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SECTION 1
SUMMARY

1.1 BACKGROUND

General Electric, under NASA contract, has been conducting a * grogram to
explore and define the operating characteristics of large diameter rolling-element
bearings, in the ultra-high speed regimes expected in the engines for advanced,
high performance aircraft. This final report deals with a portion of Task III
and all of Task IV of the subject program. Earlier tasks, as well as a portion
of Task III, have been documented in various reports issued during the life-span

of this contract (1-9)*.

1.2 TASK III - HIGH TEMPERATURE, HIGH SPEED L:BRICANT PERFORMANCE TESTS

This portion of Task III was designed to evaluate the effect of a develop-
mental high temperature lubricant on the operating characteristics of rolling-
element bearings at speeds to 3 million DN. In earlier, similar high speed
bearing tests (7, 8 and 9), a commercial Type II synthetic lubricant was used.

Following the procedure used in these earlier tests, a parametric study
was conducted using 120 mm bore, split inner ring AISI M-50 bearings and a
polymeric perfluorinated fluid, marketed by DuPont under the trade name,

Krytox 143 AC.

During the first series of parametric tests with the Krytox fluid, the inner
race speed was held constant at 25,000 rpm (3.0 x 10 6 DN), the thrust load was
22,240 Newtons (5,000 lbs.) and the oil inlet temperature was maintained at

1660C (3300F). The bearings were lubricated through passages at the inner: ring
split, and the exterior bearing surfaces were cooled with an independently
adjustable oil flow. Bearing ring temperatures and power demand were measured
for a variety of lubricant and cooling oil flows.

In the second series of tests, the lubricant and cooling oil flows were
held constant at values which produced the most favorable bearing performance
during the first series of tests. With the ^.l inlet temperature adjusted to

achieve 2880C (5500F), inner and outer ring temperatures, speeds and loads were

varied from 12,000 (1.44 x 10 6 DN) to 25,000 rpm (3 x 10 6 DN) and from 6,672 to

22,240 Newtons (1,500 to 5,000 lbs.), respectively.

The results can be summarized as follows:

e	 Practical limits were established for the range of lubricant flow to
the test bearings. Low flow rates produced bearing temperatures beyond
the upper, acceptable limit. High flow rates increased the bearing power
lemand beyond the capacity of the test rig drive motor.

* Numbers in parentheses refer to references.
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•	 Bearing race temperatures, temperature gradients across the bearings and
power losses could be tuned and varied with load, with speed and with both
lubricant flow rate into the bearings and cooling flow to the inner races.

•	 Cooling oil flow to r_'1e outer races affected the outer race temperatures
significantly, but l­ .,,1 only a sm.11 effect on the inner race temperatures.
The power losses due to changes in c , )oling oil flow to the outer race
were insignificant.

•	 Compared with the results of tests using a type II oil, the high density
Krytox lubricant had a significant effect on the power requirements.

•	 Short bearing life was obtained in bearing tests with the Krytox 143 AC
in an air atmosphere. The primary mode of failure was corrosive surface
fatigue occasioned by pitting on the bearing raceway surfaces.

1.3 TASK IV - CBS 600 BEARING TESTS

This task was intended as a preliminary evaluation of the ability of a
carburized bearing to sustain the high tangential stresses of high DN bearings
without experiencing the catastrophic failure mode observed earlier (9) with
VIM-VAR* M50.

To accomplish this, inner races were manufactured using a case-carburizing
alloy (CBS 600) and assembled into 120 mm bore split-inner-ring ball bearings.
The outer rings were VIM-VAR M50. The bearings were installed in the h.inh
speed, high temperature fatigue tester and were run at 25,000 rpm (3 x 106 DN)
with a thrust load of 22,240 Newtons (5,000 lbs.). A bearing race temperature
of 2160 C (4200 F) was maintained. These test conditions were identical to
those used in the previous tests with the AISI M50 bearings.

In the _racture demonstration tests, an artificial defect was introduced
in the CBS 600 inner race. Again, these tests were conducted under identical
conditions as those reported in (9). The results of the current tests indicated
that an inner race, manufactured of a case carburized material, can withstand
continued operation without fracturing after a fatigue spall failure has
developed in its raceway at high speeds and under high loads.

However, during subsequent life-tests of CBS 600 inner races, extremely
short lives of less than 4 hours were encountered. 	 Thus, while the material
demonstrated its potential resistance to fracture, the results are somewhat
clouded by apparent processing defects resulting from the carburizing/heat-treat
cycle. The test results must therefore be viewed in this context.

* Vacuum Induction Melted - Vacuum Arc Melted
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SL IUN 2
INTRODUCTION

Rolling-element bearings for advanced technology aircraft engines are ex-
pected to operate at speeds to 3 million DN (DN is the product of the bearing
bore in millimeters and the shaft speed in rpm). Current production engine
bearings operate at speeds less than 2.3 million DN. Additionally, bearing
temperatures for these advanced engines could go above the current 218 0C (425°F)
maximum operating levels. Because compressor or turbine blade t'.p speeds and
disk burst strengths begin to limit the maximum speed of rotati•:g components,
a bearing speed of 3 million DN appears to be the practical limit of aircraft
engine operation.

General Electric, under NASA contract, has been conducting a long term
program to explore and define the operating characteristics of large diameter
rolling-element bearings in the ultra-high speed regimes expected in the ;engines
for advanced, high performance aircraft.

The prime objective of the program was to obtain design information relating
the effect of hi t;'a rotational speeds, up to 25,000 rpm, 3 x 106 DN, on the
fatigue life, thermal behavior, lubrication characteristics, and operational
conditions, of main.-engine size rolling-element bearings.

Comprehensive, controlled full-scale 120 mm bearing tests have been con-
ducted under conditions of load, temperature and environment typical of those
expected in advanced aircraft engines. Consequently, the data and information
being generated are directly applicable to the design of bearings for advanced
high speed aircraft gas turbine engines.

