Development of a Multiple-Parameter Nonlinear Perturbation Procedure for Transonic Turbomachinery Flows: Preliminary Application to Design/Optimization Problems

S. S. Stahara, J. P. Elliott, and J. R. Spreiter

Development of a Multiple-Parameter Nonlinear Perturbation Procedure for Transonic Turbomachinery Flows: Preliminary Application to Design/Optimization Problems

S. S. Stahara, J. P. Elliott, and J. R. Spreiter
Nielsen Engineering \mathcal{E} Research, Inc.
Mountain View, California

Prepared for
Lewis Research Center
under Contract NAS3-20836

N/SN

National Aeronautics
and Space Administration

Scientific and Technical

 Information BranchTABLE OF CONTENTS
Section Page
SUMMARY 1

1. INTRODUCTION 2
2. ANALYSIS 3
2.1 Perturbation Concept and Previous Applications 3
2.2 Simultaneous Multip1e-Parameter Perturbation 4Formulation
2.3 Application to Surface Properties 7
3. RESULTS 11
3.1 Simultaneous Multiple-Parameter Perturbations 11
3.2 Preliminary Application of Combined Multiple- 13 Parameter Perturbation Method with OptimizationProcedures for Blade Design Applications
4. CONCLUSIONS AND RECOMMENDATIONS 25
APPENDIXES
A - USER'S MANUAL FOR COMPUTER PROGRAM PERTURB 27
A. 1 INTRODUCTION 27
A. 2 PROGRAM DESCRIPTION 27
A. 3 PROGRAM FLOW CHART 31
A. 4 DICTIONARY OF INPUT VARIABLES 33
A. 5 PREPARATION OF INPUT DATA 35
A.5.1 Description of Input 35
A.5.2 Format of Input Data 37
A. 6 DESCRIPTION OF OUTPUT 41
A. 7 ERROR MESSAGES 42
A. 8 SAMPLE CASE 42
FIGURES A. 1 to A. 3 45
B - LISTING OF COMPUTER PROGRAM PERTURB 88
C - LIST OF SYMBOLS 100
REFERENCES 102
TABLE 1 104
FIGURES 105

DEVELOPMENT OF A MULTIPLE-PARAMETER NONLINEAR PERTURBATION PROCEDURE FOR TRANSONIC TURBOMACHINERY FLOWS: PRELIMINARY APPLICATION TO DESIGN/OPTIMIZATION PROBLEMS
Stephen S. Stahara, James P. E11iott, and John R. Spreiter
Nielsen Engineering \mathcal{E} Research, Inc. Mountain View, CA

SUMMARY

An investigation was conducted to continue the development of perturbation procedures and associated computational codes for rapidly determining approximations to nonlinear flow solutions, with the purpose of establishing a method for minimizing computational requirements associated with parametric design studies of transonic flows in turbomachines. The results reported here concern the extension of the previously-developed successful method for single-parameter perturbations to simultaneous multiple-parameter perturbations, and the preliminary application of that multiple-parameter procedure in combination with an optimization method to blade design/optimization problems.

In order to provide as severe a test as possible of the method, attention is focused in particular on transonic flows which are highly supercritical. Flows past both isolated blades and compressor cascades, involving simultaneous changes in both flow and geometric parameters, are considered. Comparisons with the corresponding 'exact' nonlinear solutions display remarkable accuracy and range of validity, in direct correspondence with previous results for single-parameter perturbations. Initial applications of the perturbation method combined with an optimization procedure demonstrate the ability of the multipleparameter method to work accurately in a design environment and establish its potential for reducing the computational work required in such applications by an order of magnitude.

1. INTRODUCTION

With the continuing success of advanced computational methods to determine solutions to increasingly complex fluid dynamic phenomena, it has become clearly apparent that in order to employ these methods in applications requiring routine high-frequency use, a means must be found to reduce the computational demands necessary in their straightforward application. While this need exists across a spectrum of aerodynamic users, it is particularly high in turbomachinery applications. There both the basic aerodynamic computation is time-consuming and the number of variable flow and geometry parameters are large, making any turbomachinery parametric or design study computationally expensive under the best of circumstances, and in many instances using more advanced codes, prohibitively so.

The ultimate objective underlying this study is to develop the means of reducing substantially the overall computational requirements necessary for turbomachinery design or parametric studies by minimizing the actual number of "expensive" numerical flow solutions required. That such procedures are achievable has been successfully demonstrated in the previous phase (ref. 1) of this study. In that work, a perturbation method was developed and tested on a large number of nonlinear flow problems involving singlc-parameter changes of a variety of flow and geometric parameters. Subcritical and supercritical flows past isolated blades and compressor cascades were considered, with particular emphasis placed on supercritical transonic flows which exhibited large surface shock movements over the parametric range studied. Comparisons of the perturbation predictions with the corresponding 'exact' nonlinear solutions indicated a remarkable accuracy and range of validity of the perturbation method.

The work reported here describes the continued extension and refinement of that perturbation technique, and has focused on the development of its capability for actual application to practical turbomachinery design problems requiring the highly repetitive use of computational codes to determine a large number of related flow solutions. Two primary tasks were involved. The first consisted of the extension of the method to treat simultaneous multiple-parameter perturbations. The second involved the combination of the perturbation method with an optimization procedure, and the preliminary application of that combination to blade design/optimization problems. The nature of the present work is both exploratory and developmental in that aspects of the procedure-such as its validity, range of accuracy, and computational economy for multiple-parameter perturbation problems and its workability in an optimization design environment--will be investigated, and a computational code for multiple-parameter perturbations will be developed.

2. ANALYSIS

2.1 Perturbation Concept and Previous Applications

The classical approach of performing a perturbation analysis-consisting of establishing and solving a series of linear perturbation equations--appears an an obvious choice for the current applications. However, results from the initial phase of this study (ref. 2) demonstrate that for applications to sensitive flows such as occur in transonic situations, the basic linear variation assumption fundamental to the technique is sufficiently restrictive that the permissable range of parameter variation is so small to be of little practical use. An interesting alternative to the linear perturbation equation approach has recently been successfully examined in which a correction technique is used that employs two or more nonlinear base solutions. For that method, the basic perturbation solution is determined simply by differencing two nonlincar base flow solutions removed from one another by some nominal change of a particular flow or geometrical quantity. A unit perturbation solution is then obtained by dividing that result by the change in the perturbed quantity. Related solutions are determined by multiplying the unit perturbation by the desired parameter change and adding that result to the base flow solution. This simple procedure, however, only works directly for continuous flows for which the perturbation change does not alter the solution domain. For those perturbations which change the flow domain, coordinate stretching is necessary to ensure proper definition of the unit perturbation solution. Similarly, for discontinuous flows, coordinate straining is necessary to account for movement of discontinuities due to the perturbation.

In a number of recent applications of the method (refs. 1-7), results have been obtained which demonstrate the accuracy, range of validity, and versatility of perturbation methods based on such ideas. The most extensive and systematic of these are provided in references 1 and 7 , where results are reported for a variety of flow and geometry parameter perturbation case studies of nonlinear subsonic and transonic flows past both isolated blades and compressor cascades. In those results, particular emphasis was placed on strongly supercritical transonic flows which exhibit large surface shock movements over the parameter range studied. Comparisons of the perturbation results with the corresponding 'exact' nonlinear solution display remarkable accuracy across the spectrum of examples studied.

The basis of this accuracy lies in the use of coordinate straining. This provides the means in determining the unit perturbation to account properly for the displacement of discontinuities and maxima of high-gradient regions due to a
parameter change. This in turn enables the perturbation method to maintain uncommon accuracy in regions of high gradients over large parametric ranges. In reference 1, a detailed examination was made of the effect of employing different classes of straining functions. Those results have illustrated deficiencies in certain classes of straining functions and have lead to the identification of a superior class of straining functions. These results are discussed in more detail in section 2.3 .

2.2 Simultaneous Multiple-Parameter Perturbation Formulation

To provide the theoretical basis of the perturbation method as applied to simultaneous multiple-parameter perturbations of flows containing multiple shocks or high-gradient regions, consider the formulation of the procedure at the full potential equation level, since all of the results presented here are based on that level. Denote the operator L acting on the full velocity potential Φ as that which results in the two-dimensional full-potential equation for Φ, i.e.,

$$
\begin{equation*}
\mathrm{L}[\Phi]=0 \tag{1}
\end{equation*}
$$

If we now expand the potential in terms of zero- and higherorder components in order to account for the variation of M arbitrary gcometrical or flow parameters q_{j}

$$
\begin{align*}
\Phi & =\Phi_{o}+\sum_{j=1}^{M} \varepsilon_{j} \Phi_{1}+\ldots \tag{2}\\
q_{j} & =q_{o_{j}}+\Delta q_{j}
\end{align*}
$$

and then insert this into the governing equation (1), expand the result, order the equations into zero- and first-order components, and make the obvious choice of expansion parameters $\varepsilon_{j}=\Delta q_{j}$ we obtain the following governing equations for the zero- and M first-order components

$$
\begin{gather*}
\mathrm{L}\left[\Phi_{o}\right]=0 \tag{3}\\
\mathrm{~L}_{1}\left[\Phi_{1_{j}}\right]+\frac{\partial}{\partial q_{j}} \mathrm{~L}\left[\Phi_{o}\right]=0
\end{gather*}
$$

Here L_{1} is a linear operator whose coefficients depend on zeroorder quantities and $\partial L\left[\Phi_{0}\right] / \partial q_{j}$ represents a 'forcing' term due to the $q_{j}{ }^{\text {th }}$ perturbation. Actual forms of L_{1} and the 'forcing' term are provided in reference 2 for a variety of flow and geometry parameter perturbations of a two-dimensional turbomachine, and in reference 4 for profile shape perturbations of an isolated airfoil. An important point regarding Equation (3) for the first-order perturbations $\Phi_{I_{j}}$ is that these equations represent a unit perturbation independent of the actual value of the perturbation quantity ε_{j}.

Appropriate account of the movement of a multiple number of discontinuities and maxima of high-gradient regions due to the perturbation is now accomplished by the introduction of strained coordinates (s, t) in the form

$$
\begin{align*}
& x=s+\sum_{j=1}^{M} \varepsilon_{j} x_{1}(s, t) \tag{4}\\
& y=t+\sum_{j=1}^{M} \varepsilon_{j} y_{1}(s, t)
\end{align*}
$$

where

$$
\begin{align*}
& x_{1}(s, t)=\sum_{i=1}^{N} \delta x_{i} x_{1}(s, t) \\
& y_{i}(s, t)=\sum_{i=1}^{N} \delta y_{i} y_{1_{i}}(s, t) \tag{5}
\end{align*}
$$

and $\varepsilon_{j} \delta x_{i}, \varepsilon_{j} \delta y_{i}$ represent individual displacements due to perturbation of the $q_{j}{ }^{\text {th }}$ parameter of the N strained points, and $x_{1_{i}}(s, t), y_{1_{i}}(s, t)$ are straining functions associated with each of the N strained points. Introducing the strained coordinate Equations (4) and (5) into the expansion formulation leaves the zero-order result in Equation (3) unchanged, but results in a change of the following form for the $j^{\text {th }}$ perturbation

$$
\begin{equation*}
\mathrm{L}_{1}\left[\Phi_{1}\right]+\mathrm{L}_{2}\left[\Phi_{\mathrm{o}}\right]+\frac{\partial}{\partial \mathrm{q}_{j}} \mathrm{~L}\left[\Phi_{o}\right]=0 \tag{6}
\end{equation*}
$$

Here the operators are understood to be expressed in terms of the strained (s, t) coordinates, and the additional operator $L_{2}{ }_{j}$ arises specifically from displacement of the strained points. In references 3 and 4, specific expressions for L_{2} are provided for selected perturbations involving transonic small-disturbance and full-potential equation formulations. The essential point, however, with regard to perturbation Equation (6) expressed in strained coordinates is that it remains valid as before for a unit perturbation and independent of ε_{j}.

In employing the correction method, Equation (6) for the $j^{\text {th }}$ unit perturbation is solved by taking the difference between two solutions obtained by the full nonlinear procedure after appropriately straining the coordinates. If we designate the solutions for some arbitrary dependent flow quantity Q as base Q_{o} and calibration $Q_{c_{j}}$, respectively, of the varied independent parameter q_{j}, we have for the predicted flow at some new parameter value q_{j}

$$
\begin{equation*}
Q(x, y)=Q_{0}(s, t)+\sum_{j=1}^{M} \varepsilon_{j} Q_{1}(s, t)+\ldots \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
Q_{1_{j}} & =\frac{Q_{c_{j}}\left(\bar{x}_{j}, \bar{y}_{j}\right)-Q_{o}(s, t)}{\bar{\varepsilon}_{j}} \\
\bar{x}_{j} & =s+\sum_{i=1}^{N} \bar{\varepsilon}_{j} \delta x_{i} x_{1_{i}}(s, t) \\
\bar{y}_{j} & =t+\sum_{i=1}^{N} \bar{\varepsilon}_{j} \delta y_{i} y_{1_{i}}(s, t) \\
x & =s+\sum_{j=1}^{M} \frac{\varepsilon_{j}}{\bar{\varepsilon}_{j}}\left(\bar{x}_{j}-s\right) \\
y & =t+\sum_{j=1}^{M} \frac{\varepsilon_{j}}{\bar{\varepsilon}_{j}}\left(\bar{y}_{j}-t\right)
\end{aligned}
$$

(Continued)
[Eq. (8) Continued]

$$
\begin{align*}
& \bar{\varepsilon}_{j}=q_{c_{j}}-q_{o_{j}} \\
& \varepsilon_{j}=q_{j}-q_{o_{j}} \tag{8}
\end{align*}
$$

In the following section, applications of the correction procedure are made to predict surface properties. Also provided is the particular form of the straining functions Equation (5) found to be most effective in those applications.

2.3 App1ication to Surfacc Propertics

For the current applications, we have employed coordinate straining with the correction method to predict distributions of surface properties for simultaneous multiple-parameter perturbations of aerodynamic flows. In that instance where flow properties are required along some contour, the strainedcoordinate solutions can be represented by

$$
\left.\begin{array}{c}
Q(x ; \varepsilon) \sim Q_{o}(s)+\sum_{j=1}^{M} \varepsilon_{j} Q_{1}(s)+\ldots \\
x \tag{10}
\end{array}\right)
$$

where x is the independent variable measuring distance along the contour or a convenient projection of that distance, s is the strained coordinate, and ε_{j} a small parameter representing the change in one of M flow or geometrical variables which we wish to vary simultaneously.

