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Abstract the Euler equationswith viscous flow solvers. The
work that has been done includes Refs. 7-9, where

Transonic viscous-inviscid interaction is the Euler equations were coupled with a compress-
considered using the Euler and inverse compress- ible turbulent inverse integral boundary-layer
ible turbulent boundary-layer equations. Certain method(I0) in order to handle rotational flow tha_

improvements in the inverse boundary-layer method may _ontain regions of separated flow. The put-
are mentioned, along with experiences in using pose of this paper is to present further results
various Runge-Kutta schemes to solve the Euler of work involving the Euler and inverse boundary-
equations. Numerical conditions imposed on the layer equations. These results include: (1)im-
Euler equations at a surface for vlscous-inviscld provements in the inverse boundary-layer method,
interaction using the method of equivalent sources (2)numerical_experimentswith regard to Euler
are developed, and numerical solutions are pre- equation boundary conditions, (3)experience using
sented and compared with experimentaldata to second-order Runge-Kutta schemes with various num-
illus_rate essential points, her of stages to solve _he Eu]er equations, (4)

numerical conditions imposed on the Euler equa-
l. Introduction tlons at a surface and in a wake for viscous-

• inviscld interactionusing the equivalent source
Viscous-inviscid interaction is an important method, (5)dlsplacement surface versus _he equlv-

and difficult problem in transonic aerodynamics, alent source method of interaction, and (6)numer-
Unfortunately, numerical solutions of the Navier- ical and experimental comparisons.
Stokes equations are not presently a practical
method for routinely solving such problems due to II. Viscous Method
computer resource requirements. Consequently_
much research has been done and must is still The viscous flow solutionmethod is an inverse

going on with regard to coupling inviscid and (meaning the pressuKe distribution is obtained as
viscous flow solvers for treatin£ viscous-inviscid part of the solution rather than being specified as
interaction. Lock(1) and Melnik[2) have reviewed in a direct method) integral compressible turbu-
interaction methods. For the most part, these lent boundary-layer method. This inverse method
methods consist of using potential flow inviscid is an extension of the direct method described in
solution methods and attached flow viscous solu- Ref. ii. Both methods solve the momentum and

tion methods. Inverse boundary-layermethods are mean-flow kinetic energy integral equations. A
being used in some instances (see Le Balleur(3) fourth-order four-stage explicit Runge-Kutta
for a review) in order to include separated flow. scheme is used to solve the inverse equations.

Computational fluid dynamics has recently A distinguishing feature of the direct and in-
matured to the point that numerical solution of verse integral methods in Refs. II and 7 was that
the Euler equations can be consideredfor solving the dissispation integral

- two- and three-dimensional flow problems.(4-6) Be-

cause the Euler equations can handle rotational D = f_ _ _(u/ue) dy (i)
flow, these equations offer more information and _o _ Byw

an extended Math number range compared to the
potential flow equations. There has, as yet, not was numerically evaluated at each streamwise loca-
been a great deal of effort devoted to coupling tlon as opposed to using an empirical dissipation
, relation. This was accomplished by using a con-
This research was sponsored by the NASA Langley stant laminar plus turbulent shear stress in the
Research Center, Hampton, VA 23665 region just at the wall, a Cebeci-Smith type model

iProfessor, Member AIAA in the inner and outer regions, and the derivative
of the velocity profile expression valid for

%±Ph.D. student on leave from NASA Langley, 0 _ y < _.(7, 12) Although this placed a stringent

. Member AIAA requirement on the accuracy of the velocity pro-iiiProfessor file expression,themethod gave good results;(7,ID
--_ tttt_ . even better than finite difference methods for

_uperv_sor, Computational Fluid Dynamics transonic flow over adiabatic surfaces.(II, 13)
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However, the numerical evaluation of the disslpa- STABILITY_G]0NFOR_0DELPROBLEM
tion integral at each streamwlse location made 5

this integral method relatively slow (w_th regard

.f--, to computational time) as compared to other inte-
gral methods. The computational time was not a