During the term of this contract, a number of modifications were made. These
resulted 'rom a continuing effort between GE and NASA to achieve a maximum
yield and efficiency from the program. The generic program was divided into
the following tasks:

Task I	 - Bearing and Lubricant Procurement
Task II	 - Test Rig Design and Fabrication
Task III	 - Fatigue Tests
Task IV	 - CBS 600 Bearing Tests

In Task III, Fatigue Tests, over 185,000 hours of 120 mm ball bearing tests
were accumulated, including more than 75,000 hours at 3 million DN. From this
activity, the ability to successfully operate large diameter bearings at ultra-
high DN values was demonstrated. In addition, ring fracture, a potentially
critical failure mode in high speed bearings, was identified and the effect of
it on bearing integrity was demonstrated in controlled tests.

3



Because of the time span covered by this contract, the earlier test results
(Task I, II and portions of III) have been reported in the open literature
(Ref. 1-9). Consequently, this report deals only with the last portion of
Task III -High Temperature, High Speed Lubricant Performance Evaluation and
Task IV - CBS 600 Bearing Tests.
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SECTION 3
TASK III - HIGH SPEED,HIGH TEMPERATURE LUBRICANT PERFORMANCE TESTS

3.1 INTRODUCTION

As reported in reference (9), over 150,000 bearing test hours were accumu-
lated with two groups of thirty each, 120 mm bore split-inner-ring ball bearings,
operating at 1.44 and 3.0 million DN at 221 0C (4300F) and using a type II oil.
This fatigue test program was preceded by a parametric study reported in
reference (7). The effects of lubricant flow for various lubrication and
cooling techniques were investigated, resulting in essentia-L information for
the successful operation of bearings at high speeds.

The data of the high-speed, high-temperature bearing performance tests
reported herein supplement those of the earlier parametric study since they
were collected on the same test apparatus and with the identical type test
bearings. Applying the lubrication techniques of the earlier program, bearing
performance was measured at temperatures to 288 0C (5500F) with Krytox 143 AC.
Even though only short bearing lives were achieved, the test resi , '_cs are of con-
siderable engineering value as they illustrate the significant effects that a
lubricant has on the performance of high speed bearings.

3.2 EXPERIMENTAL DATA

3.2.1 High Speed Bearing Tester

The test machines used in this program are identical to those used for
the 1.44 x 106 DN and 3 x 106 DN tests used in earlier programs. Figures 1 and
2 are overall photographs of the high speed testers.

A schematic of the high speed, high temperature bearing tester is shown in
Figure 3. The tester consists of a shaft to which two test bearings are mounted.
Loading is applied through ten springs which give a thrust load to the bearings.
Dual flat belts are used to drive the test spindle from a 75 kW (100 hp) fixed
speed electric motor. The drive motor is mounted to an adjustable base so that
drive pulleys can be used for 12,000 to 25,000 rpm with the same drive belts.
The drive motor is controlled by a reduced voltage autotransformer starter which
permits a selection of the motor acceleration rate during startup. This control
protects the bearings from undesirable acceleration during startup.

The lubrication system delivers up to 473 cm 3/sec. (7.5 gallons per minute)
to the test rig. There are two lubricant loops in the system. The ail flow
in each loop is adjusted by flow control valves and can be individually measured
by a flow rate meter without interrupting the machine operation, as shown in
Figure 4. The first loop supplies cooling oil to each bearing outer race and
is designated CO. The seco,,a loop is divided by a lubricant manifold which
feeds individual annular grooves or channels at the shaft in':Prnal diameter,
proportioning the amount of oil which is to lubricate and/or cool the inner
race. Li designates the oil flow to the bearing through a plurality of radial

5
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passages at the inner-race split. Ci designates the lubricant supply to

the inner race land/cage interface. The lubricant system permits a selection

of various lubricant schemes. These include bearing lubrication through the

inner-race split, lubrication of the cage-race shoulder contact region, the

application of inner and/or outer-race cooling, and a selection of any desired

flow ratio for cooling and lubrication as well as the conventional lubrication

through Jets.

By means of the system of valves and manifolds previously discussed, an

unlimited number of combination of oil flows can be achieved to evaluate various

conditions. Consequently, values of L i , Ci and CO can be controlled independent

of each other. A third lubricant loop adapted from an adjacent machine supplies

an ester base type II oil to the slave bearing which supports the shaft; this

is not shown in Figures 3 and 4.

The instrumentation includes the standard protective circuits which shut
down a test when a bearing failure occurs, or when any of the test parameters

deviate from the programmed conditions. Measurements were made of bearing
inner and outer-race and lubricant temperatures, and machine vibration level.

Speed and spindle excursion measurements were made with proximity probes and

displayed by numerical read-out and oscilloscope, respectively. Tile oil flow

was established by a flowmeter, and bearing outer-race and lubricant inlet and

outlet temperatures were measured by thermocouples and continuously recorded on
a strip chart recorder. The inner-race temperature of the front test bearing

was measure' with an infrared pyrometer.

3.2.2 Tester Modifications

Due to the known corrosive nature of the Krytox 143 AC lubricant at
operating temperatures, it was required to incorporate several modifications

to the high-speed bearing tester selected for testing with this lubricant.

The lubricant circuit was completely rebuilt with a new pump, valves, flow

meters, high capacity heat exchangers and oil filters. New external outer ring

cooling lines were installed to insure adequate drainage of the test bearing

chambers. All the new components were either constructed of stainless steel
or were electroless nickel plated. To facilitate machine startup with the
high viscosity Krytox as well as to maintain lube temperatures under all

operating conditions, a heater was added to the lube reservoir.