In order to determine the first-order corrections $Q_{1}(s)$, we require one base and M calibration solutions in which the calibration solutions are determined by varying each of the M arbitrary independent parameters q_{j} by some nominal amount from the base flow value while keeping the others fixed at their base values.

In this way, the first-order corrections $\mathrm{Q}_{1_{j}}(s)$ can be determined as

$$
\begin{equation*}
Q_{1_{j}}(s)=\frac{Q_{c_{j}}\left(\bar{x}_{j}\right)-Q_{o}(s)}{\bar{\varepsilon}_{j}} \tag{11}
\end{equation*}
$$

where $Q_{c_{j}}$ is the calibration solution corresponding to changing the $j{ }^{\text {th }}$ parameter to a new value $q_{c_{j}}, \bar{x}_{j}$ is the strained coordinate pertaining to the $Q_{C_{j}}$ calibration solution, and $\bar{\varepsilon}_{j}=q_{C_{j}}-q_{O_{j}}$ represents the change in the q_{j} parameter from its base flow value. If we now desire to keep invariant during the perturbation process a total of N points corresponding to discontuities or high-gradient maxima, we can represent the solution by

$$
\begin{equation*}
Q\left(x, \varepsilon_{j}\right)=Q_{o}(s)+\sum_{j=1}^{M} \varepsilon_{j} Q_{1}(s) \tag{12}
\end{equation*}
$$

where Q_{1} (s) is given above and

$$
\begin{gather*}
\bar{x}_{j}=s+\sum_{i=1}^{N} \bar{\varepsilon}_{j} \delta x_{i} x_{1_{i}}(s) \tag{13}\\
x=s+\sum_{i=1}^{N} \varepsilon_{j} \delta x_{i} x_{1_{i}}(s) \tag{14}\\
\bar{\varepsilon}_{j}=q_{c}-q_{o_{j}} \tag{15}\\
\varepsilon_{j}=q_{j}-q_{o_{j}} \tag{16}\\
\bar{\varepsilon}_{j} \delta x_{i}=\left(x_{i}^{c}-x_{i}^{o}\right)_{j} \tag{17}\\
\varepsilon_{j} \delta x_{i}=\frac{\varepsilon_{j}}{\bar{\varepsilon}_{j}}\left(x_{i}^{c}-x_{i}^{o}\right)_{j} \tag{18}
\end{gather*}
$$

Here $\bar{\varepsilon}_{j} \delta x_{i}$ given in Equation (17) represents the displacement of the $i^{\text {th }}$ invariant point in the $j^{\text {th }}$ calibration solution from its base flow location due to the selected change $\bar{\varepsilon}_{j}$ in the q_{j}
parameter given by Equation (15), $\varepsilon_{j} \delta x_{i}$ given in Equation (18) represents the predicted displacement of the $i^{\text {th }}$ invariant point from its base flow location due to the desired change ε_{j} in the q_{j} parameter given by Equation (16), and $x_{1}(s)$ is a unit-order straining function having the property that

$$
x_{1_{i}}\left(x_{k}^{o}\right)= \begin{cases}1 & k=i \tag{19}\\ 0 & k \neq i\end{cases}
$$

which assures alignment of the $i^{\text {th }}$ invariant point between the base and calibration solutions.

In addition to the single condition Equation (19) on the straining function, it may be convenient or necessary to impose additional conditions at other locations along the contour. For example, it is usually necessary to hold invariant the end points along the contour, as well as to require that the straining vanish in a particular fashion in those locations. All of these conditions, however, do not serve to determine the straining uniquely. The nonuniqueness of the straining, nevertheless, can often be turned to advantage, either by selecting particularly simple classes of straining functions or by requiring the straining to satisfy further constraints convenient for a particular application.

The fact of nonuniqueness of straining function, however, raises a further question of the dependence of the final perturbation-predicted result on choice of straining function. An initial example of the effect of employing two different straining functions for a strongly supercritical flow was provided in reference 3 , and in reference 1 a detailed examination was made of the dependence of perturbation results on several classes of different straining functions. Although it can be demonstrated (ref. 8) that the final perturbationpredicted result obtained when employing strained coordinates is formally independent of the particular straining function used--provided that the straining function moves the invariant points to the proper locations-the results of reference 1 demonstrate that, under certain conditions, particular classes of straining functions can induce spurious perturbation results. The underlying reason is that, while the perturbation-predicted results at and in the vicinity of invariant points are independent of the choice of straining function (provided invariant point locations are preserved), some classes of straining functions have the undesirable property of producing unwanted straining in certain regions removed from the invariant points. The correction for this deficiency, which was found in reference 1 and has proven effective in all case studies undertaken, is to employ linear piecewise-continuous straining functions. This
both preserves the accuracy of the perturbation results in the vicinity of the invariant points, and introduces no excessive straining in regions removed from those locations.

For linear piecewise-continuous straining functions, the functional forms of the straining can be compactly written.

$$
\begin{align*}
\bar{x}_{j}=s & +\left\{\frac{x_{i+1}^{0}-s}{x_{i+1}^{0}-x_{i}^{o}} \cdot\left(x_{i}^{c}-x_{i}^{o}\right)_{j}\right. \tag{20}\\
& \left.+\frac{s-x_{i}^{o}}{x_{i+1}^{0}-x_{i}^{o}} \cdot\left(x_{i+1}^{c}-x_{i+1}^{0}\right)_{j}\right\} H\left(x_{i+1}^{0}-s\right) \cdot H\left(s-x_{i}^{0}\right)
\end{align*}
$$

where H denotes the Heaviside step function. As discussed above, it is usually necessary to hold invariant both of the end points along the contour in addition to the points corresponding to discontinuities or high-gradient maxima. Consequently, for the results reported here, the array of invariant points in the base and calibration solutions have been taken as

$$
\begin{align*}
x_{i}^{o} & =\left\{0, x_{1}^{o}, x_{2}^{o}, \ldots, x_{n}^{o}, 1\right\} \\
x_{i}^{c} & =\left\{0, x_{1}^{c}, x_{j}^{c}, \ldots, x_{n_{j}}^{c}, 1\right\} \tag{21}
\end{align*}
$$

where the contour length has been normalized to unity and where n is the number of invariant points along the blade contour exclusive of the end points.

Because the ultimate utility of the perturbation methods being developed under this investigation is in engineering design or parametric analysis, the two primary objectives of the current study were to develop the simultaneous multipleparameter capability of the method and then to examine the accuracy and range of validity of the multiple-parameter method in situations characteristic of that environment. Toward that end, we have tested the method in a series of problems involving simultaneous multiple-parameter variations of both flow and geometric quantities. As with the testing of the singleparameter method (ref. 1), emphasis was placed on transonic flows past both isolated blades and compressor cascades that are strongly supercritical and exhibit large surface shock movement over the parametric range studied. Additionally, we have coupled the multiple-parameter method with an optimization procedure to test the method's ability to perform in an actual design environment. These preliminary case studies of the combined perturbation/optimization method actually resulted in the most demanding tests of the perturbation method undertaken to date for observing its ability to work accurately under extreme interpolation/extrapolation conditions.

3.1 Simultaneous Multiple-Parameter Perturbations

In Figure 1, we present a comparison of results for the simultaneous perturbation of thickness ratio and oncoming Mach number of highly-supercritical flows past a series of isolated NACA four-digit (OOXX) blade profiles. The base flow chosen for these results is at $M_{\infty}=0.820$ and $\tau=0.120$, and is indicated on both plots shown in Figure 1 as the dashed line. Those results were obtained by solving the full-potential equation based on the finite-difference relaxation approximatefactorization method of reference 9. The body-fitted mesh employed had 75 points on both upper and lower surfaces. The calibration solution selected to account for Mach number changes is at $M_{\infty}=0.800$ and $\tau=0.120$, and is displayed as the dotted line in the plot on the left; while the calibration flow selected to account for thickness-ratio changes is at $M_{\infty}=0.820$
and $\tau=0.110$ and is displayed as the dotted line in the plot on the right. The open circles represent the perturbationpredicted solution for $M_{\infty}=0.790$ and $\tau=0.115$, which is a parameter extrapolation in M_{∞} and interpolation in τ. Those results are meant to be compared with the 'exact' nonlinear results which is indicated as the solid line. We note that the indicated results for base, perturbation, and exact nonlinear solution in both plots in Figure 1 are the same; the reason
for presenting two plots is to indicate clearly the separation between the base, the two calibration solutions, and the perturbation-predicted result. The straining employed is linear piecewise-continuous [see Eq. (20)], with leading and trailing edge and shock point held invariant. The shock point locations for the base and calibration flows for this example, as well as for all the multiple-parameter perturbation results presented here, were determined as the point where the pressure coefficient passed through critical with comprehensive gradient.

With regard to the results, we note that the comparison between the perturbation-predicted and the exact nonlinear result is, as in the case of single-parameter perturbation of these flows (see Figs. 4 to 6, ref. 1), extremely good, in particular in the region of the shock. The multiple-parameter perturbation result is able to accurately predict both shock location and the critical post-shock expansion behavior. Results for the region from the stagnation point to points just ahead of the shock are essentially identical to the exact nonlinear solution, as are results aft of the post-shock region. We note that the particular parameter values of $\left(M_{\infty}, \tau\right)=(0.790,0.115)$ selected for the prediction solution represent reasonably substantial extrapolations and interpolations from the base and calibration values. Nevertheless, the perturbation method is able to treat simultaneous parameter variations over this range accurately.

Figure 2 presents analogous three-parameter perturbation results when angle-of-attack variations are included for the flows shown in Figure 1 . Here, the base flow selected is at $\alpha=0.2^{\circ}, M_{\infty}=0.800, \tau=0.110$, and is indicated in all of the three plots provided as the dashed line. The calibration flow to account for angle-of-attack change is at $\alpha=0.25^{\circ}$ at the same (M_{∞}, τ) as the base flow, and is displayed as the dotted curve in the plot on the upper left. The corresponding calibration flow to account for Mach number change is at $M_{\infty}=0.810$ at the same (τ, α) as the base flow, and is displayed in the upper right plot; while the calibration flow for thick-ness-ratio change is at $\tau=0.115$ at the same $\left(M_{\infty}, \alpha\right)$ as the base flow, and shown in the lower plot. The predicted result is for parameter values of $\alpha=0.3^{\circ}, M_{\infty}=0.820, \tau=0.100$ and again represents substantial extrapolations of all three parameters, as can be observed in Figure 2 from the relative differences between the base and calibration flows. The reason for selecting such small angles-of-attack for these flows was to preserve the shock wave on the lower surface, and thereby create a set of multiple-shock flows which were highly sensitive to parameter changes. The comparisons between perturbation and exact nonlinear results for this case is again extremely good, with the prediction of both the locations of the shocks on the upper and lower surface given very we11, as well as the pressure distributions in the regions immediately ahead and behind those shocks. For these results, linear
piecewise-continuous straining was employed with the invariant points being the lower surface trailing edge, lower surface shock, stagnation point, upper surface shock, and upper surface trailing edge.

The final multiple-parameter perturbation result is provided in Figure 3 for a four-parameter perturbation of stronglysupercritical full-potential flows past a cascade of blades having NACA four-digit profiles. The base flow is for an oncoming Mach number of $\mathrm{M}_{\infty}=0.780$, thickness-ratio $\tau=0.110$, gap-to-chord ratio $t=3.2$, and oncoming inflow angle $\alpha=0.3^{\circ}$, and is indicated on the four plots as the dashed line. Those results were obtained using the full-potential equation finite-area relaxation procedure of reference 10. The four calibration solutions to account for changes in the four varied parameters are provided in the four plots shown where the individual values of the calibration parameter varied are also indicated. Thus, the calibration solution for Mach number change is at $M_{\infty}=0.790$ with (τ, t, α) at the base flow values, and is indicated as the dotted result in the plot at the upper left. Corresponding results for the other three parameters are shown in the remaining plots. The comparison of the predicted and exact nonlinear results are for parameter values of $M_{\infty}=0.785, \tau=0.115, t=3.1, \alpha=0.4^{\circ}$. This particular set of flows was again selected because of the presence of multiple-shocks and high sensitivity to parameter change. As with the previous results for two- and three simultaneous parameter variations, we note that the perturbation predictions are once again remarkably accurate. The perturbation method is able both to track the location of the upper and lower surface shocks, as well as to predict the pressure characteristics in the pre-shock and post-shock regions.

3.2 Preliminary Application of Combined Multiple-Parameter Perturbation Method With Optimization Procedures For Blade Design Applications

The ultimate utility of the perturbation methods developed and evaluated here lies in their application to problems involving the high-frequency use of computational codes to determine a large number of related nonlinear flow solutions. In order to test the capability of the approximation method to work effectively in such practical applications, we have combined the method with the CONMIN optimization procedure (ref. ll) and have then made several preliminary case studies of the combination on isolated blade and compressor blade design/optimization problems. The objectives of these initial applications were to examine the feasibility and potential computational savings of the combined approximation/optimization procedure for some typical design problems, and to determine the accuracy of the perturbation-predicted optimization results.

The particular isolated blade design optimization problems selected for study involved the alteration of a baseline profile shape by adding to the baseline profile a set of shape functions according to the relation

$$
\begin{equation*}
Z(x)=Z_{o}(x)+\sum_{i=1}^{M}\left(D V_{i}-1\right) F_{i}(x) \tag{22}
\end{equation*}
$$

where Z_{o} are the ordinates of the baseline profiles, F_{i} are the shape functions, and the coefficients $D V_{i}$ are the design variables whose values are determined by the optimization program as a result of a search through design-variable solution space to achieve a desired design improvement. Here for convenience we have chosen the coefficients of F_{i} to be (DV i_{i} - I) rather than $D V_{i}$. The general class of geometric shape functions employed here, and which have been found to be successful in previous applications involving optimization of supercritical airfoil sections (ref. 12), consists of exponential decay functions and sine functions. These are of the general form ($1-x$) - $x^{p} / e^{q x}$ and sin $\left(\pi x^{r}\right)^{n}$, where the exponents p, q, r, and n are selected to provide a desired maximum at a particular chordwise location. The exponential functions are generally employed to provide adjustments near the leading edge, while the sine functions are used to provide maximum ordinate changes at particular chordwise stations. Illustrations of the chordwise variation of typical members of these shape functions are provided in Figure 4, and it can be seen that these functions smoothly concentrate ordinate thickness at selected locations.

