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MINIMUM-FUEL TURNING CLIMBOUT AND DESCENT GUIDANCE

OF TRANSPORT JETS

F. Neuman and E. Kreindler*

Ames Research Center

SUMMARY

The complete flightpath optimization problem for minimum fuel consumption from

takeoff to landing including the initial and final turns from and to the runway head-

ing is solved. However, only the initial and final segments which contain the turns
are treated, since the straight-line climbout, cruise, and descent problems have

already been solved. The paths are derived by generating fields of extremals, using

the necessary conditions of optimal control together with singular arcs and state
constraints. Results show that the speed profiles for straight flight and turning

flight are essentially identical except for the final horizontal accelerating or

decelerating turns. The optimal turns require no abrupt maneuvers, and an approxima-

tion of the optimal turns could be easily integrated with present straight-line climb-

cruise-descent fuel-optimization algorithms. Climbout at the optimal IAS rather than

the 250-knot terminal-area speed limit would save 36 ib of fuel for the 727-100
aircraft.

INTRODUCTION

The escalating costs of fuel have increasingly focused attention on the problem

of minimizing fuel consumption of commercial aircraft. Recent work in aircraft

guidance has demonstrated that onboard optimization of aircraft trajectories offers
an efficient method of fuel conservation.

Aircraft trajectory-minimum fuel problems can be divided into two classes:

en route problems, with trajectory lengths of 50 n. mi. and longer; and terminal-area

problems with lengths of 3 to 50 n. mi. For the en route problem, an onboard algo-

rithm for optimum climb-cruise-descent has been developed by applying optimal control

theory (ref. i). The solution was developed for the vertical plane only, since
horizontal maneuvers are not a significant feature of en route flight.

The general class of terminal-area trajectory problems are more difficult to
solve, because vertical and horizontal maneuvers involving speed, altitude, and head-

ing changes occur simultaneously and because they are of comparable significance in

influencing fuel consumption.

In this report we study the subclass of terminal-area climbout and descent tra-

, jectories which are part of an overall optimal trajectory that includes an en route
straight-line optimal cruise segment. These maneuvers complete the optimal cruise

trajectory problem of reference i by including the initial and final turns from and

t
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to runway headings. For this subclass of terminal-area problems, essentially all

possible extremals can be found, and the problem of global optimality encountered in
the general class of terminal-area turning flightpaths can be resolved (ref. 2).

The results presented in this paper show that for fuel-efficient turning climbout
and descent guidance, the altitude-speed profile is nearly the same as that generated

for straight-line flightpaths. In the special case of straight-line flightpaths, the

results presented in this paper are identical to those presented in reference i.

Further research is needed on a second class of problems, that of optimal capture

trajectories. These are trajectories which end by aligning the aircraft with the

Instrument Landing System (ILS) localizer at a specific point and heading and begin at

any other point and heading. These problems arise especially in the descent phase

when the aircraft does not arrive in the terminal area at the proper state to complete

an optimal approach or, for air-traffic-control reasons, is not permitted to complete

the optimal maneuver. The approach in previous studies has been to synthesize and

sometimes optimize vertical (ref. 1) and horizontal trajectories (refs. 3-6) sepa-

rately and then combine them heuristically (refs. 7-9). In further research one can

use extremals to study samples of optimal three-dimensional trajectories, which

include speed changes, and thus verify and refine existing heuristic solutions.

However, this problem isnot addressed in this paper.

PROBLEM STATEMENT

The problem is to minimize the fuel consumption over the complete flightpath

from takeoff to touchdown, FT. In order to solve this problem, the equations of
motion for the vehicle are needed and the performance index must be formulated.

The point-mass equations of motion for an aircraft in steady-state flight

(weight --lift/cos i), assuming small flightpath angle, constant mass, and coordi-
nated turns are:

= v cos _ (i)

# = v sin _ (2)

= vy (3)

= -gulv (4)

= g(r - D - Wy)/W (5)

Here, x and y are the coordinates in the horizontal plane, h is the vertical coor-

dinate, _ is the heading angle measured counterclockwise from the x-axis, v is the

ground speed, g is the gravitational constant, W is the weight, and D is the drag.
The control variables are:

i. Thrust, T, where thrust is constrained to be between idle and maximum
allowable thrust:

Tidle _<T _<Tmax °



2. Flightpath angle, y, which is constrained in accordance with present commer-
cial airline practice:

Ymin _ Y _ Ymax

= 0° = 5° for climbout
_min ' Ymax

= -4 ° = 0° for descent
Ymin ' Ymax

3. The tangent of the bank angle, u, which is constrained in accordance with

present practice for commercial autopilots.

-u < u < u u = tan _, _ = 30°
m - - m m

The only state constraint that was applied was on airspeed. FAA regulations state

that the indicated airspeed in the terminal area must not exceed vI = 250 knots

(422 ft/sec); when converted into true airspeed (which is equal to the ground speed
in the assumed no-wind condition) this translates into a state variable constraint

for the speed v:

S = v - vi(l + qh) ! 0; vI = 422 ft/sec; q = 0.162×10 -_ (6)

The next problem is to develop the performance index for the low-altitude turn-

ing segment. This requires some preliminary discussion of various approximations.

The intended solution for the complete minimal-fuel turning flightpath is to connect

the optimal solution for the straight-line flightpath from reference 1 (cut off below

an altitude of I0,000 ft) with an optimal turning climbout and descent (connected to

the straight-line path at the 10,000-ft altitude). From Bellman's principle of

optimality (ref. i0) it can be said that "any portion of an optimal trajectory is
also optimal." However, the converse of piecing together portions of optimal tra-

jectories will result in an optimal trajectory only under rather special conditions.

But this piecing is precisely what we intend to do. It will be shown, from the

numerical results, that piecing together a straight-line, optimal, high-altitude tra-

jectory with a turning low-altitude trajectory will be an extremely close approxima-

tion of an optimal flightpath.

The first approximation is that the high-altitude portion of a long-distance

optimal flightpath is a straight line in the horizontal plane. In reference 6 it was

shown that for optimal horizontal flightpaths that involve initial and final turns,

the flightpath does not contain a mathematically straight-line portion. However, even

for flightpaths as short as 20 n. mi. there is a center portion of the flightpath

that is straight for all practical purposes. Then, for the much longer flightpaths

considered here, the assumption of a straight-line horizontal projection of the center

portion of the trajectory appears reasonable. If, in addition, the initial portion

of the turning descent is also almost a straight line and the speeds and controls at

the junction match, so that there is no discontinuity, then one can be reasonably
assured that the joining of the path segments will result in a close approximation of

° a fuel-optimal flightpath.

In order to develop the performance index, FT, it is convenient to refer to

, figure 1 where the flightpath has been drawn to include a turning climbout segment

from tI to 10,O00-ft altitude (t2), a straight-line climbing segment (RCLIMB), from

t2 to cruise altitude, a straight-line cruise segment (RCRUISE), a straight-line



Figure I.- Optimal flightpath. Note: to - tI and t4 - ts are not subject
to optimization.
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descending segment (RDESCEN T) from cruise altitude to 10,000-ft altitude (t3), and a

turning descent from 10,000-ft altitude to the final approach fix t_. For a given

stage length R, the optimal cruise altitude and speed change very little with minor

changes in the length of the straight flightpath RCRUISE + RCLIMB + RDESCEN T that
may occur when considering alternative low-altitude climbouts and descents. Any

change is primarily reflected in the change of the cruise distance, while the high-

altitude climb and descent strategies are not affected. This means that the optimal

fuel consumed during the straight-line climbout and descent segments is independent

of the rest of the flightpath and can therefore be represented by a constant and the

fuel consumed during the cruise segment is directly proportional to the range traveled

at cruise altitude; then the total fuel consumed during the flight can be expressed
by the equation

iiFT = F dt + CRcRuISE + F dt + KI (7)
|

where F is fuel burn rate, C is the fuel per nautical mile expended at optimal

cruise speed and altitude (ref. i), KI is the fuel consumed during the optimal

straight-line climb and descent segments of flight, and RCRUISE is the distance

traveled at cruise. From figure 1 it is seen that

RCRUISE = R - RCLIM B - RDESCEN T - xI - x2

where R (the distance between the climbout fix and final-approach fix), RCLIM B, and

RDESCEN T are constants. (Referring to fig. 1, we realize that Yl and Y2 have
negligible effect on the length of the long-distance straight-line flightpath above

an altitude of 10,000 ft.) We define xI and x2 to be:

iixI = v cos _ dt ; x2 = v cos _ dt

• •t

so that

t2 _ t4
FT = (F - Cv cos _)dt + (F - Cv cos _)dt + KI + K2

tI t3

where

K2 = C(R - RCLIM B - RDESCENT)

Therefore, provided that the overall flightpath is long enough to have a cruise

segment, the performance function applicable to the low-altitude climb/descent por-

tions of the complete flightpath has two parts and equals the fuel expended in the

ascent (descent) minus the fuel saved by shortening the cruising portion of the high-

altitude flightpath:



t2(t_)P

J = l (F - Cv cos _)dt (8)
!