'_ severe limitation for steady two-dimensional flow. DU _u
However, with the extension of this method to un- D7

steady two- and three-dimensional flow, it was de-
sirable to eliminate the need for numerically N " AT

evaluating Eq. (i) at each grid point. In this 3

connection, Donegan (i0) succeeded in correlating I_(H_)
D, as given by Eq. (I), in terms of the local edge STAGE6
Math number, shape factor, and skin friction co-

efficient (or shape factor and Reynolds number 2

based on momentum thickness). Recently, Thomas (14)
has made improvements in the turbulence model used

in Eq. (I), particularly near the separation point, 1
and Donegan and Thomas have improved the correla-

tion for D given in Ref. i0. The result of using
an analytical correlation as opposed to numerical-

ly evaluating Eq. (i) is an increase in speed of 0
O(lO). -5 -_ -3 -2 -i 0

III. InviscidMethod _(HI)
Fig. 1 Stability Region for Various Stage

Finite volume spatial discretization is ap- Second-Order Runge-Kutta Schemes

plied to the integral form of the time-dependent Table I. Second-Order R-Stage Runge-Kutta

Euler equations and the resulting equations were (minimal storage)
solved using second-order Runge-Kutta time-step-

ping schemes with various number of stages. Dis- Yn+l - Yn TM h_

sipative terms composed of a blend of second and kl = f(yn)fourth differences are used in this central diff-

erence scheme and these terms are held constant k2 = f(Yn + hClkl)

during each stage of the Runge-Kutta solutioD, k3 = f(Yn + hc2k2)
Convergence to a steady state is accelerated by
the addition of a forcing term that depends on the

-- difference between the local total enthalpy and

the freestream value of enthalpy. Convergence is _ = f(Yn + hCR-lkR-_
k . also accelerated by using a local time step deter-

mined by the maximum Courant number. Far field R (CFL)ma x nI _2 ci, i = i, R - i
boundary conditions are based on a characteristic 1 unstable ......

combination of variables, and pressure at the wall 2 unsta_'le ......

is determinedusingthe normalmomentumrelation. 3 2 .67 .50 1/2, 1/2
With the exception of the use of second-order 4 2.8 .70 .56 1/4, 1/3, 1/2
Runge-Kutta schemes with various number of stages 5 3.8 .76 .63 1/5, 1/5, 1/3, 1/2

and frozen dissipation, the numerical method is 6 4.5 .75 .64 1/7, 1/7, 1/4, 1/3, 1/2
that of Jameson, Schmidt, and Turkel.(6) CFL

An advantage of this type of explicit scheme nI =--_- = efficiency for zero dissipation
CFL

is that stability can be achieved for Courant num- n2 = -- = efficiency for frozen dissipation
bers greater than one. By using different stage R+I
Runge-Kutta schemes, the stability region can be

expanded (see Fig. i) and the maximum attainable IV. Viscous-lnvlscid coupling
Courant number can be increased as shown in Table

i. Although a larger Courant number can be The displacement surface concept where the

achieved by an increase in the number of stages, inviseid solution is carried out on a grid that
the increase in work associated with the increase is displaced from the actual body by the amount
in stages eventually reaches a point of diminish- of the boundary-layer displacement thickness,

_ ing returns. For example, a scheme with a small 6", is the most commonly used method of viscous-

value of R (see Table i) should probably be used inviscid interacton. This approach, however,
in the early cycles and a scheme with a large val- requires that a new grid be generated after each
ue of R thereafter. Numerical experiments indi- boundary-layer solution. A viseous-inviscld

care that the four-stage scheme is a reasonable interaction approach that does not require a new
compromise. The use of.a second-order accurate grid to be generated after each boundary-layer
scheme in time as compared to a fourth-order solution is the method of equivalent sources of
scheme as used in Ref. 6 has the advantage of re- Lighthill.(15) In this method, information from

quiring slightly less storage. Also, because the viscous solution is used to specify a distrl-
steady state solutions are of interest here, and bution of sources (either positive or negative)
because no noticeable improvement was found in the on the surface and in the wake, and this source
results using a fourth-order scheme as compared to distribution is used as a boundary condition in

r_---, a second-order scheme, the method used was the the inviscid solution. Assuming no attempt is
second-order four-sta_e scheme with a maximum made to align some portion of the grid with the_ Courantnumberof 2/-2.

