General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

RELIABILITY CALCULATION USING RANDOMIZATION FOR MARKOVIAN FAULT-TOLERANT COMPUTING SYSTEMS
by
Douglas R. Mi,ller
(NASA-CR-169864) RELIABILIIY CALCULATICN

The George Washington University
School of Engineering and Applied Science
Department of Operations Research Institute for Management Science and Engineering

Research Supported by
Grant NAG-1-179
National Aeronautics and Space Administration

ORIGINAL PAGE IS
 OF POOR QUALITY

THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science Department of Operations Research Institute for Management Science and Engineering

RELIABILITY CALCULATION USING RANDDOMIZATION FOR MARKOVIAN FAULT-TOLERANT CONPUTING SYSTEMS

by
Douglas R. Miller

1. INTRODUCTION
. The behavior of fanlt-tolerant computing systems can be modeled as continuous-time Markov processes on large state spaces. Calculation of reliability is equivalent to computing transient probabilities of states of the Markov process corresponding to system failure. The state spaces are often very large, and thus efficient computational methods are required in order to walculate state probabilities. The CARE III approach has been developed to solve this problem; it is presented by Stiffler, Bryant, and Guccione [8] and further discussed by Trivedi and Geist [9]. The "randomization" technique is an alternate approach which is of considr -ble interest in its own right and which wi.1. be useful. in validating the CARE III approach for systems with moderate state spaces.

The randomization modeling and computational techmique will be illustrated on a simplified model of a fault-tolerant system consisting of three components similar to one presented by Trivedi and Geist [9]. Figure 1 shows the behavior of a single component. Initially the component

THE GEORGE WASHINGTON UNIVERSITY
 School of Engineering and Applied Science Department of Operations Research
 Institute for Management Science and Engincering

Abstract
of
Serial T-469
29 October 1982

RELIABILITY CALCULATION USING RANDOMIZATION FOR MARKOVIAN FAULT-TOLERANT COMPUTING SYSTEMS

by
Douglas R. Miller

The randomization technique for computing transient probabilities of Markov processes is presented. The technique is applied to a Markov process model of a simplified fault-tolerant computer system for illustrative purposes. It is applicable to much larger and more complex models. Transient state probabilities are computed, from which reliabilities are derived. A new accelerated version of the randomization algorithm is developed which exploits "stiffness" of the models to gain increased efficiency. A great advantage of the randomizaton approach is that it easily allows probabilities and reliabilities to be computed to any predetermined accuracy.

0 : component $O K$
A : active fault
B : benign fault
D : detected (and reconfigured)
E : error
F : failure (error propagated)
Figure 1.--Single component reliability model: state space, transitions, and rates.
is fault-free, but after an exponential holding time with rate λ an "active" fault occurs. From the active state the fault may become "benign" and later become active and continue alternating between active and benign. From the active state the fault may be "detected" (by diagnostics) or generate an "error." This error may lead to detection of the fault and system reconfiguration or to "failure" of the system. Figure 1 shows the six states of a component, the possible transitions, and the rates at which they occur. We shall apply the randomization procedure to a system consisting of three independent components. The state space of the three-component system is shown in Figure 2; also shown are the possible transitions of the Markov process and their rates. The model has 18 states and 31 transitions. The set $\{F, A A, A E, B F, F D$, $\mathrm{XX} \Lambda\}$ is defined as "system fail.ure," and the goal is to compute the

ORIGINAL PRGE IS

Figure 2.--A three-iomponent system reliability model: state space, transitions, and rates.
probability of absorption of the processin this set at time t_{M}, the mission completion time. Note that this model is similar to one presented by Trivedi and Geist [9, p. 46]. It has a small state space, but it serves well as an illustrative example. The randomization technique
can be efficiently applied to models with much larger state spaces. It should be useful in analyses of two fault-tolerant: computing systems developed under NASA sponsorship: SIFT [10] and FTMP [5].

The paper is structured as follows. Section 2 contains the standard randomization algorithm for computing transient probabilities of Markov processes. In Section 3 a new accelerated version of the randomization procedure is developed; it exploits the fact that models of many fault-tolerant computing systems are "stiff," i.e., the model has very fast and very slow transition rates. Section 4 gives computational results for the standard and accelerated algorithms applied to ten different versions of the three-component model of Figure 2. Section 5 contains summary comments and a brief discussion of other approaches. Two appendices contain listings of FORTRAN programs of the two algorithms. Additional infornation on the randomization technique may be found in Gross and Miller [3].

2. THE STANDARD RANDOMIZATION ALGORITHM

Let $\{\mathrm{X}(\mathrm{t}), \mathrm{t} \geqslant 0\}$ be a continuous-time Markov process on a finite state space $S=\{1,2, \ldots, m\}$. The state probability vector at time t is denoted $\pi(t)=\left(\pi_{1}(t), \pi_{2}(t), \ldots, \pi_{m}(t)\right)$, where $\pi_{s}(t)=$ $P(X(t)=s)$, $s \in S$. Two different characterizations of the stochastic nature of $\{\mathrm{X}(\mathrm{t}), \mathrm{t} \geqslant 0\}$ are useful: (i) the infinitesimal generator and (ii) a randomized Markov chain.

All Markov processes can be characterized by an inditial distribution $\pi(0)$ and an infinitesimal generator

ORIGINAL PARE: TIS
OF POOR QURLIN:

$$
Q=\left(\begin{array}{ccccc}
-q_{1} & q_{12} & q_{13} & \cdots & q_{1 m} \\
q_{21} & -q_{2} & q_{23} & \cdots & q_{2 m} \\
q_{31} & q_{32} & -q_{3} & \cdots & q_{3 m} \\
\vdots & \vdots & \vdots & & \vdots \\
q_{m 1} & q_{m 2} & q_{m 3} & \cdots & -q_{m}
\end{array}\right)
$$

where

$$
q_{i j}=\lim _{\Delta t \rightarrow 0} \frac{p(X(t+\Delta t)=y \mid X(t)=i)}{\Delta t}, \quad i \neq j
$$

and

$$
q_{i}=\sum_{j \neq i} q_{i j} .
$$

The $q_{i j}{ }^{\prime} s$ are the transition rates which are depicted in Figures 1 and 2. The infinitesimal generator Q seems to be the most natural way to describe the stochastic nature of the Markov models of fault-tolerant computing systems.

