	9		DIMENSION HEADD(5)+HEAD1(5)+HEAD2(5)+HEAD3(5) MAI	N 66
ç	N . NO. OF POINTS IN SURFACE PRESSURE DISTRIBUTION - ASSUMED EQUAL	MAIN 3	30		DIMENSION VNAM(2)+FLAG(8)+STRING(96)+STRUNI(96) MAI	N 87
¢	FOR BASE, CALIBRATION, AND PREDICTED DISTRIBUTIONS.	MAIN :	31		DIMENSION MISAVE (8) +M2SAVE (25) +QISAVE (8) +Q2SAVE (8+25) MAI	N 88
c	NOTE: N .LE. 200.	MAIN 3	32		PEAL MO.MI.M2.MISAVE.M2SAVE	N A9
C		HAIN :	33		COMMON /COEFF/ C (8.7) +D (8.7) HAI	N 90
5	MPARAM = MU. UF PARAMETERS VARIED. MUTET MPARAM .LE. 8.	MAIN :	34		CUMPON /HEAU/ TILE(80) PAL	N 91
2		MAIN	35		CUMMON /PARAM/ PANNAMILUCUSLUCISLOLLISMIMCADESLOPELISLUMIIS MAI	N 42
ř	MACH ND. MA NI CALIDRATION	MAIN	30			N 04
č	PERT, PARAMS, 00(1):00(2):00:00(1):00:00(Kalls0):00(Kalls0)	MAIN	36			N of
ř.		MATN	30		COMMON / STRIC HEADS HEADS HEADS HEADS AVE ADSAVE ADSAVE ADSAVE	N QA
č	H2 = ONCOMING MACH NO. OF PREDICTED FLOW.	MAIN			COMMON /XY/ XBASE.XCALB.XPERT.XCHEK.YBASE.YCALB.YPEHT.YCHEK.YPRTI HAI	N 97
č	Q2(1),Q2(2), = VALUES OF PERTURBED PARAMETERS IN PREDICTED	HAIN A	1		DATA LTERN /0/+ LCORR /0/ HAI	N 98
С	FLOW.	MAIN 4	١Ż		DATA HEADO /AHBASE,AH SOLAHUTIO.AHNI .AH /A MAI	N 99
c		MAIN 4	13		% HEAD] /4HCALI+4HBRAT+4HION +4HSOLN+4H1 /+ MAI	N100
C	COORDINATE STRAINING IS PIECEWISE LINEAR WITH END POINTS AND ONE	MAIN 4	14		% HEAD2 /4HPERT+4HURBA+4HT10N+4H 50L+4HN: /+ MAI	N101
ç	OR MORE USER-SELECTED INTERIOR POINTS HELD INVARIANT.	MAIN 4	15		% HEAD3 /4HCOMP+4HARIS+4HON S+4HOLN:+4H / HAI	N102
ç		MAIN 4	16		DATA ORD /4H1ST +4H2ND +4H3RD +4H4TH + MAI	N163
ç	THE PROGRAM LOCATES MINIMUM, MAXIMUM, AND ALL CRITICAL POINTS	MAIN	17	-	\$ 4H5TH +4H6TH +4H8TH / HAI	N104
Č,	THUCK PULNISS IN THE BASE AND CALIBRATION SOLUTIONS, AND STORES	MAIN		C .	741	N105
2	THESE IN THE ARMATS REDUV AND REUCH II IS ASSUMED THAT THE NUMBER	MAIN		C • •		NIUS
2	OF CHITTLAE FOINTS DUES NOT EXCEED FOURT AS FOLLOWS	MAIN S		C C	HERD-SHORL FR STATEMENT SUNCTION VERTICAL DETERMINES POTTICAL MAI	N168
č	BASE CALTBRATION	MAIN		ž	VALUES OF FLOW VADIARY FORT AS FUNCTION OF FLOW DAMETED 7. MAI	N169
ć	California (100	HAIN		ž	IGRAD (+) OR -1) IS THE USER-SUPPLIED AN GERMAIC SIGN OF DYCRITION MAT	NIIO
č	XLOCO(1) = MINIHUM PT. XLOC1(1) = MINIHUM PT.	MAIN		č	USED IN LOCATING THE CRITICAL POINT. HAI	NIII
Ċ	XLOCU(2) = MAXIMUM PT. XLOCI(2) = MAXIMUM PT.	MAIN 4	5	Ϋ́ς	MAI	N112
c	ALOCOIS) = CRITICAL PT. NO. 1 ALOCIIS) = CRITICAL PT. NO. 1	MAIN 9	6	ċ	IN THE PRESENT VERSION OF THE CODE, YCRIT REPRESENTS THE FULL- MAI	N113
с	··· · · · · · · · · · · · · · · · · ·	MAIN 4	.7	ć	POTENTIAL CRITICAL PRESSURE COEFFICIENT FOR AIR (GAMMA = 1.4) - Z MAI	N114

.

APPENDIX B - LISTING OF COMPUTER PROGRAM PERTRB

```
С
      IS THE FREE STREAM MACH NUMBER. AND IGRAD CORRESPONDS TO POSITIVE MAINIIS
      PRESSURE GRADIENT (+1).
                                                                          MAIN116
С
                                                                          HAIN117
с
      YCRIT(Z)=2.0*(((2.0+0.4*Z**2)/2.4)**(1.4/0.4)-1.0)/(1.4*Z**2)
                                                                          MAIN118
      [GRAD=]
                                                                          HAIN119
                                                                          MAIN120
MAINIZZ
C .... PRINT BANNER PAGE.
                                                                          MAIN123
                                                                          HAIN124
C
      CALL BANNER
                                                                          HAIN125
                                                                          MAIN126
•
C..... READ LECHO AND ECHO INPUT DECK IF LECHO .EQ. 1.
                                                                          TSINIAM NATI
                                                                          MAIN128
C
                                                                          HA1N129
      CALL ECHINP
                                                                          MAIN130
C
                                                                          MAIN131
C ..... INPUT CONTROL. GEOMETRY. AND STRAINING PARAMETERS.
                                                                          HAIN132
С
      CALL INPUT (1)
                                                                          HAIN133
                                                                          HA1N134
С
                                                                          MAIN135
MAIN136
C....WRITE TITLE AND INPUT PARAMETERS.
č
      WRITE 16.10001 TITLE
                                                                          MAIN137
      WRITE (6.1010) N.A.B.NPARAH
                                                                          HAIN138
                                                                          MAIN139
С
                                                                          MAIN140
      NF1X=NSELCT+2
      NSEG=NFIX-1
                                                                          MAIN141
                                                                          HAIN142
с
C ..... PRINT INFORMATION REGARDING STRAINING TO BE USED.
                                                                          HAIN143
                                                                          MAIN144
C
      WRITE (6+1020) NFIX
                                                                          MAIN145
      IF (LSPEC .EQ. 0) 60 TO 10
                                                                          MAIN146
      WRITE (6+1030)
                                                                          HAIN147
      GO TO 30
                                                                          HAIN148
   10 CONTINUE
                                                                          MAIN149
                                                                          MAIN150
      WRITE (6+1040)
                                                                          MAIN151
      00 20 1=1+NSELCT
      IF (LSELCT(I) .EQ. 1) WRITE (6.1050) VNAM
IF (LSELCT(I) .EQ. 2) WRITE 16.1060) VNAM
                                                                          MAIN152
                                                                          MAIN153
                                                                          NAIN154
      JF (LSELCT(1) .LE. 2) 60 TO 20
                                                                          MAIN155
      LCORR=1
      LPR=LSELCT(1)-2
                                                                          MAIN156
                                                                          MAIN157
      WRITE (6+1070) VNAM+ORD(LPR)
                                                                          HAIN158
   20 CONTINUE
                                                                          MAIN159
   30 CONTINUE
                                                                          HAIN160
C
C.....BEGIN CALCULATIONS ON BASE SOLUTION.
                                                                          MAIN161
                                                                          MAIN162
C
      CALL INPUT (2)
                                                                          MAIN163
      YCR0=YCRIT(MO)
                                                                          MAIN164
      WRITE (6.1080) HEADO
                                                                          MA1N165
      WRITE (6.1090) VNAM
                                                                          MAIN166
                                                                          MAIN167
      WRITE (6.1100) MO
      IF (HPARAM .EG. 1) WRITE (6.1110) GD(1).PARNAM(1)
IF (NPARAM .GT. 1) WRITE (6.1120) (K.QO(K).PARNAM(K).K=1.NPARAM)
                                                                          MAININB
                                                                          MAIN169
                                                                          MAIN170
      WRITE (6+1130) VNAM+YCRO
                                                                          MAIN171
с
```

CNORMALIZE X COORDINATES AND LOCATE MINIMUM. MAXIMUM. AND CRITICAL	MAIN172
C POINTS FOR BASE SOLUTION.	MAIN173
Ċ	HAINITA
CALL SCALE INTRASETTAT	MATHINE
CALL LOCATE (N. XBASE - YBASE - YCRO, 16RAD - 1 MNO. LWXO, NCRO, 1 CRO, VI (CO)	MATN176
	MAINING
	HAINI/
	TA10176
	TAIN179
MHILE (0+1120)	MAINING
CALL UPLOW (A+B+XLOC0+6+NCR0+2+XOUT+FLAB)	MAINIAI
WP1TE (6+1160) XOUT(1)+FLAG(1)+LMN0+XOUT(2)+FLAG(2)+LMX0	MAINING
IF (NCRO .GT, 0) WRITE (6.1170) NCRO.	MAIN183
% (ORD(1)+XOUT(1+2)+FLAG(1+2)+LCRO(1)+1=1+NCRO)	MAININA
C	MAININS
CLOAD SELECTED STRAINING POINTS INTO FIXED-POINT ARRAY FOR HASE	HAIN186
C SOLUTION.	HAINIAT
Č C	MAINIAS
XF1X0(1)=0.0	HAINTAS
XFTX0(NFTX)=1-0	MAINIO
16 (1585C	MATHIOI
DO SO TELINSELT	MAINING
	MAINING
	-A14143
	MALN194
	MAIN195
60 10 50	MAIN196
40 CONTINUE	MAIN197
XF1X0(1+1)=XL0C0(LSELCT(1))	MAINIQA
50 CONTINUE	MAIN199
C	MAIN200
CARRANGE SELECTED FIXED POINTS IN A MONOTONE SEQUENCE.	MAIN201
C	MAIN202
CALL SORT (NFIX+XFIX0+ISEQ0)	MAIN203
WRITE (6+1200)	MAIN204
WRITE (6,1150)	MAIN205
CALL UPLOW (A+8+XFIX0+R+NFIX+XCUT+FLAG)	HAIN206
WRITE (6.1210) (I.XOUT(I), FLAG(I), THI.NEIX)	MAIN207
	MAINZOR
CALL FUD CALCULATIONS ON BASE SOLUTION.	MAIN209
Control cafedrations of their percetters	MAINZIA
	MAINZIN
~	MATHOUS
	MAINEIG
Contractions on Calibration Solutions.	MAINZIJ
с	MAINZIA
DO 160 REL.NPARAM	MAIN215
CALL INPUT (3)	MAIN216
MISAVE (K) #MI	MAINS17
QISAVE(K)=QI	MAIN218
YCR1=YCR1T(M1)	HAIN219
DEL1(K)=Q1-Q0(K)	MAIN220
CALL COPY (1+N+K+XCALB+XCSAVE)	MA1N221
CALL COPY (]+N+K+YCALB+YCSAVE)	MAIN222
IF (NPARAM .EQ. 1) WRITE (6.1080) HEAD1	HAIN223
IF (NPARAM .GT. 1) WRITE (6.1220) ORD(K).HEAD1	HAIN224
WRITE (6+1090) VNAM	MAIN225
WRITE (6,1230) MI	HA IN226
IF (NPARAM .GT. 1) WRITE (6-1240)	HAIN227
	MAIN22A
the second second second	

61 C	IF (NPARAM .EQ. 1) WRITE (6.1250) Q1.PARNAM(1) IF (NPARAM .GT. 1 .AND. KK .EQ. K) WRITE (6.1260) KK.Q1.PARNAM(KK) IF (KK .NE. K) WRITE (6.1270) KK.Q0(KK).PARNAM(KK) CONTINUE WRITE (6.1130) VNAM.YCRI	MAIN229 MAIN230 MAIN231 MAIN232 MAIN233 MAIN234
с с с	NORMALIZE X COORDINATES AND LOCATE MINIMUM, MAXIMUM, AND CRITICAL Points for KTH Calibration Solution, Fail Scafe (Nazcarb)	MAIN235 MAIN236 MAIN237 MAIN238
	CALL LOCATE (N+XCAL0+YCAL0+YCR]+IGRAD+LMN1+LMX1+NCR1+LCR1+XLOC1) YTMIN+YCAL0(LMN1) YTMAX+YCAL0(LMX1)	MAIN239 MAIN240 MAIN241
	IF (YTMIN LLT, YBCMIN) YBCMIN=YTMIN IF (YTMAx "GT, YBCMAX) YBCMAX=YTMAX Write (6:1140) Write (6:1150)	MAIN242 MAIN243 MAIN244 MAIN245
	CALL UPLOW (A+B+XLOC1+6+NCR1+2+XOUT+FLAG) WRITE (6+1160) XOUT(1)+FLAG(1)+LMN1+XOUT(2)+FLAG(2)+LMX1 IF (NCR1 +GT+0) WRITE (6+1170) NCR1+ TF (NCR1 +GT+1)+CAL(1+1)+CAL(HAIN246 HAIN247 HAIN248
c c c	CHECK FOR INVALID STRAINING SPECIFICATION IF LSPFC = 0.	MAIN250 MAIN251 MAIN252
	IF (LSPEC .EQ. 1) GO TO 80 ICOUNT=0 DO 70 1=1.NSELCT IF (LSFLCT(1) .LF. 2) GO TO 70	MAIN253 MAIN254 MAIN255 MAIN256
70	ICOUNT-ICOUNT-1 IF (NGR0 -NE. NGR]) LTERM-1 Continue	MAIN257 MAIN258 MAIN259
с с с с	STOP EXECUTION IF CRITICAL POINTS ARE TO BE USED IN STRAINING AND NUMBER OF CRITICAL POINTS IN BASE AND CALIBRATION SOLUTIONS ARE UNEQUAL.	MAIN261 MAIN262 MAIN263
c C	IF (LTERM .EG. 1) GO TO 900	MAIN264 MAIN265 MAIN266 MAIN267
с с с	IF (ICOUNT .6T. NCRO) GO TO 905	MAIN268 MAIN269 MAIN270
с с 80	CONTINUE	MAIN271 MAIN272 MAIN273
с с	ALUAD SELECTED STATEMENT FURTS INTO FIALD FURT ARRAIT FOR ATTR CALIBRATION SOLUTION. XFIX1(1)=0.0	MAIN275 MAIN276 MAIN277
	XF[X](NF[X)=1+0 IF (LSPEC +EQ+1) WRITE (6+1180) DO 100 I=1+NSELCT IF (LSPEC +EQ+0) GO TO 90	MAIN278 MAIN279 MAIN2R0 MAIN2R1
90	XF1X1((+))=XCALB(LOC1(1)) WRITE (6+1)90) LOC1(1) G0 TO 100 Continue	MAIN282 MAIN283 MAIN284 MAIN285