"%1(t3)
The upper and lower limits of integration are those appropriate for ascent (tI and
t2), and descent (t3 and t_), respectively, and the upper limit of integration is
free.

The initial and final states for descent are:

ho = I0,000 ft

_o = 0

v(O) _ 250 knots IAS

hf = 2000 ft

vf = 180 knots

and _f is specified between 0 and _. The values are reversed for ascent. The

values for (xl,y I) and (x2,y 2) of figure 1 are not specified. The terminal altitude

hf and speed vf are chosen to permit a final straight-in landing approach along a
specified glide slope. The initial speed v(O) is either determined by the speed

constraint or, if the speed constraint is not violated, by the speed dictated when

flying the solution of the optimization problem. Numerical results show that the

terminal conditions at 10,O00-ft altitude are the proper initial and final conditions

for the straight en route portion of the flightpath.

In order to solve the minimum-fuel climbout and descent problems it is necessary

to model the drag, thrust, and fuel-flow rate for a specific aircraft. Choosing the

Boeing 727-100 as an example, the drag, D, is modeled by

D = D 1 + D2 u2 (9a)

where the drag for nonturningflight,Dl, is given by

DI = k1(l + k2h) + k3(l + k4h)v2 + k5(l + k6h)/v2 (9b)

and the bank-angle-induceddrag, Dz, is given by

D2 = kl(l - kzh)/2 + ks(l + k6h)/v2 (9c)

This approximationfor drag resultsin a minimum drag of 9000 ib and includes
sufficient flap deployment at the lower speeds such that an 8° angle of attack is not

exceeded. In general,takeoffand landingweightsdiffer from the nominal
W = 150,000lb. In this case, kI is multipliedby (W/150,000)and k5 by
(W/150,000)2 to providea reasonableapproximationof the drag.

The thrustvalue Tmax was chosen to be 23,000 ib and Tidle was set equal to
zero. Both the maximum and minimum or idle thrust values are altitude- and speed-

dependent. The idle thrust is small enough to be negligible. To simplifythis
analysis,the maximum allowablethrusthas been chosenas the smallestmaximum value
allowableover the altituderange of 0 to i0,000 ft.



The fuel flow rate for the 727-100 is modeled by

F = Co + CIT + C2 T2 (i0)

where

Cj = c_j+l(l + c_j+2h ) + c4j+3(I + c4j+4h)v ; j = O, i, 2 (ii)

and the numerical values of the k's and c's are provided in appendix A.

The optimal cruise fuel used per nautical mile, C, was set equal to

17.5 ib/n. mi., which was obtained from reference i. This particular C is for the

example of a 200-n. mi. flight with a takeoff weight of 150,000 lb. This number will

change for other weights and distances. We are interested here only in the character
of the optimal turning climb and descent, and therefore do not change C or W in our

computations. However, if optimization of a specific path was required, one would

first optimize the straight-line path between airports and obtain C as well as

takeoff and landing weights. This information would be accurate enough to compute

the turning terminal-area paths without resorting to iteration.

THE NECESSARY CONDITIONS

In this particular optimal control, which requires the capturing of a specific

heading, the state variables x and y in equations (I) and (2) can be ignored (hence,

we do not have _x and _ in the Hamiltonian); they are required, of course, for the

flight trajectories in t_e horizontal plane.

For our analysis, we make the following assumptions, which are true for the

numerical values of this problem.

Assumption i. For the applicable range of velocities, available thrust exceeds
the aircraft drag. This can be seen from figure 3 of appendix A where

0 < D(v,h) < Tmax.

Assumption 2. The fuel flow rate at Tmi n = 0 is positive, which eliminates
the consideration of gliding flightpaths with shut-off engines. Also,

Tmi n > - C1(v,h)/[2C2(v,h) ] for all v and h. This is significant for the calculation
of the extremal thrust.

The Hamiltonian for this problem is

H = F + %Tf + nS

= C0 + CIT + C2T2 - Cv cos _ + %hV7 - %_gu/v (12)

, + _vg(T - DI - D2u2 - Wy)/W + n[v - Vl(l + qh)]

where n £ 0, n(v - Vl(1 - qh) _ 0 (ref. ii), and the convention of normalizing the

costate variables by setting the costate variable, _0, which multiplies the perfor-
mance function, to one is applied. The the remaining costate variables are given by



ih = -Hh = -C0h - CIhT - C2hT2 + %vg(Dlh + D2hU2)/W + nvlq (13)

iV = -H_ = Cv sin _ (14)

iv = -Hv = -C0 v - CIvT - C2vT2 - C cos _ - %hy - %_gu/v 2

+ %vg(Dlv + D2vU2)/W - n (15)

where Hh = _H/_h, and C0h = _C0/_h, etc. Since tf is not prescribed and Ht = 0,
then,

H _ 0, for all t c [0,tf] (16)

It is noted that in our approach the cruise cost C is part of the Hamiltonian,

due to the performance index. The Hamiltonian would be identical if the fuel consumed

had been the only variable used as performance index and if the values %x = C and

%y = 0 had been chosen. This observation ties the present work to reference 1, where
the cruise cost % is the only adjoint variable and %* = C is the optimal cruise

cost for a particular flightpath.

Finding the argument of H, namely T, that minimizes H while using the per-

missible range of T yields the extremal thrust, T* = arg min H
T

Tma x if _ > T- max

T* = _ if Tmi n < _ < T (17)max

T • if _ ST .
mln mln

where

= -(C l + _vg/W)/(2C2) (18)

and Cl and C 2 are functions of h and v. Since minimization of H yields T*
uniquely, it can be shown (see ref. 11) that T* and %v are continuous at junction

times between the velocity-constrained and the unconstrained arcs. Thus thrust is

seen to be a continuous function of %v and t. Since C2 is small for all h and v,

the range of _v for intermediate thrust is narrow and, as we shall see in the
Results section of this paper, intermediate thrust will not occur for the optimal

turning descents and climbouts.

We observe that equations (4) and (14) imply that

u = 0 if %4 = 0 on an interval (19)

This is true irrespective of the minimization of H with respect to u. From the

latter we obtain, by using Hu = 0 and Huu > 0,



< 0

v if Iv] < um and %v

u* = (20)

um sgn v if Iv[ > um and %v < 0

where

v = -(%_W) /(2%vD2V) (21)

If Xv m 0 and %_ does not vanish on an interval (denoted by %_ _ 0), the mini-
mization of H gives

= %_ k 0 and %_ _ 0 (22)u* um sgn ; _v

We note that %v cannot be positive while %_ vanishes on an interval because then
minimization of H implies u* = ±um, which is incompatible with equation (19).

However, if %_ vanishes on an interval and %v crosses from negative to positive
values, say at t = t 2 , then u switches from u(t) = O, t < t 2 to u(t_) = ±Um,

dependent on %_, which is no longer zero. This is a transition from a straight-line
flightpath to a curved one. Such discontinuous bank angle would have to occur at

zero thrust, thus it might occur (but actually did not occur) after initiation of the

optimal descent.