wake, only one grid must be generated. Unlike a
potential flow and boundary-layer interaction



method, an Euler equation and boundary-layer and x is the shear stress and q is the heat flux.
interaction method that uses the equivalent source Using th_ composite function for _, and a similar

f- concept requires that information be specified one for G (a point not mentioned in Ref. 16);
' for the additional equations of momentum and Eq. (4) becomes

_i energy. Development of the information necessary _o _ lh _o _to use the equivalent source concept with an Euler _o = +_ ( - )dy (6)
equation and boundary-layer interaction method o

follows. This development is based on the work of _sing Eq. (6) and the definitions of 7, _, _ abd
Johnston and Sockol. (16) Their work is reviewed _, the following conditions on the elements of go
and then specific relations for the elements of are obtained.
the _ vector of the Euler equations at a surface

are obtained. The term (0v)° is given by "
To illustrate the approach consider the

steady two-dlmensional Navier-Stokes equations in -- B rh "
cartesian coordinates x, y (Ov)o = (0v)o +_x ] [(Pu)o - o_]dy (7)O

_--_+-_y = 0 For no porosity in the boundary-layer solution[(_) = 0]
O

and the steady two-dimensional_ Euler equations (OV)o " dxd [(PU)o6* ] (8)

_+ = 0 (3) where _ is definedas

. Ihwhere (0U)o6 = [(PU)o - o_]dy (9)
O

Ou pv The term (0uv) is given by
O

[ = _uu+ p _ = _uv (puv)° = (_ - T)o+
puv pw + p

Ih-- [(pu2 + P)o - (_2 + p)]dy (i0)
(e + p)u (e + p)v _x o

e = _ i + v2) For no-slip boundary conditions for the boundary-

+_ (u2 layer solution (Uo = 0), and taking the boundary-. layer pressure equal to the pressure from the
and u, v are velocity components in the x, y Euler solution at the surface
directions, and p, p, and e are the pressure,

density and total energy per unit volume. An _ 2 *
explicit description of the elements of _ and _ (0UV)o = - To + dx [(0u )o(_ + 8)] (ii)
are not needed. Integrating Eqs. (2) and (3)
with respect to y over 0 < y < h, and considering where 8 is defined as
the solution vectors g al,d _ to colnclde for

y > h (where h is taken outside the viscous _pU2)o(6 . -]fh (pU2)oregion), the two integrals can be combined to + %) = [ - pu2]dy (12)
obtain(16) o

[h (7 - _)dy (4) As pointed out in Ref. 16 this approach will
_o = _o + _x , not provide the information necessary to obtain

o the pressure, and a s_ecific approach to obtain
the third element of go is not given in Ref. 16.

where the subscript o indicates y = O. To avoid The pressure is obtained here through an extension
solving the Navier-Stokes equations, the exact of the work of Rizzi (17) by. including a surface

6 •
solution F is represented(l ) by__a cqmposlte . porosity term in Rizzi's normal momentum relation.

_ _ _ - _ d -
function F , where F = F = £ + f - f , an f is This relation is derived by Thomas (14) and thee e
a solution of the boundary-layer equations influence of including or neglecting the porosity

term is demonstrated in the next section. The

_ term (0v2 + p) , therefore, is obtained by _eter-
Bf + _g 0 45) o-- = mining p_ as mentioned, and determining (pv_) by
_x _y Eq. (8)w_ere the density is obtained from the

where previous time step.

_ Ov The term [(e + p)V]o is given by

pu_ + p Ouv - T [(e+ p)v]° = [(e+ p)v - ux - qlo +
f = g=

o fh
r_ _x j {[(e+ p)u]° - [(e+ p)u]}dy 413)o

Using no-slip and no porosity boundary_conditions

- - for the boundary-layer solution (u° = v ° = 0),



• an adlabatlc surface [(q_ = 0], and the defini- _ - a_ = 3 19 °. The freestream Math number cor-

tlon of total enthalpy (pH = e + p), Eq. (13) be- rection of 0.004 used in Flg. 3 for the numerical

comes solutions was that used by Lock. (I) It appears,

d fh therefore, that in view of the good agreement be-
i = = [(puH) ° - puH]dy tween numerical and experimental results obtainedf [(e + p)v] ° (pVH)o d_x jo in Fig. 3 by accounting for the sensitivity of the