For the initial application of the combined perturbation/ optimization method, we have examined subcritical flow at $M_{\infty}=0.10$ and $\alpha=5^{\circ}$ past a modified NACA 64A007 profile involving the nine profile shape functions

$$
\begin{array}{ll}
F_{i}=6(1-x) x_{i} / e^{q_{i} x} & i=1,2 \\
F_{i}=\sin \left(\pi x^{r_{i}}\right)^{2} & i=3,9 \tag{23}
\end{array}
$$

where $\left(p_{1}, q_{1}\right)=(0.5,15),\left(p_{2}, q_{2}\right)=(0.25,10)$, and $r_{i}=(0.37$, $0.50,0.66,0.87,1.16,1.61,2.41)$. The exponential functions achieve their maxima within 5% of chord, while those for the sine functions are at ($15 \%, 25 \%, 35 \%, 45 \%, 55 \%, 65 \%, 75 \%$) of chord.

A strategy which has proved convenient for performing optimization studies involving aerodynamic performance parameters (ref. 12) has been to recontour the profile shape so as to tailor the surface pressure distribution to conform to
a desired distribution. This type of objective provides local control over the basic aerodynamic surface flow property of importance, and provides a means of attempting to achieve aft pressure gradients sufficiently weak to avoid separation. An important corollary advantage of using such an objective is that viscous separation can be minimized. This allows use of an inviscid aerodynamic flow solver in the optimization process rather than a much more computationally-expensive viscous solver, and assures that the optimization result thus obtained at the inviscid level is representative of the actual flow.

Consequently, for this initial case study the overall performance objective was, through modification of the surface contour, to tailor the pressure distribution along a portion of the upper surface so as to conform to a desired distribution. In particular, it was desired to minimize both the peaky behavior near the leading edge and the compressive gradient on the aft portion of the upper surface which existed at $M_{\infty}=0.10$ and $\alpha=5^{\circ}$ on the NACA 64A007 baseline profile. This is illustrated schematically in Figure 5. The objective function was taken as the minimization of the mean squared error between the predicted and desired surface pressure distribution, i.e.,

$$
\begin{equation*}
\text { OBJ }=\sum_{k=1}^{K}\left[C_{P_{\text {predicted }}}\left(x_{k}\right)-C_{P_{\text {desired }}}\left(x_{k}\right)\right]^{2} \tag{24}
\end{equation*}
$$

where K represents the number of chordwise locations x_{k} where desired and calculated surface pressures are compared.

Recall that in order to initiate the perturbation procedure in situations involving the simultaneous variation of M individual parameters from a baseline point, a matrix of M calibration solutions are required, each representing the solution change for a separate variation of each of the M parameters from its baseline value. Because optimum, or sometimes even typical, stepsizes for a particular optimization problem would not generally be known a priori, one of the primary goals of these initial studies was the demonstration that the perturbation method was capable of working effectively even under severe conditions imposed by a poorly-selected initial calibration solution matrix. This was accomplished by examining the sensitivity and accuracy of the perturbation predicted optimization results as a function of the initial design variable stepsizes of the calibration solution matrix.

The overall strategy, then, consistedof: (1) employing the perturbation method, based on some initial matrix of nonlinear aerodynamic solutions determined by an independent variation of each design variable, to provide all of the subsequent nonlinear aerodynamic solutions required by the optimization method for
searches through design space, and (2) comparing the final perturbation-predicted optimization results for final design variable and objective function values with those determined by using the full nonlinear aerodynamic solver throughout. Figure 6 shows the results of such a sensitivity study, and indicates that even under extreme test case conditions caused by deliberately-selected poor choices of design variable stepsizes, the perturbation method performs exceptionally well, never breaking down or yielding spurious results. Indicated on the plots are the final optimized design variable values after five search cycles as predicted by the perturbation method () for four different choices of the initial stepsize for the design variables, i.e., $\delta \mathrm{DV}_{\mathrm{i}}=(0.05,0.02,0.01,0.001$). Also shown are the corresponding final design variable values predicted when employing the nonlinear aerodynamic solver (ref. 13) throughout (O). As can be seen, for the extreme interpolation case $\delta \mathrm{DV}_{\mathrm{i}}=0.05$, except for design variables 3 and 5 , the perturbation prediction compares very favorably with the full nonlinear result. For $\delta D V_{i}=0.02$, a more reasonable stepsize choice, the comparison of the perturbation result is quite good for all the design variables, while for $\delta D V_{i}=0.01$, the perturbation prediction is essentially identical to the full nonlinear aerodynamic result. As a final illustration of the behavior of the perturbation method under extreme extrapolation conditions, the lower right-hand plot displays the perturbation predictions for $\delta \mathrm{DV}_{\mathrm{i}}=0.001$. We note that for several of the design variables, the extrapolation range is of the order of 25 times the initial stepsize; yet, the perturbation predictions are quite reasonable and not spurious, which is remarkable and indicative of the robustness of the procedure.

Finally, we point out that all four of the perturbationpredicted results illustrated in Figure 6 are satisfactory in terms of the final objective function value obtained. These values are illustrated on the right of each of the plots. Provided for comparison are the initial (O Initial) and final (O Final) values obtained when using the nonlinear aerodynamic solver throughout. The value of the objective function evaluated at the final design variable point when using the perturbation method is indicated by the solid circle (). However, the objective function value of real interest is the result indicated by the solid square (\quad) which represents that obtained by running the nonlincar aerodynamic solver at the perturbationpredicted final design point, and then using that solution to evaluate the objective function. This provides the overall ultimate check of the perturbation-predicted result. As can be seen from Figure 6, those results lie essentially on top of the final objective function result (O Final) obtained when using the nonlinear aerodynamic solver throughout.

The computational savings attained for this application are shown in Figure 7. Here, a comparison of the computational work versus reduction in objective function per optimization
cycle is provided when using the perturbation procedure (©) and when not using it but employing the nonlinear aerodynamic code (O) for each flow solution required by the optimizer. As can be seen, the computational time required for both the perturbation method and when using the full nonlinear aerodynamic solver throughout are the same for the first cycle, since both require a matrix of $M+1$ ($M=9$ for this example) noniinear aerodynamic solutions. After that, the perturbationpredicted results required essentially no computational time for cycles 2 through 5, and then a slight amount for the one additional call to the aerodynamic solver for the final check calculation (■). The reduction in the ratio of final to initial objective function is $O B J /(O B J)_{i}=0.22$ and required approximately 20 CPU seconds on the CDC 7600 . In comparison, the result when not employing the perturbation method required approximately 80 CPU seconds for the same reduction in objective function, indicating the perturbation method is able to save 75% of the computational work in this example.

Similar testing of the performance of the perturbation method for supercritical situations has also been carried out and has demonstrated a corresponding capability and potential computational savings. Because of the greater sensitivity of these shocked flows, two separate case studies were carried out in depth. Both of these involved recontouring of the upper surface of a NACA 0015 profile operating at the supercritical conditions of $M_{\infty}=0.55^{\circ}$ and $\alpha=6.7^{\circ}$, and employed four design variables related to the shape functions.

$$
\begin{equation*}
F_{i}=\sin \left(\pi x^{q}\right)^{3} \quad i=1,4 \tag{25}
\end{equation*}
$$

with $q_{i}=(0.301,0.431,0.576,0.756)$. These functions have maxima ${ }^{\text {at }}(10 \%, 20 \%, 30 \%, 40 \%$) of chord. For the first of these supercritical studies, the objective function was chosen to be the drag coefficient squared, i.e.

$$
O B J=C D^{2}
$$

For this problem, an evaluation of the accuracy of the perturbation-predicted optimization results as a function of initial calibration solution matrix was also made. The results of this study are provided in Figure 8, which displays the results of the perturbation-predicted final design variables () after eight search cycles for three different choices of the initial stepsize for the design variables, i.e., $\delta D V_{i}=$ ($0.001,0.002,0.004$). Also shown are the corresponding final design variable values predicted when not using the perturbation method but employing the nonlinear aerodynamic solver (ref. 13) throughout (O).

Because drag minimization, particularly at supercritical conditions, is an extremely sensitive optimization problem, this study provides one of the most severe tests of the perturbation procedure in a design optimization environment. This is so because the accurate prediction of drag at supercritical speeds depends almost entirely on the resolution of the flow behavior at and in the vicinity of the shock waves present on the surface of the profile. Hence, what is ultimately under evaluation in this example case study is the ability of the perturbation method to predict, under extreme extrapolation conditions and with simultaneous multiple-parameter perturbations, the location and strength of all surface shock waves and the flow behavior in the pres- and post-shock regions.

The most important results to emerge from the calculations involved in this case study were the discovery of a particular deficiency of the perturbation method in this regard, and the subsequent development of the means to improve the accuracy of the perturbation predictions in shock regions and other high gradient regions under extreme extrapolation conditions. The improvement in the basic procedure developed to meet these requirements consists of employing additional invariant points in those high gradient locations. For example, it was found that by characterizing a shock which has a post-shock expansion region, as sketched below,

with five invariant points-which correspond to: (1) pre-shock minimum pressure, (2) maximum gradient point, (3) post-shock maximum pressure, (4) post-shock minimum expansion pressure location, and (5) point of inflection between points (3) and (4) --rather than just the one point corresponding to the critical pressure location, which was standardly done in the past; that significantly improved perturbation results are obtained in the shock region for extreme solution extrapolations. This five invariant point characterization of the shock has been employed in determining the results of the two supercritical case studies reported here.

With regard to the drag minimization results indicated in Figure 8, we note that when selecting an initial design variable stepsize of $\delta \mathrm{DV}_{\mathrm{i}}=0.001$, the agreement between the final perturbation-predicted design variable values and the exact nonlinear result is reasonable. The solution extrapolation indicated for design variables 2 and 3 are of the order of 5 times the initial design variable stepsize, but the perturbation method does not break down or provide spurious results for these strongly supercritical flows. We note that the optimization procedure working with the perturbation method is able to drive the perturbation-predicted drag (P) to essentially zero. Although the final check of the perturbation-predicted design using the nonlinear solver (A) indicates a drag coefficient of 0.005 , that represents nevertheless almost a factor of 3 in drag reduction from the baseline configuration.

When a somewhat more reasonable initial design variable stepsize of $\delta D V_{i}=0.002$ is used, which reduces the solution extrapolations over that for $\delta \mathrm{DV}_{i}=0.001$, we note that the perturbation results closely approach those obtained when using the nonlinear aerodynamic solver throughout. The final drag value based on the perturbation design (A) is also improved, displaying over a factor of 5 in drag reduction. The final perturbation result obtained for an initial stepsize $\delta V_{i}=0.004$ and illustrated in the bottom plot displays almost exact agreement with the full nonlinear aerodynamic result. This particular choice of stepsize is the most reasonable of the three shown, since the design variable solution range to be searched by the optimizer requires moderate interpolation/ extrapolations from the calibration solution matrix. The final drag value (A) indicates over a factor of 5 drag reduction, and is very close to the final full nonlinear aerodynamic (© Final) result.

The computational savings obtained for this application are indicated in Figure 9 . Here a comparison of the computational work versus reduction in objective function per optimization search cycle is given for eight search cycles when using the approximation procedure () and for four cycles when using instead the full aerodynamic solver (O). We note for this example that when using the perturbation method, the optimization procedure requires approximately 40 CPU seconds for search cycles 2 through 8. This is in contrast to the essentially zero time needed for search cycles in the pressure distribution tailoring case study presented in Figure 7. The reason for the additional time in this minimization case study is that in order to evaluate the drag at the points in the design solution space required by the optimizer, additional geometry calculations are needed to determine the new surface slopes. Consequently, even though the perturbation procedure provides the means to determine the new pressure distributions at essentially no computational cost, because surface pressure integrations are required to evaluate the drag, calls to the geometry portion of the aerodynamic code are necessary to
determine the new profile shapes. These geometry calculations cause the CPU time increase indicated. Finally, another 20 CPU seconds are needed for the final aerodynamic check solution (E), totaling 120 CPU seconds. That total represents just under a 60% computational savings of the 4 search cycle CPU time required when not employing the perturbation method.

The final supercritical case study presented in Figure 10 involved tailoring of the surface pressure distribution as done in the previous subcritical case, but this time specifically concentrating on alleviating the sharp gradient at the shock. It was specified in the following fashion. Using the pressure distribution from the optimized profile of the previous drag minimization case study, we returned to the original NACA 0015 baseline profile. Then, with that previous pressure distribution as the desired objective, by using the optimization method we attempted to reproduce the same optimized profile that resulted from the drag minimization problem. What resulted from these calculations was a demonstration that the perturbation method is capable in certain cascs, of not only providing an enormous savings in computational cost but also an improved optimization result. In Figure 10, we provide the results of the sensitivity study of the perturbation method as a function of the initial design variable stepsize of the calibration solution matrix. In the plot on the left, the comparison is provided of the perturbation-predicted final design variables () based on an initial design variable stepsize $\delta D V_{i}=0.001$ together with that obtained when using the full nonlinear aerodynamic solver throughout (\odot). Also shown is the 'optimum' full aerodynamic result (\odot) obtained from the drag minimization case study which is the result that is sought to be reproduced. What the results indicate is that the prediction obtained by not using the perturbation method is inferior to that obtained when employing it. Also, we note the large extrapolations involved in this perturbation result, i.e., about 4 times or 400% of the initial stepsize for design variables 1 and 2 . These results are emphasized even more in the plot on the right which shows the corresponding perturbation results when using a more reasonable initial design variable stepsize of $\delta D V_{i}=0.002$ to define the calibration solution matrix. In this instance, the perturbation prediction is essentially identical to the optimum result. We note that comparisons of the objective function reduction, shown on the scales to the right of the plots, display a reduction in objective function to almost zero for the perturbation result, while only an essentially 50% reduction for the full aerodynamic result.

This reduction in objective function is emphasized in Figure 11, which displays the comparison of computational work and objective function reduction per optimization cycle for the perturbation procedure and the full nonlinear aerodynamic result for this case study. Here, we see clearly that the perturbation method is able to drive the objective function to
essentially zero, while the full aerodynamic procedure becomes fixed in a local minimum and is only able to reduce the objective function to 50% of its initial value. If we had carried the full aerodynamic result to eight optimization cycles, as was done with the perturbation result, the time savings would have been over an order of magnitude.

This result demonstrates that it is possible in certain instances for the perturbation method to provide not only an enormous savings in computational cost but also an improved optimization result. The latter is undoubtedly accomplished by the selection of a reasonable initial calibration solution matrix which permits the optimization method an enhanced rather than local view of the design solution space, thereby avoiding shallow local minimas in favor of a more global minima.

The final application, which has been carried out as far as possible in this phase, was directed toward laying the foundations of a practical turbomachinery blade design/ optimization procedure coupled with the perturbation method. This preliminary version is based on TSONIC blade-to-blade solutions (ref. 14) with generalized circular-arc blade geometry routines BLADE (ref. 15) describing the blade profile, and employs the COPES/CONMIN optimization procedure (ref. 16).