Any Markov process on a finite state space can be represented as a discrete time Markov chain "randomized" by a Poisson process. Define

$$
\begin{equation*}
A=\max _{i \varepsilon S} q_{i} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
P=Q / \Lambda+I, \tag{2,2}
\end{equation*}
$$

where I is the identity matrix; P is a stochastic matrix. Let $\left\{Y_{n}, n=0,1,2, \ldots\right\}$ be a Markov chain on S with transition matrix P and initial distribution $\pi(0)$. Let $\{N(t), t \geqslant 0\}$ be a Poisson process with rate Λ which is independent of $\left\{Y_{n}, n=0,1,2, \ldots\right\}$. Then $\left\{Y_{N(t)}, t \geqslant 0\right\}$ is a Markov process with generator Q and initial distribution $\pi(0)$ and hence is probabilistically identical to $X(t), t \geqslant 0$.
(The relationship between sample paths of $\left\{Y_{n}, n=0,1,2, \ldots\right\}$, $\{N(t), t \geqslant 0\}$, and $\left\{Y_{N(t)}, t \geqslant 0\right\}$ is shown in Figure 3.) This construction makes it possible to compute transient probabilities of a .. Markov process with generator Q from transient probabilities of a Narkov chain Y with transition matrix P and a Poisson process N with rate Λ. The transient probabilities of Y are denoted $\phi(n)=$ $\left(\phi_{1}(n), \phi_{2}(n), \ldots, \phi_{m}(n)\right)$, where $\phi_{s}(n)=P\left(Y_{n}=s\right)$, $s \in S$. The randomization formula is

$$
\begin{aligned}
P(X(t)=s) & =\sum_{n=0}^{\infty} P(X(t)=s \mid N(t)=n) P(N(t)=\mathfrak{n}) \\
& =\sum_{n=0}^{\infty} P\left(Y_{n}=s\right) P(N(t)=n)
\end{aligned}
$$

or equivalentily,

$$
\begin{equation*}
\pi(t)=\sum_{n=0}^{\infty} \phi(n) \frac{e^{-\Lambda t}(\Lambda t)^{n}}{n!} . \tag{2.3}
\end{equation*}
$$

See Gross and Miller [3] for additional discussion and details. (Equation (2.3) can also be found in Çinlar [1, p. 259].)

The infinite series in Equation (2.3) must be truncated for computational purposes. Let

$$
\begin{equation*}
T(\varepsilon, t)=\min (k: P(N(t)>k) \leqslant \varepsilon)=\min \left(k: \sum_{n=0}^{k} \frac{e^{-\Lambda t}(\Lambda t)^{n}}{n!}>1-\varepsilon\right) \tag{2.4}
\end{equation*}
$$

where ε equals the acceptable error (specified by the user). The computistional version of Equation (2.3) is

$$
\begin{equation*}
\pi^{\varepsilon}(t)=\sum_{n=0}^{T(\varepsilon, t)} \Phi(n) \frac{e^{-\Lambda t}(\Lambda t)^{n}}{n!} \tag{2.5}
\end{equation*}
$$

Truncation of the infinite series involves a probability loss of at most

ORIGINAL PAGE IS

Figure 3.--Example of randomization: Markov chain Y_{n}, Poisson process $N(t)$, and randomized chain $X(t)$.
ε, thus all probabilities (of states or subsets of states) will have an error between $-\varepsilon$ and 0 . Note that the randomization formula (2.5) reduces the calculation of transient probabilities of a Markov process
to those of a Markov chain and underlying Poissun process, both of which are more amenable to exact numerical evaluation,

The ϕ 's are computed recursively using the relation from standard Markov chain theory:

$$
\begin{align*}
& \phi(0)=\pi(0) \tag{2.6}\\
& \phi(n+1)=\phi(n) P, \quad n \geqslant 0 .
\end{align*}
$$

(Note that Equation (2.6) involves only nonnegative numbers, a fact that contributes to numerical stability of the algorithm.) The matrix p is usually sparse and thus the above matrix multyplication should be performed by an appropriate algorithm. Such a multiplication algorithm is described by Gross and Miller [3]. The number of operations in this algorithm is proportional to the sum of the number of states and the number of transitions, e.g., 49 for the system of Figure 2. The programs in the appendices use this multiplication algorithm.

In short, the standard randomization computational algorithm computes Λ and P fron the generator Q using (2.1) and (2.2), respectively. It computes the truncation point $T(\varepsilon, t)$ from (2,4), then the $\phi(n)$'s using (2.6) recursively, accumulating in Equation (2.5) to give $\pi^{\varepsilon}(t)$. This algorithm was applied to ten versions of the model in Figure 2. The results are sumnarized in Section 4.
3. an accelerated alcorithm using selective randomization

A close investigation of the standard randomization algorithan and the model of the three-component system in Figure 2 suggests a way to speed up the algorithm for this kind of model. In the three-component model states 0 , D , and DD have very long mean holding times because
the component fallure rate λ is very small. All other nonabsorbing states have much shorter holding times. The absorbing states have infinite holding times. The process $\{X(t), t \geqslant 0\}$ spends most of its time In the states with long holding times. The Marioov chain $\left\{Y_{n}, n=0,1, \ldots\right\}$ tends to sit in these states for many occurrences of tye underlying Poisson process $\{N(t), t \geqslant 0\}$, making a null transition at each occurrence. By eliminating the computation involved in these null transitions for the states with the longest holding times, the speed of the algorithm can be increased.

Consider a modification of the model for the three-component system of Figure 2. The states $A D, B D, E D, D D, F D$, and $D D A$ are each split into two states in order to distinguish whether or not the first fault is detected before the second fault occurs. The modified model is shown in Figure 4: it has 26 states and 42 transitions. This modification reveals (in Figure 5) a special. block tree structure which can be exploited in an accelerated randomization algorithm. The structure consists of the process alternating between states with long holding times $\left(S_{1}, S_{3}, S_{5}\right.$, and S_{9} in Figure 5) and short holding times (S_{2} and S_{4}), not returning to any subset after leaving it, and finally being absorbed into a terminal set of states $\left(S_{6}, S_{7}, S_{8}, S_{10}\right)$. Larger, more realistic models of many fault-tolerant systems will tend to have this same structure. Such a model is depicted in Figure 6. States with no undetected faults will have long holding times while those with undetected faults will be short. (Systems that contain processes with significantly different time scales are called "stiff" in the literature on differential equations.)

ORIGINAL PAOE IS
OF POOR QUALITY

Figure 4.--Three-component system reliability model: modified state space with tree structure.