	XE 1X1(1+1)=X10(1)()SELCT(1))	MATHONA
	100 CONTINUE	MAINZNO
		MAINCHI
	ARRANGE SELECTED FIXED POINTS IN A NONOTONE SEQUENCE.	MAINZOO
		MAINZOA
	CALL SORT (NETX-XETX)-ISEO1)	MAINZOU
	WRITE (6.1200)	MA1N202
	WRITE (6.1150)	MAIN202
	CALL UPLOW (A.B.XETX).B.NETX.XOUT.FLAG)	MAINDOA
	WRITE $(6+1210)$ (1+XQUT(1)+EAG(1)+1x1+NFTx)	MAIN205
		MAINZOS
	CANANASTOP EXECUTION IF ORDER OF OCCURRENCE OF CRITICAL POINTS IN PARE	MAIN207
	C AND CALIBRATION SOLUTIONS DOES NOT CORRESPOND.	MAIN208
		MAINZOD
	IF (LSPEC .EQ. 1) 60 TO 120	MATNZOO
	DO 110 I=1.NF1x	MAINJOL
	IF (ISEQU(1) .NE. ISEQ1(1)) GO TO 910	MATN 302
	110 CONTINUE	HAIN303
	120 CONTINUE	MAINIDA
	c Ś	MAIN305
	CCOMPUTE COEFFICIENTS IN KTH UNIT STRAINING OF XBASE	MAIN306
	c	MAIN307
	C XSTR = C(K+1) + D(K+1)+XBASE+ I=1+2+ +++ +NSEG+	MAIN306
	c	MAIN309
	C WHERE NSEG IS THE NUMBER OF LINEAR SEGMENTS.	MA1N310
	C	MAIN311
	DO 130 I=1.NSEG	MAIN312
	CNUM=XFIX1(I)+XFIX0(I+1)+XFIX1(I+1)+XFIX0(I)	MAIN313
	DNUM=XFIX1(I+I)-XFIX1(I)	MAIN314
	DENOM=XFIX0(1+1)-XFIX0(1)	MAIN315
	C(K+I)=CNUM/DENOM	MA1N316
	D(K+I)=DNUM/DENOM	MAIN317
	130 CONTINUE	MAINJIB
1		MAIN319
1	CDETERMINE KTH UNIT STRAINING OF XBASE.	0SEN14M
		MAIN321
	CALL STRAIN (NokonSEGOXFIX0+XBASE+1+0+DELX)	MAIN322
		HAIN323
	140 XUNI(()=X0ASE(1)+DELX(1)	MAIN324
- 2		MAIN325
- 2	TO UNIT STORAGE CALIBRATION SOLUTION TO BASE FLUE POINTS CORRESPONDING	MAIN326
	L TO OUTI STRAINING.	MAIN327
	CALL THTEDD IN YOALD, YOALD, WINTT WINTS	BSENIAM
		MAINJ24
		MALN 330
-	USED IN STDATNING.	IEENIAR HAINS
		MAINJJZ
	IF (LCORR	HA1N333
	D0 150 I=1.NCR1	HA1N334
	YINTP(LCR0(I))=YCALB(LCR1(I))	MAIN 374
	YINTP (LCR0(1)+1)=YCALB(LCR1(1)+1)	MAIN 377
	15n CONTINUE	MAIN338
	16A CONTINUE	MAIN339
		MAIN340
	CDETERMINE THE KTH UNIT PERTURBATION.	MAIN341
	Ū.	MAIN342

	DO 170 I=1.N	MAIN343
170	YUNIT(K+I)=(YINTP(I)~YBASE(I))/DEL1(K)	MAIN344
C		MAIN 345
č	SAVE UNIT STRAINING IF REQUIRED FOR LATER PRINTOUT.	MAINIAG
c		MAIN 347
	IF (LUNIT .EQ. 0) 60 TO 180	MATNIAR
	CALL SCALF (N. SUNT. 2.4.B)	MATNIAG
	CALL COPY (1-N-K-XUNIT-XUSAVE)	MAINISO
180	CONTINUE	MATMON
r		MA10351
ř	-FND FALLIN ATTONS ON FALTERATION SOLUTIONS.	MAINJOE
č	THE CALCORATIONS ON CALIBRATION SOLUTIONS.	MAIN353
	***************************************	MAINOES
~		MAINJSS
	BOINT UNIT REDAUDRATION/EL AND UNIT FTRATUTNE (C) TE LUNIT HE	MAIN 356
	TREAT ONLY PERIORBALION(3) AND ONLY STRAINING(5) IF CONTY .NE. 0.	MAIN357
L		MAIN358
	IF (LUNI) .EW. 0) 50 10 240	MAIN359
	CALL SCALE (N+XBASE+2+A+B)	MAIN369
	IRP1#0	HAIN361
	IF (NPARAM .GT. 4) IRPT=1	MAIN362
	KSTART=1	MA1N363
	KSTOP=4	MA[N364
	IF (KSTOP .GT. NPARAM) KSTOP=NPARAM	MAIN365
	GO TO 200	MAIN366
190	KSTART#5	MAIN367
	KSTOP=NPARAH	MAIN368
200	CONTINUE	MAIN369
	WRITE (6+1280) VNAM	MA1N370
	IF (NPARAM .GT. 1) WRITE (6,1290) KSTART,KSTOP	MA1N371
	IF (NPARAM .EQ. 1) WRITE (6.1300)	NAIN372
	IF (NPARAH .EQ. 1) GO TO 210	MAIN373
	NUM=KSTOP-KSTART+]	HAIN374
	IF (NUM .EQ. 1) WRITE (6.1310) (ORD(K).K=KSTART.KSTOP)	MA1N375
	1F (NUM .EQ. 2) WRITE (6.1320) (ORD(K) .KaKSTART.KSTOP)	MAIN376
	1F (NUM .EQ. 3) WRITE (6.1330) (ORD(K) .K=KSTART.KSTOP)	MAIN377
	IF (NUM .EQ. 4) WRITE (6.1340) (ORD(K).KEKSTART.KSTOP)	MATN378
210	CONTINUE	MATN370
	CALL FILL (1+0+STRIMT)	MAINING
		MAINZOL
	WEITE (6.1350) (STOINT (K) KH1.KI AST)	MAINJAJ
		HAINJA2
		MATHJAA
224	00 220 1-174	MAINJAE
220	TE (1001 10 10 10 20 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10	MAINSBO
		MAINJRO
		MAINJAN
		MAINJRO
230	CALL SCALE (N+XBASE+1+A+B)	PHENIAM
<u> </u>	CONTINUE	HALNJ40
C A		MAIN391
	CONSTRUCT PERTURBATION SOLUTIONS FOR TEST CASES (AND COMPARE WITH	SPENJAM
ç	EXACT SOLUTION. IF AVAILABLE).	MA1N393
С		MAIN394
	DU 330 ICASE=1+NCASE	MAIN395
	CALL INPUT (4)	MAIN396
	M2SAVE (ICASE) #M2	MA1N397
	YCR2=YCR1T(M2)	MAIN398
	YCR3×YCR2	HAINJ99

•	-
U	MAINAGE
Constantialize Strained Constraine and Performation Socurions	HAIN401
c	MAINADZ
DO 250 L#1+N	MAIN403
XPERT(I)=XBASE(I)	MAIN404
250 YPERT(I)=YBASE(I)	HAIN405
c	HAIN486
CARAGEADD IN CONTRIBUTIONS FROM ALL PERTURBATIONS.	MAIN407
	MAIN408
DO 370 K-1-NPADAM	MAINANG
	MATNALS
	MAINAIL
	HAIN411
	PAINAIS
CALL STHAIN (NoRonsegoxfix0oxBasedel21oDelx)	MAIN413
DC 260 I=1.N	Maluele
XPERT(1)=XPERT(1)+DELX(1)	MA1N415
260 YPERT(I)=YPERT(I)+DEL2+YUNIT(K+I)	HA1N416
270 CONTINUE	HA1N417
c	MAIN418
CARACADUUST VALUES NEAR CRITICAL POINT FOR MONOTONE BEHAVIOR.	HAIN419
	MAINAZO
TE (LCORR .FO. 1) CALL MONO (NCROALCROAXPERTAYPERT)	MAIN421
	MAINA33
C CONTRACTOR ANTING AND COTTERN BOINTS IN BEDINDATION	NATNADD
Cosses DUCALE HIGHONS HAAIHONS AND CRITICAL POINTS IN PERTURBATION	HAIN423
C SOLUTION.	
¢	CSPNIAH
CALL SCALE (N+XPERT+2+A+B)	HAIN476
CALL SCALE (N#XPERT#1#A+8)	HAIN427
CALL LOCATE (N+XPERT+YPERT+YCR2+IGRAD+LMN2+LMX2+NCR2+LCR2+XLOC2)	MAIN428
YMIN=YPERT(LMN2)	MAIN429
YMAX=YPERT(LMX2)	MA1N430
YPCHIN*YHIN	MAIN431
YPEMAXAYMAX	HAIN432
HDITE (6.) 3861 ICASE.NCASE	MAIN433
UDITE (6.1806) VNAM	MATNAJA
WRITE (4.1304) MA	MATNA 35
WRITE (011370) RE	MAINA 34
IF (NPARAR (24. 1) BRITE (0.1000) VE(1) FRANKELL	MA 2014 30
IF (NPARAH .GT. 1) WHITE (6.1410) (R.02(R) PARNAM(R) REITHPARAH)	HAIN437
WRITE (6.1130) WNAM, TCR2	MAIN9 38
WRITE (6+1140)	HAIN439
WRITE (6+1150)	MAENAAO
CALL UPLOW (A+B+XLOC2+6+NCR2+2+XOUT+FLAG)	MAIN441
WRITE (6+1420) HEAD2+XOUT(1)+FLAG(1)+LMN2+XOUT(2)+FLAG(2)+LMX2	MA1N442
IF (NCR2 .GT. 0) WRITE (6+1430) NCR2+	MAIN443
\$ (ORD(1) +XOUT(1+2) +FLAG(1+2) +LCR2(1) + I=1+NCR2)	MAIN444
CALL SCALE (N.XBASE-2-A+B)	HAIN445
	HAINAAG
C	HAIN447
e Manual Marina An Pille I Pola Polars.	MATNAAR
C BIBIBOR BAVINON WE CALIFOR CALCO	MAINAAG
	MATNACA
IF (LCHER .EQ. 0) GO TO 290	HA114530
CALL INPUT (5)	HA10471
CALL SCALE (N+XCHEK+1+A+B)	HAINSSE
CALL LOCATE (N+XCHEK+YCHEK+YCR3+IGRAD+LMN3+LMX3+NCR3+LCR3+XLOC3)	HAIN953
AMIN=ACHEK(TMN3)	HAINASA
YMAX=YCHEK(LMX3)	MA1N455
IF (YMIN .LT. YPCHIN) YPCHIN=YMIN	MAIN456