The initial case study for the combined procedure involved, as a design objective, the minimization of the velocity diffusion on the blade suction surface, $q_{\text {max }}$ suction, i.e.

$$
\begin{equation*}
\text { OBJ }=\frac{q_{\max }, \text { suction }}{\mathrm{q}_{\mathrm{avg}, \text { exit }}} \tag{27}
\end{equation*}
$$

where $q_{a v g}$, exit is the average exit velocity in the freestream. Six design variables were employed and correspond to the following blade geometry parameters used to characterize NASA circular arc blade section profiles (ref. 15): blade outlet camber angle, transition location between fore and aft circular arc sections, maximum thickness location, inlet to outlet turning rate ratio, maximum thickness, and radius of the leading edge circle. During the optimization process, each of the design variables was constrained to remain within certain prescribed bounds in order to prevent a physically-unrealistic blade design from occurring. Furthermore, several active side constraints were additionally imposed both to insure design of a physically realistic blade and also to achieve certain desirable flow characteristics on the blade. The active side constraints employed were: (1) maintenance of nonzero local blade thickness, (2) maintenance of low velocity diffusion on the blade pressure surface, and (3) trailing edge closure. These constraints were enforced by employing bounding criteria on the following quantities according to:

$$
\begin{gather*}
0 .<\frac{\operatorname{thick}(x)-d_{t c}}{d_{t_{c}}}<10 . \tag{28}\\
0 .<\frac{q_{\text {max }}, \text { press }}{q_{\text {min }}, \text { press }}<1.3 \tag{29}\\
-1.0<\frac{q_{\text {ITE-2, suction }}-q_{\text {ITE-2,press }}}{25}<1.0 \tag{30}
\end{gather*}
$$

Here, thick(x) is the local blade thickness, $d_{t c}$ is the diameter of the trailing edge circle, $q_{m a x}$,press $i s$ the maximum blade pressure surface velocity over the front half of the blade, $\mathrm{q}_{\text {min }}$, press is the minimum blade pressure surface velocity over the last two-thirds of the blade, and ($q_{\text {ITE- }}$, suction, ${ }^{q}$ ITE-2, press) are the third last surface velocities on the grid near the trailing edge on the suction and pressure surface, respectively.

We have successfully completed a preliminary series of calculations of the new combined PERTURB/TSONIC/BLADE/COPES/ CONMIN procedure in which the accuracy and sensitivity of the perturbation method was tested as a function of choice of the initial calibration solution matrix. The initial or base values of the design variables for the baseline blade profile, and the upper and lower bounds of the design variables that were specified for this test problem were:

Design

Variable Number	Description	Lower Bound	Upper Bound	Initial Value
1	Outlet blade camber angle-KOCR	-15.0°	$0.0{ }^{\circ}$	-10.0°
2	Transition loc./chord-T	0.20	0.60	0.25
3	Max. thick. loc./chord-ZM	0.20	0.55	0.45
4	Inlet/outlet turning/chord-P	0.50	4.00	1.50
5	Max, thick./chord-TMX	0.03	0.10	0.05
6	L.E. rad./chord-THLE	0.003	0.012	0.005

The results of these calculations are summarized in Table 1. There we have provided comparisons of the final design variables and objective function predicted when employing full nonlinear TSONIC solutions throughout the optimization process with
corresponding results when using the perturbation method. For the perturbation results, six different choices of the calibration solution matrix were made and are noted in the table. All the results represent converged solutions, with each calculation employing 10 optimization search cycles or less if no change in objective function should occur in three successive iterations.

Two separate results are presented for the case when the perturbation method is not employed and TSONIC solutions are used throughout the optimization search process. These were obtained on the Ames Research Center CDC-7600 and Lewis Research Center IBM 3033 employing the same TSONIC/BLADE/COPES/CONMIN code. The differences in the two final design results provides an indication of the sensitivity of this particular optimization problem with regard to choice of objective function, since the difference between these two results is due solely to the number of significant figures maintained in the respective calculations, i.e., 8 for the IBM 3033 and 14 for the CDC 7600. As is evident, there clearly is a sensitivity to search direction and final design result in this problem. We note that of the six design variables, the two which agree between the two results (ZM, TMX) have reached a limit boundary. The others have all trended in the same direction from the baseline value, but have reached somewhat different values at the final design point. We note that the objective functions have reached essentially the same level, indicating, as is often the case in such optimization problems, the existence of multiple local minimums.

The analogous results obtained employing the perturbation method with various choices of calibration solution matrix are exhibited as cases 1 to 6 . We note that, with the exception of the design variable ZM which consistently moves to its upper bound regardless of the choice of calibration solution matrix, the final design variable predictions via the perturbation method basically exhibit a behavior quite similar to that obtained from the full nonlinear result when TSONIC solutions are used throughout. That is, the optimizer drives the design variables in generally the same direction from the baseline values as the full nonlinear result, but to somewhat different values. The exception to this is noted in cases 4 and 5 , where the calibration solution matrices were selected such that TSONIC solution extrapolations rather than interpolations were involved for all or most of the design variables during the search procedure. In those two cases, we note further that the final objective function values obtained are somewhat inferior to those obtained in Cases 1, 2, 3, and 6, where solution interpolations were primarily involved. For those four cases, the final objective function result is almost identical to that obtained by the full nonlinear result.

The computational time needed to obtain the perturbation results in Cases 1 to 6 were $76-78$ secs. of CDC 7600 CPU time per case. The benchmark full nonlinear CDC 7600 result shown in Table 1 required 644 secs. Thus, the perturbation method provides a savings of (644-78)/644 $=88 \%$ of the computational time for this example.

The primary conclusions to be drawn for this preliminary study are that the perturbation method can work effectively even for sensitively-defined optimization problems such as this and provide both meaningful final design results and large computational savings over not using the method. The choice of objective function such as was made for this case study, i.e., a point quantity located in a high-gradient region, requires that a reasonably good choice be made of the calibration solution matrix. This is so since if large solution extrapolations are required by the optimizer for minimization searches through design space, the final design result will most likely be less improved than would otherwise result if only modest solution interpolations/extrapolations were involved.

4. CONCLUSIONS AND RECOMMENDATIONS

An investigation was conducted to continue the development of perturbation procedures and associated computational codes for rapidly determining approximations to nonlinear flow solutions. The ultimate purpose is to establish a method for minimizing computational requirements associated with parametric design studies of transonic flows in turbomachines. The procedures being developed employ unit perturbations, determined from two or more nonlinear 'base' solutions which differ from one another by a nominal change in some geometry or flow parameter, to predict a family of related nonlinear solutions which can be either continuous or discontinuous. The results reported here relate to the extension of the previouslydeveloped successful method for single-parameter perturbations: (1) to simultaneous multiple-parameter perturbations, and (2) to the preliminary application of the multiple-parameter procedure in combination with an optimization procedure and applied to blade design problems.

Calculations based on full-potential nonlinear solutions have been carried out to establish the accuracy and range of validity of the multiple-parameter capability. These involved flows past both isolated blades and compressor cascades involving simultaneous changes in both flow and geometric parameters, with attention focused on strongly supercritical situations involving large surface shock movements over the parameter ranges studied. Preliminary applications of the multipleparameter perturbation method coupled with an optimization procedure were made for blade design problems in order to examine the capability of the method to produce accurate results in a typical design environment, and also to evaluate its potential for computational savings. Both subcritical and supercritical case studies were carried out involving multipledesign variables. Sensitivity studies were also performed to examine the accuracy dependence of the perturbation method on the choice of the initial calibration solution matrix.

Comparisons of the multiple-parameter perturbation results with the corresponding 'exact' nonlinear solutions display remarkable accuracy and indicate a large range of validity, in direct correspondence with previous results for single-parameter perturbations. The preliminary case studies of the multipleparameter perturbation method combined with optimization procedures have clearly demonstrated the capability of the method to work accurately in a design environment where large solution extrapolations are often necessary, and have also established the methods' potential for reducing the computational work required in such applications by nearly an order of magnitude. The sensitivity studies indicate that for certain subcritical applications, the perturbation method is able to work quite accurately and effectively in spite of poor choices of the initial calibration solution matrix which require large extrapolations or interpolations. For supercritical flows, the
initial calibration matrix choice is more important, but when employing multiple invariant point clustering about highgradient locations (shocks, stagnation points, etc.), the perturbation method predictions can nevertheless maintain high accuracy in certain supercritical situations for extrapolations as large as 4 to 5 times the parameter separation between base and calibration solutions.

Based on these results, we conclude that perturbation methods formulated on these ideas are both accurate and clearly workable in design environments, and can provide the means for substantially reducing the computational work required in such applications. We suggest the development of the combined multiple-parameter perturbation procedure and optimization methods into a robust design tool for subcritical and supercritical turbomachinery blade design.

APPENDIX A

USER'S MANUAL FOR COMPUTER PROGRAM PERTURB

A. 1 INTRODUCTION

The purpose of this appendix is to describe the operation of the computer code which was developed in conjunction with the theoretical work presented in this report, and to provide sufficient detail to permit convenient use and change of the program. The program computes and plots an arbitrary flow variable on a contour surface by employing the strained-coordinate perturbation method discussed in the main text.

A description of the general operating procedure of the program is given, together with complete description of both input and output. The program is written in FORTRAN IV and has been developed on the Ames Research Center CDC 7600 computer facility. Consequently, the plot package included in this version refers to system routines at that facility. In general, the plotting software must be supplied by the user according to the requirements of his operating system. This can be accomplished directly by replacing or modifying the subroutine DRVPLT. Typical program run times for flows involving approximately 150 surface mesh locations are 1 to 3 CPU seconds. The storage requirements are $105 \mathrm{~K}_{8}$ for small core memory and no large core memory.

A. 2 PROGRAM DESCRIPTION

The program calculates both continuous and discontinuous nonlinear perturbaton solutions which represent a multipleparameter change in either geometry or flow conditions by employing a strained-coordinate procedure. The method utilizes unit perturbations, determined for each parameter from a previ-ously-calculated common base solution and a calibration solution displaced from it by some reasonable change in the relevant parameter, to predict new nonlinear solutions over a range of parameter variation.

This current version of the procedure is configured to predict and plot an arbitrary flow variable (e.g., pressure coefficient) on the surface of a blade or airfoil, and can account for the motion of:

1. one or more critical points (shock points),
2. a stagnation point,
3. a maximum-suction-pressure point,
or simultaneously for any combination of these.
The program is also configured to compare the perturbationpredicted solutions with the corresponding 'exact' solutions obtained by employing the same 'expensive' computational procedure used to determine the base and calibration solutions.

The coordinate straining employed is piecewise linear with the end points and up to six interior points held invariant. At the option of the user, these additional interior points may be arbitrarily preselected, or chosen from among the minimum, maximum, and critical points automatically located by the program itself.

Critical or shock points are located on the basis of a usersupplied statement function defining the critical value of the dependent variable as a function of some single flow variable. The program default is with dependent variable y defined as pressure coefficient, with the independent variable being Mach number. In this case, the critical value is defined as

$$
\begin{equation*}
y_{\text {crit }}=C_{p}^{*}=\frac{2}{\gamma M_{\infty}^{2}}\left(\frac{2+(\gamma-1) M_{\infty}^{2}}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}-1 \tag{A-1}
\end{equation*}
$$

where γ is the ratio of specific heats. If instead of surface pressure coefficient, the surface velocity distribution were used, then the value of $y_{\text {crit }}$ would be given by

$$
\begin{equation*}
y_{\text {crit }}=\frac{V^{*}}{V_{\infty}}=\left(\frac{\gamma+1}{2+(\gamma-1) M_{\infty}^{2}}\right)^{\frac{1}{\gamma-1}} \tag{A-2}
\end{equation*}
$$

Data for base, calibration, and comparison solutions (if available) are input as an array $x(I)$ of coordinates a corresponding array $y(I)$ giving the dependent variable at each coordinate location, where $1 \leq I \leq N$ and $N \leq 200$.

The leading edge is at $x=0$; the data are read in beginning on the lower surface at the point farthest from the leading edge and proceeding clockwise around the surface as shown in the sketch. Data for the different solutions need not correspond to identical locations on the surface, except for the initial and final points, i.e., $x(1)$ and $x(N)$ must be the same for all cases. The program normalizes the x coordinates ($0 \leq x \leq 1$) such that $x=0$ corresponds to $I=1$ and $x=1$ to $I=\bar{N}$.

The base and calibration solutions are searched for minimum, maximum, and critical points, e.g.,

Note that the sign of $d y / d x$ in physical coordinates is used in determining the critical points. For example, both critical points indicated on the above figure correspond to $d y / d x<0$ in physical coordinates, since at point \#l the physical coordinate increases in the direction from right to left, whereas at point \#2 it increases from left to right.

The points to be held invariant in straining are either selected from among those (1) located by the program or (2) individually specified by the user, after which the unit coordinate straining and unit perturbation are computed.

Data for the test cases is then read in and nonlinear perturbation solutions constructed from the unit perturbation.

A 3. PROGRAM FLOW CHART

A. 4 DICTIONARY OF INPUT VARIABLES

A
$B \quad$ Scaling parameter in straining procedure. $B=\mathbf{x}(N)$, where $x(n)$ is location of last data point on upper surface (see PROGRAM DESCRIPTION).

LCHEK Specifies whether or not perturbation solution is to be checked against an exact comparison solution. A printer plot is made in either case.

LCHEK $=0 \ldots$ no comparison
LCHEK $=1$... comparison
IECHO Controls whether or not input deck is printed.
LECHO $=0$... no print
LECHO $=1$... print
LOCO (I) Array of length 6 of which NSELCT elements are read in. Specifies subscripts of those user-specified base flow points which are to be held invariant; operational only when LSPEC $=1$.

LOCl(I) Array of length 6 of which NSELCT elements are read in. Specifies subscripts of those user-specified points in the Kth calibration solution which are to be held invariant; operational only when LSPEC $=1$.

IPIOT Specifies whether or not an additional plot by a peripheral device is to be made. Software must be supplied by user in subroutine DRVPLT.

LPLOT $=0 \ldots$ No peripheral plot
LPLOT $=1 .$. Peripheral plot
LSELCT(I) Array of length 6 of which NSELCT elements are read in; operational only when LSPEC $=0$, and specifies nature of points to be held invariant according to the code:
l ... minimum point held invariant
2 ... maximum point held invariant
3 ... lst critical point held invariant
4 ... 2nd critical point held invariant
5 ... 3rd critical point held invariant
6 ... 4 th critical point held invariant
Note that critical point ordering is determined from order of occurence starting at the lower surface at the point furthest from the leading edge and proceeding clock-wise around the surface (see PROGRAM DESCRIPTION).