The accelerated randomization algorithu is based on a semi-Markov process representation of the Markov process $\{X(t), t \geqslant 0\}$. (Ross [7] presents Markov processes as a special case of semi-Markov processes.) This representation is also an extension of an iden called "selective randomization" by Melamed and Yadin [6]. Selective randomization is

Figure 5.--Block structure of modified state space of three-component system reliability model.
similar to randomization except that the Markov chain is randomized by a Poisson process only while it is in a subset S_{R} of the state space S. The Markov chatn is given arbitrary exponential holding tines for the set $S^{*}=S-S_{R}$ of exceptional, states. (In the model of Ffgures 4 and 5, $\quad S_{R}=S_{2} \cup S_{4}$, Let

Figure 6.--Treemilke state space and transitions for a general model of fault-tolerant computers. (The initial state and states with all faults detected have very long mean holding times. States with undetected faults have very short mean holding times. System foilure states have infinite holding times.)

$$
\begin{equation*}
A=\max _{\operatorname{scs}} q_{\mathrm{R}}=\max _{\mathrm{seS}} q_{s} \tag{3.1}
\end{equation*}
$$

and define a substochastic transition matrix $\mathrm{p} \%$,

$$
p_{i, j}^{*}= \begin{cases}\frac{q_{i, j}}{\Lambda}+\delta_{i, j} & i \in s_{R} \tag{3.2}\\ \frac{q_{i, j}}{q_{i}}+s_{i, j} & q_{j}>0, i \varepsilon s^{*} \\ 0 & q_{i}=0, i \varepsilon S^{*}\end{cases}
$$

Then $\{X(t), t \geqslant 0\}$ can be characterized as a semi-Markov process with transition matrix p^{*} and exponential holding times with rates $\left\{\mathrm{r}_{\mathrm{i}}\right.$, $i \varepsilon S\}$, where $r_{i}=\Lambda$ for $i \in S_{R}$ and $r_{i}=q_{i}$ for $i \varepsilon S^{*}$. (Thus the process is uniquely determined by $\pi(0), p *, \Lambda$, and $\left\{q_{1} ; i \in \mathrm{~S} \%\right.$,) Let $\left\{Z_{n}, n=0,1, \ldots\right\}$ be the embedded Markov chain with substochastic transition matrix P^{*}, and let $\mathrm{N} *(\mathrm{t})$ equal the number of transitions of Z in $[0, t]$, noting that Z may make transitions $i+i$ for $i \varepsilon S_{R}$ but not for $i \in S^{*}$. Denote the transient probability vectors for Z by $\psi(n)$, i.e., $\psi(n)=\left(\psi_{1}(n), \ldots, \psi_{m}(n)\right)$, where $\psi_{s}(n)=P\left(Z_{n}=s\right)$. The processes Z and N^{*} are dependent. The selective randomization formula is

$$
\begin{align*}
p(X(t)=s) & =\sum_{n=0}^{\infty} P\left(X(t)=s, N^{*}(t)=n\right) \\
& =\sum_{n=0}^{\infty} P\left(Z_{n}=s, N^{*}(t)=n\right) \\
& =\sum_{n=0}^{\infty} P\left(Z_{n}=s\right) P\left(N^{*}(t)=n \mid Z_{n}=s\right) \tag{3.3}\\
& =\sum_{n=0}^{\infty} \psi_{s}(n) P\left(N^{*}(t)=n \mid Z_{n}=s\right)
\end{align*}
$$

The accelerated randomization algorithm is based on Equation (3.3). The出's can be compted recursively,

$$
\begin{align*}
& \Psi(0)=\pi(0) \\
& \Psi(n+1)=\Psi(n) \mathrm{P}^{*} \tag{3.4}
\end{align*}
$$

In addition the quantities $P\left(N^{*}(t)=n \mid Z_{n}=s\right)$ must be computed, ad the infinite series in Equation (3.3) must be truncated to achieve the desired numerical accuracy.

We note, for each subset S_{i} of S in Figure 5, that $P\left(N *(t)=n \mid Z_{n}=s\right), s \varepsilon S_{i}$, takes a constant value; for $i=1,2, \ldots, 10$,

$$
A_{i, n}(t)=p\left(N^{*}(t)=n \mid Z_{n}=s\right), \quad s \varepsilon s_{i},
$$

for n and s such that $p\left(Z_{n}=s\right) \neq 0$. Thus to use Equation (3.3) it suffices to compute $A_{i, n}(t), i=1,2, \ldots, 10$. As an example, consider $A_{4, n}(t)$; this also equals the probability of $\{N *(t)=n\}$ given $\left\{X(t) \in S_{4}\right\}$ occurs. A typical sample path depicting this situation is shown in Figure 7. In order to compute the probability of n occurrences in $[0, t]$ we revert to the standard randomization construction: the holding time in state 0 has an exponential distribution with rate 3λ. In the standard randomization, $p_{0,0}=1-(3 \lambda / \Lambda)=(\Lambda-3 \lambda) / \Lambda$ and $p_{0, A}=3 \lambda / A$, and the transition to A will oncur on the $(i+1) s t$ occurrence of the underlying Poisson process with probabiljty $(3 \lambda / \Lambda)((\Lambda-3 \lambda) / \Lambda)^{i}, i=0,1,2, \ldots$. Similarly the holding time in state D has an exponential distribution with rate 2λ and the process will leave D after being there for exactly j occurrences of the underlying poisson process with probability $(2 \lambda / \Lambda)((\Lambda-2 \lambda) / \Lambda)^{j}$, $j=0,1,2, \ldots$. Consequentl.y witre are many ways that $\left\{N^{*}(t)=n\right\}$ can occur, depending on the number of occurrences of $\{N(t), t \geqslant 0\}$ that happen while $\{X(t), t \geqslant 0\}$ is holding in 0 or D. Combining all these facts gives

Figure 7.--A typical sample path of process on modified state space for three-component system.