Lastly we evaluate the flightpath angle y. Since we have chosen to work with

small angles (sin y = y, cos y = 1), y appears linearly in the equations. Therefore,

y will either be at its limits based on the minimization of H, from y* = arg min H
Y

Ymax if Hy < 0

y* = (23)

Ymin if Hy > 0

where

Hy = %hv - %vg

or

Hy = %hv - Evg = 0 = kh = %vg/v on a subinterval (24)

in which case y will form a singular arc. In addition, when the speed constraint

is reached, y is used to control speed. These latter two cases, where y will form

a singular arc and where velocity is on the speed constraint, are covered below in
more detail.

Flightpath Guidance Along a Singular-y Arc

When flying along a singular-y arc, equation (24) implies that all time deriva-

tives of Hy vanish.

(Hy) = ihV + _h+ - iv'g = 0 (25)



Solution of the simultaneous equations for H = 0 and Hy = 0 permit the calculation

of the adjoint variables Xv and X_. For simplicity, Xv and X_ are calculated under
the assumption (to be verified) that T = Tma x = constant for optimal climbout and

T = Tmi n = constant for optimal descent. There are three cases for u: u = 0,

u = um (maximum), and -um < u < Um (intermediate). We then examine the equations

numerically to check whether they are consistent with the assumption (e.g., Xv must
be in the appropriate range for the assumed T, v must be in the speed range of

interest, and the X's must be real numbers). The singular arc flightpath profiles,

YA, are calculated for those cases where the singular arc is found possible. The
singular arc can be found as follows. By using (24) in the equation for H = 0 (12)

the dependence of (12) on y is eliminated. The additional assumption is made that

the solution is not bounded by the speed constraint, n = O. In addition, by substi-

tuting ih from (13), _v from (15), # from (5), and Xh from (24) into (25), and

by placing H = 0 and Hy = O, we have three equations with three unknowns u, Xv,

and X_.

u2) - X_Cxu + D = 02H/v = Xv(Ax + Bx x

- _ u2) + X_Cxu + G = 0 (26a)HT/g H/v Xv(Ex + Px x

uo Iol<Umj
with the following coefficients

A_ = 2g(T - D_)/(vW)

Bx = -2gD 2/(vW)

C = 2g/v 2
x

D = 2F/v - 2C cosx

(26b)

Ex = DlhV/W - gDlv/W

Px = D2hV/W - D2vg/W

Gx = -F/v - FhV/g + Fv

Hx = -Wl(2D2v )

Solving equations (26) for Xv and X_ with lul < um

Xv = [Dx(PxHx + Cx) - Gx(BxHx - Cx)]/[Ex(BxHx - Cx) - Ax(PxHx + Cx)] (27)

X! = XcI(GxA x - DxEx)/{Hx[Dx(PxH x + Cx) - Gx(BxH x - Cx)]} (28)

i0



In the special case u = O, from (19),

_4 = 0 (29)

and (26) becomes

A + D = 0 (30a)
v x x

E + G = 0 (30b)
v x x

which to be consistent requires

G A - D E = 0 (31)
XX XX

This is consistent with (28) for 14 = 0. The variables Gx, Ax, Dx, and Ex are
functions of altitude and speed so that we can expect a single altitude-versus-speed

profile. If we attempt to obtain an explicit expression for h versus v by expanding

(31) we encounter an extremely long polynomial in the 7th power of v and 2nd power

of h, which is not very illuminating. We therefore shall be satisfied with a numeri-

cal solution of (31). In this case, the altitude-speed profile defines the state

space and we do not need to solve Hy = 0 to determine y. Instead, by replacing
with Ah/At in (3) and _ with AvIAt in (5) and by dividing the equations and

solving for y, y can be determined directly from the altitude-speed profile.

y = [(T - DI)/W][(Ah/Av)/(Ah/Av + v/g)] (32)

Solving equation (26) for %v and %4 with lul = um

%v = -(Dx + Gx)/[(Ax + Bxu2)m + (Ex + PxU_)] (33)

and

%_ = [%v(Ax + BxU_) + Dx]/(CxUm) (34)

This singular case is of little interest for optimum ascents and descents, since

u = Umax was almost never reached on the singular-y arc. It should be noted that

while %v and %4 can be computed directly from the above equations all along the
singular-y arc, it is computationally simpler to use the above equations for computa-

tion of initial values only and to integrate (15) to obtain %v and (14) to obtain

The six cases, ascents and descents, each with u = 0, u = um, and -um < u < um,

must be checked to determine whether singular arcs are possible. Since the equations

are altitude dependent, these cases are checked numerically at h = i0,000 ft, which

is useful for forward integration in descent and backward integration in climb. From

the numerical solution of (31), %v is obtained from (30a) or (30b). This kv, used
in (18), is consistent with T = Tmax for climb and T = 0 for descent. For descent

the solution of (31) gives a speed below 250 knots IAS, which means that the speed

limit will be inactive as required. During the ascent the speed profile along the

singular arc crosses above the speed limit. Thus, strictly speaking, ascent on the

singular-y arc is not permitted. However, this case is investigated, since the speed

limit in the terminal area may be relaxed by ATC. For u = Umax, %v is consistent

Ii



with the assumption for the thrust. Thus singular arc profiles are possible for all

u. The above conclusions are identical for all altitudes. Being assured that the

singular-y case is indeed a candidate for an optimal flightpath, the singular arc

flightpath for intermediate u is determined from the condition (Hy) = 0:

0 = (H_) = _(Hy)/_t = _/_t{-FhV + _v[Dh v + g(T - D)/v - gDv]g/W

+ g(Fv - C cos _ + %_gu/v2)}

= -Fh_ - #hv + iv[Dh v + g(r - D)/v - gDv]g/W + _v[6hv + Dh# - g(T - D)#/v 2 (35)

- g(Du_ + Dhh + Dv+)/v - gDv]g/W

+ g(Fv + C sin _ + i_gu/v2 - 2%_gu#/v 3 + %_g_/v 2)

For definition of the fuel flow and drag derivatives see appendix B. To solve

(35) for y is straightforward but tedious and will only be.sketched out. First, all

terms with different time derivatives -- _, h, 4, iv, iV, u, Fv, #h, Dv, and 6h are
combined. The last five time derivatives are eliminated with expressions (B13), (B3),

(B5), (B9), and (BII) from appendix B. This results in the following equation for

(Hy) = AH+ + BHh + CH_ + DHi v + EHi _ (36)

where the coefficients have the following values:

AH = -Fh + gDhlv/W - g2%v(T - D)/(Wv 2) - 2g2%_u/v 3 - g2%vDv/(Wv )

- QH(I/v + D2v/D 2) - VFvh + 2gk3k_V2%v/W - 2gksk6(1 + U2)Iv/(Wv2 )

- 2g2k3(l + k_h)_v/W - 61vg2ks(l + k6h)(l + u2)/(v4W)

BH = -g2%vDh/(Wv ) - QHD2h/D2 + gFvh - 2g2k_k_Vlv/W + 2g2ksk6(l + u2)lv/(Wv3

CH = gC sin _ (37)

DH = g(DhV + g(T - D)/v - gDv)/W - QH/%v

EH = g2u/v2 + QH/%_

QH = [g2%_/v 2 _ g2%vDu/(Wv ) + (klk2v + 2k5k6/v)glvU/W

+ 4g2ks(l + k6h)U%v/(Wv3)]u

None of these coefficients involve y. When the equations for the time deriva-

tives are inserted in (36), y appears linearly and the solution for _ is

12



y = [AHg(T - D)/W - CHgU/v + DH(-F v + C cos _ - g%_u/v 2 + g%vDv/W)

+ EH(-Cv sin _)]/[AHg - BHV + DH%h] (38)

For (38) to be a candidate for an optimal solution the generalized Legendre-Clebsch
condition must hold

(-Hy)y _ 0 . (-Hy)y = AHg - BHV + DH_ h > 0 (39)

The condition (-Hy) = 0 is not possible since (39) is also the denominator for (38),
which would imply y _ _.