(14) far field boundary and using the corrected angle
of attack, the good agreement obtained previous-

The boundary-layer method (II) was developed for ly(8, 19) using s = a~ = 3 19 ° was fortuitous.

an adiabatic surface with variable total enthalpy Further experimental results without wall inter-
across the boundary layer that takes into account ference, or with minimal wall interference and
total enthalpy overshoot and nonunlty Prandtl accurate far field measurements are needed.
number. (18) A correlation for the integral in
Eq. (14) has not been developed as yet, hence the I._

approximation Ho = H is taken to prevent having to
numerically evaluate Eq. (14) at each point. This

approximation yields 1.08

[(e + p)v]° = (pvH)° = H° _x [(PU)o6*]

which, by Eq. (8), is now simply an identlty. (15)

1.0_
(L

It is interesting to note that the combina-

tion of Eqs. (8) and (ii) produce the yon K_rm_n 1.00
momentum integral equation. Hence, the results
of this section can be summarized as

, .96
d 6 ] (8) ' , l ! f !

(PV)o= _x [(°U)o 0 20 40 60 aO _0
d * EX_NT OF GRID

= u [(PU)o6 ] (16)(pUV)o o Tx CHORD

d_ * }2 Fig. 2 Influence of the Far Field Boundary= _ { [(PU)o6 ] (17) Location on the Lift Coefficient for(°V2)o %
the RAE 2822 Airfoil at H = 0.734

, and _ = 3.19 ° (Inviscid)

[ [(e+p)v] o= (ovH)° =Hod[(_u)o _ ] (15)

and the pressure, Po' is determined by the above _ "
mentioned extenison of Rizzi's method. (17) _.o ..... 0,7"_ 3.19 VISC0_._R_!_ IN_CTI_

O,T_ 2,_ VlS_, _ROSI_IXTE.R_TI_
+ x 0,7_ 3,19 F.XPERIrIF.XT(CASE9)

V. Results -:a--

Numerical results are compared in Refs. 8 _ .... .--'''°"
and 19 with experimental data taken on the RAE -:.2--

2822 alrfoil(20) that show good agreement. The
computations of Refs. 8 and 19 were carried out

at the geometric angle of attack, _, of the ex- -a
perlment as opposed to the correcte_ angle of
attack, a , suggested in Ref 20 to account for

e " h--q
wall interference. Recent numerical experiments ,_,_.
conducted to investigate the sensitivity of the
solution to the grid, indicate a rather surprising o--
sensitivity of lift to the !ocation of the far

field boundary as indicated in Fig. 2. The

_ results in Fig. 2 were obtained by changing the ._
location of the far field boundary, while main-

taining the same far field boundary conditions(6)
until there was no further change in the solution. .,-

Using the grid with the far field boundary located
such that no change in the.solution due to the

grid would be expected, the computations for the :.2_
RAE 2822 airfoil for M_ = 0.730, n_ = 3.19 °, and
Re (freestream Reynolds number based in chord) = _ ="

6._ x 106 were repeated. These results are pre-

sented in Fig. 3 for both the geometric angle of Fig. 3 Viscous-lnviscid Interaction Results

attach (a = ag = 3.19 °) and the corrected angle for the RAE 2822 Airfoil Using Geo-
r_ of attack (_ = ac = 2-78°) suggested by the metric (3.19 °) and Experimentor's(20)

experimentors.(Z0) As can be seen in Fig. 3, the Suggested Corrected (2.78 °) Angle of
agreement between the computations and the experl- Attack
mental data for a = a = 2.78 ° is better than forc



The normal momentum relation derived by

Rizzi(17) to obtain surface pressure was based .... o.r_ 2;7z VlSC_o,'IN_CTI_
on an impermeable surface. Thomas (14) has extend- _.0-- _* x o.rJo°'r_2.783.19£XPER]_NT(C_E9)VISC0_"_ROSI_[N_CTI_