$$
\begin{aligned}
A_{4, n}(t)= & \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{3 \lambda}{\Lambda}\left(\frac{\Lambda-3 \lambda}{\Lambda}\right)^{i} \frac{2 \lambda}{\Lambda}\left(\frac{\Lambda-2 \lambda}{\Lambda}\right)^{j} p\{N(t)=n+i+j\} \\
= & \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{3 \lambda}{\Lambda}\left(\frac{\Lambda-3 \lambda}{\Lambda}\right)^{i} \frac{2 \lambda}{\Lambda}\left(\frac{\Lambda-2 \lambda}{\Lambda}\right)^{j} \frac{e^{-\Lambda t}(\Lambda t)^{n+i+j}}{(n+j+j)!} \\
= & \frac{\sigma \lambda}{\Lambda}\left\{\left(\frac{\Lambda}{\Lambda-2 \lambda}\right)^{n-1}\left[e^{-2 \lambda t}-e^{-\Lambda t} \sum_{k=0}^{n-1} \frac{[(\Lambda-2 \lambda) t]^{k}}{k!}\right]\right. \\
& \left.-\left(\frac{\Lambda}{\Lambda-3 \lambda}\right)^{n-1}\left[e^{-3 \lambda t}-e^{-\Lambda t} \sum_{k=0}^{n-1} \frac{[(\Lambda-3,1) t]^{k}}{k!}\right]\right\}
\end{aligned}
$$

Then analysis of $\Lambda_{i, n}(b)$ for other sets is based on the same principle. These quantities are:

$$
\begin{align*}
& A_{1, n}(t)=e^{-3 \lambda}, n=0, \\
& A_{2, n}(t)=\frac{3 \lambda}{\Lambda} a_{3}^{n} f_{3}(n), \quad n \geqslant 1, \\
& A_{3, n}(t)=3 a_{2}^{n-1} f_{2}(n)-3 a_{3}^{n-1} f_{3}(n), \quad n \geqslant 2, \\
& A_{4, n}(t)=\frac{2 \lambda}{\Lambda} A_{3, n}(t), \quad n \geqslant 2, \\
& A_{5, n}(t)=3 a_{1}^{n-2} f_{1}(n)-6 a_{2}^{n-2} f_{2}(n)+3 a_{3}^{n-2} f_{3}(n), \quad n \geqslant 3, \tag{3.5}\\
& A_{6, n}(t)=f_{0}(n)-3 a_{2}^{n-2} f_{2}(n)+2 a_{3}^{n-2} f_{3}(n), \quad n \geqslant 3, \\
& A_{7, n}(t)=f_{0}(n)-3 a_{1}^{n-3} f_{1}(n)+3 a_{2}^{n-3} f_{2}(n)-a_{3}^{n-3} f_{3}(n), \\
& A_{8, n}(t)=f_{0}(n)-a_{3}^{n-1} f_{3}(n), n_{n} \geqslant 2, \\
& A_{9, n}(t)=\frac{3}{2} a_{1}^{n-1} f_{1}(n)-\frac{3}{2} a_{3}^{n-1} f_{3}(n), \\
& A_{10, n}(t)=f_{0}(n)-\frac{3}{2} a_{1}^{n-2} f_{1}(n)+\frac{1}{2} a_{3}^{n-2} f_{3}(n),
\end{align*}
$$

where, for $i=0,1,2,3$,

$$
\begin{gathered}
f_{i}(n)=e^{-i \lambda t}-\sum_{k=0}^{n-1} e^{-\lambda t} \frac{[(\Lambda-i \lambda) t]^{k}}{k!} \\
a_{i}=\frac{\Lambda}{\Lambda-i \lambda} .
\end{gathered}
$$

These equations provide the required probabilities for Equation (3.3). To complete the specification of the accelerated randomization algorithm it is necessary to give a truncation rule for the insinite series in Equation (3.3). Note that

$$
\begin{aligned}
P\left(N^{*}(t) \leqslant d\right) & =\sum_{n=0}^{\ell} \sum_{i=1}^{10} p\left(X(t) \varepsilon s_{i}, N^{*}(t)=n\right) \\
& =\sum_{n=0}^{\ell} \sum_{i=1}^{10} P\left(Z_{n} \varepsilon s_{i}\right) \Lambda_{i, n}(t) \\
& =\sum_{n=0}^{\ell} \sum_{i=1}^{10} \Lambda_{i, n}(t) \sum_{s \in S_{i}} \psi_{s}(n)
\end{aligned}
$$

and define

$$
\begin{equation*}
\mathrm{P}^{*} *(\varepsilon, t)=\min \left(\ell: \mathrm{P}\left(\mathrm{~N}^{*}(t) \leqslant \ell\right) \geqslant 1-\varepsilon\right) . \tag{3.7}
\end{equation*}
$$

Thus, to sumnarize the accelerated randomization algorithm: the $\Psi^{\prime \prime}$'s are computed recursively using Equation (3.4) and the A's are computed using (3.5) with the products being accumulated in Equations (3.3) and (3.6) until the truncation point 1% of Equation (3.7) is met, at which point the algorithm terminates, yielding probabilities which are accurate to within ε of the exact values.

The accelerated randomization algorithm was programmed (see the appendix for FORTRAN listing) for the model of Figure 4 and executed for the same ten versions of the system as the standard algorithm. Results are sumbarized in Section 4 .

4. COMPUTATIONAL RESULTS

The standard randomization algorithm and the accelerated randomization algorithm have been programed in FORTRNN for the systen depicted in Figutes 2 and 4, respectively. Listings of the prograns appear in the appendix. Ten cases ware run with different sets of parameter values. The input values for the different cases are given in Table I. (Note that cases 3 and 4 and cases 5 and 6 are identical except for the user

TABLE I
CASES COMPUTED

Case	Parameters								
	λ	α	β	δ	γ	0	q	t_{N}	E
1.	10^{-3}	10	1.	10	100	100	. 99	1	10^{-9}
2	10^{-3}	10	1	10	100	. 100	. 99	10	10^{-9}
3	10^{-3}	10	10	10	100	100	. 99	1	10^{-9}
4	10^{-3}	10	10	10	100	100	. 99	1	10^{-7}
5	10^{-3}	10	10	10	100	100	. 99	10	10^{-9}
6	10^{-3}	10	10	10	100	100	. 99	10	10^{-7}
7	10^{-3}	100	100	100	10^{4}	10^{4}	. 99	1	10^{-9}
8	10^{-3}	100	100	100	10^{4}	10^{4}	. 99	10	10^{-9}
9	10^{-3}	10^{4}	$1.0{ }^{4}$	10^{4}	10^{4}	10^{4}	. 99	1	10^{-9}
10	10^{-4}	1.00	100	100	10^{4}	10^{4}	. 99	1	10^{-9}

specified error bound, E.) The programs were run on The George Washington University's IBM 370/4341.