-

i.

```
IF (YMAX .GT. YPCHAX) YPCMAX=YMAX
                                                                             MAIN457
      CALL UPLOW (A+B+ALOC3+6+NCR3+2+XOUT+FLAG)
                                                                             MAIN458
      WRITE (6+1420) HEAD3+XOUT(1)+FLAG(1)+LMN3+XOUT(2)+FLAG(2)+LMX3
                                                                             HAIN459
      IF (NCR3 .GT. 0) WRITE (6.1430) NCR3.
                                                                             MAIN460
           (ORD(1) + XOUT(1+2) + FLAG(1+2) + LCR3(1) + 1=1+NCR3)
                                                                              MAIN461
                                                                              MAIN462
      CALL INTERP (N. APERT, YPERT, ACHEK, YPRT1)
      CALL LOCATE (N.XCHEK, YPRTI, YCR3, IGRAD, LMN3, LMX3, NCR3, LCR3, XLOC3)
                                                                             HAIN463
                                                                              MAIN464
      YTMIN=YPRTI(LMN3)
                                                                              HA1N465
      YTMAX=YPRTI(LMX3)
                                                                              MAIN466
      IF (YTHIN .LT. YHIN) YHIN=YTHIN
                                                                              MAINANT
      IF (YTHAX .GT. YHAX) YHAX=YTHAX
                                                                              HAIN468
      CALL SCALE (N+XPERT+2+A+B)
                                                                              MAIN469
      CALL SCALE (N+XCHEK+2+A+B)
                                                                              HAIN470
      CALL FILL (2.0,STRING)
                                                                              HAIN471
      WRITE (6+1440) VNAM
      WRITE (6+1450) VNAH, YMAX, VNAH, YMIN, VNAH, YCR2, VNAH, VNAH
                                                                              HAIN472
      WRITE (6,1460) VNAM, VNAM, VNAM, VNAM, (STRING(1), 1=1.72)
                                                                              MAINA73
                                                                              MAINA74
      DO 280 1=1.N
                                                                              MAINA75
      CALL FILL (3.1.STRING)
  280 WRITE (6+1470) I+XBASE(1)+YBASE(1)+XPERT(1)+YPERT(1)+
                                                                              HAIN476
     $ XCHEK(1), YCHEK(1), YPRTI(1), (STRING(11), 11=1,72)
                                                                              MAIN477
                                                                              HAIN478
      60 TO 310
                                                                              MAIN479
  290 CONTINUE
                                                                              MAINARD
С
                                                                              HAIN461
      CALL SCALE (N+XPERT+2+A+B)
                                                                              HAIN482
      CALL FILL (2.0.STRING)
                                                                              MAIN483
      WRITE (6+1440) VNAM
      WRITE (6.1480) VNAM. YMAX. VNAM. YMIN. VNAM. YCP2. VNAM
                                                                              HAIN484
                                                                              MAIN485
      WRITE (6+1490) VNAM, VNAM, STRING
                                                                              MAIN486
      DO 300 1#1.N
                                                                              MAIN487
      CALL FILL(3+1+STRING)
  300 WRITE (6.1500) 1.XBASE(1).YBASE(1).XPERT(1).YPERT(1).STRING
                                                                              MAINARE
                                                                              MAINARG
  310 CONTINUE
                                                                              MAINAGO
C.....IF LPLOT .NE. 0 GENERATE PERIPHERAL PLOT OF PERTURBATION AND C COMPARISON SOLUTIONS.
                                                                              MAINAGI
                                                                              MAIN492
                                                                              MAIN493
С
      IF (LPLOT .EQ. 0) GO TO 320
                                                                              MAIN494
                                                                              HA IN495
       YMINEYRCMIN
                                                                              MAIN496
       YMAX=YBCMAX
                                                                              HAIN497
       IF (YPCHIN .LT. YHIN) YHIN=YPCHIN
                                                                              MAIN498
       IF (YPCHAX .GT. YHAX) YMAX=YPCHAX
       CALL DRVPLT (ICASE .N. NCASE .NPARAH. YHIN. YHAX. YCR2)
                                                                              MAIN499
                                                                              MAIN500
  320 CONTINUE
                                                                              MAIN501
       CALL SCALE (N+XBASE+1+A+B)
                                                                              MAIN502
  330 CONTINUE
                                                                              MAINS03
C.....PRINT FINAL TABLE SUMMARIZING CALCULATIONS.
                                                                              HAIN504
                                                                              MAINSOS
                                                                              MAIN506
       CALL TABLE (NPARAM.NCASE.PARNAM.MO.QO)
                                                                              MA1N507
       60 10 999
                                                                              MAIN508
C .... ABNORMAL TERMINATION OF COMPUTATION.
                                                                              MAIN509
                                                                              HA1N510
                                                                              MAIN511
   900 WRITE (6+9000)
                                                                              MAIN512
       GO TU 999
```

905 WRITE (6+9050)

```
910 WRITE (6-9100)
                                                                                   HAINS15
                                                                                   NAIN516
r
  999 WRITE (6+9500)
                                                                                   MAIN517
      STOP
                                                                                   MAINSIB
                                                                                   MAINSIS
C ..... I/O FORMAT STATEMENTS FOLLOW.
                                                                                   MAIN528
                                                                                   HAIN521
 1000 FORMAT
               (141+132(14+)/
                                                                                   MA1N522
                1X+1H#+25X+80A1+25X+1H#/
                                                                                   MAIN523
     5
     .
                1X+132(1H+)///)
                                                                                   HAIN524
              (1X+29H-+++LIST OF INPUT PARAMETERS//
 1010 FORMAT
                                                                                   MAIN525
               6X.3HN X.TA//
                                                                                   HAIN526
                6X+3HA #+F5+1+4X+3HB #+F5+1//
                                                                                   HAIN527
                6X.8HNPARAM #.12///)
                                                                                   HAIN528
 1020 FORMAT (1X+22H+...,STRAINING OPTIONS//
6X+23HNUMBER OF F1XED POINTS:+12/)
                                                                                   MAIN529
                                                                                   HA1N530
 1030 FORMAT (6X. 40HFIXED POINTS WILL BE PRESELECTED BY USER/
                                                                                   MAIN531
                6X+37HAND LISTED BELOW IN PRINTOUT FOR BASE/
                                                                                   MAIN532
                6X+26HAND CALIBRATION SOLUTIONS+///)
                                                                                   MAIN533
 1040 FORMAT
               (6X.45HFIXED POINTS WILL BE AUTOMATICALLY DETERMINED/
                                                                                   MAIN5 14
                6X.44HBY THE PROGRAM FOR ALL SOLUTIONS AS FOLLOWS://
                                                                                   MAIN535
               11X-14HTWO END POINTSI
                                                                                   HA1N536
 1050 FORMAT (11X+16HPOINT OF MINIMUM+1X+2A1)
                                                                                   MAIN537
 1060 FORMAT (11X+16HPOINT OF MAXIMUM+1X+2A1)
                                                                                   HAIN538
 1070 FORMAT (11X+2A1+6HCRIT (+A4+6HPOINT))
                                                                                   MAIN539
 1080 FORMAT (1H1+26HRESULTS OF COMPUTATIONS ON+1X+5A4///)
                                                                                   HAIN540
 1090 FORMAT
              (1X+17H-++++MACH NUMBER+/
6X+34HVALUES OF PERTURBATION PARAMETERS+/
                                                                                   HAIN541
                                                                                   HA1N542
               6X. 17HCRITICAL VALUE OF. 1X. 2A1. 1H:/)
     5
                                                                                   MAIN543
 1100 FORMAT (11X+4HH0 =+F7+4/)
1110 FORMAT (11X+4H00 =+F7+4+5X+1H(+A8+1H)/)
                                                                                   MAINS44
                                                                                   HATNSAS
 1120 FORMAT (11x+3HQ0(+11+3H) =+F7.4+5X+1H(+A8+1H)/)
1130 FORMAT (11X+2A1+6HCR1T =+F8.4///)
                                                                                   MAINSAG
                                                                                   HA1N547
 1140 FORMAT (1X,47H....LOCATIONS OF WIN., MAX., AND CRITICAL PTS.)
1150 FORMAT (3X,34H)* DENOTES POINT ON LOWER SURFACE)/)
                                                                                   HAIN548
                                                                                   HA18549
 1160 FORMAT (6X, 14HMINIMUM AT X =+F7.4+A1+3X+10H(POINT ND.+14+1H)/
                                                                                   MAIN558
               6X.14HMAXIMUN AT X =.F7.4.A1.3X.10H(POINT NO..14.1H))
                                                                                   MAIN551
 1170 FORMAT (64,11,1X,18HCRITICAL POINT(5):/
                                                                                   HAIN552
     8
                (10X+A4+6HAT X #+1X+F6.4+A1+3X+
                                                                                   HAIN553
                     16H(AFTER POINT NO.+I4+1H)))
                                                                                   MAIN554
 1180 FORMAT
               (1X.5(1H*).1X.32HFIXED POINTS PRESELECTED BY USER.
                                                                                   MAINS55
                1X+5(1H*)/)
                                                                                   MAIN556
 1190 FORMAT (6X.2HX(+13.1H))
                                                                                   MAIN557
 1200 FORMAT (///1x.29H.....LOCATION OF FIXED POINTS)
1210 FORMAT (11X.5HXFIX(.11.3H) =.F7.4.A1)
                                                                                   HA1858
                                                                                   MA IN559
 1220 FORMAT (1H1+26HRESULTS OF COMPUTATIONS ON+1X+644///)
                                                                                   MAIN560
 1230 FORMAT (11X+4HM1 =+F7.4/)
1240 FORMAT (2X+41H(** DENOTES PERTURBATION FROM BASE VALUE)/)
                                                                                   MAIN561
                                                                                   HAIN562
 1250 FORMAT (11X++HQ1 =+F7+4+5X+1H(+A8+1H)/)
                                                                                   MAIN563
 1260 FORMAT (9X+5H**@1(+[1+3H) =+F7+4+5X+1H(+A8+1H)/)
                                                                                   MAIN564
 1270 FORMAT (11X+3HQ1(+11+3H) =+F7+4+5X+1H(+A8+1H)/)
                                                                                   MATN565
 1280 FORMAT (1H1+20HUNIT PERTURBATION OF+1X+2A1+1X+
                                                                                   MAINSEE
```

5 27HAND UNIT STRAINING OF XBASE) 1390 FORMAT (269HF99 CALIBRATION SOLUTIONS,12+1X,7HTHROUGH,12)

1310 FORMAT (///19X+1(1H*+1X+A4+1)HCALB SOLN *+3X))

MAIN513

HAIN514

MAIN567

HAIN568

MA1N570

GO TO 999

1996 FORMAT	1777100.37100.30.44.13107410 COLU.8.3711	MAJNE 71
1329 PURMAI	1///IAASCIN-SIASASTINCASD SUCH - 341/	HATNE 33
1330 FORMAT	(///144,3(1H*+12+44+11HCALB SULR *+34))	HAINDIC
1340 FORMAT	(///19X.4(1H*+1X+A4+11HCALB SOLN *+3X))	MAIN573
1350 FORMAT	(1X+5HPOINT+4X+5HXBASE+4X+96A1)	MAIN574
1360 FORMAT	(1X)	MA1N575
1370 FORMAT	(1%,I4+1%,11F10,4)	MA1N576
1380 FORMAT	(1H1+32(1H+)/	MA1N577
	12.21HO OUTPUT FOR CASE NO. 13.4H OF 12.2H 4/	HAIN578
		MA1N570
1300 500441	11456 11-7777	HAINSAN
1340 FORMAT	1114 4400 - 57 4.57 4.57 144.48 141/1	MAINEAL
1400 FORMAT		HAINEAD
1410 FURMAT	([[A+]]])([]+]])(])(])(])(])(])(])(])(])(])(])(])(])(
1420 FORMAT	(/6K)5A4//	He [4283
	11X+14HMINIHUM AT X =+F7+4+A1+3X+10H(POINT NO++14+1H)/	MAIN584
	11X+14HMAX1MUM AT X =+F7+4+A1+3X+10H(POINT NU++I4+1H))	MAIN585
1430 FORMAT	(1H +10X+11+1X+18HCRITICAL POINT(5):/	MAIN586
5	(15X+A4+6HAT X =+F7+4+A1+3X+	MAIN587
5	16H (AFTER POINT #0.+14+1H)))	MAINSAB
1440 FORMAT	1///IX+AAHFINAL PRINTOUT AND GRAPHICAL DISPLAY OF+1X+	MAINSAS
	2411	MAIN590
ARA FOOMAT	(2757,2) HA - MAYTHIM VALUE OF 11,241,17,14+,FR.42	MATNSOI
1430 100001	737.3144 = Mintahim Value Gritz201.17.14.14.18.8.4/	MATH502
2	Trateling a contract where of the sector of the sector of the	MAINEOT
2	/28.21WW # CHINCAL WALUE UP 018.0281018.01H#0FH.4/	MAIN593
	15x+15Hb # ANTOF OF +1x+5M1+1x+	HA1034
	34HPREDICTED HY PERIORBATION SOLUTION/	DA10090
\$	72X+12HC = VALUE OF+1X+2A1+1X+	MA1N596
	22HIN COMPARISON SOLUTION/	MAIN597
5	72X+29HS = AGREEMENT BETWEEN P AND C)	MAIN598
1460 FORMAT	[/2x+2HP1+2x+5HXBASE+3x+2A]+4HBASE+2X+5HXPER1+3X+2A]+	MAIN599
5	4HPERT,2X+5HXCHEK+3X+2A1+4HCHEK+2X+2A1+4HPINT+1X+72A1/)	MAIN600
1470 FORMAT	(1X+13+7F8-4+1X+72A1)	MAIN601
1480 FORMAT	(/60X.21HH = MAXIMUM VALUE OF:1X.2A1.1X.1H=1F8.4/	HAIN602
	601-21HI - MINIMUM VALUE OF 111-241-11-14-FR-4/	MAIN603
	60X-21HE - CRITICAL VALUE OF-1X-2AL-1X-1HE-FR-6/	MAINGOA
	CONTENT & CONTINUE TRUE OF THE OF THE CONTENT OF THE OF TH	MAINGOS
2	SUMPERIOR & TALUE OF FIATCHINIAN COUNTIONS	MAINGOS
	SAMPREDICIED AT PERIORAAIDA SOCUTION	HAINGOO
1440 FURMAT	1/2X+2HF1+2X+5HABA3E+3X+2A1+4HDA3E+2A+5HAFEF1+3A+2A1+	MAINOUT
5	AMPER1+1X+96A171	BUONIAM
1500 FORMAT	(1X+I3+4F8+4+1X+96A1)	MAIN609
c		MAINGID
CABNORM	AL TERMINATION FORMATS FOLLOW.	MAINGII
c		MA1N612
9000 FORMAT	(///1X+28HNUMBER OF CRITICAL POINTS IN/	MAIN613
5	1X, 30HBASE AND CALIBRATION SOLUTIONS/	MAINGIA
	1X.31HARE UNEQUAL - CALCULATION ENDED)	MAIN615
9050 FORMAT	1///1X-25HNUMBER OF CRITICAL POINTS/	MAIN616
5020 100000	14-23HSELECTED EXCEEDS NUMBER/	MAIN617
	14. JOHACTUALLY LOCATED - CALCULATION/	HAINGIA
	IN EMENDEDI	MAINGIO
	INTOPEROLDI	MAIN620
ATOD FORMAT	IT ANUMACE AND CALIFORNIA CONTINUES	MAINER
2	INSJUNDADE AND CALINERIUM DULUTIONS	MAINAN
5	IX+39HDUES NOT COMRESPOND + CALCULATION ENDED)	MAINANS
9500 FORMAT	(141)	HAINO/J
END		WEIN054