All test rig surfaces exposed to the lubricant were electroless nickel

plated to a thickness of 7.62 x 10-3 mm (.0003 inch) minimum. The support

bearing and its cavity remained unchanged. This bearing was lubricated with

type II oil from an adjacent machine. Contamination of the Krytox test fluid

with type II oil was prevented by adding a slinger to the shaft mid-section.

The intermediate section of the test rig, located between two labyrinth seals,

was continuously drained and any fluid leaking into this cavity was discarded.

A direct reading power meter was added to the electrical system to improve

the accuracy and efficiency of the drive power measurements.

9



Certain features of the original machine were sacrificed. The probes used
to sense cage speed and radial spindle excursion have a temperature limit of
221°C (4300F). Therefore, spindle excursion was measured only near the support
bearing and cage speed measurement was eliminated. Spindle speed was measured
with a probe located near the support bearing.

3.2.3 Test Bearings

The test bearings were ABEC-5 grade, split-inner-race 120 mm bore ball
bearings. The inner and outer races, as well as the balls, were manufactured
from one heat of vacuum-induction melted, vacuum-arc remelted AISI M50 steel.
The chemical analysis of the specific VIM-VAR M50 heat is shown in Table I.
The nominal hardness of the balls and races was Rockwell C 63 at room temperature.
Each bearing contained 15 balls, each 2.0638 cm (13/16 in.) in diameter. The
bearings were assembled tc have a nominal 23

0
 contact angle. The cage was a

one-piece inner-land riding type, made out of an iron base alloy, AMS 6415,
heat-treated to a Rockwell C hardness range of 28 to 35 and having a 0.005 cm
(0.002 in.) maximum thickness of electroless nickel plate per specification
AMS 2404. The cage balance was 3 gm-cm (0.042 oz-in.). The retained austenite
content of the ball and race material was less than 3 pezcent. The inner and
outer-race curvatures were 54 and 52 percent, respectively. All components
with the exception of the cage were matched within + one Rockwell C point.
Surface finish of the balls was 2.5 ucm (1 micro in.) AA, and the inner and
outer raceways were held to a 5 ucm (2 micro in.) AA maximum surface finish.

An outline drawing of the test bearing is shown in Figure 5. The bearing
design permitted under-race lubrication by virtue of radial grooves machined
into the halves of the split inner races. Provision was also made for inner-
race land-to-cage lubrication by the incorporation of several small diameter
holes radiating from the bore of the inner race to the center of the inner-
race shoulder.

3.2.4 Test Lubricant

The oil used for the parametric studies is marketed by DuPont under the
trade name Krytox 143 AC. It is a polymeric perfluorinated fluid with an
average molecular weight approaching 7000.

The oil is an odorless and colorless, completely fluorinated organic poly-
mer. It is quite resistant to heat, either alone or in the preaence of oxygen,
and will slowly decompose above 399 0C (7500F). The major properties of the oil
are presented in Table II and temperature-viscosity curve is shown in Figure
6. This lubricant has been studied by several laboratories. The Air Force
Materials Laboratory, Wright-Patterson AFB, Ohio has conducted a series of
extensive investigations on this fluid (10 and 11). Because this lubricant had
been stored for some time at the General Electric Company, a sample was sent
to DuPont for an analysis verification. DuPont reported that the fluid met all
original chemical and physical property requirements.

10
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TABLE I

Chemical Analysis of Vacuum Induction, Consumable-Electrode
Vacuum Remelted AISI M50 Bearing Steel

Composition of
Element Races and Balls, wt.%

'	 Carbon 0.83
Manganese 0.29
Phosphorus 0.007
Sulfur 0.005
Silicon 0.25
Chromium 4.11
Molybdenum 4.32
Vanadium 0.98
Iron Balance

TABLE II

Tvpical Properties of Krvtox 143 AC Polymeric Perfluorinated Oil.

Viscosity, centistokes at -13°C (0°F)	 33,000

	

380C (1000F)	 270

	

990C (2100F)	 26

	

204 0C (4000F)	 3.9

	

2600C (5000F)	 2.1
Viscosity Index, ASTM D2270 	 134
Pour Point, °C ASTM D92	 -34

Thermal Conductivity BTU/hr. 	 (ft) - (°F/ft)
1490 C (3000F) 0.051
2600C (5000F) 0.051

Density, grams/ml at 99°C (2100F) 1.77
204°C (4000F) 1.59

Specific Heat, BTU/1b/°F at 990C (2100F) .252

Volatility D972 Mod. wt
loss, 6-1/2 hours at 204°C (4000F) 1.0

at 260°C (`	 )°F) 4.0

11



4c

®0
C

s®

P.: oftwo

ORIGINAL PAO^ 1
OF poOR QUA4.1Te

II	 I

I

II

6000

CD 2

..j

N

v	 (v I.7

®	 ZN

M Q
>	 ae - 4

N

o)	 oo '^
^ q

4cY / ® An !M f 9
daro	 S" ®Yin V

000000 

qr
0
V
N
U) m
X U

,0 W ^.
s .	 10

w V W o

w
IL
J z
9

',b ^.. W

000

4c
®ON000%

10 0
N N

O
p
QI

4J

H

Q

O

'-I

M

p

O

4-a

bD

.r{

S4
co
O
P4

N
b
ca
p0
cn

UW

u'1

41
3^+
ObD

•ri
W

12

i



u
•r4

^4

a
U
d

Cl)

.v+

O

T
3

?4
O

O ^

H ny
^ }a

a

N
w
O

G
O

U
O

W

N
t0

T

I	
N

^	 O

U

a	 En;>

a^

o
o

r,

o ° °o	 ° °	
-.

° o	 o u'+

o	 ° °o	 ^	 saxa^st^uaa `^^YSO^sY^

C)

N
13



Prior to testing, the fluid was circulated through filters for over 30 hours.
A sample check after the filtration showed an acceptable count of contamination
particles.