Again we emphasize that the above development applies to the case of constant

thrust only since _T/_t = 0 was assumed.

Flightpath Guidance Along the Speed Constraint

Since the climb speed for the singular y was above the speed constraint we must

now develop the equations for y when flying at the speed constraint, _ # 0. Equa-
tion (6) is solved for v, which is then differentiated with respect to time and

is replaced with (3). Setting the resulting expression for # equal to (5), and

solving for y results in the following expression

y = [(T - D)/W]{g/[g + v_q(l + qh)]} (40)

where the second factor varies between 0.92 and 0.91 over the altitude range of

i0,000 ft. Since S = 0 on the speed constraint, equation (6) can be solved for v,

and the derivative taken in order to express v and h on the constraint

v = Vl(l + qh) (41a)

= Vlqh (41b)

but

= Vl(l + qh)y (41c)

which implies

= qv_(l + qh)y (42)

Equations (13) and (15) can now be solved for _. In addition, we must satisfy

Hy = O, since y was not determined by this necessary condition. The solution pro-
ceeds as follows

Hy = 0 = _hv - Xvg . _h = _vg/v (43)

differentiating equation (43) results in

ih = g(v_v - Xv_)/v2 (44)
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Combining equation (44) with eguations (13) and (15), we can obtain an expression for
which is not dependent on %h or %v

i C2hT2 - + X _)/v2]/(vlq + g/v) _ 0 on the

[C°h + CIhT + %vgDh/W - g(vAn v constraint
D=

0 off the

constraint

(45a)

where

A A=C0v + CIvT + C2vT 2 - C cos _ + _hy + _gu/v 2 - _vgDv/W (45b)

In (45) v and # are given by (41a) and (42).

To complete the statement of the necessary conditions, the character of the

velocity set must be studied. The above results may be suspect, since the velocity

set for this problem (#, 4, h, F) is not convex everywhere. However, it is shown in

appendix C that the nonconvexity of the velocity set may be ignored for this minimum-

fuel problem.

COMPUTATION OF EXTREMALS

The extremals are computed by numerical integration of the state and costate

equations (1)-(5) and (13)-(15) with the control T given by (17)-(18), u given by

(19)-(22), and y given by (23) or (38) on the singular-y arc or by (40) when the

trajectory is on the speed constraint. On the singular-y arc, the costate variables

%v and _ are obtained by integrating (13)-(15) instead of finding them directly from
(27) and (28); we find %h directly from (24), whereas on the speed constraint
%h is computed directly from (43). In this relatively simple case of a heading

capture with specified altitudes and speeds, the costate variables can be treated as
parameters in such a manner that families of extremals will sweep out all desired end

conditions. To achieve this, forward time integration must be used for descent and

reverse time integration for ascent. For convenience of integration the (x,y) coor-

dinates at the 10,O00-ft altitude were chosen (0,0). This technique permits the path

integration to be started on a constrained or a singular portion of the path, which
limits the freedom of choice for the adjoint variables and makes it easier to pick

them from the limited set. When starting on a singular portion of the path, the opti-

mal path leaves the singular arc as required by the end conditions, provided the
solution is not forced off by failing to meet the speed constraint or the generalized

Legendre-Clebsch condition (eq. (39)). When starting on a speed-constrained portion

of the path, the optimal solution will leave the constraint boundary as required by
the end conditions, provided the solution is not forced off by failing to meet D > O.

If in the singular-y-arc descent, the speed constraint is violated before reaching

the reference altitude of 2000 ft, the guidance switches to the speed-constrained arc

at this point. The singular-y case and the speed-limited case are discussed

separately.
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The Singular-7 Case

As previously discussed, %v and %4 can be obtained from (27) and (28) and %h
from (24). With the thrust T = Tma x or T = Tmin and h given (h = i0,000 ft),

the only remaining variable of choice is v. In addition, %4 must be close to but
not equal to zero for turning to occur in the lower-altitude portion of the flight-

path with almost a straight-line flight in the higher-altitude portion. Therefore,

we choose v iteratively to solve (31), which is the condition for %4 = 0 in (28).
Small variation from the speed thus found will permit us to generate extremals which

cover the range of heading 0 < 4 < 180°. Changes in v to cover the range of head-

ings were so slight (in the order of i0-19 knots) that double-precision calculations

were required. For all extremals, the generalized Legendre-Clebsch condition (39)

remained valid over the range of altitudes considered. For practical purposes, we

determined v from (31), %v from (30a) or (30b), and selected %4 over a small
range to cover all turns (0 - 180°).

Based on the constraint for flightpath angle, Ymax = O° in descent and

Ymin = 0° in climb, an initial descent in the optimal climb trajectories or a final
climb in the descent trajectories are not allowed, even though they may have lower

cost. If in the singular-7-arc descent the speed constraint is violated before reach-

ing the reference altitude of 2000 ft, the guidance must switch to the speed-

constrained arc. In most cases, getting off the singular-y-arc or the speed-
constrained arc at the lower reference altitude h = 2000 ft transfers the path to

the zero degree glide slope angle and maintains it there while turning and reducing

the speed to 180 knots. For optimal descent with large turn angles, the optimality

condition (23) demands a step change of glide slope angle which brings the extremal to

an incorrect final altitude. By getting off the singular-y arc at a higher altitude,

the proper final altitude at the proper speed could be obtained after a few itera-
tions. Whatever final heading is obtained, the resulting extremal provides one

example of an optimal heading change climbout or descent maneuver. A second method
to force a flat turn after leaving the singular arc consists of constraining the

permissible y to a narrow range.

The Speed-Limited Case

If %v is treated as a parameter, %h is determined via (43); hi can be

obtained by solving equation (12) and replacing %h with equation (43), u with

equation (21) for an unsaturated bank angle, and 7 with equation (40).

%4 = ±2v/-[C° + CIT + C2T2 + Cv - %vg(T - DI)/W]%vD2/(gW) (46)

Again, the choice of one adjoint variable determines the other two once the thrust is

chosen (T = 0 or T = Tmax). As before, initially u, and hence %4' must be
extremely close to zero. Hence, from (46) %v must be close to

%v = -(Co + CIT + C2 T2 - Cv)W/[g(T - DI)] (47)

Now from (18) and (20), %v must be in the range

< 0 for T = 0 (48)
-WCI/g _ _v -
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and from (18)

1 < -(C 1 + 2C2Tmax)W/g for T = T (49)V-- max

The above considerations limit the possible values of Iv that can be considered
when starting on the speed constraint. In addition, D in (45) must be positive, so

that an extremal on the constraint can be considered a candidate for an optimal

flightpath.

We remember that C in (47) is the cruising efficiency: pounds of fuel per
foot traveled at the cruising speed. The number depends in a minor sense on the

stage length. Or, for C = 0 in the performance criterion, we would obtain the

minimum fuel climbing or descending heading capture flightpath, which does not con-

sider any continuation of the path. Therefore, the permissible range of Iv shall be
translated into the equivalent range for C. For descent, T = 0, the two limits in

(48) for Iv are used and solved in (47) for C. This gives

(CO + CiDl)/v_ -C _ C0/v

numerically

0.00407 _ -C _ 0.000148

The equation for _(0), (45), is a linear function of C and must be positive.

Numerically, n(0) just passes through zero as C becomes greater than -0.00237.
Hence, C must be in the range

0.00237 k C Z 0.000148

Hence both C's that are considered (C = 0 and C = 0.00288 ib/ft = 17.5 ib/n. mi.)

are outside the allowable range. It is therefore concluded that descent on a 250-knot

speed bound is not optimal. This conclusion will be confirmed by results for the

singular-y arc where it has already been shown that the speed of descent on the

singular arc is below the speed constraint of 250 knots. Similar considerations for

the climbout show that extremals calculated for both C's are candidates for optimal

flightpaths. Again, small variations from the value given in (47) will cover all

possible heading changes (0 - 180 °) and as in the singular-y case the sign ambiguity

for I_ (46) provides for right and left turns.