SUBROUTINE BANNER	BANN	1
L	DANN	5
f	BANN	1
COMMON /HEAD/ TITLE (80)	RANN	
READ (5-1000) TITLE	BANN	
00 10 (PAGE=1.2	BANN	ň
WRITE (6.1020) (TITLE(1).1=1.9)	BANN	à
WR(TE (6.1030)	BANN	ā
WRITE (6+1040)	BANN	10
10 CONTINUE	BANN	11
RETURN	BANN	12
1000 FORMAT (80A1)	BANN	13
1020 FORMAT (1H1+119X+13(1H+)/120X+2H+ +9A1+2H +/120X+13(1H+))	BANN	14
1030 FORMAT (//////38x+55(1H*)/38x+1H*+53X+1H*/	BANN	15
\$ 38X+1H++19X+15HPROGRAM PERTURE+19X+1H+/38X+1H++53X+1H+/	BANN	16
\$ 38X+1H++7X+39HCALCULATES NONLINEAR MULTIPLE-PARAMETER,	HANN	17
\$ 7X+1H*/38X+1H*/	BANN	18
\$ 38X+1H*+13X+27HCONTINUOUS OR DISCONTINUOUS+	BANN	19
% 13X+1H+/38X+1H+/	BANN	20
% 38X+1H*+15X+22HPERTURBATION SOLUTION5+16X+1H*/38X+1H*+53X+1H*/	BANN	21
\$ 38X+1H*+10X+33H#HICH REPRESENT CHANGES IN EITHER+	BANN	22
\$ 10X+1H*/38X+1H*/	BANN	23
\$ 38X+1H*+13X+27HGEOMETRY OR FLOW CONDITIONS+	HANN	54
% 13X+1H*/38X+1H*/	BANN	25
\$ 3RK+1H*+4X+44HBY EMPLOYING A STRAINED-COORDINATE PROCEDURE+	BANN	56
5X+1H*/38X+1H*,53X+1H*/	BANN	27
\$ 381,114,4X,44HUTILIZING UNIT PERTURBATIONS DETERMINED FROM.	BANN	28
\$ 5X+1H*/38X+1H*+53X+1H*/	BANN	29
\$ 38X+1H*+16X+21HPREVIOUSLY CALCULATED.	BANN	30
% 16X+1H=/3RX+1H=+53X+1H=}	BANN	31
IDed FORMAT (38X+IM++4X+34H*BASE* AND "CALIBRATION" SULUTIONS+	BANN	32
	GANN	33
B 304117 TAXTADRUIDFLAGED FRUM UNE ANVINER DI DUNE READUNADES	DANN	37
A THE AND THE AND THE THE CONSTRAINT AND THE A	DANK	33
A SGAT[H-TGATSCHLMANCE IN CEUMEINT ON FLOW LUMU]IIUMA	DANN	30
	DANN	
8 387.108.211.1000011118 87.221.107/301.485.224.107/	DANN	30
• JOSTIN FLITTUNETILE DITERTIC JOSTICTIANINT	BANH	40
	RANN	A1 .
	GANN	15
S JEX. 149.71. JRUNTELSEN ENGINEEDING AND DESCADON. INC	BANM	11
	BANN	44
\$ 38X-1H*-14X-25HNOUNTAIN VIEW. CALIFORNIA. 14X-1H*/38X-1H*-53X-1H*/	HANN	45
5 381-55 (1H+5)	BANN	46
END	BANN	47
SUBROUTINE DRUPLT (ICASE.N.NCASE.NPARAM.YMIN.YMAX.YCR2)	ORVP	1
DIMENSION HLINE2(3) HLINE3(3)	DAAb	2
DIMENSION XCSAVE(8+200)+YCSAVE(8+200)	DRAb	3
DIMENSION XBASE (200) + XCALB (200) + XPERT (200) + XCHEK (200) + YBASE (200) +	DHAD	<u>*</u>
ACVER(500)*ALEKI(500)*ACVER(500)*ALEKI(500)	DHAb	2

SUBROUTINE BANNER

COMMON /WEAD/ ZTITLE(80) COMMON /XY/ BASE,XCALE,XEAT,XCHEK.YBASE,YCALE.YPEHT,YCHEK.YPP DATA NPLOT /0/ IF (NPLOT .60 0) CALL BETA MIN=10,0*(YMIN-0.1) MAX=10.0*(YMIN-0.1) MAX=0.1*MIN YMIN=0.1*MIN YMIN=0.1*MIN YMIN=0.1*MIN YMIN=0.1*MIN YMIN=0.1*MIN YMIN=0.1*MIN YMIN=0.1*MIN Zell (20100+HLINE2) (ZTITLE(I).I=1.9).ICASE.NCASE D0 20 K=1.NPARAM NPLOT=NPLOT-1 ENCODE (20:100+HLINE3) K.NPARAM CALL GONPL (-1) CALL MIXALF ("L/CST") CALL MIXALF ("L/CST") CALL MIXALF ("L/CST") CALL HEADIN ("PLOT (0F) C\$L0.25M0.7(P)\$".100+6.0+8.0) CALL HEADIN ("HLINE3:28:2-3) CALL HEADIN ("HLINE3:28:2-3) CALL HEADIN (HLINE3:28:2-3) CALL GRAF (0.0,"SCALE":10.9YMAX."SCALE".YMIN) CALL SIMPLX CALL SIMPLX CALL GRAF (0.0,"SCALE":10.9YMAX."SCALE".YMIN) CALL FRAME IF (YCR2 .GT. YMAX) GO TO 10 CALL ARLYEC (0.0,"SCALE":10.9YMAX."SCALE".YMIN) CALL CUPY (XBASE.YBASE.N.0) CALL ARSS ("CBL(PBBE(*1\$".100+0.2].YCR2) 10 CONTINUE CALL COPY (2.N.K.YCALB.YCSAVE) CALL COPY (2.N.K.YCALB.YCSAVE) CALL COPY (2.N.K.YCALB.YCSAVE) CALL CUPYC (XRASE.YBASE.N.0) CALL RESET ("DASH") CALL CUPYC (XPERT.N.0) CALL RESET ("DASH") CALL CUPYC (XPERT.N.0) CALL RESET ("MARKE") CALL CUPYC (XPERT.N.0) CALL ENDPL (NPLOT) CALL ENDPL (NPLOT) CALL ENDPL (NPLOT)	DRAP 6 DRAP 7 DRAP 7 DRAP 9 DRAP 9 DRAP 9 DRAP 10 DRAP 10 DRAP 10 DRAP 10 DRAP 10 DRAP 10 DRAP 10 DRAP 11 DRAP 10 DRAP 15 DRAP 16 DRAP 16 DRAP 16 DRAP 16 DRAP 16 DRAP 16 DRAP 16 DRAP 16 DRAP 17 DRAP 18 DRAP 20 DRAP 31 DRAP 33 DRAP 33 DRAP 33 DRAP 33 DRAP 33 DRAP 33 DRAP 34 DRAP 37 DRAP 37 DRAP 37 DRAP 37 DRAP 34 DRAP 34
CALL ENDPL (NPLOT)	DRVP 45
20 CONTINUE	DRVP 46
1000 FORMAT (9A1+1]HI CASE NO. +12+4H OF +12)	DRVP 47
1010 FORMAT (16HCALIBRATION NO. +11+4H OF +11)	DRVP 49
Return	URVP 49
END	DRVP 50
SUARQUTINE ECHINP	ECHI 1
DIMENSION CARD(20)	ECHI 2
READ (5.1000) LECHO	ECHI 3
IF (LECHO .EQ. 0) GO TO 10	ECHI 4
WRITE (6.1010)	ECHI 6
BACKSPACE 5	ECHI 6
BACKSPACE 5	ECHI 7
10 READ (5.1020) CARD	ECHI 7
IF (E0F15) 30.20	ECHI 9
20 WRITE (1.1020) CARD	ECHI 9

	IF (LECHO .EQ. 1) WRITE (6.1030) CARD	ECHI	11
	GO TO 10	ECH1	12
30	REWIND	ECH1	13
	IF (LECHO .EQ. 0) RETURN	ECHI	14
	READ (1+1020) CARD	ECHI	15
	READ (1+1020) CARD	ECHI	16
	RETURN	ECHI	17
1000	FORMAT (15)	ECH1	18
1010	FORMAT (1H1+25(1H+)/	ECHI	19
	A IN-IN-, IX-2INLISTING OF INPUT DECK-IX-IN-7	FCHI	50
		ECHI	21
1020	FUHMAI (2046)	ECH1	22
1030		ECH1	24
		6641	e •
			_
	SUBROUTINE FILL (ICALL, I, STRING)	FILL	1
ç	PRICE SPAN STATUS WITH CHARACTERS FOR TABLE WEADINGS AND BUINTED	5111	5
C	FILLS ANNAY SIRING WITH CHARACTERS FOR TABLE READINGS AND PRIMIER	FILL	2
L C	FLUIS.	FILL	ŝ
ι.	DIMENCION VRACE (2001-104) B(2001-104FK (2001-10FFR (2001	FILL	6
	DIMENSION VRASE (200) VCALE (200) VPFRT (200) VCHEK (200) VPRTI (200)	FILL	ž
	DIMENSION (0.0014) + 0.01(6) + 0.5ELCT (6) +00(8) +02(8)	FILL	8
	DIMENSION STRING(96) VNAM(2) UNIT(20) PARNAM(8)	FILL	9
	REAL MO+H1+M2	FILL	10
	COMMON /PARAH/ PARNAM+LOCO+LOCI+LSELCT+N+NCASE+LSPEC+LUNIT+	FILL	11
1	LCHEK+LPLOT+NSELCT+A+B+NPARAM+VNAM	FILL	15
	CONMON /PERT/ 00+02+M0+M1+M2+01+YCR0+YCR1+YCR2+YHIN+YMAX	FILL	13
	COMMON /XY/ XBASE+XCAL0+XPERT+XCHEK+YBASE+YCAL0+YPERT+YCHEK+YPRTI	FILL	14
	DATA IENT /0/	FILL	15
	DATA STAR/1H+/, P/1HP/, C/1HC/, DASH/1H-/, H/1HH/, EL/1HL/,	FILL	16
1	6 BLANK/1H /+ DOLLAR/1HS/	FILL	17
	DATA UNIT /1HX+1HS+1HT+1HH+1HU+1HN+1HI+1HT+1H +1H +	FILL	18
	T IN STH STH STHOSTHASTHISTHISTH STH STH /	FILL	14
• •	GO TO (10+30+50)+ ICALL	FILL	29
10	IENI#IENT*I	FILL	22
		FRI	57
		FILL	24
		FILL	25
		FILL	26
		FILL	27
20		FILL	28
••••	RETURN	FILL	29
30	NY ±96	FILL	30
	IFLAG=0	FILL	31
	IF (YCR2 .GT. YHAX .OR. YCR2 .LT. YHIN) IFLAG=1	FILL	32
	IF (LCHEK .EQ. 1) NY=72	FILL	33
	RANGE=YMAX-YMIN	FILL	34
	DO 40 11=1.NY	FILL	35
40	STRING(II)=DASH	FILL	36
	STRING(1)=H	FILL	37
	STRING(NY) +EL	FILL	38
	IF (IFLAG .EQ. 1) RETURN	FILL	34
	NSTAR=]+(YMAX-YCR2)/RANGE*(NY=])	FILL	A U
	STRING INSTART#STAR	FILL	
	RETURN	FILL	

50	CONTINUE DO 60 II=1.M	Y .	FILL 43 FILL 44	C LSPEC = 1 INVARIANT POINTS PRESELECTED BY USER INF C (SEE ITEMS NOS. 12 AND 16) INF C INF	10 42 10 43 10 44
	IF (IFLAG .E YP=YPERT(I) IF (LCHEK .F	G. 0) STRING(NSTAR)=STAR G. 1) VP=VPRTI(1)	FILL 45 FILL 46 FILL 47	C LUNIT CONTROLS WHETHER OR NOT UNIT COORDINATE STRAINING(S) INP C and UNIT PERTURBATION(S) ARE PRINTED. INP C INP	U 45
	NPERT=1+ (YMA	X-YP)/RANGE*(NY-1))=P	FILL 49	C LUNIT = 0 ••• NO OUTPUT INP C LUNIT = 1 ••• OUTPUT INP	10 48 10 49
	IF (LCHEK .E YC=YCHEK(1)	G. D) RETURN	FILL 51 FILL 52	C INP C LCHEK SPECIFIES WHETHER OR NOT PERTURBATION SOLUTION IS TO INP	U 50
	NCHEK=1+ (YMA	X-YC)/RANGE*(NY-1)]=C	FILL 53 FILL 54	C BE CHECKED AGAINST AN EXACT CUMPARISON SOLUTION. IMP C A PRINTER PLOT OF SOLUTION IS MADE IN LITHER CASE. IMP C	10 52 10 53 11 54
	AFTURN END	G. HUHER) SININGINPENJEUULLAN	FILL 55 FILL 56 FILL 57	C LCHEK = 0 NO COMPARISON INF C LCHEK = 1 COMPARISON INF	U 55
				C IPLOT SPECIFIES WHETHER OR NOT AN ADDITIONAL PLOT BY A INP C LPLOT SPECIFIES WHETHER OR NOT AN ADDITIONAL PLOT BY A INP	U 57
	SUBROUTINE I	NPUT (ICALL)	INPU 1 INPU 2	C PERIPHERAL DEVICE IS TO BE MADE (SOFTWARE MUST BE INP C SUPPLIED BY USER IN SURROUTINE PLOT). INP Ind	U 59 U 60
	WITH THE EXC AND 2)+ ALL	EPTION OF THE TITLE AND THE ECHO PARAMETER IITEMS 1 INPUT FOR PROGRAM PERTURB IS READ BY THIS SUBHOUTINE.	INPU 3 INPU 4	C LPLOT = 0 *** NO PERIPHERAL PLOT INP C LPLOT = 1 *** PERIPHERAL PLOT INP	10 62 10 63
	AND IS REQUI	RED IN THE FOLLOWING ONDER (FOR DETAILS, REFER TO Manual).	INPU 5 INPU 6	C C C+++++++++++++++++++++++++++++++++	10 64 10 65
****	ITEM NO. 1 -	ONE CARD (8410)	INPU 8 INPU 9	C THIS ITEM TO BE OMITTED IF LSPEC = 1 INP	U 66 U 67
	TITLE	IDENTIFIES JOB - PRINTED AS MEADLINE ON FIRST PAGE OF OUTPUT, FIRST NINE CHARACTERS ARE PRINTED IN UPPER RIGHT CORNER OF BANNER PAGE, AND IN UPPER LEFT COMPER OF SUMMARY PAGE.	INPU 10 INPU 11 INPU 12 INPU 13	C LSELCT(1) C ARRAY OF LENGTH 6 OF WHICH NSELCT ELEMENTS ARE READ INP C IN. SPECIFIES NATURE OF POINTS TO BE HELD INVARIANT INP	10 69 10 79 10 71
	1TEM NO. 2 -	ONE CARD (IS)	INPU 14 INPU 15	C ACCOMDING TO THE CODE INM C INM C I MINIMUM PT. HELD INVARIANT INM	U 72 V 73 V 74
	LECHO	CONTROLS WHETHER OR NOT INPUT DECK IS PRINTED.	INPU 16 INPU 17	C 2 MAXIMUM PT. HELD INVARIANT INP C 3 IST. CHITICAL PT. HELD INVARIANT INP	10 75 10 76
		LECHO = 0 NO OUTPUY LECHO = 1 OUTPUT	INPU 19 INPU 20	C 4 2ND CRITICAL PT. HELD INVARIANT INP C 5 3RD CRITICAL PT. HELD INVARIANT INP C 6 ATH CRITICAL PT. HELD INVARIANT INP	1077 1078 1078
••••	ITEM NO. 3 -	DNE CARD (1615) ************************************	INPU 21 INPU 22	C INP C NOTE THAT THE CODE NUMBERS CAN BE ASSIGNED IN ANY INP	10 A0
	N	NUMBER OF DATA POINTS IN BASE AND CALIBRATION SOLUTIONS.	INPU 24 INPU 25	C ONUER, E.G. INP C INP C LSELCT(1) = 1 INP	10 82 10 83 10 84
	NCASE	NUMBER OF CASES FOR WHICH PERTURBATION SOLUTIONS ARE To be computed.	INPU 26 INPU 27 INPU 28	Č ĽSELČT(Ž) = 3 INP C LSELČT(Ž) = 4 INP C LSELČT(3) = 4 INP	10 85 10 86 10 87
	NPARAM	NUMBER OF PARAMETERS PERTURBED.	INPU 30	C IS EQUIVALENT TO INP C INP	10 88 10 89
	NSELCT	NUMBER OF POINTS (IN ADDITION TO END POINTS) TO BE Held invariant in straining. Note; 1 .le. Nselct .le. 6.	INPU 32 INPU 33 INPU 34	C LSELCT(1) = 4 IMP C LSELCT(2) = 1 IMP C LSELCT(3) = 3 IMP C INP	יט 98 19 טי 19 סי 10 סי 19 סי
	LSPEC	CONTROLS HOW INVARIANT POINTS IN STRAINING ARE SPECIFIED.	INPU 35 INPU 36 INPU 37 INPU 37	C ROTH CORRESPONDING TO MSELCT = 3 WITH THE MINIMUM, IMP C AND FIRST AND SECOND CRITICAL POINTS HELD INVARIANT, IMP C IMP	U 94 U 95 V 96
		LSPEC = 0 INVARIANT POINTS SELECTED FROM AMONG	INPU 39	C ITEM NO. 5 - ONE CARD (2A1) ************************************	10 97 10 98
		(SEE ITEM NO. 4)	INPU 41	C VNAM CHARACTER STRING OF LENGTH 2 WHICH SYMBOLIZES INP C dependent variable. E.G. CP for pressure inp	'U 99 'U100