A. 5 PREPARATION OF INPUT DATA

A.5.1 Description of Input

Item 1 One card, identifies job-printed as headline on first page of output. First nine characters are printed in upper-right corner of banner page, and in upper-left corner of summary page.

Item 2 One card, containing the parameter, LECHO
Item 3 One card, containing the parameters N, NCASE, NPARAM, NSELCT, LSPEC, LUNIT, LCHEK, LPLOT.

Item 4 One card, containing the parameter array (LSELCT (I), $I=1, N S E L C T)$. This item omitted if LSPEC $=1$

Item 5 One card, containing the character string VNAM.
Item 6 One card, containing the character strings, PARNAM (K), $K=1, N P A R A M$

Item 7 One card, containing the scaling parameters A and B.
Item 8 One card, containing the parameter MO
Item 9 One card, containing the parameter array $Q O(K), K=1$, NPARAM

Item 10 One set of J cards, where $J=1+$ INT (N/8), containing data for the base flow coordinates XBASE(I), $I=1, N$

Item 11 One set of J cards, J as above, containing data for the dependent variable in the base solution, YBASE(I), $\mathrm{I}=1, \mathrm{~N}$

Item 12 One card, containing the parameter array LOCO(I), I = l, NSELCT. This item omitted if LSPEC $=0$

Item 13 One card, containing the parameters Ml, Ql
Item 14 One set of J cards, J as above, containing data for the coordinates in the Kth calibration solution, XCAL (I), $\mathrm{I}=1, \mathrm{~N}$

Item 15 One set of J cards, J as above, containing data for the dependent variable in the K th calibration solution, YCALB(I), I + 1, N

Item 16 One card, containing the parameter array LOC(I), I = I, NSELCT. This item omitted if LSPEC $=0$

Item 17 One card, containing the parameter MC
Item 18 One card, containing the parameter array $\mathrm{Q} 2(\mathrm{k}), \mathrm{K}=1$ NPARAM

Item 19 One set of J cards, J as above, containing data for the coordinates in the comparison solution, XCHEK(I), $\mathrm{I}=1, \mathrm{~N}$. This item is required only when LCHEK $=1$.

Item 20 One set of J cards, J as above, containing data for the dependent variables in the comparison solution, YCHEK(I), I = 1, N. This item is required only when LCHEK = 1.

NOTE: One set of items 13 through 16 is required for each of the NPARAM calibration solutions.

One set of items 17 through 20 is required for each of the NCASE solutions to be computed.
A. 5. 2 Format of Input Data

Item no. 3: 1 card (16I5)

Variable	N	NCASE	NPARAM	NSELCT	LSPEC	LUNIT	LCHEK	IPLOT	
Card Column	5	10	15	20	25	30	35	40	
Format Type	I	I	I	I	I	I	I	I	

Item no. 5: 1 card (2Al)
Variable
Card column
Format type

Item no. 10. J cards, $J=1+I N T(N / 8), 8$ values per card (8F10.6)

Item no. 11. J cards, J as above, 8 values per card ($8 F 10.6$)

(LSPEC=1) : 1 card (16I5)								
Variable	LOCO(1)	Loc 0(2)	LOC 0(3)					
Card column	5	10	15	20	25	30	35	
Format type	1	I	I	I	I	I	I	J

Item no. 13. 1 card (8 F10.6)
Variable
Card column
Format type

Item no. 14. J cards, J as above, 8 values per card (F10.6)
Variable
Card column
Format type

$\mathrm{XCALB}(1)$	$\mathrm{XCALB}(2)$	$\mathrm{XCALB}(3)$	-20				
10	20	30	40		50	60	
F	F	F	F	F	F	F	F

Item no. 15. J cards, J as above, 8 values per card ($8 F 10.6$)
Variable
Card column Format type

Item no. 16.
Variable
Card column
Format type

Item no. 17. 1 card (8f10.6)
Variable
Card column
Format type

Item no. 18.
Variable
Card column
Format type

1 card (8F10.6)				-Q2 (nPARAM)			
Q2(1)	Q2(2)	Q2(3)	-----	-			?
10	20	30	40	50	60	70	
F	F	F	F	F	F	F	-

Item no. 19 (LCHEK=1): J cards , $J=1+\operatorname{INT}(N / 8), 8$ values per card (8F10.6)
Variable
Card column Format type

ХCHEK(1)	XCHEK (2)	ХСНек (3)	-------				
10	20	30	40	50	60	70	80
F	F	F	F	F	F	F	F

Item no. 20. (LCHEK=1): J cards, J as above, 8 values per card (8F10.6)

A. 6 DESCRIPTION OF OUTPUT

The first output item consists of a banner page, and the card images of the input data, the latter only if LECHO $=1$.

The second item is a page headed by the job title, listing;

1. the input parameters N, A, B and NPARAM relevant to the actual calculaton;
2. the straining option selected and the classifications of the straining points selected.

The third item is the results of the computations on the base solution. These include: the Mach number MO, values of the perturbation parameters of the base solution $Q O(k), K=1$, NPARAM, and the critical value of the dependent parameter, the locations of the minimum, maximum and critical points, and the locations of the invariant points. These results are then repeated for each of the NPARAM calibration solutions.

Results for unit straining of XBASE, and unit perturbations of the dependent variables are the fourth output item. This is done only if LUNIT $=1$.

The fifth item (repeated for each case computed) summarizes the results of the perturbation calculation. The Mach number, the values of the perturbation paramters, and the critical values of the variable are printed first, followed by the locations of the minimum, maximum, and critical points in the perturbation solution and comparison solution (if any). Next, a legend is printed providing the maximum, minimum, and critical values of the dependent parameter and corresponding point symbols. Print symbols are also provided for the printer plot of the perturbation solutions P, comparison solution C (if any), and a common symbol ($\$$) when Ehere is agreement within printer plot accuracy between the two. Then follows a table listing XBASE, YBASE, XPERT (the strained coordinate), and YPERT (the computed value of the dependent variable). If LCHEK $=1$, three additional columns list XCHEK (the computed solution) at the points given by XCHEK. This allows direct numerical comparison of YPERT with YCHEK, since the values of XPERT and XCHEK will not in general coincide. A printer plot is then provided of the perturbation result, together with the comparison solution (if any).

The final item is a table which summarizes the perturbation parameters for the base, calibration, and all predictive solutions.

A. 7 ERROR MESSAGES

NUMBER OF CRITICAL POINTS IN
BASE AND CALIBRATION SOLUTIONS
ARE UNEQUAL - CALCULATION ENDED

This message will be printed if critical points are specified in straining (LSPEC $=0$) and the number of critical points in base and calibration solutions are unequal. The remedy is to avoid use of critical points in straining, or to use base and calibration solutions having equal numbers of critical points.

> NUMBER OF CRITICAL POINTS
> SELECTED EXCEEDS NUMBER ACTUALLY LOCATED - CALCULATION ENDED

This message will be printed if more critical points are specified in straining (LSPEC $=0$) than the number located by the program. The remedy is to specify a number of points less than or equal to the actual number.

ORDER OF SPECIFIED POINTS IN
BASE AND CALIBRATION SOLUTIONS
DOES NOT CORRESPOIND - CALCULATION ENDED
This message will be printed if the fixed points specified (LSPEC $=0$) occur in a different sequence in the base and calibation solutions. The remedy is to use base and calibration solutions having the same qualitative features.

A. 8 SAMPLE CASE

The sample case presented in this section provides some example results of perturbation calculations and comparisons with 'exact' nonlinear solutions for a multiple-shock flow for which partial results were provided in figure 3 of the main text. The calculation is for the simultaneous four-parameter $\left(M_{\infty}, \tau, t, \alpha\right)$ perturbation of strongly-supercritical full potential flows past a cascade of blades having NACA four-digit profiles. The base flow is for oncoming Mach number $M_{\infty}=0.780$, thickness ratio $\tau=0.110$, gap-to-chord ratio $t=3.2$, and oncoming inflow angle $\alpha 0.3^{\circ}$. The calibration flows to account for perturbations in these parameters are at the following values of these
parameters $)\left(M_{\infty}, \tau, t, \alpha\right)=(0.790,0.110,3.2,0.3),(0.780,0.120,3.2$, $0.3),(0.780,0.110,3.0,0.3),(0.780,0.110,2.3,0.5)$. Perturbation results have been determined for 19 different solutions, which are summarized in the summary table after the print output. Results for several of those cases are presented here.

The input data is tabulated in figure A.l, with item numbers corresponding to those identified in Section A.5.1 and A.5.2. The first card, item l, provides the title of the run. The next card, item 2, indicates that the input deck will not be printed (LECHO $=0$). The next card, item 3, indicates that there are 191 points ($\mathrm{N}=191$) at which data will be input for the base, calibration, and comparison solutions; that there will be 19 cases (NCASE $=19$) for which perturbation solutions are to be computed; that the number of parameters to be perturbed are 4 (NPARAM $=4$) ; that there will be three invariant points (NSELCT = 3) in addition to the end points; that the invariant points will be located by the program (LSPEC $=0$); that the information regarding the unit perturbation will be printed (LUNIT = 1); that there will be a comparison of the perturbation results with the exact solution (LCHEK = l); and that there will be plots by a peripheral device of the output (LPLOT $=1$). The next card, item 4, specifies that the three invariant points to be selected by the program are to be: the medium point (LSELECT (1) = 2), i.e., the stagnation point; the first critical point (LSELCT(2) = 3), i.e., the lst shock point found when moving forward on the bottom surface from the leading edge; and the second critical point (LSELCT(3) = 4), i.e., the end shock point.

The next card, item 5, indicates that the dependent variable for print output will be symbolized by a 'CP' denoting the pressure coefficient. The next card, item 6 , indicates that the parameters to be varied are "PARNAM(1) = MACH NO., $\operatorname{PARNAM}(L)=$ TAU, PARNAM (3) $=$ PITCH, PARNAM(4) $=$ ALPHAI. The next card, item 7, indicates that the coordinates of the data points to be read in will start at $\mathrm{x}=1.0$ on the lower surface and will end at $x=1.0$ on the uppper surface, i.e., $A=-1$, $B=1$. The next card, item 8, provides the oncoming Mach number of the base flow MO = 0.780. The next card, item 9, provides the base flow values of the parameters to be perturbed: $\mathrm{QO}(1)=$ $0.780, Q 0(2)=0.110, Q 0(3)=3.2, Q 0(4)=0.30$. The following 25 cards, item lo, provide the 191 base flow values of the surface coordinates XBASE(I), I = $1, \mathrm{~N}$, while the next 5 cards, item 10 , provide the 191 base flow values of the surface coordinates XBASE(I), $I=1, N$, while the next 25 cards, item ll provide the 191 base flow values of the dependent variable (pressure coefficient) YBASE(I), I = l, N. The next card, item 13 provides the values of the oncoming Mach number $M 1$ and the value of the lst-perturbation parameter in the first calibration solution. Items 14 and 15 , which correspond to the arrays
of 191 points of coordinates $X C A L B(I), I=1, N$ and dependent variable YCALB(I), $I=1, N$, are provided as for the base flow in two sets of 25 cards each. Items 13 , 14 , and 15 are then repeated 3 more times corresponding to the total of NPARAM $=4$ calibration solutions required. Items $17,18,19$ and 20, of which there are 19 sets corresponding to the 19 cases to be studied, provide analogous information as items 8, 9, 10, and ll of the base flow, but now refer to the 'exact' nonlinear results. Items 19 and 20 , which correspond to the XCHEK(I), $I=1, N$ and $Y C H E K(I), I=1, N$ arrays, respectively, have of course been previously compted at the indicated values of the perturbed parameters, and are included here for comparative purposes to enable assessment of the perturbation results.

Figure A. 2 provides an abbreviated print output for sample case, while figure A. 3 provides an abbreviated plot output of the results for the 19 cases, and display the base (---), calibration (••), perturbation (****), and 'exact" nonlinear (-) flow solutions. In these plots, the calibration solutions denoted "calibration no. 1 of 4 ", etc. correspond to those indicated in the summary table provided at the end of the print output for this case shown in Figure A. 2.

$\xrightarrow[3]{3}$

Figure A.l- Card input data for sample case

Figure A.1- Continued

Figure A.l- Continued

Figure A.1- Continued

Figure A.l- Continued

Figure A.l- Continued

Figure A.l- Continued

Figure A.1- Continued

Figure A.l- Continued

Figure A.1- Continued

Figure A.1- Continued

Figure A.1- Continued

Figure A.l- Continued

Figure A.l- Continued

 i示i i i Mi i i i i i

Figure A.l- Continued

Figure A.1- Continued

Figure A.l- Continued

Figure A.1- Concluded

PROGRAM PERTURE
Calculates nonlinear multiple-pahameter
CONTINUOUS OR DISCONTINUOUS
perturbation solutions
Which represent changes in either
geometry or flow conditions
By Employing a Strained-COORDINATE PROCEDURE
utilizing unit perturbations determineo from
PREVIOUSLY Calculated
"base" and "calithration" solutions
displaced from one another by some heasonable
change in geometry or flow condition
WRITTEN RY
james p. elliott and stephen s. stahara
nielsen engineering and research, inc.
MOUNTAIN VIEW, CALIFORNIA

*

TEST CASE - 4 PaRAMETEH PERTUKGation of a SUPEhCHITICAL CASCADE FLOW
.....llist of input parameters
$N=191$
$A=-1.0 \quad B=1.0$
NPARAM $=$
......STRAINING OPTIONS
NUMBER OF FIXED POINTS: 5
Fiked points will be automatically determined BY THE PROGRAM FOR ALL SOLUTIONS AS FOLLOWS:

THO END POINTS
POINT OF MAXIMUM C
CPCRIT (IST POINT) CPCRIT (2ND POINT)

HESULTS OF COMPUTATIONS ON BASE SOLUTION:
.....mach number.
Values of perturbation parameters, CRITICAL VALUE OF CP:

MO $=.7800$

$00(1)=.7800$	$($ MACH NO. $)$
$00(2)=.1100$	$($ TAU $)$
$00(3)=3.2000$	$($ PITCH)
$00(4)=.3000$	(ALPHAI)
CPCRIT $=-.4940$	

..... LOCATIONS OF MIN., MAX.. AND CRITICAL PTS. i* DENOTES POINT ON LOWER SURFACE)