The execution times of these randomization programs are proportional to the product of the truncation points (T or $\mathrm{T} \%$) and the sum of the number of states plus the number of transitions. The accelerated version requires more CPU time for each term in the randomization formula (3.3) because the weights $\Lambda_{i, n}(t), i=1,2, \ldots, 10$ require more computation time. However, for systems with large state spaces this will be insignificant compared to the calculation in Equation (3.4). Thus performance is more accurately predicted by the number of terms
multiplied by $18+31=49$ for the standard algorithm and $26+42=68$ for the accelerated algorithm. The number of terms (truncation point) and CPU times in seconds are summarized in Table II. In most cases the accelerated algorithm appears to be far superior.

The actual probabilities computed are presented in Table III. The probabilities listed are for the accelerated modification. The probabilities from the standard algorithm agree completely with these numbers and may be recovered from Table III by summing the protabilities for the split states, e.g., $P(A D)+P\left(A D^{\prime}\right)$.

TABLE II
PERFORMANCE OF RANDOMIZATION ALGORITHMS: NUNBER OF TERMS REQUIRED AND CPU TIME

Case	Standard Algorithm			Accelerated Algorith	
	No. Terms	CPU Seconds		No. Terms	CPU Seconcis
1	194	3.20		159	6.50
2	1424	19.54		1233	48.81
3	204	3.12		130	5.40
4	193	3.06		95	4.05
5	1522	20.02	206	8.39	
6	1492	20.23	143	5.79	
7	1522	20.01	174	7.16	
8	13656	174.51	208	8.40	
9	4383	56.43	95	4.03	
10	1522	19.59	143	5.86	

TABLE III
STATE PROBABILITIES COMPUTED

State	Probabilities							
	Case 1	Case 2	Case 3	Case 5	Case 7	Case 8	Case 9	Case 10
0	. 997004496	. 970445534	. 997004496	. 970445534	. 997004496	. 970445534	. 997004496	. 999700045
A	. 000026271	. 000026469	. 000027191	. 000026467	. 000002719	. 000002647	. 000001496	. 000000273
B	. 000162350	. 000264929	. 0000271.90	. 000026470	. 000002719	. 000002647	. 000001496	. 000000273
E	. 000026263	. 000026469	. 000027191	. 000026467	. 000002719	. 000002647	. 000001496	. 000000273
BA	. 000000003	. 000000005	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
BB	. 000000009	. 000000024	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
BE	. 000000003	. 000000005	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
BD	. 000000124	. 000000563	. 000000005	. 000000005	. 000000000	. 000000000	$\stackrel{\circ}{*} 000000000$. 000000000
AD	. 000000001	. 000000005	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
EI)	. 000000001	. 000000005	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000
D	. 002752397	. 028678470	. 002884497	. 028914765	. 002957223	. 028985558	. 002973089	. 000296387
A1) ${ }^{\text {a }}$.0000000:4	. 000000516	. 000000051	. 000000525	. 0000000005	. 000000053	. 000000003	.000000000
BD'	. 000000167	. 000004641	. 000000046	. 000000520	. 000000005	. 000000053	. 000000003	. 000000000
$E D^{*}$. 000000046	. 000000516	. 000000051	. 000000524	. 000000005	. 000000053	. 000000003	. 000000000

Table III--continued

State	Probabilities							
	Case 1	Case 2	Case 3	Case 5	Case 7	Case 8	Case 9	Case 10
DD^{\prime}	. 000002401	. 000277408	. 000002641	. 000285620	. 000002908	. 000288426	. 000002946	. 000000029
FD^{\prime}	. 000000022	. 000002553	. 000000024	. 000002629	. 000000027	. 000002655	. 000000015	. 000000000
$\mathrm{xXA}^{\text {' }}$. 000000000	. 000000026	. 000000000	. 000000008	. 000000000	. 000000001	. 000000000	. 000000000
DDA ${ }^{\text {a }}$. 000000001	. 000000915	. 000000001	. 000000952	.000000001	. 000000966	. 000000001	. 000000000
F	. 000025252	. 000265710	. 000026464	. 000267916	. 000027155	. 000268601	. 000014948	. 000002719
AA	. 000000053	. 000000575	. 000000057	. 000000581	. 000000006	. 000000058	. 000000004	.000000000
AE	. 000000052	. 000000574	.000000056	. 000000576	. 000000006	. 000000058	. 000000003	. 000000000
BF	. 000000002	. 000000042	. 000000000	. 000000004	. 000000000	. 000000000	. 060000000	. 000000000
FD	. 000000000	. 000000037	. 000000000	. 000000004	. 000000000	. 000000000	. 000000000	. 000000000
xxA	. 000000000	. 000000005	. 000000000	. 000000000	. 000000000	. 000000000	. 000000000	.000006000
dD	. 000000040	. 000003989	. 000000033	.000000430	. 000000004	. 000000044	. 000000001	. 000000000
DDA	. 000000000	. 000000016	. 000000000	. 000000002	. 000000000	. 000000000	.000000000	. 000000000

5. CONCLUSIONS

Randomization appears to be a good way to compute reliabilities for Markovian fault-tolerant computing systems with state spaces of moderate size. Gross and Miller [4] have solved Markov processes with 20,000 states and 200,000 transitions using the standard randomization procedure. It is certainly feasible to use the approach on Markovian models of fault-tolerant systems of comparable" or even larger size. The accelerated randomization algorithm gives a significant savings in CPU time for most examples. There should be an even greater savings for larger systems. Furthermore, this accelerated implementation is applicable to any passage time problem, the exceptional set $5 *$ being the target states (with holding times set to infinity). This has application in computing fault-recovery-time distributions for fault-tolerant systems.

The randomization algorithm is quite easy to implement. The main difficulty encountered in larger systems would be generation of the Q matrix. It is necessary to have an automatic way for the computer to generate Q or a sparse representation of it. Fortunataly, the SERT methodology (see Gross and Miller [3]) can be applied to models of fault-tolerant systems to overcome this difficulty.

The usual approach to computing transient probabilities for Markov processes is solution of the Kolmogorov forward equation

$$
\pi^{\prime}(t)=\pi(t) Q, \quad t \geqslant 0 .
$$

This is an initial value system with $\pi(0)$ given. There are two general approaches: (i) numerical integration techniques such as Runge-Kutta, predictor-corrector, etc., and (ii) exponentiation $\left[\pi(t)=\pi(0) e^{0 t}\right]$ by computing the spectrum, computing the raylor series, or other means.

The randomization technique has a distinct advantage over these approaches in that a bound on the global error can be set by the user, and it is achieved with certainty. Furthermore, Grassmann [2] has shown randomization to be more efficient for some queuing systems.