COEFFICIENT. INPULOI INPU102 INPU103 INPU104 PARNAH (K) INPU105 ARRAY OF 8-CHARACTER STRINGS WHICH IDENTIFY THE INPU106 PARAMETERS VARIED. NPARAN ELEMENTS OF THE ARRAY INPU107 INPU108 ARE READ IN. INPU109 INPULIO INPUTIL SCALING PARAMETER (A = -X(1), WHERE X(1) IS FIRST INPUL12 DATA POINT ON LOWER SURFACE ... SEE MANUAL). INPUTIN INPUT 14 SCALING PARAMETER (8 = X(N) + WHERE X(N) 15 LAST DATA 1NPU115 POINT ON UPPER SURFACE ... SEE MANUAL). INPU116 INPU117 INPULIO C++++ ITEM NO. 8 -INPU119 ONCOMING MACH NUMBER IN BASE SOLUTION. INPU120 ĦØ INPH121 C**** ITEM NO. 9 -INPU123 ARRAY OF LENGTH & GIVING VALUES OF PERTUPBATION INPU124 00(K) PARAMETERS IN BASE SOLUTION. NPARAM ELEMENTS OF THE INPU125 INPU126 ARRAY ARE READ IN. INPU127 C++++ ITEM ND. 10 - ONE SET OF C CARDS (8F10.6)+ C = 1 + INT(N/8) +++++ INPU128 INPU129 INPUI 30 XRASE(1) . 1=1.N ... X COORDINATE IN BASE SOLUTION. INPU131 INPU132 C++++ ITEM NO. 11 - ONE SET OF C CARDS (8F10.6)+ C AS IN ITEM NO. 10 +++ INPU133 INPUL 34 **INPU135** YRASE(1). I=1.N ... DEPENDENT VARIABLE IN BASE SOLUTION. INPU136 INPUL37 INPUL38 **INPU139** INPU140 ----- THIS ITEM TO BE OMITTED IF LSPEC = 0 -----INPU141 ARRAY OF LENGTH 6 OF WHICH NSELCT ELEMENTS ARE READ INPU142 LOC0(I) IN. SPECIFIES SUBSRIPTS OF THOSE BASE FLOW POINTS INPU143 INPU144 WHICH ARE TO BE HELD INVARIANT. INPULAS INPU1A7 TNPI/148 ******* ONE SET OF ITEMS 13 THROUGH 16 IS . NOTE . REQUIRED FOR EACH OF THE NPARAM INPULA 1800150 ******* CALIBRATION SOLUTIONS. INPU151 1NPU152 INPUIS3 ONCOMING MACH NUMBER IN KTH CALIBRATION SOLUTION. INPU154 MI INPU155 INPU156 VALUE OF KTH PERTURBATION PARAMETER IN KTH 91 £ INPU157 CALIBRATION SOLUTION. С

INPU158 C**** ITEM NO. 14 - ONE SET OF C CARDS (8F10.6). C AS IN ITEM NO. 10 *** INPUIS9 INPU160 XCALB(1) + I= 1+N +++ INPU161 X COORDINATE IN KTH CALIBRATION SOLUTION. INPU162 INPU163 C**** ITEM NO. 15 - ONE SET OF C CARDS (8F10.6). C AS IN ITEM NO. 10 *** INPU164 INPU165 YCALB(1). ImleN ... INPU166 DEPENDENT VARIABLE IN KTH CALIBRATION SOLUTION .. INPUL67 INPULAR INPU169 INPU170 ---- THIS ITEM TO BE OMITTED IF LSPEC = 0 -----INPU171 1NPU172 C ARRAY OF LENGTH 6 OF WHICH NELLCT ELEMENTS ARE READ 1NPU173 LOC1(1) IN. SPECIFIES SURSCRIPTS OF THOSE POINTS IN KTH INPU174 CALIBRATION FLOW WHICH ARE TO BE HELD INVARIANT. 1NPU175 INPU176 INPU177 INPU178 INPU179 ******* ONE SET OF ITEMS 17 THROUGH 20 IS INPU180 • NOTE • REQUIRED FOR EACH OF THE NEASE SOLUTIONS TO BE COMPUTED. INPUI61 ******* INPU1#2 C++++ ITEM NO. 17 - ONE CARD (8F10.6) -----INPU183 INPUIN4 INPU185 ONCOMING MACH NUMBER IN SOLUTION TO BE COMPUTED. M2 1NPU186 INPU187 TNPI1108 ARRAY OF LENGTH & GIVING VALUES OF PERTURBATION INPILLO 02 (K) PARAMETERS IN SOLUTION TO BE COMPUTED. NPARAM INPULSE INPU191 ELEMENTS OF ARRAY ARE READ IN. 1NPU192 C++++ ITEM NO. 19 - ONE SET OF C CARDS (8F10.61. C AS IN ITEM NO. 10 *** INPU193 INPU194 1NPU195 ----- THIS ITEM TO BE OMITTED IF LCHEK = 0 -----INPU196 INPU197 XCHEK([), I= 1.N ... INPU198 A COORDINATE IN COMPARISON SOLUTION. INPU199 C++++ ITEM NO. 20 - ONE SET OF C CARDS (8F10.6). C AS IN ITEM NO. 10 +++ INPU200 INPU201 ---- THIS ITEM TO BE OMITTED IF LCHEK = 0 -----INPU202 1NPU203 YCHEK(1) . I=1.N ... INPU204 DEPENDENT VARIABLE IN COMPARISON SOLUTION. INPU205 INPU206 INPU207 INPU208 INPU209 DIMENSION LOCO(6) +LOCI(6) +LSELCT(6) DIMENSION XBASE (200) • XCALB (200) • XPERT (200) • XCHEK (200) • • YBASE (200) • YCALB (200) • YPERT (200) • YCHEK (200) • YPRTI (200) INPU210 INPU211 DIMENSION Q0(8)+92(8) INPUSIS EISUMMI REAL HO+H1+H2 INPU214 DIMENSION WNAH(2) .PARNAH(8)

	COMMON /PARAM/ PARNAM+1 DC0+LOC1+LSELCT+N+NCASE+LSPEC+LUNIT+	INPU215	
	CHERCAL PLOT INSEL CT - A - R - NPARAM - VNAM	INPU216	2
	COMMON / PEDT/ DB-D2-MB-H1-M2-G1-YCR0-YCR1-YCR2-YMIN-YMAX	INPUZ17	
	COMMON JAVA RASE-ICALB. IPERT. ICHEK. YRASE-YCALB. YPERT. YCHEK. YPRTI	INPUZIA	
		1NPU219	-
• •	GU TU (10+20+30+00+30++ ICALL DEAD IS 10+0043 W.MCACE-NDADAM-NEEL (T-160EC-10NTT-1CHEK) PLOT	INPU220	,
10	$\mathbf{R}_{\mathbf{r}} = \mathbf{r}_{\mathbf{r}} + $	INPU221	
	IF (ESPEC .CO. U) READ (ITIDOD) (ESECT(I)) ITITIONSEET)	INPH222	
	KEAU (1+1010) VNAM	1000223	
	READ 11-1020) IPANAMINI INTINA ANI	TNPU224	
	HEAD (1+1030) A+B	INPRIJOS	
	HF TURN	TNPU224	r
20	READ (1.)636) MG	INPUSSO	č
	READ (1+1030) (00(K)+K=1+NPAKAM)	1000277	
	READ (1+1030) (XBASE(I)+1=1+N)	INFUZZO	č
	READ (1+1030) (YBASE(1)+1=1+N)	INPUZZA	Ľ,
	IF (LSPEC .EQ. 1) READ (1.1000) (LOCO(1).I=1.NSELCT)	INPUZ30	, c
	RETURN	INPUZII	
30	READ (1+1030) M1+Q1	INPUZ32	Ľ,
	READ (1+1030) (XCALB(1)+1=1+N)	100233	ç
	READ (1+1030) (YCALB(1)+1+1+N)	INPU234	c
	IF ILSPEC .ED. 1) READ (1.1000) (LOCI(I).[#1.NSELCT)	INPU235	ç
	PF THRN	INPU236	с
40	READ (1-1030) M2	100237	с
	READ 11+1030) 1021K)+K=1+NPARAM)	1NPU238	с
	DE TURN	1NPUZ39	
50	PFAN (1=1030) (XCHEK([]+[=1+N]	INPU240	
	DFAD (1.1030) (VCHEK(1).1=1.+N)	INPU241	
		INPU242	
1000		1NPU243	
1000		1NPU244	
1010	FORMAT (1448)	1NPU245	
1020	- FONDAT (1940)	1NPU246	
1030		[NPU247	
			1
	CURRENTINE INTERCONTACTOR	INTE 1	
-	SOMMOUTINE INTERP (NAMITALITY	INTE 2	
C C	STURN THE SET OF DOTHTS WITH, VITH, TELAN, AND THE SET XI(J).	INTE 3	
C	GIVEN THE SET OF POINTS ACTO TO TO THE THE SET VI (JIA JALANA	INTE A	
C	Jalaus need clucky intervolution to complete the pertinent	INTE 5	_
Ç		INTE 6	2
	DIMENSION X(200) + (200) + X(200) + X(200)	INTE 7	
	NH1=N-1	INTE A	
	JSTART=1	INTE 9	
	DO 70 I=1+N	INTE 10	
	IF (X1(1) .LE. X(1)) 60 10 10	INTE 11	
	IF (XI(I) .GE. X(N)) GU IV 20	INTE 12	
	GO TO 30	INTE 13	
10) jel	INTE 14	
	GO TO 60	INTE IS	3
20	I J≖N~}	1NTE 14	
	GO TO 60	INTE 17	
30	CONTINUE	INTE 17	
	DO 50 J=JSTART.NM1	THIE 10	
	IF (X1(1) .NE. X(J)) GO TO 40	INTE 19	
	4I(I)=Y(J)	THIE SO	
	GO TO 70	INIE 51	
46) [F (X1(1) .GT. X(J) .AND. X1(1) .LT. X(J+1)) GO TO 60	INIE 22	

50 60 70	CONTINUE SLOPE=(Y(J+1)-Y(J))/(X(J+1)-X(J)) Y1(1)=Y(J)=Y(J)) JSTAT#J CONTINUE CONTINUE RETURN END	INTE INTE INTE INTE INTE INTE INTE	23 24 25 26 27 28 29
C C C C C C C C C C C C C C C C C	RELIURN END SUBROUTINE LOCATE (N.K.Y.YCRIT, IGRAD, LMIN, LMAK, NCRIT, LCRIT, KLOCI .OPERATES ON THE INPUT ARRAY Y. LOCATING MINIMUM AND MAXIMUM YALUES. AND ALL CRITICAL POINTS (Y-YCRIT) FOR WHICH DY/DX (IN PHYSICAL COORDINATES) HAS ALGEBRAIC SIGN GIVEN BY IGHAD. NCHIT IS NUMBER OF CRITICAL POINTS. POINTS FOUND ARE STORED IN THE ARRAY XLOC 45 FOLLOWS XLOC(1) = MINIMUM PT, XLOC(2) = MAXIMUM PT, XLOC(2) = MAXIMUM PT, XLOC(3) = CRITICAL PT. NO. 1 XLOC(6) = CRITICAL PT. NO. 4 DIMENSION X(200), V(200), LCRIT(4), XCRIT(4), XLOC(6) COMMON /FLOREY/ IREY IF(0N=-1 LMIN=1 LMIN=2 LMIN=2 LMIN=2 LMIN=2 LMIN=2 LMIN=2 LMIN=2 LMIN=2 LMIN=4 IF (1) GG. Y(LMAX)) LMAX=1 IF (Y(1) .GT. YCRIT.AND. Y(1-1) .GT. YCRIT).OR. Y (Y1) .GT. YCLMIN) LMIN=1 CONTINUE IF (IY(1) .GT. YCRIT.AND. Y(1-1) .LT. YCRIT).GO TO 30 IF (I .GT. IREY) IFLOM=1 IF (Y(1) .T.YLCRIT.AND. Y(1-1) .LT. YCRIT).GO TO 30 NCRIT=NCRIT=1 SLOPE=X(1)-X(1-1))/Y(1)-Y(1-1)) XCRIT(NCRIT)=X(1-1))/Y(Y(1)-Y(1-1)) XCRIT(NCRIT)=X(1-1))/Y(Y(1)-Y(1-1)) XCRITINCRIT1=1 SLOPE=X(1)-X(1-1)/Y(Y(1)-Y(1-1))	INTE LOCA LOCA LOCA LOCA LOCA LOCA LOCA LOCA	27 1234567890112345678901223456789912334567899
30 40	CUMINADE XLOC(1)=X(LMIN) XLOC(2)=X(LMAX) IF (NCRIT .EC. 0) RETURN DO 40 [=]=NCRIT XLOC(1-2)=XCRIT(]) RETURN END	LOCA LOCA LOCA LOCA LOCA LOCA	40 41 42 43 44 45 46 47