The oil used for the support bearing was a 5 centistoke neopentylpolyol
tetraester. This is a type II oil qualified to MIL-L-23699.

3.2.5 Test Procedures

The initial objective of the study was to collect data on the performance
of ball bearings at speeds to three million DN with ring temperatures to 3160C
(6000F), using Krytox 143 AC as a lubricant. Following this, tests were to be
run for direct comparison with earlier tests run with a type II oil ,MIL-L-23699.

Additionally, tests were to be conducted to find the optimum operating
conditions at 25,000 rpm with 22,240 Newtons (5,000 lbs.) thrust load and 316°C
(6000F) test bearing operating temperature, followed by tests under the same
lube flow conditions at lower speeds and loads.

During the initi.-31 testing with maximum bearing temperatures of 3160C (600°F)
and maximum oil inlet temperatures of 204 0C (400 0F), an increase in the
machine vibration and a "rough hand feel" of the shaft suggested some deteriora-
tion of the test bearings. Inspection revealed that the raceways were severely
pitted. There were signs of corrosive attack and surface distress on the balls;
and severe wear was observed at the separator ball pockets and moderate wear
at the separator lands. To reduce these corrosive effects of the Krytox, it
was decided to modify the test conditions.

Consequentiv, the parametric tests were rescheduled to operate at a maximum
ring temperature of 2880C (5500F) and a maximum oil inlet temperature of
1660C (3300F). The latter was necessary to stay within the power limitations 	 I 1

of the drive motor. A matrix of the test conditions is shown in Table III.

3.3 RESULTS AND DISCUSSION

3.3.1 Parametric Study

The effects of lubricant and cooling oil flow rates on bearing tempera-
tures and power requirements were determined, and the results are presented in
Tables IV and V. The data has been plotted to determine the consistency and
accuracy of the results and to show the major trends of bearing performance.

For correlation with the raw data presented in this report, all graphs
are illustrated in terms of total flow in the lubricant loops, i.e., 'Outer
Race Flow" and 'Oil Flow, Inner Race Path", representing total flow supplied
by the machine to both test bearings.

The tests in the parametric study are based on the following operating
conditions:

Speed	 -	 25,000 rpm (3 x 106 DN)
Thrust load	 22,240 Newtons (5,000 lbs.)
Lube oil	 - Krytox 143 AC
Lube inlet temperature 	 -	 1660C (3300F)

14
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TABLE III

Matrix of Test Conditions for Parametric Study

Inner Ring
Ci '+ Li,

Outer Ring Flow, cm /sec (gpm)
Flow Ratio

Ci/Li cm3/sec.
(gpm) 32	 (0.5) 63	 (1.0) 126(2.0) 189 (3.0) 221(3.5'

0 189	 (3.0) # 3 3

126	 (2.0) w #

63	 (1.0) ` #

189	 (3.0) # 3 3

126	 (2.0) # 3

1.33 63	 (1.0) #

252	 (4.0) #	 3 3 3

221	 (3.5) 3 3 	 3

3.0 189	 (3.0) # 3 3
126	 (2.0) # 3

252	 (4.0) #	 3 ,/ 3

221	 (3.5) # 3 3 	 3
189	 (3.0) # 3

4.0 126	 (2.0) # 3

3 Successful test with
temperature data

# Shut-down, temperature
limit reached

0 Unsafe area; did not
run

All flows indicate total
machine flow, i.e., for two
test bearings.

,s

L
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Figures 7 through 10 show test bearing and oil outlet temperatures as a
function of the inner-ring-path oil flow for Lube/Cooling flow ratios of 1/4.0,
1/3.0, 1/1.33 and 1/0.

Referring to Figure 7 for the Li/C i - 1/4.0 ratio, the inner ring tempera-
tures varied from 252 0C to 272 0C (485°F to 522 0F) depending upon the inner ring
lube path flow (Ci + Li).

The outer ring temperatures ranged generally from 260°C (500°F) to 288 0C
(5500F) and were, as expected, affected by both the oil flow to the inner ring
and the amount of cooling oil supplied to this component.

The oil outlet temperatures generally paralleled the inner ring temperatures
from 2430C (4700F) to 264 0C (507°F). Neither the inner race nor the oil
outlet temperatures were significantly influenced by the outer ring cooling
oil flow.

Figures 8, 9 and 10 show corresponding results for the other inner ring
flow ratios tested.

The results of the 1/3.0 flow ratio were similar, but the temperatures of
the inner race were slightly higher. Outer ring temperatures are generally
lower at the low inner ring path flow rates and slightly higher at the higher
flow rates.

Bearing temperatures in excess of 288°C (550 0F) at low flow rates and
drive power limitations of the test machine at high flow rates limited the
number of tests with 1/1.33 and 1/0.0 lube flow ratios. For those tests
which were successfully completed, the resulting temperatures were somewhat
higher.

In Figures 11 through 14, bearing temperatures are plotted as functions
of the C i/Li ratio for oil 3 flows to the inner rings of 126 (2.0), 189 (3.0),
221 (3.5) and 252 (4.0) cm /sec (gpm), respectively. Flow ratios resulting in
minimum outer ring temperatures were discovered for an inner ring path flow
of 189 cm3/sec (3.0 gpm). Inner ring and oil out temperatures decreased with
increasing flow ratios. It is inSeresting to note that,for total flow rates
(Ci + Li) of 189 (3.0) and 221 cm /sec (3.5 gpm),practical flow ratios were
found for balanced bearing temperature operation. From the curves for 126
(2.0) and 252 cm 3/sec (4.0 gpm) total flow, ratios may be extrapolated to
find potential conditions for balanced bearing operation.

The small number of points on Figures 13 and 14 limit the conclusions that
can be drawn from this data.