Another advantage of the randomization approach is that it is a "computational probability" technique. Computational probability is an emerging discipline concerned with numerical solution of applied probability problems. The probabilistic structure of the model is exploited to obtain efficient numerical algorithms and to evaluate the performance of algorithms. In this particular application, probabilistic reasoning led to the accelerated algorithm. Another benefit of the probabilistic analysis is that Equation (2.3) just involves nonnegative numbers, creating numerical stability. Finally, the probabilistic point of view leads to efficient numerical algorithms for computing other quantities of interest, for example, occupancy time distributions and expectations which can be used in a performability analysis.

Over all, it appears that the randomization technique is a very pronising methodology for calculating reliabilities and related quantities for Markovian fault-tolerant computing systems.

ACKNOLNLEDGMENT
Mr. Leonidas Kioussis wrote the FORMRAN programs implementing the randomization algorithms in this paper. His assistance is greaty appreciated.

ORIGINAL PAGE IS

REFERENCES

[1] Ginlar, E. (1975). Introduction to Stochastic Processes. PrenticeHall, Englewood Cliffs, New Jersey.
[2] Grassmann, N. (1977). Transient solutions in Markovian queucing systems. Computers \& Operations Research, Vol. 4, pp. 47-56.
[3] Gross, D. and D. R. Miller (1982). The randemization technique as a modelifing tool and solution procedure for transient Markov processes. Technical Paper Serial T-467, Institute for Management Science and Engineering, The George Washington University, August.
[4] Gross, D. and D. R. Miller (1982). Multi-echelon repairable item provisioning in a time varying environment using the randomization technique. Technical Paper Serial T-468, Institute for Management Sc:tence and Engineering, The George Washington University, September.
[5] Hopkins, A. H. Jr., T. B. Smith III, and J. H. Lala (1978). FTMP-A highly reliable fault-tolerant multiprocessor for aircraft control. Proceedings IEEE, Vol. 66, pl, 1221-1239.
[6] Melamed, B. and M. Yadin (1980). Randomization procedures in the computation of cumulative time distributions over discrete state Markov processes. Preprint.
[7] Ross, S. M. (1970). Applied Probability Models with Optimisation Applications. Holden-Day, San Francisco.
[8] Stifeler, J. J., L. A. Bryant, and L. Guecione (1979). CaRE IIL Final report, phase I. NASA Contractor Report 159122, MASA Langley Research Center, Hampton, Virgini.a.
[9] Trivedi, K. S. and R. M. Geist (1981). A tutorial on the CARE III approach to reliability modeling. NASA Contractor Report 3488, NASA Langley Rescarch Center, Hampton, Virginia.
[10] Wensley, J. H., L. Lamport, J. Goldberg, M. W. Green, K. N. Levitt, M. P. Melliar-Snith, R. E. Shostak, and C. B. Weinstock (1978). SIFT: Design and analysis of a fault-tolerant computer for aircraft control. Proceedings IEEE;' Vol. 6G, pp. 1240-1255.

Appendix 1

S'IANDARD RANDOMIZATION PROGRA

THIS FRKOGRAM IS SPECIALIZEN FOR A PARTICULAK MARKOU FROCESS WITH :
18 STATES, 32 TRANSITIONS, 6 ABGOREING STATES ANI DNE INJTIAL STATE (E.G. STATE NO. 1) THE ARSOREING STATES ARE : STATES NO. $6,7,8,13,216$

INTEGER TSTAR(50)
HOURLE FRECJSION RSTAR?
IIOUBLE FRECISION FHIOLI (25), FHJNEW(25), FRO(25), RLOFRO(25)
IIOUBLE FRECISION RLAMIA,ALFHA, EETA, IEL.TA, FHO, QUE, EFFTLG
IOUBLE FRECISION EFROR,TO,LT,TERM,TKSUM,FFLLT, ELAMAX, FK, COUK

REAIIN INFUT FARAMETERS
REAI, RLAMDA, ALFHA, BETA, IIELTA, RHO, QUE, EFFSILO
FRIINT, "LAMIAE: RLAMLA
FRINT, " ALFFHA : ‘, ALFHA
FRINT, BETA : ", BETA
PRINT, " NELTA: ", TIELTA
FRINT, KHO : , RHO
FRINT, , QUE : , QUE
FRINT, " EFSILON: ', EFSTLO
READ, TO
FEAII, ERFOR
FRENT, ERROR : ", ERFRE