RESULTS

We will first discuss the special case for straight-line ascent and descent
(A_ = O) to tie our data with that of (i). This will be followed with results for

optimal turning ascents and descents.

Figure 2 is a plot of the altitude-versus-speed profiles for straight-line climb

and descent. The thin lines are a reproduction of a figure from (i) for a 200-n. mi.

altitude-speed profile, which we will use for verification of our results. The

singular-y-arc ascent profile, denoted by 'I' in figure 2, is above the FAA terminal-

area speed constraint. The altitude-versus-speed profile connects to the profile for

the complete 200-n. mi. path (point A) at a speed somewhat less than the speed at
which the ascent is resumed from the 10,000-ft altitude (point B). This is a result
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of a conservatively chosen Tma x of 23,000 lb. By setting Tma x at 25,000 ib the
10,O00-ft intercept shifts to 338.5 knots, indicating that the following climb is

the continuation of the singular-y arc. It is thought that this is closer to the

effective Tma x used in (1). As discussed before, the FAA often permits a climbout

faster than 250 knots IAS. In this case, the optimal (singular-y-arc) climbout saves

36 ib of fuel for the total path compared with the speed-limited climbout, denoted by

'2' in figure 2, which is followed by an acceleration to the singular-y-arc speed at

the 10,O00-ft altitude. Figure 2 also shows (dash-dot line '3') the singular-y-arc

climb for C = 0, which would be the optimum climb profile if the cruise did not have

to be considered. Since an acceleration to the speed at point B (fig. 2) is required,

the total cost is higher than for the singular-y-arc climb with the proper C, but
less than the cost for the speed-limited climb.

The singular-y-arc optimal descent speed, denoted by '4' in figure 2(a), is

below the speed limit of 250 knots IAS, denoted by '2' in figure 2(a) and turns more

sharply toward the speed constraint than the altitude-speed profile given in (i).
Therefore, it approaches the speed constraint at a higher altitude than the example

of (i). The altitude-speed profiles are very sensitive with respect to small differ-

ences in the engine-idle fuel flow model. For instance, when the modeled engine-idle

flow is reduced to one-third of the present value, the singular-y descent altitude-

speed profile will always remain below the 250-knot indicated airspeed constraint.

Once the model is fixed, the resulting fuel consumption is not very sensitive with

respect to the altitude-speed profile. For instance, flying the mixed descent or a

pure singular-y-arc descent (dashed-line extension of '4') makes less than a pound

difference in fuel for the straight-line or even turning descent. Figure 2(b) also
shows that for both climb and descent, the y's remain almost constant, which makes

flying these flightpaths relatively easy. With our results for straight-line ascent

and descent agreeing well with those of reference i, we shall first look at the data

for turning-ascending flight and then at those for turning descents.

Solutions to the optimization problem that include ascending turns result in

altitude-speed profiles that are almost identical to the straight-line optimization

problem (see fig. 3(a)), with most of the turn occurring in level flight before ascent

from the minimum maneuvering altitude (2000 ft in this example; see fig. 3(b)). To
further illustrate the above statement, table i summarizes the numerical values for

the key flightpath variables as a function of the total heading change for both

singular-arc and speed-constrained ascents. We notice from table i that the speed at

which ascent begins (column 3) depends on the type of ascent and not on the required

total heading change (column 2). A similar statement is largely true for the initial

TABLE i.- NUMERICAL VALUES OF KEY FLIGHTPATH VARIABLES IMMEDIATELY

AFTER SWITCH-OVER FROM LEVEL TURN TO CLIMB

Case _total' v, y at A_
deg knots h = 2000 ft, to go, deg i, deg Type of

(i) (2) (3) deg (4) (5) (6) ascent

I 0 301.7 4.356 0 0 Singular arc

II 90 301.7 4.355 1.6 1.7 Singular arc

III 180 301.7 4.353 5.2 5.2 Singular arc

IV 0 258.1 4.79 0 0 Speed constrained

V 90 258.1 4.76 9.2 7.2 Speed constrained

Vl 180 258.1 4.65 30 17.8 Speed constrained
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flightpath angles, which vary only minimally (column 4). The bank angles experienced

during the entire turning singular arc and speed-constrained climbouts are shown as

functions of the heading change in figures 4(a) and 4(b), respectively. We notice

that the bank angles gradually go to zero as the desired heading (A_ = 0) is
approached. As table 1 shows for our example (case III), the bank angle at the point

of switching from level flight to climb is already as small as 5.2 °, indicating that

the ascent is almost a straight line. Also, for a turn of more than 90°, the early

part of the turn is flown nearly at or at the bank-angle saturation. Intuitively

this makes sense, because while flying away from the target we must turn as fast

as possible. (This is true in spite of the opposite effect that maximum bank angle

has on acceleration, which also must be maximized.) The penalty of observing the

speed constraint is about 36 ib of fuel, independent of the amount of turn.

The altitude-speed profile for the singular-y-arc climb (fig. 3(a)), can be well

approximated by a constant IAS speed climb. If we set the speed constraint to a
value that corresponds to the singular-arc speed at 10,000-ft altitude -- 331.4 knots --

the resulting performance "is basically identical with the singular-y-arc performance.

In figure 5 we compare the minimum fuel climb, which considers the fuel saved

by flying a shorter cruise distance with the equivalent minimum fuel climb (C = 0)

for a heading change of 68 °. The latter indeed takes 7 ib less fuel, but it climbs

in an x-distance that is 2.93 n. mi. shorter, thus requiring an additional 52 lb of

fuel for the longer cruise. The bank-angle histories, shown in figure 5(b), are

quite different for the two cases.

For the optimum descent only an extremal starting with a singular-y-arc descent
is a candidate for optimality (fig. 6(a)). We note here that this turning descent

has actually three phases: singular arc, constant indicated airspeed arc, and level
deceleration. Again, most of the turn occurs in level flight (fig. 6(b)) and the

altitude-speed profiles are identical within the power of resolution of the graph

(fig. 6(a)). Figure 7 shows the bank angles versus heading. The bank angles essen-

tially follow the same curve independent of the total heading change. This allows a

simple approximation of the optimal descent in an onboard algorithm. Note that for

this example the beginning of the turn is executed with gradually increasing bank

angle until, for heading changes greater than 25°, the bank angle is at its maximum.

For turns greater than 90° this is required to turn as fast as possible with as large

a deceleration as possible to the final speed and heading. The performance index

increases with the turn angle, since only the x-distance flown reduces the en route

portion of the flightpath. However, the fuel for the final descent decreases slightly

for larger turn angles, since the increased bank angle increases drag, which brings

the aircraft more quickly to the desired final speed.

Table 2 summarizes the numerical values for the key flightpath variables as

functions of the total heading change, _T" The entries in table 2 are similar to
those in table i, except for the addition of column 3, which indicates the altitude

at which the system leaves the singular-y arc. The situation for descent is somewhat
more complex than for the ascent; this will be explained by means of the six represen-

tative cases in table 2. For small turn angles (see cases I and II, table 2), the

singular-y descent to 2000 ft is followed by a horizontal decelerating turn.

As stated earlier, for large angles of turn the optimal path required a change

in y from Ymax (level flight) to Ymin part way in the final turn, after having
left the singular-y arc (see cases III and IV, table 2). The changes in altitudes

for y-switching that are required would make an onboard algorithm quite complex.