MAXIMUM AT $X=0.000$
2 CRITICAL POINT $(5): ~$
ISTAT $x=.5001 *$ (AFTER POINT NO. 48)
$\begin{array}{ll}\text { ZND AT } x=.5001 * & \text { (AFTER POINT NO. 48) } \\ \text { (AFTER POINT NO. 139) }\end{array}$
..... LOCATION OF FIXEO POINTS
(* DENOTES POINT ON LOWER SURFACE)
XFIX(1) $=1.0000$
XFIX(2) $=.5001 *$
XFIX(3) $=0.0000$
XFIX(4) $=.4273$
XFIX(5) $=1.0000$
results of computations on ist calibration soln:
......MACH NUMBER
values of perturbation parameters, CRITICAL VALUE OF CP:
$M l_{1}=.7900$
(** oenotes perturbation from base value)

.....LOCATIONS OF MIN., MAX.. AND CRITICAL PTS. (* DENOTES POINT ON LOWER SURFACE)
$\begin{array}{ll}\text { MINIMUM AT } x=0.5197 * & \text { (POINT NO. 47) } \\ \text { MAXIMUM AT } x=0.0000 & \text { (POINT NO. 96) }\end{array}$ 2 CRITICAL POINT(S):

15T AT $x=.5788^{\circ}$ (AFTER POINT NO.
2ND AT $x=.5149$
(AFTER POINT NO. 43)
(AFTER POINT NO. 144)
..... LOCATION OF FIXED POINTS
(* DENOTES POINT ON LOWER SURFACE)
XFIX(1) $=1.0000$
$X F I X(2)=.5788$
$X F I X(3)=0.0000$
$X F I X(4)=.5149$
$X F I X(5)=1.0000$

RESULTS OF COMPUTATIONS ON 2ND CALIBRATION SOLN:
.....MACH NUMBER,
VALUES OF PERTURBATION PARAMETERS. CRITICAL VALUE OF CP:
$M 1=.7800$
(** DENOTES PERTURBATION FROM baSE VALUE)
$01(1)=.7800 \quad(\mathrm{MACH} N O$.
**O1(2) $=.1200$ (TAU 1
Q1(3) $=3.2000 \quad 1$ PITCH $)$
Q1(4) $=.3000 \quad($ alphal $)$
CPCRIT $=\mathbf{- . 4 9 4 0}$
.... LOCATIONS OF MIN., MAX., AND CRITICAL PTS.
i* DENOTES POINT ON LOWER SURFACES

| MINIMUM AT $x=$ | $.5197 *$ | (POINT NO. 47) |
| ---: | :--- | :--- | :--- |
| MAXIMUM AT $x=0.0000$ | (POINT NO. 96) | |
| 2 CRITICAL POINT(S): | | |
| 1STATT $x=.5774 *$ | (AFTER POINT NO. 43) | |
| 2ND AT $x=.5175$ | (AFTER POINT NO. 144) | |

-.... LOCATION OF FIXED POINTS (* DENOTES POINT ON LOWER SURFACE)

XFIX(1) $=1.0000$ *
XFIX(2) $=.5774{ }^{*}$
$X F I X(3)=0.0000$
XFIX(4) $=.5175$
$X F I X(5)=1.0000$

RESULTS OF COMPUTATIONS ON 3RD CALIBRATION SOLN:
.....MACH NUMBER, values of perturbation parameters CRITICAL VALUE OF CP:

$$
M l=.7800
$$

(** DENOTES PERTURBATION FROM BASE VALUE)

$01(1)=.7800$	$($ MACH NO. $)$
$01(2)=.1100$	$($ TAU $)$
$01(3)=3.0000$	$($ PITCH $)$
$01(4)=.3000$	$($ ALPHA1)
CPCRIT $=-.4940$	

.... LOCATIONS OF MIN., MAX., ANO CRITICAL PTS. [* DENOTES POINT ON LOWER SURFACE)

MINIMUM AT $X=.4382$ (POINT NO. 52) MAXIMUM AT $X=0.0000 \quad$ (POINT NO. 96) 2 CRITICAL POINT(S):

1ST AT $X=.5165^{*}$ (AFTER POINT NO. 47)
2ND AT $X=.4520$ (AFTER POINT NO. 140
.....LOCATION OF FIXED POINTS (* DENOTES POINT ON LOWER SURFACE)

[^0].....MACH NUMBER
values of perturbation parameters. CRITICAL VALUE OF CP:
$M 1=.7800$
(** DENOTES PERTURBATION FROM BASE VALUE

..... LOCATIONS OF MIN., MAX., AND CRITICAL PTS (* DENOTES POINT ON LOWER SURFACEI

MINIMUM AT $X=.4058 *$ (POINT NO. 54) MAXIMUM AT $X=0.0000$ (POINT NO. 96

IST AT x (NTI
$\begin{array}{llll}\text { 1ST AT } x= & .4903 * & \text { (AFTER POINT NO. 4B) } \\ \text { 2ND AT } X= & .4360 \quad \text { (AFTER POINT NO. 139) }\end{array}$
..... LOCATION OF FIXED POINTS
(* DENOTES POINT ON LOWER SURFACE)
$X F I X(1)=1.0000 *$
$X F I X(2)=.4903$
$X F I X(3)=0.0000$
$X F I X(4)=.4360$
$X F I X(5)=1.0000$

Figure A.2- Continued

Figure A.2- Continued

そ

Figure A.2- Continued

ㅇ․ㅇ․

$\underset{\sim}{\infty} \underset{\sim}{\circ}$

Figure A.2- Continued

```
*******#******F**###***********
.....MACH NUMBER.
    values of perturbation parameters,
    CRITICAL VALUE OF CP:
            M2 = .7750
            02(1) = .7750 (MACH NO.)
            Q2(2) = .1200 ( TAU )
            02(3)=3.0000 ( PITCH)
            02(4)=.5000 (ALPHA1)
            CPCRIT = -.5095
```

......FINAL PRINTOUT AND GRAPHICAL DISPLAY OF CP

```
H= MaXImUM VALUE OF CP = 1.1517
```

H= MaXImUM VALUE OF CP = 1.1517
L= MINIMUM VALUE OF CP =-1.0S27
L= MINIMUM VALUE OF CP =-1.0S27

* CRITICAL VALUE OF CP*--5095
* CRITICAL VALUE OF CP*--5095
C = VALUE OF CP IN COMPARISON SOLUTION
C = VALUE OF CP IN COMPARISON SOLUTION
C I VALUE OF CP IN COMPARISON
C I VALUE OF CP IN COMPARISON
= AGHEEMENT BETWEEN P AND C

```
```

= AGHEEMENT BETWEEN P AND C

```
```

PT	xbase	cpbase	XPERT	CPPERT	хСНек	CPCHEK	CPPINT			
1	. 9995	. 6608	. 9995	.8210	. 9995	. 7155	. 8108	P	C	*
$?$. 9987	.5751	. 9988	. 6594	. 9987	. 6231	. 6506		PC	*
3	. 9974	.5086	.9976	.5706	. 9974	. 5555	. 5626		PC	
4	. 9956	. 4543	. 9960	. 5145	. 9956	. 4972	. 5050		PC	*
5	. 9932	.4077	.9938	.4637	. 9932	. 4469	. 4533		5	*
6	. 9903	. 3659	. 9912	.4197	. 9903	. 4022	.4081		PC	-

a

Figure A.2- Continued

Abstract

\square a n "~s

 Figure A.2- Continueda.
u

a

[^1]Figure A.2- Continued

* IUTPUT FOR CASE NO. 19 OF 19 .
- 0 相
....MACH NIMMER. CRITICAL VALUE OF CP:
$H 2=.7900$
$02(1)=.7900$ (MACH NO.)
$02(2)=.1200$ (TAU,
$02(3)=3.0000 \quad($ PITCH $)$
$02(4)=.2000 \quad($ ALPHA $)$
CPCRIT $=-.4638$

....locations of min.. max., and critical pts.
(* DENOTES POINT ON LOWER SURFACE)

PERTURBATION SOLN:
MINIMUM AT $x=6154 * \quad$ (POINT NO. 51)
MAXIMUM AT $x=0.000 *$ (POINT NO. 961
2 CRITICAL POTNT(S):
1STAT $X=.6726^{\circ}$
2ND AT $X=.6186$
(AFTER POINT NO. 48) (AFTER POINT NO. 138)

COMPARISON SOLN:
minimum at $X=.6939 * \quad$ (POINT NO. 36
MAXIMUM AT $X=0.0000$
2 CRITICAL POINT(S):
$\begin{array}{ll}\text { ISI AT } x=.7230 * & \text { (AFTER POINT NO. 34) } \\ \text { 2NO AT } x=.6903 & \text { (AFTER POINT NO. } 155 \text {) }\end{array}$
.....final printout and graphical display of cp


```
h= maximum value of CP = 1.1565
L= MINIMUM VALUE OF CP =-1.1128
= VALUE OF CP PREDICTED GY PERTURBATION SOLUTION
P= VALUE OF CP PREDICTED GY PERTURBAT
s = agheEmENT beTWEEN P AND C
```

PT XBASE CPBASE XPERT CPPERT XCHEK CPCHEK CPPINT H--.-.-.-.

a
a

Figure A.2- Continued

Figure A.2- Continued

Figure A.2- Continued
$* * * * * * * * * * * * ~$
*TESTCASE**
$* * * * * * * * * ~$

[^2]

Figure A.2- Concluded

Figure A.3- Abbreviated plot output for sample case

Figure A.3- Continued

Figure A.3- Continued

Figure A.3- Concluded

THE NUMRER OF POINTS SELECTED FHOM THESE 15 SPECIFIED BY NSELCT,
THE CORYESPOND THE CORRESPONDNG SUBSCRIP15 OF XLOCO ANO XLOCL ARE SPECIFIED IN
THE FIRST NSELCT ELEMENTS OF THE ARRAY LSELCT. E.G. TO SELECT THE maxinumpoint and the first and thtad chitical points. one
specifies specifies

provision is also made to allow the user to specify the points in The base and calibration solutions that will ge helo in

MAIN MA MAN Min MAIN

 $\begin{array}{ll}\text { Main } & 60 \\ \text { Main } & 61 \\ \text { Main } & 2\end{array}$ MAIN 61MAIN 62
nin MAIN
HAIN
MAIN
MAIN
H4
 dimension delxizeol

 DIMENS ION HEADO 15) HEADI (51, , HEAD2 (5) नHEAD3 (5)

 COMMON /HEAD/ TITLE(BO)
COMMON /PARAM/ PARNAH,LOCO.LOCI LSELCT,N,NCASE.LSPEC.LUNIT.

${ }^{5} \mathrm{CO}$
 COMON /save/ xCSave.ycsave
 DATA LTERM /01. LLORR 101

c.......
USER-SUPPLIED STATEMENT FUNCTION YCRITIZI) OETERHINES CRITICAL
VALUES OF FLOW YARIABLE YCRII AS FUNCTION OF FLOW PARAHETER

 MAIN
MAIN
MAIN
MAIN
MAIN MAINLII
MANII
MANII
HINI

```
c Is the free simeam mach mmmer, amo igrad corbesponds to positive
    YCR1T(2)=2.00(1(2.000.4.2002)/2.4)0-(1.4/0.4)-1.0)/(1.4*2**2)
    IGRAD=1
l
    ....print bamer page.
    call bamwer
C.....fREAD lecho and ecmo imput deck if lecho .eo. 1.
    CALL ECHINP
c`....input control, geometry, and straining parameters.
    call imput (1)
Cc....*rite title ano input parameters.
    WRITE 16,10001 TITLE
    NFIK=NSELCT*
c
    WRITE 16,1020) WFIR \0 10
        WR1TE 16,10301
    00 ro 30
    MRITE (6,1040)
    ON 20 ININSELCY, i) WRITE 16,1050) VHAM
    IF (LELCTII).EO. 2) WRIE 16.1060) VNAM
    IF (LSELCT(1) .LE. 2) 60 T0 20
    LPRELSELCTII)-2
    LPRELSELCTII-2 MMAMORD(LPRI
c
.....degin calculations on base solution.
    CALL INPUT (2)
    WRITE 16.1080) HEAD
    WRITE 16.1090) VNAH
    IF (NPAHAM EEQ. 1) WRITE (6,1110) QO(11),PARNAM(1)
    IF (NPARAM,GT. I) WRIIE (6.1120) (K,OO(K),PARNAM(K) -K=1.NPAPAM)
    GITE (6.11301 VNAM,YCRO
c
```

```
C......normalize x coordinates and locate minimum, maximun. and critical
```

Malnite
MAINIT3
Mainlity
Mainita
Mainili
Main
Mais
MAINIT
MAIN
MAIT
MANITI
MANITB
Maliti
MAINITB
MANIT9
MANINE
Maining
Mainial
mainini
maininz
mainlezz
mainias
Mainia3
MANIA
MANIAS
MAINIAS
MAINIBG
MAISIGI
Maining
Mainint
MAINIAT
MANIGB
MANIA
MANLAR
MAINIOO
MAINL90
MAINIGI
MAINL91
MA
MANI92
MANIOS
mainig3
malniga
malnigs
MalNigs
MAINGO
Mainlat
malniqn
mainlog
Mainzoo
mainzoo
matezoi
Mainzal
Mainzn3
Mainzna
Mainzna
Mainzons
Mainz
Mainzob
Mainzog
mainzot
mainent
minzon

C.....end Calculations on base solution. Mainza
MAINR11
MANE12
Maingiz
Maln2l3
MAIN2
MA1N213
MANZ14
MAIN215
MAINE15
MANEIS
MAINZIT
MALI
$00100 \mathrm{k}=1$.nparam
$00100 K=1 \cdot \mathrm{MPA}$
CALL ${ }^{\text {INPUT }}(3)$
MISAVE (K)
MISAVE (K) 1 =H1
OSAVE $(K)=01$
015AVE(K)=01
YCR1=YCRIT(A)
DELI(K)=01-00(K)
CALL COPY ($1, \mathrm{~N}, \mathrm{~K}$. XCALB, XCSAVE)

IF INPARAM EEO. II WRITE 6610801 HEADI

WHITE $(6.1090)^{\circ}$ VNAM
URITE 16.1230$)$
WRITE 16.1090 YNAM
IF 16.1230 MI

MAINZ25

If inparam .ee. 11 write 16.1250 o ol.parnamiti

On IFONTINUE NE, KI WRITE CS,
...... mopmalize x coordinates and locate minimin, maximum, ano critical

CALL LOCATE (N, XCALB, YCALA, YCR1, IGRAD.LMNI, LMXI,NCR1,LCRI, XLOCI)
YTHIN=YCALB (LMN1)
YTAAX $\because C A L B(L M X 1)$

WRITE 16.11401
WRITE 16.11501

C......check for invalio staaining specification tf lispfe $=0$.
If ILspEC .EQ. H GO TO BO
ICOUNT $=0$
DO 70
$=1$

MAIN
MAI
MAIN 234
MAIN235

mainz 36
Mainz37
Mant
MAINE37
MAIN 230
MAIN239
MAIN
MAIN239
MAIN240
MAN24
...stop execution if critical points aqe to be used in straining and
Number of chitical points in gase and calibration solutions are
uneoul.
une oual.
IF (Lterm .E.e. 1) 60 To 900
C......stop execution if mumber of critical points selected exceeds

IF (ICOUNT .GT. NCROI GO TO 905
oo continue
c..... coload selected straining points into fixed-point abray for kth
c.....load selected strainin
calibration solution.
xFixicli=0.0

GO TO 100
CONTINEE
c
c loo continue
Mainzas
Malnzp
Maimzab
Hall

CALL SORT (NFI
WRIE 16.1200)
URIIE
CALL UPLOW (R , Q, XFIXI, O, NFIX:XOUT,FLAG)

c....stop execution if order of occurhence of critical points in base
c.
AND calibation solutions does not corpe spond.