-	SURROUTINE MONO (N+L+X+Y)	MOND	1
L [••••	CHECKS POINTS IN VICINITY OF A CRITICAL POINT FOR HONOTONE	HONO	3
	BENAVIUNA AND ADDUSTS VALUES IN NECESSANT TO GIVE A CINEMA	HONO	ŝ
- -		MONO	6
	DIMENSION ((A) .X (200) .Y (200)	MONO	7
		HONO	8
		MONO	9
	Y1=Y(15-1)	HONO	19
	Y2=Y (1 S)	MONO	11
	Y3=Y(LS+1)	MONO	12
	Y4=Y (LS+2)	HONO	13
	IF ((Y) .LT. Y2) .AND. (Y2 .LT. Y3) .AND. (Y3 .LT. Y4)) GO TO 10	MONO	14
	IF ((Y1 . GT. Y2) . AND. (Y2 .GT. Y3) . AND. (Y3 .GT. Y4)) GO TO 10	HONO	15
	X1=X(LS-1)	HONO	16
	X2=X(LS)	HONO	17
	X3=X(LS+1)	HONO	18
	X4#X (LS+2)	MONO	19
	SLOPE=(Y4-Y1)/(X4-X1)	MONO	20
	Y (LS) =Y1+SLOPE+(X2-X1)	MONO	21
	¥(L5+1)=¥1+5LOPE*(X3-X})	MONO	22
10	CONTINUE	MONO	53
	RETURN	HONO	24
	END	MONO	25

C Scal 2 Scal 2 C SURFACE* 0 TO B ON UPPER SURFACE TO MORMALIZED X (0 .LT. X .LT. SCAL 3 C SURFACE* 0 TO B ON UPPER SURFACE TO MORMALIZED X (0 .LT. X .LT. SCAL 3 C LINTRY WITH M=Z REVERSES THE PADCESS.NZ (DETERMINED WHEN M=1) SCAL 2 SCAL 2 C DIMENSION X POINT AT NUSE OF BLADE OR AIRFOIL. C COMMON /FLOREV/ NZ DIMENSION X(200) SCAL 6 CONTINUE SCAL 10 NZ=0 SCAL 12 DO 10 1=2+N SCAL 12 SCAL 14 SCAL 15 DO 20 1=1+N SCAL 14 X(1) +LT + X(1-1)) NZ=I SCAL 14 IF (1 +LE+ NZ) T=-X(1) SCAL 15 DO 20 10 1=1+N SCAL 14 SC CONTINUE SCAL 13 SC CONTINUE SCAL 14 SC CONTINUE SCAL 15 SC CONTINUE SCAL 14 SC CONTINUE SCAL 15 SC CONTINUE SCAL 15 SC CONTINUE SCAL 17 SC CONTINUE SCAL 17 SC CONTINUE SCAL 17			SUBROUTINE SCALE (N+X+M+A+B)	SCAL	1
CENTRY WITH W = 1 CONVERTS FROM PHYSICAL X (0 TO -A ON LOWER 5CAL 3 C SURFACE.0 TO B ON UPPER SURFACE) TO NORMALIZED X (0 .LT. X .LT. SCAL 4 C 1) ENTRY WITH W= REVERSES THE PROCESS, NZ (DETERMINED WHEN M=1) SCAL 5 C CORRESPONDS TO POINT AT NUSE OF BLADE OR AIRFOIL. SCAL 6 C CONTINUE SCAL 7 COMMON /FLOREV/ NZ SCAL 6 DIMENSION X12001 SCAL 9 IF (M.EG, 2) GO TO 30 CONTINUE SCAL 11 NZ=0 SCAL 12 DO 10 J=2+N SCAL 14 10 CONTINUE SCAL 14 11 SCAL 14 12 CONTINUE SCAL 14 13 CONTINUE SCAL 14 24 CONTINUE SCAL 24 25 CAL 24 26 CONTINUE SCAL 24 27 CONTINUE SCAL 24 28 CONTINUE SCAL 24 29 CONTINUE SCAL 24 20 CONTINUE SCAL 24	С			SCAL	2
C SURFACE. 0 TO B ON UPPER SURFACE: TO NORMALIZED X (0.1L. X.LT. SCAL 4 1) ENTRY WITH M=Z REVERSES THE PROCESS. NZ (OETERMINED WHEN M=1) C COMMON /FLOREV/ NZ COMMON /FLOREV/ NZ SCAL 8 DIMENSION X(200) IF (M.200, 2) GO TO 30 CONTINUE NZ=0 CONTINUE NZ=0 CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE SCAL 12 SCAL 14 SCAL 14 SCAL 15 SCAL 16 SCAL 17 SCAL 16 SCAL 17 SCAL 16 SCAL 17 SCAL 16 SCAL 17 SCAL 16 SCAL 17 SCAL 16 SCAL 17 SCAL 16 SCAL 21 SCAL 21 SCAL 21 SCAL 21 SCAL 21 SCAL 22 X(I)=ABS((B-A)*X(I)*A) SCAL 23 SCAL 24 RETURN SCAL 24 SCAL 24	с.		ENTRY WITH M = 1 CONVERTS FROM PHYSICAL X (0 TO -A ON LOWER	SCAL	3
C 1) ENTRY WITH M2 REVERSES THE PROCESS. NZ (DETERMINED WHEN M=1) C CORRESPONDS TO POINT AT NUSE OF BLADE OR AIRFOIL. C COMMON /FLOREV/ NZ C COMMON /FLOREV/ NZ SCAL 7 C COMMON /FLOREV/ NZ D IMENSION X(200) IF (M.E0, 2) GO TO 30 C ONTINUE NZ=0 DO 10]=2*N IF (M.E0, 2) GO TO 30 C ONTINUE D 10 [=2*N IF (1, LT, X(1=1)) NZ=I IC ONTINUE SCAL 12 SCAL 13 SCAL 14 SCAL 14 SCAL 15 SCAL 14 SCAL 14 SCAL 15 SCAL 14 SCAL 16 SCAL 21 SCAL 21 SCAL 22 SCAL 24 RETURN SCAL 24 RETURN SCAL 24 SCAL 25 END	C		SURFACE. Q TO B ON UPPER SURFACE) TO NORMALIZED X (Q .LT. X .LT.	SCAL	- 4
C CORRESPONDS TO POINT AT NUSE OF BLADE OR AIRFOIL. C COMMON /FLOREV NZ SCAL B DIMENSION X(200) SCAL B IF (M .200.2) GO TO 30 SCAL 10 CONTINUE SCAL 12 DO 10 J=2-N SCAL 12 DO 10 J=2-N SCAL 11 IF (X(1) .LT. X(1-1)) NZ=I SCAL 12 DO 20 J=1-N SCAL 14 10 CONTINUE SCAL 14 10 CONTINUE SCAL 14 10 CONTINUE SCAL 15 DO 20 J=1-N SCAL 14 X(1) .LT. X(1-1) NZ=I SCAL 16 IF (I .0F. NZ) T=X(1) SCAL 16 X(1) =T-A/Y(0-A) SCAL 25 20 CONTINUE SCAL 22 X(J)=ABS((B-A)+X(I)+A) SCAL 23 AT CONTINUE SCAL 24 RETURN SCAL 24 RETURN SCAL 24 RETURN SCAL 24 SCAL 25 END SCAL 26 SCAL 26	С		1) ENTRY WITH M=2 REVERSES THE PROCESS. NZ (DETERMINED WHEN M=1)	SCAL	- 5
C SCAL 7 COMMON /FLOREV/ NZ SCAL 8 DIMENSION X(200) SCAL 9 IF (M.E0, 2) GO TO 30 SCAL 10 CONTINUE SCAL 11 NZ=0 SCAL 12 DO 10 J=2+N SCAL 13 IF (X(1) +LT, X(1=1)) NZ=I SCAL 13 IF (X(1) +LT, X(1=1)) NZ=I SCAL 14 10 CONTINUE SCAL 15 DO 20 I=1+N SCAL 14 If (I +LE, NZ) T==X(1) SCAL 16 IF (I +LE, NZ) T==X(1) SCAL 16 X(1)=(T=A)/(B=A) SCAL 16 X(1)=(T=A)/(B=A) SCAL 17 ZO CONTINUE SCAL 21 30 D0 40 I=1+N SCAL 21 X(1)=ABS((B=A)+X(1)+A) SCAL 23 X(1)=ABS((B=A)+X(1)+A) SCAL 24 RETURN SCAL 24 RETURN SCAL 24 RETURN SCAL 24 RETURN SCAL 26 SCAL 26 SCA	С		CORRESPONDS TO POINT AT NUSE OF BLADE OR AIRFOIL.	SCAL	- 6
COMMON /FLOREV/ NZ SCAL 8 DIMENSION X(200) SCAL 10 IF (M .260.2) GO TO 30 SCAL 10 CONTINUE SCAL 11 NZ=0 SCAL 12 DO 10 I=2:N SCAL 12 DO 10 I=2:N SCAL 14 IF (X(1) .LT. X(I=1)) NZ=I SCAL 14 IO CONTINUE SCAL 14 DO 20 I=1:N SCAL 14 SCAL 10 SCAL 14 SCAL 11 SCAL 14 SCAL 12 SCAL 14 SCAL 14 SCAL 15 SCA 20 I=1:N SCAL 16 SCAL 17 SCAL 17 SCAL 18 SCAL 17 SCAL 19 SCAL 17 SCAL 10 SCAL 17 SCAL 11 SCAL 17 SCAL 21 SCAL 21 SCAL 21 SCAL 24 RETURN SCAL 23 SCAL 23 SCAL 24 RETURN SCAL 24 RETURN SCAL 24 RETURN SCAL 24 RETURN SCAL 24 END SCA	С			SCAL	7
DIMENSION X(200) 5CAL 9 IF (M .EG, 2) GO TO 30 5CAL 10 CONTINUE 5CAL 11 NZ=0 5CAL 12 DO 10]=2+N 5CAL 13 IF (X(1) .LT. X(1=1)) NZ=I 5CAL 13 IF (X(1) .LT. X(1=1)) NZ=I 5CAL 15 DO 20 [=1+N 5CAL 15 DO 20 [=1+N 5CAL 16 IF (I .EE. NZ) T=-X(1) 5CAL 17 IF (I .GT. NZ) T=X(I) 5CAL 17 SCAL 10 SCAL 10 SCAL 21 SCAL 22 X(1)=ABS((G-A)=X(1)+A) 5CAL 22 X(1)=ABS((G-A)=X(1)+A) 5CAL 24 RETURN 5CAL 24 RETURN 5CAL 24 RETURN 5CAL 24 RETURN 5CAL 24 SCAL 24 SC			CONMON /FLOREV/ NZ	SCAL	8
IF (M. EG, 2) GO TO 30 SCAL 10 CONTINUE SCAL 11 NZ=0 SCAL 12 DO 10 1=2+N SCAL 12 JI F (X(1) +LT, X(1=1)) NZ=I SCAL 14 10 CONTINUE SCAL 16 IF (I -LE, N2) T=X(1) SCAL 16 X(1) =(T-A)/(0-A) SCAL 18 X(1) =(T-A)/(0-A) SCAL 21 20 CONTINUE SCAL 22 X(1) =ABS((B-A)+X(1)+A) SCAL 23 30 D0 40 1=1+N SCAL 24 RETURN SCAL 24 RETURN SCAL 24 RETURN SCAL 24 RETURN SCAL 25 END SCAL 26			DIMENSION X(200)	SCAL	•
CONTINUE SCAL 11 NZ=0 SCAL 12 D0 10 1=2+N SCAL 13 IF (X(1) *LT, X(1-1)) NZ=I SCAL 14 10 CONTINUE SCAL 15 D0 20 1=1+N SCAL 15 D0 20 1=1+N SCAL 15 SCAL 15 SCAL 16 IF (1 *LE* NZ) T=-X(1) SCAL 17 IF (1 *GT* NZ) T=X(1) SCAL 17 SCAL 17 SCAL 18 X(1)=1T=AX(0=A) SCAL 19 20 CONTINUE SCAL 20 RETURN SCAL 21 30 D0 40 1=1+N SCAL 22 X(1)=ABS((0=A)=X(1)+A) SCAL 22 X(1)=ABS((0=A)=X(1)+A) SCAL 24 RETURN SCAL 24 RETURN SCAL 25 END SCAL 26			IF (M .EQ. 2) GO TO 30	SCAL	10
N2-0 SCAL 12 D0 J J=2+N SCAL 13 JF (X(1) *LT, X(1-1)) NZ=I SCAL 14 10 CONTINUE SCAL 14 10 CONTINUE SCAL 14 10 CONTINUE SCAL 15 00 20 I=1+N SCAL 16 IF (I .LE, N2) T=-X(1) SCAL 16 IF (I .GT, W2) T=-X(1) SCAL 16 X(1) = (T-A)/(8-A) SCAL 10 20 CONTINUE SCAL 21 30 D 40 I=1-N SCAL 21 30 D 40 I=1-N SCAL 22 X(1)=ABS((8-A)+X(1)+A) SCAL 22 41 CONTINUE SCAL 24 RETURN SCAL 24			CONTINUE	SCAL	11
D0 10 I=2+N SCAL 13 IF (X(1) *LT * X(1-1)) NZ=I SCAL 14 10 CONTINUE SCAL 15 D0 20 I=1+N SCAL 16 IF (I *LE* NZ) T=-X(I) SCAL 17 IF (I *LE* NZ) T=-X(I) SCAL 17 IF (I *LE* NZ) T=-X(I) SCAL 17 SC CONTINUE SCAL 17 SC CONTINUE SCAL 17 SC CONTINUE SCAL 17 SC CONTINUE SCAL 18 SC CONTINUE SCAL 21 30 D0 40 1=1+N SCAL 22 X(I) = ABS((B-A) * X(I) * A) SCAL 23 40 CONTINUE SCAL 24 RETURN SCAL 24 RETURN SCAL 26 END SCAL 26			NZ=0	SCAL	12
IF (x(i) *L*, x(i=1)) NZ=I SCAL j4 10 CONTINUE SCAL 15 D0 20 1=1*N SCAL 16 IF (I *L*, NZ) T=x(I) SCAL 16 X(I) = (T-A)/(B-A) SCAL 18 X(I) = (T-A)/(B-A) SCAL 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			00 10 I=2.N	SCAL	13
10 CONTINUE SCAL 15 D0 20 1=1-N SCAL 16 IF (I .LE. NZ) T==X(I) SCAL 17 IF (I .GT. NZ) T=X(I) SCAL 17 X1(1)=1T=A/Y(0=A) SCAL 19 20 CONTINUE SCAL 21 30 D0 40 SCAL 21 30 D0 40 SCAL 21 X(I)=ABS((0=A)+X(I)+A) SCAL 22 X(I)=ABS((0=A)+X(I)+A) SCAL 24 RETURN SCAL 24 RETURN SCAL 24 RETURN SCAL 26 END SCAL 26			IF (X(1) .LT. X(1-1)) NZ=I	SCAL	14
D0 20 1=1+N SCAL 16 IF (I .LE.N2) 1=-X(I) SCAL 17 IF (I .QT.NZ) T=X(I) SCAL 18 X(I)=(I-A)/(B-A) SCAL 18 X(I)=(I-A)/(B-A) SCAL 20 2n CONTINUE SCAL 20 RETURN SCAL 21 30 D0 40 1=1+N SCAL 22 X(I)=ABS((B-A)+X(I)+A) SCAL 23 4n CONTINUE SCAL 24 RETURN SCAL 24 FURN SCAL 24 SCAL 25 SCAL 24 SCAL 26 SCAL 24 RETURN SCAL 24 SCAL 26 SCAL 24 RETURN SCAL 24 SCAL 26 SCAL 26 SCAL 26 SCAL 26		10	CONTINUE	SCAL	15
IF (I _ LE_ N2) T=-x(I) SCAL 17 IF (I _ GT_ N2) T=x(I) SCAL 18 x(I)=(T-A)/(S-A) SCAL 19 20 CONTINUE SCAL 21 30 D0 40 1=1-N SCAL 21 30 D0 40 1=1-N SCAL 22 x(I)=ASF((B-A)+X(I)+A) SCAL 23 40 CONTINUE SCAL 24 RETURN SCAL 24 RETURN SCAL 24 RETURN SCAL 25 END SCAL 26		•	00 20 1=1+N	SCAL	16
IF (I (GT+NZ) T=X(I) SCAL 18 X(I)=(T-A)/(B-A) SCAL 24 SCAL 26 P CONTINUE SCAL 21 30 DQ 40 1=1+N SCAL 21 30 DQ 40 1=1+N SCAL 22 X(I)=ABS((B-A)+X(I)+A) SCAL 23 40 CONTINUE SCAL 23 41 CONTINUE SCAL 25 END SCAL 26			IF (I .LÊ. NZ) T=-X(I)	SCAL	17
X(I)=(T-A)/(B-A) SCAL 20 20 CONTINUE SCAL 20 RETURN SCAL 21 30 D0 40 1=1+N SCAL 21 31 pab5((B-A)+X(I)+A) SCAL 22 40 CONTINUE SCAL 23 40 CONTINUE SCAL 24 RETURN SCAL 24 SCAL 24 SCAL 24 RETURN SCAL 24 RETURN SCAL 24 SCAL 25 SCAL 26			1F (1 .GT. NZ) T=K(1)	SCAL	18
20 CONTINUE SCAL 20 RETURN SCAL 21 30 D0 40 1=1.N X(1)=ABS((B-A)+X(1)+A) SCAL 22 40 CONTINUE SCAL 23 40 CONTINUE SCAL 24 RETURN SCAL 24 SCAL 24 RETURN SCAL 25 SCAL 25 END SCAL 26			X(I)=(T-A)/(B-A)	SCAL	19
RETURN SCAL 21 30 D0 40 1=1+N SCAL 22 X(1)=AB5((B-A)+X(1)+A) SCAL 23 40 CONTINUE SCAL 24 RETURN SCAL 25 END SCAL 26		20	CONTINUE	SCAL	20
30 D0 40 1=1+N SCAL 23 X (I)=ABS((B-A)+X(I)+A) SCAL 23 40 CONTINUE SCAL 24 RETURN SCAL 24 END SCAL 26			RETURN	SCAL	21
X(I)=ABS((B=A)+X(I)+A) SCAL 23 4n CONTINUE SCAL 24 RETURN SCAL 25 END SCAL 26		30	DO 40 1=1+N	SCAL	22
4n CONTINUE SCAL 24 RETURN SCAL 25 END SCAL 26			X(I)=A85((8-A)+X(I)+A)	SCAL	23
RETURN SCAL 25 END SCAL 26		40	CONTINUE	SCAL	24
END SCAL 26			RETURN	SCAL	25
			END	SCAL	26