Therefore, the following test was made. Upon leaving the singular-y arc we forced
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TABLE 2.- NUMERICAL VALUES OF KEY FLIGHTPATH VARIABLES IMMEDIATELY BEFORE

SWITCH-OVER TO LEVEL TURN

h switch A_

V, YSA' during €'
Case deg@T' to level knots deg deg Comments

turn descent,

(i) (2) (3) (4) (5) deg (6) (7)

I 0.4 2000 258.6 -3.35 0.0 0.0 Ymax = 0°, Ymin = 4°

II 58.1 2000 258.6 -3.35 0.0 .02 System wants to stay at Ymax

III 109 2025 259.1 -3.28 3.6 3.6 Ymax = 0°, Ymin = -4°

IV 166 2591 257.1 -3.28 4.6 4.6 System switches to Ymin
after initial level turn

V 132 2000 258.6 -3.35 1.3 2.3 Ymax = 0°, Ymin = -0"001°
VI 170 2000 258.1 -3.78 20.0 30.0 System forced to level turn

the aircraft to stay at 2000 ft by setting very narrow limits for maximum and minimum

y (see cases V and Vl of table 2). We find that there is a negligible difference

between performances for the optimal case with the y-switching and the corresponding

constant-altitude decelerating turn. Beyond A_ = 170 ° a bank angle of 30 ° (Umax)

is reached on the singular arc, which switches to a positive YSA for a quick

decelerating turn. Since Ymax = 0° is violated, we must get off the singular-y arc

as soon as Uma x is reached. However, for purposes of a possible onboard algorithm,
we studied a 180 ° turn singular-y descent such that when Uma x is reached before the

2000-ft altitude, we then continue nonoptimally at constant Ymin = -4° to 2000 ft,

followed by Ymax = 0° such that Vfina I = 180 knots is reached at the completion
of the turn. Again, there is only a 3.2 Ib of fuel increase for this case compared

to the optimal case.

To summarize, for a simple descent, which involves a final level turn, the

altitude-speed profile deviates only slightly from the straight-line flight even for

the largest heading change (column 4 of table 2). Similar to the ascent, most of the

turn is accomplished in level flight (_T - A_ of columns 2 and 6 of table 2).

The question of global optimality remains. We must find all extremal controls
and choose one with the lowest cost. We have shown earlier that on the singular-y

arc and on the speed limit we have single-parameter families of extremals. The varia-

tions of those parameters were very small in order to cover the range of final head-

ings. For larger changes we get descending or ascending turns that include a 360 °
loop. Since our object is to cover large distances in the x-direction, such large

turns will not be optimal. Also, from the problem formulation, turns above 180 ° will

not be optimal, since they could be replaced by smaller turns in the opposite direc-

tion without increasing the cruise cost, and the cost of the turn always increases

with the magnitude of the heading change. We are aware, however, that we have not

studied extremals that do not include either a singular arc or a speed-limited sec-

tion. Therefore, while we have not proved this, we have reason to suspect that our

flightpaths are indeed globally optimal.
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COMPARISON OF OPTIMAL PROCEDURES WITH VARIOUS

SUBOPTIMAL PROCEDURES

The question is often asked how much fuel is saved by using the optimal proce-

dure. Such questions are difficult to answer, since we must ask: "What should the

optimal procedure be compared with?" We shall compare reasonable suboptimal climbout

procedures which more and more closely mimic the optimal. First let us assume that

the optimal climbout altitude-speed profile for straight-line flight is known, and

that we will fly at least the latter part at an approximation of the optimal altitude-

speed profile. Such an approximation is a climb at maximum thrust at a flightpath

angle, which is the average of the singular gamma angle. This assures us that we will
meet the terminal conditions. In addition, for all climbout procedures starting at

2000-ft altitude we shall execute an initial maximum bank-angle turn until the

desired heading is reached and continue with straight-line flight. The only varia-
tions in the climbout procedure considered are the initial climb angles until the

singular-y speed is achieved.

The results are shown in figure 8. Let us first consider an initial 3° climb.

The additional fuel is between i0 and 28% over the optimum, which is 285 ib of addi-

tional fuel for a 180 ° turn. If we climb at a slower rate of 500 ft/min, the extra

fuel cost is about 4% or 36 Ib for the 180 ° turn. The best approximation of an opti-

mal turning climbout is an initial horizontal flight. Here the additional cost is

primarily due to the incorrect bank-angle schedule. The smallest additional cost

beyond the optimal is due to flying a constant y as an approximation of the

slightly varying singular y. This is illustrated in figure 9, where we plot the
additional fuel when we change the climb angle from the average singular y. Over a

range of 0.04 ° the cost deviates from the optimal by only 0.i ib, and it is fairly
insensitive for errors of ±0.15 ° from the singular y. Considering these results, we

can say that the most important fuel-saving feature of the optimal climbout is the
initial horizontal turn and acceleration up to the singular-y speed. In fact, if

an initial dive would have been permitted, more fuel could have been saved.

We can make a similar investigation for the turning descents. Again, we descend

on a flightpath angle, which is the average slngular-arc descent angle. At a certain
altitude we reach a speed of 250-knots indicated airspeed. At this point we select

the varying flightpath angle which will hold this airspeed. When we reach the
desired altitude, we go to the final flightpath angle, which is nominally 0°, and

begin the turn at maximum bank angle in such a manner that the desired heading and

final speed are reached simultaneously.

It should be noticed for the following that the optimal flightpaths with which

we are making the comparison are constrained to a level final turn. We stated

earlier that for large turns, where the maximum y was constrained to 0° and the

minimum to -4 °, it was optimal to begin the level turn at a higher altitude than the
final altitude and finish the turn at -4° to end up at the desired final altitude

and speed.

We compare the constrained optimal descent with various suboptimal ones, where

the only change is the flightpath angle of the final turn (see fig. I0). For the
descent that mimics the optimal descent most closely (final flightpath angle = 0°),

the suboptimal performance is within 0.2% for all heading changes. Again, a final

descending turn will usually result in an increase of fuel used. For large turns this

trend reverses, since this approximates better the less constrained final optimal

turn. If we permit a final climb (and the initial undershoot in altitude, which is
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connected with it) for small angles of turn, the suboptimal descent performs slightly

better than the optimal, which was constrained not to climb during the descent. Since

descent is executed with idle thrust, the above changes in performance are not as sig-

nificant in terms of fuel as the changes from the optimal for the turning climbout.

CONCLUSIONS

i. For onboard optimization of fuel-efficient turning descents and climbouts,

it is sufficient to use an existing climb-cruise-descent fuel-optimization algorithm

and superimpose initial- and final-level turns from and to the airport.

2. Relaxation of the speed limit for climbout of the 727-100 can save 36 ib of

fuel per climbout, independent of the required heading change.

3. A constant-IAS climb after an initial-level turn using the optimal bank-

angle schedule is a close approximation to the optimal turning climbout.

4. An initial-level accelerating turn to the proper speed before climbing is the

most fuel-saving feature in an optimal climbout.

5. The optimal descent starts below the FAA terminal-area speed constraint of
250 knots IAS, then reaches the speed constraint and finally terminates in a decel-

erating level turn.
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APPENDIX A

The Drag and Fuel Flow Equations

Reference i includes subroutines that calculate drag thrust and fuel flow from

comprehensive table lookup data over the complete operating range of the Boeing

727-100 aircraft. For our method of calculating extremals, we need functional rela-

tionships for the limited range of 150- to 350-knot speeds and 0- to 10,O00-ft
altitudes, which are derived here.

Drag D(v,h)

Over the range of speeds considered, flaps must be deployed for the lower speeds.

However, we do not want to consider flaps as a control variable. Therefore, flaps

are eliminated by putting a limit on the angle of attack

< _ = 8° (At)- max

and by automatically deploying the minimum amount of flaps so that e = 8° is never

exceeded. Although the drag curves are shown for all altitudes, in practice flaps

are deployed at low altitudes only. This is in agreement with the optimal results.
Since we have the constraint

L = W/cos _ (A2)

the drag is also bank-angle dependent.

D = D(v,h,i) (A3)

It should be noted here that our flap schedule is different from that in refer-

ence i, which deploys flaps as a function of indicated airspeed, as shown in

figure AI. Our flap program results show less drag at the lower speeds than the

schedule of reference I. However, neither method represents the real world com-

pletely, since, at present, flaps are controlled manually in steps, based on speed
cues.