110 CONTINUE
c......compute coefficients in kit unit strajning of xbase

where nseg is the number of linear segments.
DO 130 1=1, NSEG

ONUMEXF1X1(101)-XFIXIII)
DENOMEXFIXO(1+1)-XFIXO
DENOLEXF $1 \times 11+11-1$
$C(K O L)=C H U M / O E N O M$

- save unit straining if required for later printout

CALL CCPY $11+N, K, X U N I T, X U S A V E$

IRPT=0
IF INPARAM OT A)
KFtinparah ogt. 4) IAPT=1
KSTARTII
KSTOP $=4$
IF
IF (Kstop .GT. nparam) kstopanparam
90 GSTART:5
190 KSTART:5
200 CONIINUE
WRITE (6.1230) vnar

IF (NUM, EOQ. 4) WRITE (6,1340) (ORD(K),K=KSTART,KSTOP)
210
CALLFILL ©1,0.5TAUNI)
URITE (6,13501 (STRUNI (K), K=1,KLAST)

 IF IIRPT EEC, OI GO TO 230 IRPTIO
6010190
230 CALL SCALE (NoxBASE:I*A.B)
240 CONTINUE
c
c
c
c
...construct perturbation solutions for test cases cand compare with EXACT SOLUTION. IF AVAILABLEI.

DO 330 ICASE =1. NCASE
CALL INPUT (A)
MZSAVE (ICAGE)
MZSAVE IICASEIEM2
YCR3×YCAZ

main344	c.....initialize strained coordinate amo perturbation solution.
maln345	c
main346	00250 Ifind
main367	XPERT(I)EXRASE(I)
main348	
mainjas	c
maln350	c......add in contributions from all perturbations.
main3si	
main352	$00270 \mathrm{~K}=1$, NPAPAM
maln353	O2SAVE(K.ICASE) $=02$ (K)
main354	OEL2 $=02(\mathrm{~K})-00(\mathrm{~K})$
majn35s	DEL21 $=0$ EL2/DELI (K)
main356	
main357	00260 I 1 1, N
main35s	XPERT(1) = XPERT (1) - DELX (1)
main3s9	260 YPERTII)=YPERTII +DEL2*YUNIT(K.II
main360	270 continue
maln361	c
main362	C.....adjust values mear critical point for monotone behavior.
maln363	C If (LCORR .EQ.]) CALL MONO (NCRO,LCRO, XPERT, YPERT)
Maln365	C
mainjeb	c......locate minimum, maximum, and critical points in perturgation
main367	c SOLUTION.
mainjes	
Mals369	
MAIN371	CALL LOCATE (N,XPERT, PPERT,YCR2.1GRAD,LWN2.LMX2.NCR2.LCR2.xLOCZ)
malm372	YMIN=YPERT (LMNZ)
majn373	vmax=YPERTILMEZ
maln374	YPCMIN=YMIN
main375	YPCMAX $=$ YMAX
main376	YRITE 16,13801 ICASE.NCASE
mainjit	WRITE 16.1090) YMAM
maln378	WRITE (6.1390) M2, mPItE (6.1400) Q2(1), PARNam(1)
mainsis	
mainjal	
mainanz	White (6 .1140)
mainjaz	WRite (6.1150)
mainjas	CALL UPLOW (A,B,XLOCR, 6, MCR2 2 2, XOUT,FLAE)
mainzas	WRITE (6,1420) HEAD2, XOUT(1),FLAG(1), LMNZ, XOUT (2),FLAG(2) ,LMX2
mainjan6	IF (NCR2 -GT. O) WRITE (b.1430) NCR2.
mainjat	
mainjas	
Hainjeg Mainjed	C.....if lemek ene. \quad bead in data for comparison solution and locate
main391	c minimum, maximun, and critical points.
mainjaz	c
main393	IF ILCHEK, EO. O) GO T0 290
mainjo4	CALL INPUT 151
Maln395	CALL SCALE ($\mathrm{N}, \times \mathrm{CHEK}, 1, A, 8)$
Mainsiab	
main 397	YMINEYCHEK(LHN3)
MAINBOA	YMax =YCHEK (LHX3)

[^3]```
 If (rmax .GT. rpCmax) rpCmax=ymax
 CALL UPLOW (A,B,ALOC 3,6,NCR3P2, XOUT,FLAG1
 WNITE (6.1420) HEAD3,XOUT 11).FLAG(1),
```



```
 CALL INTERP (N. XPERI,YPERT:XCMEK,YPRT1),
 CALL LOCATE (N,XC)
 IF (yMNIN LTT. YMIN) YHIN=YTHIN
 IF (rTMAX.GT: YMAX) rMAX=YTM
 CALL SCALE (N,XPERT;2,A*日)
 CALL FILL 12,0,STRING)
```



```
 WQITE (6.1460) VNAM,YNAM,VNAM, YNAM,ISTRING(1),I=1,72)
 M00280 1=1,N (3.STRING)
 2HO WRITE (6,1470) 1, XBASE(1),YBASE(1),XPERT(I),YPERT(I),
 * XCHEK(1),YCHEK(I),YPGTI(I),(STRING1I1),II=1,72)
c}29
CALL SCALE (N,XPERT;2,A,B
 URITE (6,140) YNAM
 WRIE (6,1400) VNAM,YMAK,VNAM,
 DO 300 1A1,N . STRING)
```



```
300 continue
c....if lplot. ne. o generate peripheral plot of perturbation and
 -
 IF ILPLOT ,EO. OI GO to 320
 YMINEYGCMIN
 IF (YPCHIN .LT. YMIN) YMIN=YPCMIN
 CALL DRYPLT ICASE,N,NCASE ONPARAM,YMIN,YMAX,YCR2
 320 CONTINUE
 330 CALL SCALE (N.xBASE,I,A,B)
c.....print final table summarizing calculations.
 CALL TABLE INPARAM.NCASE,PARNAH,MO,Q01
c.....abnormal termination of computaition.
 90N WRITE 16,9000)
 MOM G0 T0 999,9050,
```



```
 COMON /HEAO/ ZTITLEISO)
```

    COMON /HEAO/ ZTITLEISO)
    COMHON 'AYY XASS, XCALE*XHERT, XCHEK, YOASE,YCALR.YDERT,YCHEK,YPRTI
    COMHON 'AYY XASS, XCALE*XHERT, XCHEK, YOASE,YCALR.YDERT,YCHEK,YPRTI
    IFATA NPLOT (NPLOT. OI CALL BETA
    IFATA NPLOT (NPLOT. OI CALL BETA
    MIN=1N,00(YH)\dot{CNO.1)}
    MIN=1N,00(YH)\dot{CNO.1)}
    YMIN=0,10HIN
    YMIN=0,10HIN
    ENCODE (28,1000,HLINE2) (ZTITLE(I),I=1,9),ICASE,NCAS
    ENCODE (28,1000,HLINE2) (ZTITLE(I),I=1,9),ICASE,NCAS
    DO 20 K=1,NPAR (
    DO 20 K=1,NPAR (
    ENCODE (22,1010.HLIMESM K.NPARAM
    ENCODE (22,1010.HLIMESM K.NPARAM
    CALL OGNPL (-1)
    CALL OGNPL (-1)
    ALL mX3ALF ("INSTR","gn)
    ALL mX3ALF ("INSTR","gn)
    CALL SIMPLX ITLE IN ,I,IHX,1,HEE0.5)CSEX(P)S",100,6.0.8.01
    CALL SIMPLX ITLE IN ,I,IHX,1,HEE0.5)CSEX(P)S",100,6.0.8.01
    CALL HEAOIN (MPLOT (OF) C$LO.25H0.7(P)S".100.3.3)
    CALL HEAOIN (MPLOT (OF) C$LO.25H0.7(P)S".100.3.3)
    CALL HEADIN (HLINE2,28.2.3)
    CALL HEADIN (HLINE2,28.2.3)
    CAL GRAF (0.0."SCALE",1.0,YMAX."SCALE",YMIN)
    CAL GRAF (0.0."SCALE",1.0,YMAX."SCALE",YMIN)
    ALL rame
    ```
 ALL rame
```




```
CALL RLMESS ("CYLIPSEE(0)$",100,0.21,YCR2)
```

CALL RLMESS ("CYLIPSEE(0)\$",100,0.21,YCR2)
CALL RLME
CALL RLME
(PPEE(0)S"
(PPEE(0)S"
CALL RESE
CALL RESE
CALL COPY I2,NoK,xCALB,xCSAVE)
CALL COPY I2,NoK,xCALB,xCSAVE)
Call cuRYE (XCALYCALB,YCSAVE)
Call cuRYE (XCALYCALB,YCSAVE)
CALL RUSET (MCALT,
CALL RUSET (MCALT,
CALL MAHKEE (I)
CALL MAHKEE (I)
CALL cuRVE (XPERT.YPERT,N.-1)
CALL cuRVE (XPERT.YPERT,N.-1)
CALL RESET ("YARKERN)
CALL RESET ("YARKERN)
20 CALL ENOPL (NPLOT)
20 CALL ENOPL (NPLOT)
lol
lol
\& RETURN
\& RETURN
SUAROUTINE ECHIND

```
 SUAROUTINE ECHIND
```




```
 ATE (6.1010)
```

    ATE (6.1010)
    OACKSpace 5
    OACKSpace 5
    10 READ (5:1020) CAND
10 READ (5:1020) CAND
20 IF IEOF(15), 30,20

```
20 IF IEOF(15), 30,20
```

IF (LECHO .EO. (1) MRITE (6.1030) CARO

if clecho eeo. ol heturn

REF TURN
1000
1010

020 format 120.2511 (1401///)
1020 FORMAT (2004)
1030 format
END

SUBROUTINE FILL (ICALL,I,STRING)
c.....fills arbay string with characters for table headings and phinter

DIMENSION XBASE(200), XCALE $2001, \times$ CMEK (200) ,XPERT(200)
 IMENSION STRING(96), VNAM(2), UNIT (Z0), PARNAM(8)
REAL MO.HI.H2, PARMAM,LOCO.LOC1, LSELCT,N.NCASE.LSPEC,LUNIT,



s BLANK/IH


IENT=IENT.1 (IENT.GT. II RETURN

Do $20 \mathrm{~J}=1.20$
DO
20
$\mathrm{k}=1.4$





STAING $111=0 \mathrm{C}$
STRINGIII
STRING
IT
IN

STRING (NSTARI =STAR
RETUAN




[^4]




둥웅
5
50
0
0


```
 COMHON THEL HEAOD.HEADI,HEAD2,WISAVE.HZSAVE.OISAVE,ORSAVE
```



```
 Mata STAR /12701H0/,
 DITA END INP,INA,IMP,IM.OIH ,IHO
```




```
 5N15TH :5H16TH :5H17TH :5H18TH;5
 00 10 1=1010
 10 STRNGII11ESTAR(1)
 00 50 pagent*2
 WRITE (6.1000) (TITLE(1).1-1,9)
 max|=11 'NPARAM+12
 MRITE (6.1010) (ELANK(11,1-1,201,(STARII),I=1,IMAX1)
 MR1E (6.1020) (ORD(K),K=1,NPARAM)
 IMAX=1MAX2-6
 MMAX=1MAXI-11 (STMmal(1).1-1.IMAX)
 WMITE (6,1040) (STMMS1(1),I=1,IMAKI
 MRITE (G4%1050
 (PARMAM(K) &K=1,MPARAM)
 WHITE (6,1030) (ELaMN(1),1=1,IMAx)
 MWIE (6,010) (STAM(1),1=1,IMAXZ),MPARAM
 WPITE (6,1030) (BLAMW(I),I=1.IMAXI,STARII)
 WRIEE $6.1010) (STAR(1,I=1,1MAX2)
 DO 30 KElompatan
 20 DO 20 KK=1.NPARAM
 OMRITE (K)=OISAVEIK
 WRITE (6.1080) ORD(K),HEADI,MISAVE (K), (OMRIIE (KK),KK=1,NPARAM
 WRITE (6,1030)(8LANM(1),1=1,IMAX);STAR(1)
 30
 MRITE (6,1010) (STAR(II.1=1,1MAX2)
 WRITE (6,1070) (STAR(I),1=1,IMAXZ)
 DO.40 ICASE=1,NCASE (ICASE),NEAOZ,MZSAVE(ICASE)
```



```
 MAITE (6,1030) (BLANK(1)II=1,IMAX).STAR(1)
 \Delta
 CONTINUE OCASEI WRITE 16.1010
 *MITE 16
50 CONTINUE
000 FORMAT (1HI,0X,13(1H01/5X.2H* .9A1,2H */5X.13(1H*)/I/)
010 Fomal isx,128al!
1010 Fommal (5x,12BAl
*)
```



```
1060 FORHAT (5x,3H* ,5A4,5x,913M* .F6.3.2x11
OMO FORMAT (1HO&4X,128A1)
```


$\begin{array}{ll}\text { TAHL } & 63 \\ \text { TAHL } \\ \text { S4 } \\ \text { TAHE } & 65\end{array}$SUBROUTINE UPLOE (A.B.EIN.K,N.XOUT,FLAGI$\begin{array}{ll}\text { UPLO } & 1 \\ \text { UPLO } & 2 \\ \text { UPLO } & 3 \\ \text { UPLO } & 4 \\ \text { UPLO } & 5 \\ \text { UPLO } & 6 \\ \text { UPLO } & 7 \\ \text { UPLO } & 8 \\ \text { UPLO } & 9 \\ \text { UPLO } & 10 \\ \text { UPLO } & 11 \\ \text { UPLO } & 12 \\ \text { UPLO } & 13 \\ \text { UPLO } & 14 \\ \text { UPLO } & 15 \\ \text { UPLO } & 16\end{array}$