_- ed this work to include a permeable surface for

, viscous-inviscld interaction. The numerical re- -l.s-
_-- sults in Fig. 3 included this new normal momentum

relation with a permeable surface. A comparison
of numerical results obtained with and without -,.2-- _ __f_ _\

the permeable surface term is given in Fig. 4 for
the same flow conditions as Fig. 3. The results
in Fig. 4 indicate that the influence of this -.a

term is small, although the influence the term - _-

does have is to improve the agreement with experi-
ment slightly on the upper surface at the begin- _ -._
ning of the shock and in the aft region of the /_",_k

lower surface. I

-- O.Tb.q 2.78 VlSCO_,_ROSI_INTE_CTIONWI_ W_L ._-- ]
-z.I -- PffSSUR£_ INCLUDING_ROSIff_* x 0.730 3._ E_ERI_NT(C_E9)

"e <_ /

-._ Fig. 5 Viscous-lnvtscid Interaction Results
for the _ 2822 Airfoil Using Dis-
placement Surface and Equivalent Source
Methods of Interaction

-- "'''"_£_" Vl. Concluding Remarks

The results presented involved improvements

.,_ and experiences with previous work in using Euler
_ and inverse boundary-layer equations for treating

transonic viscous-invlscid interaction. Improve-
_-- ments in the inverseboundary-layermethod includ-

ing. ed the handling of the turbulence modeling, par-
ticularly near separation, and a correlation for

the dissipation integral which eliminated the
Fig. 4 Viscous-lnvlscid Interaction Results need for numerical integration, and thereby re-

for the RAE 2822 Airfoil With and duced the computational time of the viscous sol-

Without the Porosity Term in the Sur- utions. Solutions of the Euler equations Indl-
face Pressure Boundary Condition cared a significant influence of the far field

boundary on the lift of a supercrltlcal airfoil
with a reasonably strong shock on the upper sur-

face. The computed llft did not change once the
far field boundary was moved far from the airfoil.

Because the displacement surface method of This observation is receiving further investlga-
viscous-inviscid interaction is the most commonly tlon. The use of second-order Runge-Kutta schemes
used method of calculation, a comparison is pre- with various number of stages indicated that a

sented in Fig. 5 of the dlsplacement surface . second-order four-sta_e scheme with a maximum
method and the method of equivalent sources. The Courant number of 2¢2 was a reasonable compromise
flow conditions used to obtain the results in Fig. for solving the Euler equations. Additional num-

- 5 are the same as used to obtain the results in erlcal surface conditions for the momentum and

Figs. 3 and 4. Also, the normal momentum rela- energy equations were developed and used in the
tlon allowing for a permeable surface was used. Euler equations for the equivalent source method
There is some difference between the two methods of viscous-lnvlseid interaction. Accounting for
of performing interaction computations as in- a permeable surface in the normal momentum rela-

dicated in Fig. 5. The difference in shock tlon used to obtain pressure produced a slight
location, for example, is of the order of the improvement in the results. Finally, numerical
distance between grid points in this region, solutions indicated some difference between the

As mentioned, the method of equivalent sources displacement surface method and the equivalent
requires that only one grid be generated, where- source method of viscous-inviscid interaction,
as, the displacement surface requires a new grid although the difference in shock location was

_ for each new boundary-layer displacement surface, approximately the same as the distance between
" The method of equivalent sources has been found grid points. The eqivalent source method is the

the easiest to use once all the source relations easiest to use and requires that only one grid
are derived and coded, he generated.



The present work was carried out on a CYBER Friction in Two-Dimenslonal, Transonic Turbulent
203 in 64-bit mode with only a small portion of Flow," Arnold Air Force Station, TN, AEDC-TR-79-12,

"_ the code vectorized. Typical run times were 208 April 1979.

for i000 Euler equation cycles on a (14)
seconds

.... 128 x 30 grid with 16 boundary-layer solutions. Thomas, J. L. "Viscous-lnviseid Inter-
Experience indicates that a similar solution action Using Euler and Inverse Boundary-Layer
obtained on a CRAY-IS requires about half this Equations," Ph.D. Dissertation, Mississippi State
amount of time. Unviersity, 1983.
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