Power as a function of oil flow to the inner rings is shown in Figures
15 through 18. As would be expected, the power demand increases markedly with
increasing inner ring path flow, but is not affected by outer ring cooling oil
flow. The power demand for the entire system ranged from 66 to 91 kilowatts.
If a 98% efficiency of the belt drive and a 2 kilowatt power demand by the
support bearing are assumed, the range of power per bearing was on the order
of 31 to 44 kilowatts.
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As seen in Figures 15 and 16, the power demand curves for flow ratios of
1/4.0 and 1/3.0 are virtually identical. Though fewer data points are avail-
able, the power required for Li/C i ratios of 1/1.33 and 1/0.0 is significantly
higher.

The power data was replotted in Figures 19 through 22 as functions of
ring flow ratio, Ci/Li. A minimum power loss is suggested for total flows
(Ci + Li) of 126 (2.0) and 189 cm 3 /sec (3.0 gpm) at a flow ratio Ci/Li of
3.0.

3.3.2 Bearing Life Evaluation

The test bearings were from the same manufacturing lot and material hea
as those of the previous endurance test program described (9). With these
bearings, lives of 3,000 hours were achieved repeatedly using a type II oil.
In an earlier test program reported in (1,4 and 5), 120 mm ball bearings of
CEVM*M50 were tested at 1.4 million DN and 316°C (60J°F) in a nitrogen atmos-
phFre using Krytox 143 AC as a lubricant. In that program, typical bearing
lives on the order of 100 to 500 hours were achieved.

inn

abou

After an initial 10 hours of testing to the original planned test condi-
tions, i.e., ring temperatures of 316 0C (600°F), signs of bearing failures
were noticed. On both test bearings, the inner and outer races were severely
pitted at the load tracks. The outer race of the front bearing showed severe
corrosion or erosion pitting on either side of the load track. Signs of corro-
sive attack and surface distress were also evident on the balls, and the
separators showed heavy ball pocket wear and moderate wear at the lands.

These observations made it clear that,similar to the parametric study,
high speed operation with ring temperatures at 316°U (6000F) would not be
feasible with an open, non-inerted system. The life test conditions were,
therefore, also modified for a maximum bearing temperature of 2880C (5500F)

Lowering the operating temperature reduced the severity of corrosion damage
on the test bearings during subsequent tests. However, very short bearing life,
typically on the order of 5 to 15 hours, were still encountered throughout the
remainder of this program. A tabulation of bearing life is given in Table VI.
The Weibull anal ysis on these data is as follows:

B-10 Life:	 4.02 hours
B-50 Life:	 10.61 hours
Slope:	 1.94
Failure Index:	 17117

As mentioned earlier in a previous investigation (1), rolling-element
fatigue tests were conducted with 120 mm bore angular-contact ball bearings of
AISI M50 steel with the same Krytox fluid. Here at 316 0C (6000F) under a low-
oxygen environment, the Krytox gave bearing lives approximately 3 times AFBMA ?*
Bearing failure was predominantly subsurface initiated, although some corrosion
pitting was observed. However, corrosion was not considered to be the primary
cause for spalling failure.

* Consumable Electrode Vacuum Melted

** Anti-Friction Bearing Manufacturers' Association
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TABLE VI	 OF POOR QUALI i Y

Summary of Bearing Tests, Test Life and Post-Test Condition

Brg. SIN Test No. Position Test Hrs. Loading Brg. Condition After Test

"T" 0/R Light Corrosion/Pitting
II-1 F	 17 SIN 1/R on Raceways. Balls OK

100 SIN 0/R New Balls.	 Raceways
I-7 F 14 +'T"	 1/R Corroded.	 Balls OK

17
"T" 0/R Slight Corrosion on

II-1 R SIN 1/R Raceways.	 Balls OK
116

SIN 0/R 0/R Corroded.	 Fatigue
I-7 R 14 "T" 1/R Spalls on 1/R and Balls

15
"T" O%R Raceways Corroded

I-2 F SIN 1/R Balls Fair Shape
105

SIN 0/R 0/R Corroded.	 1/R OK
I-8 F 3

1/R Balls Have Surface Distress.

Light Corrosion+ and a

109 I-8 R 3 "T" 0/R Few Debris Dents.

SIN 1/R
Balls OK

Corrosion on Raceways.
110 I-6 F 13 "T" 0/R 1 Ball Has Small Debris

SIN 1/R Dent.

'IT" 0/R Raceways Corroded. One
I-2 R 15 SIN 1/R Ball Has Fatigue Spall.

66
SIN 0/R Possible Inclusion in 0/R.

I-3 R 5 "T" 1/R One Ball with Fatigue Spall.

"T" 0/R Numerous Debris Dents
I-3 F 5 SIN 1/R in Raceway.

SIN 0/R 3 Balls Have Pitting -
108 I-4 R 15 "T" 1/R Replaced for I-5.

SIN 0/R Raceways Corroded and
I-5 R 10 SIN 1/R Pitted.	 Spalls on Balls.

120 I-6 R 13
"T" O/R Raceways Corroded.
SIN 1/R Balls Have Spalling.
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TABLE VI (CONT'D.)

Summary of Bearing Tests, Test Life and Post-Test Condition

Brg.	 S/N Test No. Position Test Hrs. Loading Brg. Condition After Test

I-4 F 15
"T" 0/R Severe Raceway Corrosion

118
S/N 1/R All Balls Have Spalling

I-5 F 10
S/N 0/R Raceways Mildly Corroded.
"T" 1/R Balls OK

"T" 0/R
Severe Pitting/Corrosion

56 I-1 F 10
S/N 1/R

on Raceways.	 Surface
Distress/Corrosion on Balls.