APPENDIX C
LIST OF SYMBOLS

C	blade chord, m
$D V_{i}$	design variable coefficient of profile shape function; eq. (22)
i	invariant point index; eq. (5); also, index for surface shape functions; eqs. $(22,23)$
k	dummy index; eq. (24)
L	two-dimensional full potential operator; eq. (1)
$\mathrm{L}_{1}$	Iinear operator representing first-order perturbation of two-dimensional full potential equation; eq. (3)
$\mathrm{L}_{2}$	```Iinear operator representing first-order perturbation terms arising from coordinate straining; eq. (6)```
M	number of independent flow or geometrical variables to be perturbed
$M_{\infty}$	absolute inlet Mach number
n	total number of shock points and high-gradient maxima points; eq. (21)
N	```total number of invariant points, equal to n + 2; eqs. (13,14)```
${ }^{4}{ }_{j}$	$j^{\text {th }}$ arbitrary geometric or flow parameter to be perturbed; eq. (8)
${ }^{q_{C}}$	calibration flow value of $q_{j}$; eq. (8)
${ }^{o_{o}}{ }_{j}$	base flow value of $q_{j}$; eq. (2)
Q	approximate flow solution for arbitrary flow quantity; eq. (7)
$Q_{c}{ }_{j}$	calibration flow solution for value $q_{c_{j}}$ of arbitrary parameter; eq. (7)
Q ${ }_{0}$	base flow solution for values $\mathrm{q}_{\mathrm{o}_{\mathrm{j}}}$ of arbitrary parameters; eq. (7)
$Q_{1}{ }_{j}$	$j^{\text {th }}$ perturbation solution per unit change of perturbed parameter $q_{j}$; eq. (7)


( $\mathrm{s}, \mathrm{t}$ )	strained ( $\mathrm{x}, \mathrm{y}$ ) coordinates; eq. (4)
t	gap to chord spacing ratio
$(x, y)$	nondimensional blade-fixed orthogonal coordinates; eq. (7), normalized by C
$\left(\bar{x}_{j}, \bar{y}_{j}\right)$	nondimensional blade-fixed orthogonal coordinates related to $j^{\text {th }}$ calibration solution; eq. (7)
$\left(x_{1}, y_{1}\right)$	straining functions associated with $(x, y)$ coordinates; eq. (4)
$\left(x_{1_{i}}, y_{1_{i}}\right)$	straining functions associated with ith invariant point; eq. (5)
$\alpha$	angle oncoming flow makes with blade chord line
$\left(\delta \mathrm{x}_{\mathrm{i}}, \delta \mathrm{y}_{\mathrm{i}}\right)$	unit displacements in ( $x, y$ ) directions associated with ith invariant point; eqs. $(5,8)$
$\varepsilon_{j}$	desired perturbation change of $j^{\text {th }}$ geometric or flow parameter; eq. (8)
$\bar{\varepsilon}_{j}$	perturbation change of $j^{\text {th }}$ geometric or flow parameter between base and calibration flows; eq. (8)
$\tau$	thickness ratio of blade
$\Phi$	nondimensional total velocity potential; eq. (1), normalized by $\mathrm{CV}_{\infty}$
$\Phi_{0}$	nondimensional base flow velocity potential; eq. (2), normalized by $C V_{\infty}$
${ }^{1}{ }_{j}$	nondimensional $j^{\text {th }}$ perturbation velocity potential; eq. (2), normalized by $\mathrm{CV}_{\infty}$
Subscripts	
i	```denotes quantities associated with i }\mp@subsup{}{}{\mathrm{ th }}\mathrm{ invariant point```
j	denotes perturbation quantities
Superscripts	
0	denotes base flow quantities
c	denotes quantities associated with calibration flows

## REFERENCES

1. Stahara, S. S., Elliott, J. P., and Spreiter, J. R.: A Rapid Perturbation Procedure for Determining Nonlinear Flow Solutions: Application to Transonic Turbomachinery Flows. NASA CR-3425, May 1981.
2. Stahara, S. S., Chaussee, D. S., and Spreiter, J. R.: Perturbation Solutions for Transonic Flow on the Blade-to-B1ade Surface of Compressor Blade Rows. NASA CR-2941, Jan. 1978.
3. Nixon, D.: Perturbations in Two- and Three-Dimensional Transonic Flows. AIAA J., Vol. 16, July 1978, pp. 699-709.
4. Nixon, D.: Design of Transonic Airfoil Sections Using a Similarity Theory. NASA TM 78521, Oct. 1978.
5. Stahara, S. S., Crisalli, A. J., and Spreiter, J. R.: Evaluation of a Strained Coordinate Perturbation Procedure: Nonlinear Subsonic and Transonic Flows. AIAA Paper No. 80-0339, Jan. 1980 .
6. Nixon, D.: Perturbation Methods in Transonic Flow. AIAA Paper No. 80-1367, July 1980.
7. Stahara, S. S., Elliott, J. P., and Spreiter, J. R.: A Rapid Method for the Approximate Determination of Nonlinear Solutions: Application to Aerodynamic Flows. ICAS Paper No. 80-7.5, Oct. 1980.
8. Nixon, D. and McIntosh, S. C., Jr.: Further Observations on the Strained Coordinate Method for Transonic Flows. AIAA J., Vol. 18, Dec. 1980, pp. 1540-1541.
9. Holst, T. L. and Ballhaus, W. F.: Fast, Conservative Schemes for the Full Potential Equation Applied to Transonic Flows. AIAA J., Vol. 17, Feb. 1979, pp. 145-152.
10. Dulikravich, D. S.: CASD: Computer Program for Planar Steady Potential Cascade Flows. NASA TP 1705, July 1980.
11. Hicks, R. M., Murman, E. M., and Vanderplaats, G. N.: An Assessment of Airfoil Design by Numerical Optimization. NASA TMX-3092, 1974.
12. Hicks, R. M. and Vanderplaats, G. N.: Application of Numerical Optimization to the Design of Supercritical Airfoils without Drag-Creep. SAE Paper 770440, 1977.
13. Jameson, A.: Transonic Calculations for Airfoils and Bodies of Revolution. Grumman Aero. Rept. 390-71, Dec. 1971.

## REFERENCES (Concluded)

14. Katsanis, T.: Fortran Program for Calculating Transonic Velocities on a Blade-to-Blade Stream Surface of a Turbomachine. NASA TN D-5427, Sept. 1969.
15. Crouse, J. E.: Computer Program for Definition of Transonic Axial-Flow Compressor Blade Rows. NASA TN D-7345, Feb. 1974.
16. Madsen, L. E. and Vanderplaats, G. N.: COPES - A Fortran Control Program for Engineering Synthesis. NPS 69-81-003, March 1982.

TABLE 1
COMPARISON OF FINAL DESIGN VARIABLES AND OBJECTIVE FUNCTION WHEN EMPLOYING FULL NONLINEAR TSONIC SOLUTIONS OR PERTURBATION METHOD FOR DIFFERENT CHOICES OF
CALIBRATION SOLUTION MATRIX FOR SIX DESIGN
VARIABLE SUBCRITICAL OPTIMIZATION CASE STUDY USING MAXIMUM SUCTION SURFACE VELOCITY DIFFUSION OBJECTIVE

Design   Variables							Objective Function
	KOCR	T	ZM	P	TMX	THLE	
INITIAL							
Baseline	-10.0000	0.2500	0.4500	1.50000	0.0500	0.0050	1.8400
Upper Bound	0.0000	0.6000	0.5500	4.0000	0.1000	0.0120	
Lower Bound	-15.0000	0.2000	0.2000	0.5000	0.0300	0.0030	
FINAL							
TSONIC SOLUTIONS ONLY RESULTS							
CDC 7600	-7.1106	0.2000	0.5500	0.9401	0.0300	0.0064	1.6748
IBM 3033	-8.8659	0.2400	0.5500	0.7628	0.0300	0.0051	1.6752
PERTURBATION SOLUTION RESULTS							
$\begin{aligned} & \hline \text { CASE 1 } \\ & \hline \text { Calibration } \\ & \text { Final } \\ & \hline \end{aligned}$							
	-7.0000	0.2000	0.5500	0.9400	0.0300	0.0064	
	-9.2223	0.2327	0.5500	0.9281	0.0359	0.0052	1.6904
$\begin{aligned} & \text { CASE 2 } \\ & \text { Calibration } \\ & \text { Final } \\ & \hline \end{aligned}$							
	-9.0000	0.2300	0.5500	0.8000	0.0300	0.0060	
	-8.8714	0.2228	0.5500	0.9523	0.0315	0.0051	1.6908
CASE 3   Calibration Final							
	-12.0000	0.3000	0.4000	1.2500	0.0400	0.0070	
	-8.9865	0.3001	0.5500	0.8776	0.0300	0.0050	1.6974
CASE 4							
Calibration	-8.0000	0.3500	0.5000	2.0000	0.0600	0.0060	
Final	-8.2180	0.3257	0.5500	1.4527	0.0385	0.0049	1.7628
CASE 5							
Calibration	-9.0000	0.3000	0.5000	2.5000	0.0400	0.0040	
Final	-5.9055	0.4440	0.5500	1.3325	0.0412	0.0037	1.7486
CASE 6							
Calibration	-11.0000	0.2300	0.3500	1.2500	0.0600	0.0040	
Final	-9.4297	0.2522	0.5500	0.8036	0.0300	0.0052	1.6807



Figure 1.- Comparison of perturbation (O) and nonlinear (-) surface pressures for the simultaneous two-parameter perturbation of ( $M_{\infty}, \tau$ ) for nonlifting strongly supercritical flows past isolated NACA 00XX blade profiles.


Figure 2.- Comparison of perturbation (O) and exact nonlinear ( - ) surface pressures for the simultaneous three-parameter perturbation of $\left(\alpha, M_{\infty}, \tau\right)$ for strongly supercritical


Figure 3.- Comparison of perturbation (O) and exact nonlinear (—)
surface pressures for the simultaneous four-parameter pertur-
bation of ( $M_{\infty}, \tau, t, \alpha_{\infty}$ ) for strongly supercritical flows past a cascade of NACA 00XX blade profiles.


Figure 4.- Illustration of typical ordinate shape functions $F_{i}$ employed in blade contour alteration optimization problems.

OBJECTIVE IS TO MINIMIZE:
$\Sigma\left(\mathrm{C}_{\mathrm{P}_{\text {Predicted }}}-\mathrm{C}_{\mathrm{P}_{\text {Desired }}}\right)^{2}$


Figure 5.- Illustration of physical basis of optimization problem involving blade surface contouring to taylor the surface pressure distribution to a desired distribution.

- Full Aero.
- Pert. Method
- Finol Aero, Check


Figure 6.- Comparison of final design variables and objective function when employing the perturbation method (O) in lieu of the full nonlinear aerodynamic solver (©) for various choices of initial design
variable stepsize for nine design variable subcritical
optimization case study with a surface pressure
tailoring objective.


Figure 7.- Comparison of computational work and objective function reduction per optimization search cycle when employing perturbation method (©) or full nonlinear aerodynamic solver (©) for nine design variable subcritical optimization case study using a surface pressure tailoring objective.


Figure 8.- Comparison of perturbation-predicted final design variables and objective function for various choices of initial design variable stepsize for four design variable supercritical optimization case study with drag minimization objective.


Figure 9.- Comparison of computational work and objective function reduction per optimization search cycle when employing perturbation method ( - ) or full nonlinear aerodynamic solver ( $\odot)$ for four design variable supercritical optimization case study using a drag minimization objective.
©'Optimum' Full Aero.
$\triangle$ Full Aero.


Pert. Method

- Final Aero. Check



Figure 10.- Comparison of final design variables and objective function when employing perturbation method ( $\bullet$ ) or full aerodynamic solver ( $\Delta$ ) as compared with 'optimum' full aerodynamic result (©) for different choices of initial design variable stepsize for four design variable supercritical optimization case study using a surface pressure
tailoring objective.


Figure 11.- Comparison of computational work and objective reduction per optimization search cycle when employing perturbation method (©) or full nonlinear aerodynamic solver (©) for four design
variable supercritical optimization
case study using a surface pressure
tailoring objection.


[^5]
[^0]:    $x$ Fix(1) $=1.0000 *$
    XFIX(2) $=.5165$
    $X F I X(3)=0.0000$
    XFIX(4) $=.4520$
    XFIX(5) $=1.0000$

[^1]:    

[^2]:    
    
    

[^3]:    MaIN4en
    MAIN4
    MAIN4
    MAIN4OZ
    MAIN403
    
    
    
    maincol
    Maintoid
    Mainatos
    Mainsog
    Mainal
    MAINAII
    MAIM
    malnall
    Mainal
    mid
    MAINA13
    

    ## 

    ## 

    mainalt
    MAINATS
    Mainare
    Mainati
    mainazz
    MAIN
    MAIN 23
    MAINA
    Mas
    

    ## Malnaze MAINA Ming

    
    MAIN430
    MAIN 31
    MAIN 32
    HAIN
    Main 43
    MAIN 34
    MaINA 35
    
    MAING38
    MAINA 39
    Mainalo
    MaINASO
    MAINAI
    MaINAS
    Malne4z
    Malnat3
    MalN44
    MaIN44
    Malna4s
    MAINAAG
    MANINAA
    MAINAAB
    MAINAS
    MalNat
    MaI Nat
    Minas

    | Mainas |
    | :---: |
    | Ma ina |

    
    
    
    MAIN456

[^4]:     xcalbili. IE COORDiNate in kth calitration solution
     ycalbili. Irion.... vapiable in kth calibration solution.
    
    Locilil arbay of lembin 6 of with nselct elements abe read IN. SPECIFIES SURSCRIPTS OF THOSE POINTS IN KTH
    CAL IGRAI IOM FLOM MMICH ARE TO BE MELD INVAKIANT.
    "CoE.日.: ONE SET OF ITEMS 17 THROUGH 20 IS
    
    
    mz oncoming mach mumber in solution to ae computed.
    Coses ITEM No. 18 - o ofiki Parray of lengin giving values of pertiuration ELEments of arhay are read in.
    
    ------ this item to be onitied if lchen $=0$-----
    
     .-...- this item to be omitted if LCHEK = 0 ......
    
    DIMENSION LOCO(6) ,LOC1(6), LSELCT(6)
    OIMENSION XBASE (200), XCALL (200), XPERT (200).XCHEK(200).
     REAL MO, M1, 0 (8)
    

[^5]:    * For sale by the National Technical Information Service, Springfield, Virginia 22161