	SUBROUTINE SORT (N+X+ISEQ)	SORT	1
с		SORT	5
с.	ARRANGES THE SET X(1), X(2), , X(N) IN A MONOTONE INCREASING	SORT	3
Č	SEQUENCE. ISEQ GIVES ORDER OF SUBSCHIPTS IN REARRANGED SEQUENCE.	SORT	
ć		SURT	5
	DIMENSION X(8), ISEQ(8)	SORT	6
	NH 1 = N- 1	SORT	7
	00 10 1=1+N	SORT	8
	10 ISEQ(I)=I	SORT	9
	20 ITEST=0	SORT	10
	00 30 1=1+NH1	SURT	-11
	IF (X(1) +LE. X(1+1)) GO TO 30	SURT	12
	XSAVE=X(1)	SONT	13
	X (I)=X (I+1)	SORT	-14
	X(I+1)±XSAVE	SORT	15
	ISAVE=[SEQ(])	SORT	16
	ISEQ(1)=1SEQ(1+1)	SORT	17
	ISEQ(1+1)=ISAVE	SORT	18
	ITEST=1	SORT	19
	38 CONTINUE	SORT	20
	IF (ITEST .EQ. 1) GO TO 20	SORT	21
	RETURN	SORT	22
	END	SORT	23

SUBROUTINE STRAIN	(NoKoNSEGoXFIXoXINoPARMoDELX)
-------------------	-------------------------------

	SUBROUTINE STRAIN (NoKoNSEGOXFIXOXINOPARMODELX)	STRA	1
C		STHA	2
C	.COMPUTES STRAINING INCREMENT DELX FROM INPUT ARRAY XIN. USING	STRA	3
С	PIECEWISE LINEAR STRAINING WITH NSEG LINEAR SEGMENTS. FOR UNIT	STRA	
C	STRAINING, INPUT VALUE OF PARM IS 1.01 FOR GENERAL CASE.	STRA	5
c		STRA	6
C	PARM = (Q2(K)-D0(K))/(Q1-Q0(K)).	STHA	7
С		STRA	8
	DIWENSION XFIX(8)+XIN(200)+DELX(200)	STRA	9
	COMMON /COEFF/ C(8+7)+D(8+7)	STRA	10
	JSTART=1	STRA	11
	00 30 1=1+N	STRA	12
	DO 10 J=JSTART.NSE6	STRA	13
	IF (XIN(1) .GE, XFIX(J) .AND. XIN(1) .LE. XFIX(J+1)) GO TO 20	STRA	14
10	CONTINUE	STRA	15
20	DF1 X (1) = PARM+ (C (K+J) + (D (K+J) - 1, 0) + XIN(1))	STRA	16
- v	(START=J	STRA	17
30	CONTINUE	STRA	18
	RETURN	STRA	19
	END	STRA	20
	SUGRANTINE TABLE (MARAMANCASE PARMANANA.00)		
	JOBHOUTING TABLE INFARTINGASETERNARINAYSY)	TADL	1
	ILICATIVE FARMANDIJEVUSI Diučnijus farmanijjevisi	TABL	2
		TABL	3
	4	TABL	
		TABL	5
	HEAL HO-HISAVE HZSAVE	TABL	6
	COMMON /HEAD/ TITLE(80)	TABL	7

ļ

	CONNON /TBL/ HEADB+HEAD1+HEAD2+M15AVE+H2SAVE+Q15AVE+Q2SAVE	TABL	i
	DIMENSION STAR (127) +BLANK (1261 +STRNG1 (100) +STRNG2 (28) +END(6)	TABL	
	DATA STAR /12741H4/, BLANK /12641H /. STRNG2 /1H4.2741H-/.	TAHL	1
•	578NG1 /100-1H-/	TAUL	1
	DATA FND /1HP+1HA+1HR+1H++1H +1H+/	TABL	12
	DATA ORD /5H 1ST +5H 2ND +5H 3RD +5H 4TH +5H 5TH +5H 6TH +5H 7TH +	TABL	E
	5H ATH .5H 9TH .5H10TH .5H11TH .5H12TH .5H13TH .5H14TH .	TABL	÷
	SHISTH -5HIATH -SHITTH -5HIATH -5HI9TH -5H20TH -5H215T -	TABL	-i
	6H22NN 5H23ND 55H24TH 5H25TH /	TABL	-i
		TAUL	-i
		TABL	-ii
	STONG ((1) - STAD ())	TAHL	- i-
10		TAR	÷
	00 50 1, 100-100 Motto (A. 1088) (1111 F(1) telag)	TAHI	5
	WATTC (001000) (11/12/1/01-107)	TARI	5
	17471-11.1777757-16	TAHE	5
	JHAAC*("RAIL'CD WDITE (4.)AIA) (8) AWK(1),1=(.28).(STAD(1),1=).(MAX))	TARI	5
		TAH	5
	MITE (DITATA) (OUD(ULAN-IND NUMU)	TAH	
	IMAATIMAACTO Motto (4.4478) (Maam((1),101,1Mat),5ND	TAH	5
	ANTIC THAT AND THE ANTITAL ATTACANA AND	TARI	5
	1788-1788-1781 Unite 16.16461 (FTMMA1/T).T.1.TMAV1	TABL	5
		TADI	5
	ANTAL TATATAT	TAGE	3
	1787-1797-1797-1797-1797-1797-1797-1797-	TABL	3
	WITE (001030) (DEAMAIL/11-101MAA/3)AATI/	TADL	3
	HRITE (0+1010) (31AR(1)+1-1+19AAZ)	TABL	2
		TADI	2
	WHILE (011034) (CLANK(1/11-10/086/3)AR(1)	TAD	- 2
	WHITE (0+1010) (31AR(1))1=1)1MA(2)	TAN	2
	ANTIE (DITATA) (DIALITATANY)	TADI	5
		7 401	
	DU 20 KEIIMPANAN	TABL	3
€0		TAUL	7
	UNTIFEIN/ WISAVCIN) UNTIFE // JAAAN OND/// UPANA MICANE/// JONDITE//// ////////	TADL	7
	WRITE (0:1000) URUKNINA MEAULANISAYEKINA (WWRITE(NR) (NRATINGARAN)	TABL	7
	WRITE 10110307 (DEAMAI)/TETTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TARI	Ξ.
	IF IN SETS MEARANY BRITE (BEIDIA) STRAGEVISTANDI(1/)-TVIMAT/	TABL	1
30	UNITAUE	TAN	7
	MAIIC (DILUIVI LJIMALJII-III/MAK2) MAITE (6.1474) (STAD(1).1w1.1MAY2)	TARI	
	White (Offord) (Signify) (Signify)	TARI	
	NOTE (A.1080) ODD(TCACE).WEAD2.W2SAVE(TCASE).	TAR	-
	In the second se	TABI	5
-	WEITE (A.1636) (BLANK(1).Tels/MAY).STAD(1)	TAHI	ŝ
	WHILE (DELUGATE) (DEMONSTRATE (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,	TAHI	ś
	IF TILAJE CIE NURSEF WEITE (GETOTOF STRAGE (STRAGT(F))	TAR	ć
- 0	CONTINUE	TAHL	ś
5.0	TURIT (GATOLO) (STAR(T))T-TATORAC)	TAHL	5
50	BE THEN	TABI	ŝ
1000	FORMAT (1H1.AX.13/1H03/5X.2H0 .941.2H 0/5X.13(1H0)///)	TABL	Ś
1000	Frenkt (st.) 2841)	TABL	5
1414	TORNAT (337.104.147.8/104.48.50040.1)	TAUL	5
1454	FORMAT (144.42.13841)	TABL	6
1818	FORMAT (339.11MF MACH NO 8941)	TAUL	6
1040	FORMAT (337.144.147.8(344 .48.11))	TABL	6
1426	LANDRI (33410-1784-8150- 180114)		

1060 FURMAT (5X,3H* +5A4+5X+9(3H* +F6+3+2X))	TAUL 63
1070 FORMAT (1H0+4X+128A1)	TABL 64
1080 FORMAT (5X.2H* .A5.5A4.1X.9(3H* .F6.3.2X))	TAUL 65
END	TARI AA