"T" 0/R Pitting/Corrosion on
71 I-1 R 10

S/N 1/R Raceways and Balls.
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Figures 23 through 28 are provided to illustrate typical bearing failure
characteristics encountered in the most recent tests, operating with the Krytox
143 fluid in air. Raceway failures were limited to surface pitting (micro-
spalling). Examples of these are shown in Figures 23, 24 and 26. Ball failures
were more severe. These failures,which had the appearance of classical sub-
surface fatigue spalling,were associated with little or no evidence of sur-
face distress. Figure 28 shows this. Figurc 27 shows the wear on the ball
pockets.

During one of the disassemblies to replace a failed bearing, a dark deposit
was noted on one of the machine surfaces. Samples of the deposit as well as
samples of the lubricant in the test machine were subjected to fluorescent
X-ray analyses. A sample of unused Krytox was also analyzed for comparison.

The results of the particulate analyses indicated substantial amount of iron,
nickel and chrome. The analyses of the new and used lubricant showed essentially
identical compositions. From this, it was concluded that no major decomposi-
tion of the lubricant, per se, had taken place. The deposits were wear
particles from the rolling contact surfaces of the balls and races and the
separator plating.

3.3.3 Data Reliability and Ball Passing Frequency

Throughout this test program, difficulties were experienced in collecting
consistent bearing performance data. Repeated runs of the same test often
produced different temperatures, particularly when the tests occurred near
the extremes of the test conditions. Therefore, the test results reported
are a selection of data that was the most consistent and reliable of those
measured. There still remain, however, some temperature points that do not
fit well with the rest of the data. Typical examples are shown in Figures 9
through 11 (for Ci /Li = 1.33; (Ci + Li) = 126 cm /sec (2.0 gpm)). Here the
"lube-our" temperature appears to be on the order of 6 0C (100F) below where it
might be expected, based on the results of adjacent tests. A close examination
of the data will indicate several such anomalies.

It may be speculated that some data inconsistency was caused by varying
levels of ball slippage. This appears possible with the use of the high den-
sity Krytox lubricant, which caused the deterioration of raceway finish with
increasing test time.

In an attempt to confirm this theory, an effort was made to determine the
ball passing frequency. The signal from an accelerometer on the test housing
was applied to a spectrum analyzer and the spectrum was recorded in the range
of the anticipated ball passing frequency. A typical spectrum is shown in
Figure 29. Unfortunately, there are at least two signals in the anticipated fre-
quency range, either of which could represent the ball passing frequency. One
of the signals is quite near the anticipated frequency as reported in (8),
while the other is somewhat lower. Frequency measurements at different lube
flow rates did not fall well within the expected pattern, making definitive
identifications difficult.
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3.3.4 Additional Parametric Studies - Effect of Speed and Load

A lubricant flow ratio and an inner ring oil flow were chosen from
those initial test results which produced the most favorable bearing performance
at 25,000 rpm with a thrust load of 22,240 Newtons (5,000 lbs.). The lubri-
cant inlet temperature and outer ring cooling oil flow were further adjusted
until a thermally balanced bearing operating condition was achieved, such that
the inner and outer bearing rings were maintained at 288 0C (550°F). The values

gnat produced th:l,s condition, within a 1.7°C (30F) spread, were held constant
throughout this test phase. Those values were:

Li/Ci	 -	 1/3.0

Lube flow, inner ring path 	 -	 126 cm3/sec (2.0 gpm)
Cooling oil flow, outer ring path - 	 221 cm3/sec (3.5 gpm)
Lube inlet temperature	 -	 171°C; (3400F)

The effects of loads and inner ring speeds were investigated, and the
results are presented in Table V and in Figures 30 through 34.

Bearing temperatures as a function of load are shown in Figure 30. Bearing
outer ring temperature increased nearly linearly with load for a particular
speed; i.e., the temperature rise over the load range was greater for high speed
operation than for low speed. For example, the outer ring temperature increased

only 2.2 0C (40F) due to increasing the load from 1,500 to 5 x	o000 lbs. at 12,000
rpm. The same load increase at 25,000 rpm resulted in a 18 C (33 F) temperature
rise. The effect on the inner ring temperature was somewhat more dramatic.
Contrary to expectations, at 12,000 rpm the temperature dropped as the load
was increased. At 16,700 rpm, the temperature remained constant throughout
the load range, and at 25,000 rpm, the inner and outer ring temperatures in-
creased nearly at the same rate with increasing loads. In Figures 31 and 32,
the bearing temperature data were re-plotted as a function of inner ring speed.

The machine power demand is shown as a function of load and of speed in
Figures 33 and 34, respectively. These curves illustrate the expected trends
of modest power increase due to increasing load and a sharp rise in the power
demand for increasing speeds.

3.4 TASK III CONCLUSIONS

Parametric tests were conducted with 120 mm bore, angular contact, split-
inner-ring, AISI M50 hall bearings. A polymeric perfluorinated fluid, marketed
by DuPont under the trade name Kiytox 143 AC, was used as the lubricant in an
air atmosphere. Tl^e following conclusive remarks can be made:

1.	 Practical limits were experienced for the range of lt; 1 ricant flow to the
test bearings. Low flow r8^tes produced bearing temperatures beyond the
upper, acceptable limit. High flow rates increased the power demand
beyond the capacity of the test rig drive motor.
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Figure 30. Bearing Temperature vs. load at Various Speeds.
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2. The bearing race temperatures, the temperature gradients across the
bearings and the power loss could be tuned and varied with load, speed
and the lubricant flow rate.

3. The cooling flow to the outer races affected the outer race temperatures
significantly, but had only a small effect on the inner race temperatures.
The power loss due to the changes in the cooling oil flow to the outer
race was insignificant.

4. Compared with the results of the bearing tests using a type II lubricant,
the high density Krytox lubricant produced a significantly and probably
unacceptable higher value of power requirements.