The calculation of the drag proceeds as follows. Given h and v from the 1962

atmospheric model, we obtain density P and Mach number, M. Knowing the bank angle,

we calculate the required lift coefficient to meet the constraint (A2)

CL = W/(0.5 pSv 2 cos 4) (A4)

where S = area of the wings = 1560 ft, W = weight of the aircraft = 150,000 ib, and

P = density of air at the given altitude. Then, for e = 8° the subroutine CLIFT

the available lift coefficient CLav(e,h,M,6f)le=8 o. Starting with zerocomputes

flaps, the flaps are increased in 0.01 ° steps until

CL _ CL (A5)
av
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Figure A.I.- Erzberger flap program: i = 0°.
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The final flap value is the value used in the subroutine CDRAG which determines the

drag coefficient CD(M,CL,6f). This permits us to calculate the drag

D = 0.5 0Sv2C D = D(h,v,_)la_8O,L=W/cos_ (A6)

An example of the drag curves obtained by the above method, including the flaps

required, is shown in figure A2. The bumpiness of the drag-versus-speed curves in

the region where flaps are deployed is an artifact of linear interpolation of the

drag polars which are given only for 0°, 2°, 5°, 15°, 25 °, and 40 ° flap angles. Our

model therefore should smooth out these bumps.

Our task is to match the drag data with an analytic expression. In order to

minimize the number of parameters required, we shall first develop an expression from

the approximate theory of wings, and then determine parameters that fit the data.

The lift coefficient of a clean wing is

CL = CL e (A7)

Adding flaps shifts the curve upward

CL'= CL0 + CLee (A8)

Without flaps the lift-drag polar is

CD + e2 + nCL_ (A9)
= CDo YCLa = CDo

Assuming the same form when the drag polar is shifted due to flaps adds a linear
term in _.

' = C' + y'Ci = C' + n'(CL _ + eL _1 (A10)
CD Do Do

From (A4) and (AS) we can solve for

= W/(0.5 0Sv 2 cos i) - CL0]/CLJ (All)L

and using (All) to replace _ in the drag equation (AI0) results in an equation for

drag of the form

!

D = C D 0.5 0Sv 2 = k0/cos _ + kl v2 + k2(l + tan 2 i)/v 2 (AI2)

where the k's are functions of 0, S, W, n', CL0' CLe ' and CD0.'

This is the form of the functional relationship for a constant altitude and

constant flap angle. In actuality the flap changes with speed for constant altitude
as shown in figure A2. The bank angle, which is one of the controls, appears twice

in the above expression. The first approximation of the k's in (AI2), which must
be functions of altitude, are found as follows. We write for i = 0
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Figure A.2.- Drag versus speed from table lookup.
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D = kz(l + k2h) + k3(l + k_h)v 2 + ks(l + k6h)/v 2 (AI3)

Using the tabular data graphically represented in figure A2, for h = 0, and for

three different speeds of 150, 225, and 350 knots, we obtain three equations with

three unknowns, kl, k3, and k s. With these solved, we chose h = i0,000 ft and

solve for k2, k_, and k6. These six constants are a good first approximation to the

drag equation. These constants are then used for the complete drag equation (A12)

D = k1(l + k2h)/cos _ + k3(l + k4h)v2 + k5(l + k6h)(1 + tan 2 _)/v 2

which using cos _ = i/_i + tan 2 _ _ I/(i + 0.5 tan 2 _) is approximated as

D = kz(1+k2h) + k3(l+k_h)v + ks(l+k6h)/v 2 + [kl(1 + k2h)/2 + ks(l + k6h)/vm]tan 2

(A14)

For the purpose of an analytic approximation of the drag function, we generate

180 samples for all combinations of the following parameters:

= 0°, I0°, 20 °, 30°

h = 0, 2500, 5000, 7500, i0,000 ft

V = 150, 175, 200, 225, 250, 275, 300, 325, 350 knots

and calculate the rms percent error between the table lookup values and the analytic

drag equation, where D is in pounds, h is the altitude in feet, and v the speed

in knots. By means of an extremum-finding subroutine (ref. 12) the parameters are

adjusted to minimize the rms percent error, which results in an rms error of 2.387%.

This apparent error is primarily due to the desirable smoothing of the drag curves

in the flap deployment region. The polynomial fit agreed within 0.8% (max) with the

drag in the 6f = 0 region. The values of the coefficients in (AI4) are:

kz = -0.4078×10 _ k3 = 0.1146 ks = 0.3830×109

k2 = 0.2429×10 -_ k4 = -0.2005×10 -_ k6 = 0.4227x10 -4

The resulting drag curves are shown in figure A3, which may be compared to the table

lookup data in figure At.

Fuel flow f(T,v,h)

Reference 1 presents fuel flow data in tabular form

fn = _ (Mach'Tn'h) (AI5)n

where

is a normalized fuel flow rate
n

= f (T/_) (AI6)
n n

= fuel flow rate
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T = thrust for three engines = 6T (AI7)n

where Tn is the normalized thrust for three engines.

/e = square root of the temperature ratio

= temperature at altitude h/temperature at zero altitude (A18)

6 = pressure ratio = pressure at altitude h/pressure at zero altitude (AI9)

It is our task, first to determine a functional relationship for fuel flow that

involves only T,v,h, second to determine approximate values for the parameters, and

third to minimize the error between the analytic representation and the full table

lookup of the fuel flow when using the standard 1962 atmosphere.

The in entries in the three-dimensional table are normalized in such a way that
they are almost altitude-independent. For the first two steps of the task we are

therefore using only the table for h = 5000 ft. In figure A4 the fn values multi-

plied by the normalized thrust Tn are plotted over the range of Mach numbers of

interest because this quantity is the actual fuel flow normalized by atmospheric
constants.

From (AI6) and (AI7)

T f = T f/(T/_) = f/(6_-O) (A20)
n n n

The relationship shown in figure A4 can be approximated as

T f = 0 45 + M + 3.75 + 3.35 M 0.5(1 - M) T2 (A21)
n n " 30,000 Tn + 30,000 _ n

(A20) and (AIS) used in (A21) give the actual fuel flow

• 30,000 _ + 3_,00-0f (A22)

Fuel flow is still a function of the pressure ratio, temperature ratio, and

Mach number, which are all functions of altitude. The altitude dependence for the

normal atmosphere is presented in table AI.

TABLE AI.- NORMAL ATMOSPHERE

Sound

Altitude T, P, P, o-I/2 speed,
ft×lO -3 K psf slugs/ft3xl0 _ 6 = P/P0 o = P/P0

fps

0 288.15 2116 23.77 1.0000 1.0000 1.0000 1116.9

2 284.19 1968 22.41 .9298 .9428 1.0299 1109.2

4 280.23 1828 21.11 .8637 .8881 1.0611 1101.4

6 276.27 1696 19.87 .8014 .8359 1.0938 1093.6

8 272.31 1572 18.08 .7428 .7860 1.1279 1085.7

10 268.35 1455 17.55 .6877 .7385 1.1637 1077.8
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We can see from table AI that the speed of sound decreases with altitude, so that the
speed expressed in units of Mach (M) increases with altitude

M = v(l + 0.363xi0 -s h)/ii16.9 (A23)

where v is given in feet/second true airspeed. The pressure ratio can be expressed
as

6 = 1/(1 + 0.45 h/lO,000) _ i - 0.31 h/lO,000 (A24)

and the square root of the temperature ratio as

_e-= i - 0.363×10 -5 h (A25)

Using (A22)-(A25) allows us to obtain f when T, h, and v are given. We can

rewrite (A22) as

f = C0(h,v) + C1(h,v)T + C2(h,v)r 2 (A26)

where each of the C's are functions of the atmospheric relations. When (A23)

and (A24) are used to replace the atmospheric relations in (A22) and when all higher-

order terms except terms involving hv are neglected, all C's end up in the same
form:

C = (i + c + c (i + c j = 0,1,2 (A27)
j c_j+l 4j+2 ) _j+3 _j+4h)v;

The numerical values of the twelve parameters in (A27) were used as initial

values in the extremum-finding subroutine (ref. 12) where the parameters are adjusted

to minimize the rms error between table lookup values for the 200 points given by all
combinations of

V = 150, 200, 250, 300, 350 knots

h = 0, 2000, 4000, 6000, 8000, i0,000 ft

while using all appropriate fuel flow tables, as well as the exact nominal atmospheric
model.