	SUBROUTINE UPLOW (A+0+XIN+K+N+XOUT+FLAG)	UPLO	1	
c		UPLO	Ś	
C	.CONVERTS NORMALIZED ARRAY XIN TO PHYSICAL ARRAY XOUT AND FLAGS	UPLO	3	
C	POINTS ON LOWER SURFACE WITH A """.	UPLO	4	
C		UPLO	5	
	DIMENSION XIN(K)+XOUT(8)	UPLO	6	
	DIHENSION FLAG(A)	UPLO	7	
	DATA BLANK/1H /+ STAR/1H=/	UPLO	8	
	XNOSE==A/(B=A)	UPLO	9	
	DO 10 I=1+N	UPLO	10	
	FLAG(1)=BLANK	UPLO	ii.	
	IF (XIN(I) .LT. XNOSE) FLAG(I)=STAR	UPLO	12	
	XOUT(I)=ABS((B-A)=XIN(I)+A)	UPLO	13	
10	CONTINUE	UPLO	i.	
• •	RETURN	UPLO	15	
	END	UDLO	17	

APPENDIX C

LIST OF SYMBOLS

· ···· ·· · · · · · ·

· ------

С	blade chord, m
DVi	design variable coefficient of profile shape function; eq. (22)
i	invariant point index; eq. (5); also, index for surface shape functions; eqs. (22,23)
k	dummy index; eq. (24)
L	two-dimensional full potential operator; eq. (1)
L ₁	linear operator representing first-order perturbation of two-dimensional full potential equation; eq. (3)
L ₂	linear operator representing first-order perturbation terms arising from coordinate straining; eq. (6)
М	number of independent flow or geometrical variables to be perturbed
M_{∞}	absolute inlet Mach number
n	total number of shock points and high-gradient maxima points; eq. (21)
Ν	total number of invariant points, equal to n + 2; eqs. (13,14)
q _j	j th arbitrary geometric or flow parameter to be perturbed; eq. (8)
q _c	calibration flow value of q_j ; eq. (8)
q _o ,	base flow value of q_j ; eq. (2)
Q	approximate flow solution for arbitrary flow quantity; eq. (7)
Q _{cj}	calibration flow solution for value q _c of arbitrary parameter; eq. (7)
Q _o	base flow solution for values q _o of arbitrary parameters; eq. (7) j
Q _l j	j^{th} perturbation solution per unit change of perturbed parameter q_j ; eq. (7)

(s,t)	strained (x,y) coordinates; eq. (4)
t	gap to chord spacing ratio
(x,y)	nondimensional blade-fixed orthogonal coordinates; eq. (7), normalized by C
(\bar{x}_j, \bar{y}_j)	nondimensional blade-fixed orthogonal coordinates related to j th calibration solution; eq. (7)
(x ₁ ,y ₁)	straining functions associated with (x,y) coordinates; eq. (4)
(x ₁₁ ,y ₁₁)	straining functions associated with ith invariant point; eq. (5)
α	angle oncoming flow makes with blade chord line
(δx _i ,δy _i)	unit displacements in (x,y) directions associated with ith invariant point; eqs. (5,8)
€j	desired perturbation change of j th geometric or flow parameter; eq. (8)
ēj	perturbation change of j th geometric or flow parameter between base and calibration flows; eq. (8)
τ	thickness ratio of blade
Φ	nondimensional total velocity potential; eq. (1), normalized by CV_∞
Фо	nondimensional base flow velocity potential; eq. (2), normalized by CV_{∞}
$^{\Phi}$ 1 _j	nondimensional j th perturbation velocity potential; eq. (2), normalized by CV_{∞}
Subscripts	
i	denotes quantities associated with i th invariant point
j	denotes perturbation quantities
Superscript	S
0	denotes base flow quantities
с	denotes quantities associated with calibration flows

1

I

101

REFERENCES

- 1. Stahara, S. S., Elliott, J. P., and Spreiter, J. R.: A Rapid Perturbation Procedure for Determining Nonlinear Flow Solutions: Application to Transonic Turbomachinery Flows. NASA CR-3425, May 1981.
- Stahara, S. S., Chaussee, D. S., and Spreiter, J. R.: Perturbation Solutions for Transonic Flow on the Bladeto-Blade Surface of Compressor Blade Rows. NASA CR-2941, Jan. 1978.
- Nixon, D.: Perturbations in Two- and Three-Dimensional Transonic Flows. AIAA J., Vol. 16, July 1978, pp. 699-709.
- 4. Nixon, D.: Design of Transonic Airfoil Sections Using a Similarity Theory. NASA TM 78521, Oct. 1978.
- Stahara, S. S., Crisalli, A. J., and Spreiter, J. R.: Evaluation of a Strained Coordinate Perturbation Procedure: Nonlinear Subsonic and Transonic Flows. AIAA Paper No. 80-0339, Jan. 1980.
- Nixon, D.: Perturbation Methods in Transonic Flow. AIAA Paper No. 80-1367, July 1980.
- Stahara, S. S., Elliott, J. P., and Spreiter, J. R.: A Rapid Method for the Approximate Determination of Nonlinear Solutions: Application to Aerodynamic Flows. ICAS Paper No. 80-7.5, Oct. 1980.
- 8. Nixon, D. and McIntosh, S. C., Jr.: Further Observations on the Strained Coordinate Method for Transonic Flows. AIAA J., Vol. 18, Dec. 1980, pp. 1540-1541.
- 9. Holst, T. L. and Ballhaus, W. F.: Fast, Conservative Schemes for the Full Potential Equation Applied to Transonic Flows. AIAA J., Vol. 17, Feb. 1979, pp. 145-152.
- 10. Dulikravich, D. S.: CASD: Computer Program for Planar Steady Potential Cascade Flows. NASA TP 1705, July 1980.
- Hicks, R. M., Murman, E. M., and Vanderplaats, G. N.: An Assessment of Airfoil Design by Numerical Optimization. NASA TMX-3092, 1974.
- Hicks, R. M. and Vanderplaats, G. N.: Application of Numerical Optimization to the Design of Supercritical Airfoils without Drag-Creep. SAE Paper 770440, 1977.
- Jameson, A.: Transonic Calculations for Airfoils and Bodies of Revolution. Grumman Aero. Rept. 390-71, Dec. 1971.

REFERENCES (Concluded)

- 14. Katsanis, T.: Fortran Program for Calculating Transonic Velocities on a Blade-to-Blade Stream Surface of a Turbomachine. NASA TN D-5427, Sept. 1969.
- Crouse, J. E.: Computer Program for Definition of Transonic Axial-Flow Compressor Blade Rows. NASA TN D-7345, Feb. 1974.
- 16. Madsen, L. E. and Vanderplaats, G. N.: COPES A Fortran Control Program for Engineering Synthesis. NPS 69-81-003, March 1982.
TABLE 1

Ţ

COMPARISON OF FINAL DESIGN VARIABLES AND OBJECTIVE FUNCTION WHEN EMPLOYING FULL NONLINEAR TSONIC SOLUTIONS OR PERTURBATION METHOD FOR DIFFERENT CHOICES OF CALIBRATION SOLUTION MATRIX FOR SIX DESIGN VARIABLE SUBCRITICAL OPTIMIZATION CASE STUDY USING MAXIMUM SUCTION SURFACE VELOCITY DIFFUSION OBJECTIVE

Design							Objective			
Variables	KOCR	Т	ZM	Р	TMX	THLE	Function			
INITIAL										
Baseline	-10.0000	0.2500	0.4500	1.50000	0.0500	0.0050	1.8400			
Upper Bound	0.0000	0.6000	0.5500	4.0000	0.1000	0.0120				
Lower Bound	-15.0000	0.2000	0.2000	0.5000	0.0300	0.0030				
FINAL										
TSONIC SOLUTIONS ONLY RESULTS										
CDC 7600	-7.1106	0.2000	0.5500	0.9401	0.0300	0.0064	1.6748			
IBM 3033	-8.8659	0.2400	0.5500	0.7628	0.0300	0.0051	1.6752			
PERTURBATION SOLUTION RESULTS										
CASE 1										
Calibration	-7.0000	0.2000	0.5500	0.9400	0.0300	0.0064				
Final	-9.2223	0.2327	0.5500	0.9281	0.0359	0.0052	1.6904			
CASE 2										
Calibration	-9.0000	0.2300	0.5500	0.8000	0.0300	0.0060				
Final	-8.8714	0.2228	0.5500	0.9523	0.0315	0.0051	1.6908			
CASE 3						0 0070				
Calibration	-12.0000	0.3000	0,4000	1.2500	0.0400	0.0070	1 (07)			
Final	-8.9865	0.3001	0.5500	0.8776	0.0300	0.0050	1.09/4			
CASE 4					0.000	0.0000				
Calibration	-8.0000	0.3500	0.5000	2.0000	0.0600	0.0060	1 7/00			
Final	-8.2180	0.3257	0.5500	1.452/	0.0385	0.0049	1./028			
CASE 5					0.0100	0.00/0				
Calibration	-9.0000	0.3000	0.5000	2.5000	0.0400	0.0040	1 7/96			
Final	-5.9055	0.4440	0.5500	1.3325	0.0412	0.0037	1./400			
CASE 6	11 0000	0.0000	0.0500	1 3500	0.0600	0.0040				
Calibration	-11.0000	0.2300	0.3500	1.2500	0.0600		1 6907			
Final	-9.4297	0.2522	0.5500	0.8036	0.0300	0.0052	T.0801			

Figure 1.- Comparison of perturbation (O) and nonlinear (--) surface pressures for the simultaneous two-parameter perturbation of (M_∞,τ) for nonlifting strongly supercritical flows past isolated NACA 00XX blade profiles.

105

Figure 2.- Comparison of perturbation (O) and exact nonlinear (---) surface pressures for the simultaneous three-parameter perturbation of $(\alpha, M_{\infty}, \tau)$ for strongly supercritical flows past isolated NACA 00XX blade profiles.

Figure 3.- Comparison of perturbation (O) and exact nonlinear (--) surface pressures for the simultaneous four-parameter perturbation of $(M_{\infty}, \tau, t, \alpha_{\infty})$ for strongly supercritical flows past a cascade of NACA 00XX blade profiles.

Figure 4.- Illustration of typical ordinate shape functions F_i employed in blade contour alteration optimization problems.

ſ

. . . .

ļ

Figure 6.- Comparison of final design variables and objective function when employing the perturbation method (●) in lieu of the full nonlinear aerodynamic solver (☉) for various choices of initial design variable stepsize for nine design variable subcritical optimization case study with a surface pressure tailoring objective.

Figure 7.- Comparison of computational work and objective function reduction per optimization search cycle when employing perturbation method (●) or full nonlinear aerodynamic solver (☉) for nine design variable subcritical optimization case study using a surface pressure tailoring objective.

Figure 8.- Comparison of perturbation-predicted final design variables and objective function for various choices of initial design variable stepsize for four design variable supercritical optimization case study with drag minimization objective.

Figure 9.- Comparison of computational work and objective function reduction per optimization search cycle when employing perturbation method (●) or full nonlinear aerodynamic solver (☉) for four design variable supercritical optimization case study using a drag minimization objective.

Figure 10.- Comparison of final design variables and objective function when employing perturbation method (●) or full aerodynamic solver (△) as compared with 'optimum' full aerodynamic result (⊙) for different choices of initial design variable stepsize for four design variable supercritical optimization case study using a surface pressure tailoring objective.

Figure 11.- Comparison of computational work and objective reduction per optimization search cycle when employing perturbation method (●) or full nonlinear aerodynamic solver (☉) for four design variable supercritical optimization case study using a surface pressure tailoring objection.

1. Report No.	2. Government Acce	ssion No.	3. Recipient's Catalo	»g No.						
4. Title and Subtitle DEVELOPMENT OF A MULTIP PERTURBATION PROCEDURE	LE-PARAMETE FOR TRANSONI	R NONLINEAR C TURBOMA-	5. Report Date January 1983							
CHINERY FLOWS: PRELIMINA	6. Performing Organ									
7. Author(s)		8. Performing Organization Report No. NEAR TR 276								
D. D. Dunara, D. T. Enrou, an			10. Work Unit No.							
9. Performing Organization Name and Address Nielsen Engineering & Research										
510 Clyde Avenue		11. Contract or Grant No. NAS3-20836								
Mountain View, California 94043	3									
12. Sponsoring Agency Name and Address		Contractor Report								
National Aeronautics and Space	Administration		14 Sponsoring Agency Code							
Washington, D.C. 20546			505-31-OA (E-139							
15. Supplementary Notes										
Final report. Project Manager.	Final report. Project Manager. Aaron Snyder. Fluid Mechanics and Acoustics Division.									
NASA Lewis Research Center, Cleveland, Ohio 44135.										
16. Abstract										
An investigation was conducted t	o continue the de	evelopment of pertu	rbation procedu	res and assoc-						
iated computational codes for rapidly determining approximations to nonlinear flow solutions,										
with the purpose of establishing	with the purpose of establishing a method for minimizing computational requirements associated									
with parametric design studies of transonic flows in turbomachines. The results reported here										
concern the extension of the previously-developed successful method for single-parameter										
perturbations to simultaneous m	ultiple-paramet	er perturbations, a	nd the prelimina	ary						
application of the multiple-parar	application of the multiple-parameter procedure in combination with an optimization method to									
blade design/optimization proble	em. In order to	provide as severe a	a test as possibl	e of the meth-						
od, attention is focused in particular on transonic flows which are highly supercritical. Flows										
past both isolated blades and cor	npressor cascad	les, involving simul	taneous changes	in both flow						
and geometric parameters, are	considered. Co	mparisons with the	corresponding '	exact [°] non-						
linear solutions display remarks	able accuracy an	d range of validity,	in direct corres	spondence with						
previous results for single-parameter perturbations. Initial applications of the perturbation										
method combined with an optimization procedure demonstrate the ability of the multiple-param-										
eter method to work accurately in a design environment and establish its potential for reducing										
the computational work required in such applications by an order of magnitude.										
		-	~ ·							
17. Key Words (Suggested by Author(s))	• • • • • <u>_</u> ,	18 Distribution Statement								
Transonic flow; Steady flow; To	urbomachinery;	Unclassified - unlimited								
Perturbation theory; Strained co	oorainates;	STAR Category 01								
Blade-to-plade surface										
19. Security Classif. (of this report)	20. Security Classif (c	f this page)	21. No. of Pages	22. Price*						
Unclassified	Unclassified Unclass			A06						
				1 1						

.

* For sale by the National Technical Information Service, Springfield, Virginia 22161