5. Short bearing life was obtained in bearing tests with the Krytox 143 AC
in an air atmosphere. The primary mode of failure was corrosive surface
fatigue (pitting) on the bearing raceway surfaces. The nickel plating
at the separator contact surfaces showed heavy wear after short periods of
time.
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SECTION 4
TASK IV - CBS 600 BEARING TESTS

4.1 INTRODUCTION

The low fracture toughness of current rolling -element bearing materials
is a critical technical barrier to the operation of advanced high performance
aircraft gas turbines. Because of significant tangential hoop stresses developed
in bearing races at high rotational speeds, bearing raceways will fail in
rapid fracture mode after the development of fatigue spalls. This mode of
failure, raceway failure, has been dramatically demonstrated with the 120 mm
AISI M50 bearings tested at 3 x 106 DN as reported in (9).

One approach to mitigating this problem is to utilize case -carburized
bearing raceways. Case carburized bearings have hard surfaces for good rolling
contact fatigue life and relatively soft, ductile cores for fracture toughness.
To evaluate the effectiveness of this approach, inner races made with a car-
bl yrizing alloy, CBS 600, were assembled into 120 mm bearings. ^hese bearings
were then tested to study the failure characteristics at 3 x 10 DN. The test
conditions were identical to those used in the previous fracture demonstration
tests of AISI M50 bearings (9). Additionally, endurance tests were performed
to establish the life characteristics of CBS 600 bearings.

Consequently, Task IV was subdivided into two phases:

Phase I. Fracture Demonstration Tests
Phase II. Endurance Tests

4.2 TEST BEARINGS

The test bearings were ABEC -5 grade, 120 mm bore ball bearings with split
inner races. These were identical to those used during the earlier 3 x 10 6 DN
tests, except the inner raceways were manufactured of CBS 600 case carburized 6
material. The test conditions were also identical to those used in the 3 x 10
DN tests.

The CBS 600 material was provided by NASA in a 102 mm (4 in.) diameter
billet. The nominal chemical composition of CBS 600 is shown in Table VII.
Six pairs of inner races were manufactured. The inner rings were then car-
burized and heat-treated as described in Tables VIII and IX.

`

	

	 Two test coupons were carburized and heat-treated for pre-production quality
control. In spite of the successful results on the coupons, the carburized
production rings showed a massive carbide network to a depth of approximately
0.2 mm (0.008 inch) from the surface as shown in Figure 35. It is believed
that the carbide network problem was caused by improper control of the carburi-
zing atmosphere where surface carbon levels were in excess of 1.05%.
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Surface

Figure 35. Massive Carbide Network
in CBS 600 Inner Race
After Carburizing at
940.6°C (1725 0F) for 11
Hours.

Etchant: Nital	 Mag.: 50OX
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TABLE VII

Nominal Chemical Composition of CBS 600

Elements Weight Percent

Carbon 0.20

Manganese 0.60

Silicon 1.1

Chromium 1.5

Molybdenum 1.0

Iron Balance
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TABLE VIII

Forging Procedures for CBS 600 Bearing Races

j

1) Material to be heated to 1260 0C (2300°F) and upset forged
to height of 57.2 mri (2.25").

2) Forged blank will be hot pierced to form a 50.8 mm (2.00")
I.D. at not less than 11490C (21000F) and reheated to
1260°C (2300°F).

3) Pierced blank will be mandrel saddled to an O.D. of 158.8 mm
(6.25") with I.D. of 4.125" maintaining height of 57.2 mm
(2.25").

4) Forging will be slow cooled in mica to room temperature.

5) Forgings will be reheated to 732°C (1350 0F) and held for
2 hours, then cooled to room temperature in mica.
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TABLE IX

Heat Treating Procedure for CBS 600

•	 Carburize at 940.6 0C (17250F) for 11 hours and oil quench.

•	 Heat to 662.80C (1225 0F) for 4 hours and slow cool.

• Austenitize at 832.2 0C (1530 0F) for 0.5 hours and oil
quench.

•	 Deep freeze at -73.30C (-1000F) for 2.5 hours.

• Double temper at 316 0C (6000F) for 2 plus 2 hours.
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Since the forged rings did not have sufficient extra stuck to permit removal
of the layer containing the carbide network and because the massive carbide
network was not acceptable for the Phase I1 endurance test program, It was
decided to subject those rings, intended for life-testing, to an additional
heat-treat cycle in an attempt to attenuate the carbide network. The balance
of the races were processed without the additional heat-treat cycle because'
these parts were to be used for the f I'ac Lure demonstration tests where In. "t,

life performance was not an important factor.

To eliminate the undesirable massive carbides, diffusion cycle experiments
were performed on several pieces cut from a fully-procossed CBS 600 inner race.
The pieces were heated at 982 00 (1800 0F) and 101000 (18500 F) for two hours
each and rapid-cooled in ai vacuum furnace and then reheat . treaated using the
original austenitizing and tempering cycle. It was found that the massive car-
bide networks apparently disappeared after the dfltusion cycles. This is shown
in Figures 36 and 37.

Figure 38 shows the hardness gradient of a CBS 600 sample altar the diltu-
sion treatment. As show", the 1010 00 (1850 0F) diffusion c y cle Increased the
c t to ct  ive rase depth by 0. 76 nun (0.0:30 inch) while t he 982 0 C (1800 `a FJ Increased
case depth only as negligible amount. Based on this, the 9820C (1800 F) diffu-
sion cycle was selected for the inner rings

4.2.1	 Induced Defect

An artificial defect was generated its two inner ring raceways using elec-
tricaal discharge machining. The procedures and dimensions of these detects
were Identical to those employed in the previous test program with AISI M50
bearings as described in (9) .

4.1 RESULTS AND DISCUSSION

4. 3. l Phase 1 - Fracture Demonstr it ion Tests

A louring assembled with a CBS 600 inner race with an induces{ detect and
M10 balls and outer race was Installed in the high speed, faatigue tester.
The , oaring was run at 25,000 rpm (3 million ON) with a thrust load of 22,240
Newtons (5,000 Ibs.). A bearing race temperature of M O C (4100 F) wan main-
tained. The lubricant (SATO 7730 per spec. PIII.-1.-23049) was introduced in the
weans manner and at the same rate of flow  as defined in the 3 million ON fatigue
Lost program perlormed earlier (9).