T = 7000, 9500, 12,000, 14,500, 17,000, 22,000, 24,500 ib

and the values from the analytic expressions (A26) and (A27). This resulted in an
rms error of 0.039 lb/sec. The values are:

cI = 0.47537 c5 = 0.i0823xi0 -3 c9 = 0.91747xi0 -9

c2 = -0.24360xi0 -_ c_ = -0.80509xi0 -5 ci0 = 0.79644xi0 -_
c3 = 0.17702xi0 -2 c7 = 0.15898×10 -6 Cll = -0.85521xi0 -12

c4 = -0.28995xi0 -4 cs = -0.12439xi0 -4 c12 = -0.45624xi0 -_

For idle thrust

cI = 0.2528

c2 = _0.4×10 -4
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c 3 = 0.147xi0 -3

c 4 : -0.363xi0 -s

and cs through cz2 are zero. These data are obtained from a table of fuel flow at
engine idle. No data are available for an intermediate thrust of 0-7000 lb, which

fortunately are not required for this problem. An example of the resulting fuel flow
versus thrust function is shown in figure A5.

6
V, knots

350

h = 0 ft } 200

==
24
m

u."

h = lO,O00ft

I I 1
0 10 20 30

T, K-Ib

Figure A.5.- Fuel-flow model of the 727-100.
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APPENDIX B

In further development we need certain time and other derivations which we shall '
enumerate here. Let's assume that T = constant and u = time variable.

F = [ci(I + c2h) + c3(i + c_h)v] + [cs(l + c6h) + c7(i + cBh)v]T

+ [c9(i + c10h) + cl1(l + cl2h)v]T 2 (BI)

Fv = c3(i + c4h ) + c7(i + cBh)T + c11(l + cl2h)T 2 (B2)

#v = (c3c4 + c7cBT + CllCl2T2)h = Fvhh (B3)

Fh = (clc2 + c3c4v ) + (cSc6 + CTCBV)T + (C9Ci0 + ClICleV)T 2 (B4)

Fh = (c3c4 + C7cBT + CllCl2r2)v = FvhV (B5)

D = kz(1 + k2h) + k3(l + k4h)v 2 + ks(l + k6h)/v 2

+ [k1(l + k2h)/2 + ks(l + k6h)/v2]u 2 = D I + D2 u2 (B6)

Du = 2D2u (B7)

Dv = 2k3(I + k_h)v - 2ks(l + k6h)(l + u2)/v 3 = Dlv + D2vU2 (B8)

DV = 2k3(i + k4h)v + 2k3k4hv + 6ks(l + k6h)(l + ue)v/v_

- 4ks(1 + k6h)u_/v 3 - 2ksk6h(l + u2)/v 3 (B9)

Dh = klk 2 + k3k4v 2 + ksk6/v 2 + (klk2/2 + ksk6/v2)u 2 = Dlh + D2hU2 (BI0)

Dh = 2k3k_vv + (klk2 + 2ksk6/v2)uu - 2ksk6(l + u2)/v3# (B11)

6 = Dhh + Du_ + Dv# (BI2)

x v D2h (BI3)
= U +-_--2/V + % % D2 ; u < um

x v

u = 0 ; u = um
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APPENDIX C

For the minimum principle to apply, the velocity set (h,_,_,F) must be convex

(refs. 13 and 14). Using equations (3) and (5) for our particular example, fig-
ure Cl(a) shows that for descent, the velocity set is not convex in the region of

zero thrust, due to increased drag at nonzero bank angles. In this case a relaxed

(chattering) controller may result in better performance if maximum deceleration will
improve performance. To convexize the velocity set we allow the possibility of a

chattering bank angle and define a combined control.

- a)u s (2a - i) (CI)u = aus (i - = us

where us is the magnitude of the tangent of the bank angle us = Itan _I and a

is the chatter parameter (fig. Cl(b)).

a = per unit time the bank angle spends at us

1 - a = per unit time the bank angle spends at -us

then (4) changes to

=-gUs(2a - l)/v (C2)

and (12) becomes (assuming n = 0, off the speed limit)

H = F - Cv cos _ + XhV¥ - l_gUs(2a - l)/v + I g(T - D - D2u _ - Wy)/W (C3)v i

2 and does not depend on the value ofNote that the drag is only a function of us
the chatter parameter a. Now

Ii if I¢ < 0

_, = (c4)

if l_ > 0

and (20) and (21) become

I_ if I_l < u and 1 < 0

u* = m v (C5)

s if I_[ > um and 1 < 0Um - v

= [(2a - l)Wl_]/[2lvD2V] (C6)

We note that when _ is nonsingular (49)-(51) give the same result as (21). In

this case, (C2) and (C3) revert to the original equations (4) and (12) and we can

solve the optimal descent problem as if the original velocity set were convex.
However, a is linear and we must consider the singular-a solution.

Ha = -2glcUs/V = 0 _ I_ = 0 (C7)
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°

(Ha) = 2gCu s sin _ = 0 . _ = 0 (C8)

(Ha) = -2g2u_C cos _(2a - i) = 0 + a = 1/2 (C9)

(__) 2 2 Since C > 0 _ : 0= 4Usg C cos _/v Z 0 (CI0)
• but not _ =

But from (20) and (C5), Us = 0 when I_ = 0. This is equivalent to the nonchatter-
ing straight descent and again is included in the earlier solutions, which do not

require a chattering bank angle.

A different approach to make the velocity set convex is to apply appropriate

constraints. This will cut off portions of the earlier velocity set. A reduced

velocity set in general means reduced performance. We will therefore reduce the

velocity set in such a way as to minimize the excised area. To do this we impose an
acceleration constraint, which limits deceleration to a constant value for each (v,h)

such that it equals the maximum value which can be obtained at zero bank angle

(fig. Cl(c)). The resulting deceleration constraint is a mixed state and control
constraint

_ -g[Dz(v,h) + WYmax]/W (Cll)

In the following development we only express the changes from the original set of

equations, where we express the original equations as before and star (*) the new
values. Then from (12) and (CII)

H* = H + _{-g[Dz(v,h ) + WYmax]/W - _} (C12)

Inserting the equation for _ and simplifying gives

H* = H + _{-g[T - D2(v,h)u 2 - W(_ - _max)]/W} (C13)

the adjoint equations (13), (14), and (15) become

lh'*= _h - _gDhmU2/W (C14)

i* = i_ (C15)

i* _ -- u2/W (C16)
v = v _gDv2

On the deceleration bound we have T - D2(v,h)u 2 - W(_ - Ymax ) = 0 such that

Y = Ymax - D2u2/W + T/W (C17)

We are interested in the decelerating descent at T = 0, then y is just decreased

sufficiently to compensate for the additional drag D2 u2 due to a nonzero bank angle.

* = 0 = Hy + _g we haveFrom Hy
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Ii v - lhv/g > 0 on the deceleration constraint

= (C18)
off the deceleration constraint

The >0 requirement for _ on the acceleration constraint is a necessary condition

for optimality. Thrust control

* = HT - _g/WHT

Hence the only change from (17) is

= -[Cz(h,v) + (Iv - _)g/W]/[2C2(h,v)] (C19)

and for bank angle control

H* = H + _2gD2(h,v)u/Wu u

(21) becomes

= -I_W/[2(I v - _)D2(h,v)v] (C20)

Note in (C19) and in (C20) Iv - _ can be replaced via (C18) by

Iv - _ = %hv/g (C21)

We are now in a position to compare the solutions for the convex set with those of
the "natural" set. If the latter solutions have a better performance we shall accept

them, since the acceleration constraint was only artificially introduced to satisfy

the minimum principle rather than representing passenger or equipment requirements.

The above constraints, which only apply to the descent, did not affect the performance

(less than 0.2 ib worse than the unconstrained optimal).
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