FORHAT(15I4/15J.4/15J.4/5T4)
$N N=18$
CONSTRUCT THE RGTAF VECTOR

```
RSTAR(1)= - 3 * RLAMMA
FSTAR(2) = 3 : FLLAMDA
```



```
FSTAR(4) = ALFFHA
RSTAR(E) = KHO
FSTAF(G) = IEL..TA
RSTAR(%) = 2 RLAMHA
RSTAR(B) = - ( EETA + 2 : RLAMMA )
ESTAE(9) = BETA
FSTAF(10) = 2 : RLAMMA
RSTAR(11) = - (EFSILO + 2 : ELAMCA )
FSTAR(12) = QUE : EFSILO
FSTAE(13)=(1.0- (2UE ) : EFSTLO
RSTAE(t.4) := 2 FRlamIA
KSTAK(15)= - 2 : KiLailla
FSTAF(1S) = 2 : FLAMGA
ESTAR(17) = 0.0
RSTAR(18) = 0.0
FSTAR(19) =0.0
```


-

```
ORIGINAL PACEE IS
OF POOR QUALITY
RSTAK(20) = - ( BETA + ALFHA + RHO + IELTA + KLLAMIIA )
RSTAR(21) = EETA
RSTAK(22) = ALFHA
KSTAR(23) = KHO
RSTAR(24) = DELTA
RISTAR(25) = RLANGA
RSTAR(26)= - (2 : GETA + RINAMNA )
RSTAR(27) = 2 : BETA
RSTAK(2B)= RLAHIA
RSTAK(29) = - ( BETA' + EFSILOO + RLAMMA )
RSTAR(30) = BETA
RSTAK(3!) = QUE * EFSILO
KSTAK(32): ( 1.0 " QUE ) & EFSILO
RSTAR(33) = RLAMDA
RSTAR(3A) = - ( BETA + RlLAMMA )
RSTAR(35) = BETA
FSTAR(36)= RLAMMA
RGTAR(37) = 0.0
ESTAR(3B) = - ( ALFHA + RHO + NEL_TA + RLAMKA )
RSTAF(39) = ALFHA
RSTAR(40) = RHO
NSTAE(41) = DELTA
RSTAR(42) = RLMMLA
RSTAK(43) =- (EFSIID + RLAMMA )
FSTAR(44) = QUE # EPSILO
FSTAK(45)=(1.0 - QUE ) : EFSSLO
RSTAR(46) = RIMAMIA
RSTAR(47) = - RLAMTA
RSTAR(AB) = RLAMGA
NSTAR(49) = 0.0
RSTAR(50) = 0.0
C
C
    10 18 1:1, NN
```



```
    FHIOLII(1) := 1.0
    C
    C COMFUTE RLAMAX
    C
                RLAMMX := RSTAE(1)
                [0 19 I=2,50
                IF ( ESTAR(I) .LE. FLIAMAX ) RL_NMAX = RSTAR(I)
                                    CONTINIJE
                                    Rl_AMAX = - RlamaX
                                    FRIMT, " RLAMAX : ", RLINMAX
    C
        COUM = DLOCS( fLAMAX :% TO )
    C
```

```
C CONSTRUCTION OF THE FSTAR VECTDK
C
        IO 20 I=1,50
    20 FSTAF(I) = RSTAR(I)/RI.AMAX:
        IO 21 I=1,50
        IF ( FSTAK(I) .GT. O.0) GO TO 21
        FPSTAR(I) = 1.0 + FSTAR(I)
    21 CONTINUE
C
C
    K=0
    LT = - RL.AMAX : TO
    IF ( L'T .GT. -120) THEN IO
    TERM = IIEXF(LT)
    ELSE [IO
    TERM=0.0
    ENOTF
    TKSUSM = TEKNM
    IOO 27 I=1,NN
    27 FRO(I) = FHIOLOS(I) : TERN
    IF ( TRSUM .GT. ( 1.0 .- ERROR ) ) GO TO 100
    29 CONTIMUE
        FRLLT = LTT
        K=K+1
        RK=K
        CALL TRYNC(COUN,FK,F'RI.T,L'T,TERM)
        CALL. EVAL(NH,FHIOLI,F'STAR,TSTAF,F'HINEW)
        [10 33 T=1,NN
        FHIOLI(I)= FHJMEW(I)
    33 FFO(I) = FRO(I) + FHINEW(I) : TENH
        TESUN = TRSUN + TERM
        IF (TRSUN .GE. ( 1.0 - ERKOR ) ) GO TO 100
        G0 T0 27
    100 CONTINUE
        IC 110 I=1,N$
        FLOFRO(I) = WLOG10(F'FO(I))
-10 C0NTEME
    WRTTE(6,130)
```



```
        10 135 I=1,50
        WRTTE(b,140) TSTAR(I), RSTAR(I),FGTAR(T)
    140 FOFMAT(", 7X,I4,7X,F2S.23,6X,F28.23)
    135 CDNTINUE
        WRITE(6,150) K
    150 FDRMAT("*//"*, MUHBER OF TERMS SUMMEE:*,T1%)
        WKITE(6,160) TO
    160 FORMAT("*//", 'TIME OF INTENEST :',F10.6)
        WRITE(6,162)
```



```
        IO 155 [=1, MM
        WFITE(b,170) I,NLOFRD(I),FRO(I)
```

```
    170 FOKMAT('>//',5X,'LOGFNO(',I3,', = ',F30.26,5X,F30.26)
    IGS CONTINUE
        S'TOF
        END
O
C
        SUBFOUTINE EVAL (NN,FHIOLN,F゙STAR,TSTAR,FHINEW)
        IOUBLE FRECISION F'HIOLIN(25), PSTAF(50),FHINEW(2S)
        INTEGER TSTAF(S0)
        IOUBLE FRECTSION FHIJ
        IIT 33 J=1yNN
        FHINEW(J) = 0.0
    3% CONTINUE
        I = 0
        IOS J:=%,NN
        J. = L + 1
        FHIJ=FHIOLCO(J)
        FHINEN(J) = FHINS:FSTAK(I) + FHINEW(J)
        Md = TSTAR(I)
        IF (MJ.EG. O) GOTO 2
        IO 1 K=1, HJ
        I=I+1
        LJK:=TSTAK゙(I)
    1 FHINEW(L_MK) = FHINEM(LNK) + FHISJ:F FGTAR(I)
    2 COMTINUE
        FETURN
        ENII
C
C
    SUBFOUTTME TRUNC(COUN,RK, F'RLT,LT,TEFM)
    IOUBL.E FFEECISION COUN,FK,FFRLT,L'T,TEKM
    LT = FRLT + COUM - MLOG( NK )
    IF (LT "GT. -120; THEN IOO
    TERH = IMEXF'(L.T )
    EEGE`口号
    TERM=0.0
    END IF
    BETuNN
    ENT!
C
C........................ENO OF Fl゙ロGRAM\ L_K.............................
```


APPENDIX 2

ACCELERATED RANDOMIZATION ALGORITHM

```
                                    THIS FROGRAM IS SFECIALIZED FOR A PARTICULAR MARKOU FROCESS WITH:
26 STATES, 12 TRANSITIONS, 10 ASSORBENG STATES
IMFILICIT REAL*B(A-H, O-Z), INTEGER(I-N) INTEGER TSTAR(68)
IIMENSLON RSTAR (68), FSTAR(68)
DIMENSION PHIOLD(2b),FHTEW(26),FRO(26), NLOFRO(26)
DIMENSION FIR(10),FPS(10), DLA(A)
DIAENSION COUN(4), ST(4),FRST(4), FNKT(4)
DOURLE PRECISION LT(4)
IIOURLE FRECISION ALG(3), FII(A)
DIATA XL/1.00II-62/
REAIIN INFUT FARAMETERS
REATI, RLAMLA, ALPHA, BETA, IIELTA, RHO, QUE EFFSTLO
FRINT, "LAMDA : ", RLAMCIA
FRINT, " ALFHA : ", ALPHA
FRINT, " BETA : ", BETA
FRINT, " LIELTA: ", NELTA
FRINT, " FHO : FRHO
FRINT, " QUE : ‘, QUE
FRINT, *EFSTLON:", EFSTLO READ, TO REAII, ERROR
FRINT, "ERROR : ", ERREOR
REALI NN
READ(5, 1) (TSTAB (T), \(I=1,68\) )
```