An inner race faailury occurred alter 0.65 hours of test. This failure did
not initiate at the Induced dvfvct. Two spaalls, 1 c1.1 mm (0.75 inch) long and
1:'0 nun (I1.S inch) long wvcv observed an shown in Figure 39. Shortiv alter
the spaalling occurred, the tester shut down since the normal safety shut -Ott

s y stems were operativv.
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Surface

Figure 36. Microstructure of Carburized

CBS 600 After a Diffusion
Heat Treat Cycle r 9820C
(18000 F) for 2 He :s in

Vacuum.

Etchant: Nital	 Mag.: 500X
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Figure 37. Microstructure o- Carburized
CBS 600 After a Diffusicn
Heat Treat Cycle at 10100C
(19500F) for 2 Hours in
Vacuum.

£tchant: Nital.	 Mag.: 500X
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The second bearing with an induced defect was installed and run under the
identical conditions as described above, except that all tester safety shut-off
devices were disconnected to allow continuation of the test after the initiation
of a spalling failure. This bearing was run for 3.5 hours before the expected
inner race failure developed. The test was continued, although the cooling
flow rate had to be increased to prevent overheating of the bearing. After
24.7 minutes of operating with the spall, the drive power demand exceeded the
motor capacity, tripping the drive motor overload. Restarting the tester was
not successful and the test was terminated.

For comparison, the bearing test with a through-hardened AISI M50 ring
performed in an earlier program had developed a normal spall failure from the
artificially induced defect after 6 hours, 17 minutes of testing time, and
had fractured into eight discrete segments 7.5 minutes after the initiation of
a spalling failure under the identical test conditions used in this study.

Despite the fact that the inner rings had less than optimum microstructure,
the present test results indicate that a 120 mm ball bearing inner race, manu-
factured of a case carburized material can withstand continued high load, high
speed operation without raceway fracture after a fatigue spall has developed.

Post-test examination confirmed that the inner race spalling failure was
initiated at the artificial defect. An overall view of the failed bearing is
shown in Figure 40. The continued running resulted in a spall extending over
approximately 40% of the entire race circumference as shown in Figure 41.
The location of the induced defect was found in the spalled area and 10.2 mm
(0.4 inch) from the leading edge of the spall, indicating the spalling had
also typically propagated against the ball rolling direction. There was only
minor secondary damage to the other bearing components, and the structural in-
tegrity of the spalled inner race had been fully maintained.

4.3.2 Phase II - Endurance Tests

The objective of this portion of the program was to demonstrate the
rolling contact fatigue life of CBS 600 bearing material. Previous laboratory
tests using NASA four ball testers (12) and GE RC rigs (13) showed that the
rolling contact fatigue life of CBS 600 was equivalent to that of AISI M50.
120 mm bearings were assembled with CBS 600 inner rings. The remaining compo-
nents $ f the bearings were identical to those used in the previous full sca^e
3 x 10 DN tests. Th y endurance tests were performed at 25,000 rpm (3 x 10 DN)
with 22,240 Newtons (5,000 lbs.) thrust load. Three tests were conducted, each
resulting in an early failure of 1.4 hours (SIN 3), 3.3 hours ( SIN 4) and
1.5 hours ( SIN 6). These are all quite premature failures, as was the failure
of the test bearing in the earlier fracture demonstration test. Figures 42
and 43 shoe.* typical spalling failures observed in the CBS 600 inner rings.

The short lives obtained with all the CBS 600 inner races, strongly suggest
that the material may have been improperly processed. To confirm this, a
detailed metallographic examination was made on the failed raceways.

r
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Each failed ring was cross-sectioned perpendicular to the circumferential
rolling direction in a number of locations, particularly near the spalled
region. Aetallographic mounts were prepared and examined. A multiplicity of
cracks emanating from the raceway surface and perpendicular to the rolling

€j( ,I direction were found. Figure 44 illustrates a typical example of these cracks.
The cracks exhibit the typical pattern normally encountered with quench cracks.
This type of processing defect will undoubtedly lead to a premature failure.

It is likely that these defects formed during the cooling cycle after
carburizing. The CBS 600 inner rings were rapid quenched into oil following
the procedure recd-mended by the manufacturer of this alloy. Normally, most
carburized parts are slow cooled after carburizing. When a rapid cool from
the carburizing temperature is used, the parts must be stress-relieved within
a short period of time.

This is also true with the hardening, or austenitizing, process. Temper-
ing cyc:es must be followed immediately after the austenitizing. In the case
of the CBS 600 rings, it is known that the elapsed time between quenching for
the carburizing cycle and the subsequent stress-relief exceeded the allowable
time limit.

It is unfortunate that because of time and money restrictions, the CBS 600
life testing could not be repeated.

4.4 TASK IV CONCLUSIONS

Inner races were manufactured with case-carburized CBS 600 material and
assembled into the 120 mm bore ball bearings with split inner rings. The
bearings were tested at 25,000 rpm (3 x 10 6 DN) with a thrust load of 22,240
Newtons (5,000 lbs.) in the fatigue tester. The test conditions were identical
to those used in the previous tests (9). The following conclusions were
reached:

1) It was indicated that a 120 mm ball bearing inner race, manufactured
of a CBS 600 case carburized material can withstand continued high
speed, high load operatiin without experiencing rapid fracture after
a fatigue spall has developed.

2) In the endurance tests of bearings assembled with the CBS 600 inner
races, all inner races failed within four hours of testing time in
four tests. These premature failures were attributed to processing
defects formed during the heat-treat cycle.
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