THE TILA FARAMETER VECTOR
ILA (1) $=3$ RLAMMA
HLA(2) $=2:$ FRIMMDA
ILA $(3)=$ RLAMKA
IILA(4) $=0.0$
0

```
```

OXF'| = MEXP(m (MLA(I) : TO))

```
OXF'| = MEXP( m ( MLA(I) : TO))
FRTMT, " IXNF1 : ",NXF!
FRTMT, " IXNF1 : ",NXF!
nXF2 = DEXF( - ( OLA(2) # TO)?
nXF2 = DEXF( - ( OLA(2) # TO)?
FRTNT, " BXF2 : ",NXP2
FRTNT, " BXF2 : ",NXP2
MXFS = UEXF( - (MLA(3) : T0))
MXFS = UEXF( - (MLA(3) : T0))
FRINT, " IXFS : ",DXFS
FRINT, " IXFS : ",DXFS
CONSTRUCT THE RESTAR VECTOR
RSTAR (1) \(=0.0\)
RSTAR(2) \(=0.0\)
```



``` KSTAR (1) \(=\) ALPHA
```

```
RSTAF゙(S) = FHO
RSTAK(G) = IELTA
RSTAK(7) = 2 : RLAMMA
RSTAK(B) = - (EETA + 2 ** R゙LAMLIA)
RSTAR(9) = EETA
RSTAR(10)=2: RI_AMLIA
FSTAK(11) = - (EFGIIOO + 2 : N゙LAMNA )
RSTAF(12) = QUE # EFSILO
NSTAR(13)=(1.0-KUE) : EFSTLO
KSTAR(14)=2: KLAMMA
KSTAR(15) = - (ALFHHA + EETA + KHD + IIELTA + KLAMMA )
FSTAR(16)=AL.FHA
FSTAR゙(17) = FHO
KSTAF(18)= MEITTA
RSTAR(19) = EETA
RSTAR(20)= ELAMCA
```



```
FSTAR(22)=2 * BETA
KSTAK(2O)= KLAMLA
RSTAR(24):= (GETA + EFSTLO + NELAMIA )
FSTAF(25) = UUE: EFSILO
FSTAR(2G) = BETA
FSTAF(27) = (1.0 - QUE) : EFGIIOO
KSTAR(2`)= FLLAMIIA
KSTAR(29) = - (ENETA + FLANCA)
FSTAR(30) = BFTA
FSTAR(31)=FLAMIAA
KSTAF(32) = - (ALFHA + FHO * NEL.TA & NLAMIAA)
RSTAE(3Z) = ALFHA
RSTAR(34) = FNHO
FSTAR(35)= NLAMLA
NSTAR゙(3G) = IELTA
FSTAN(37) =- - (EFSII_O + FI_AMINA )
FSTAF゙(38)=(1.0-RUE): EFSILO
FSTAF:39)= KLAMLIA
RSTAF(40) = QUJE : EFGILO
VISTAF:(41)=0.0
FSTAR(42) : 0.0
```



```
EST\capF(44)=ALFHA
FSTAR(45)= KHO
RSTAF(46) = LIELTA
FSTAR(47) = RILAMMA
RSTAR(48) : - - (BETA + EL_AMIA )
RSTAF(49)= BETA
RSTAR(50) = FLAMOA
KSTAF(51):= - (EFSILO + Kl.AOMA )
RSTAR(S2) = RUE # EFGILU
RSTAR(53)=(1.0-QUE) : EFGILO
RSTAK(54)= RLAHMA
RSTAR(55) =0.0
RSTAF(5í) = 0.0
```

```
RSTAR(5%):=0.0
KSTAR(58) :=0.0
NSTAR(59) = 0.0
RSTAK(60) : 0.0
RSTAR(61):=0.0
RSTAF(62) = 0.0
RSTAF(63) =0.0
FSTAR(64):=0.0
NSTAR(65):=0.0
KSTAF(b6) =0.0
RSTAR(67) := 0.0
RSTAF(bB)=0.0
C
c
    D0: I=1,26
    FHIOLO(IT) = 0.0
    5 CONTINUE
    FHIOLII(1) = 1.0
C
C
COMFUTE RILAMAX
C
    FLAMAMX = FSTAR(1)
    IO 11 I=2,68
```



```
    11 CONTINUE
    FLAMAX = - FIAMAX
    FRINT, " FLAMAX : ", RLAMAX
C
```



```
        1017 I=1,68
    17 FSTAR(I) = FSTAE(I)/ELAMAX
        IO 21 I=1,68
        IF (FSTAR(T) .G'T. 0.0) 60 T0 2%
        FSTAR(I) = 1.0 + FSTAF(I)
    21 CONTINUE
        FSTAE(1) = 0.0
        FSTAR(41) = 0.0
        FSTAE(SS):=0.0
        FSTAR(ST) = 0.0
        PSTAR(58) =0.0
        FSTAR(59) ==0.0
        FSTAF(60) = 0.0
        FSTAF(61) =: 0.0
        FSTAR(02) = 0.0
        FSTAR(63) =0.0
        FSTAR(64) =0.0
        FSTAR(65) = 0.0
        FSTAR(6B) =0.0
        FSTAR(b8) = 0.0
C
```


ORIGINAL PAGE IS
 OF POOR QUALITY

```
    ALG(1) = FILAMAX / ( ELAMAX - NILA(1) )
    ALG(2) = RLAMAX / ( FLAMAX - ILLA(2) )
    ALG(Z)= FLAMAX / ( RLAMAX - NLA(3) )
C
C...................... STAFT CALCULATIONS K = 0
C
            K=0
            TKSUM = 0.0
            IIO 24 I=1,26
            FRO(I) = 0.0
            24 CONTINUE
            FRD(1) = NEXP( - (TILA(1) : TO ))
            TRSUM = FROO(1)
```



```
C
            10 26 I=1,4
            ST(I) = 0.0
            FRST(I) =0.0
            LT(I)=0.0
            FKLT(I) =0.0
            FI(I) =0.0
            2a COUN(I) = IILOG((FLAMAX - Di..A(I)) :% TO)
C
            k=1
            25 CONTINUE
            [0 27 J=1,10
            27 FIK(I) =0.0
            CALLL EVAL(NN,FHTOLI,FSTAR,TSTAK,FHINE(N)
-C
    C........ CALCULATE THE ST(J.,TO,K) QUANTITIES
    C
            IF (K,GT. 1 ) GOTO 31
            110 2% I=1,4
            LT(I) = - NLAMAX : TO
            J.F (LI(I) , OT. -120) THEN IOO
            ST(I)= IEXF(LT(I))
            ELSE IID
            ST(I) = 0.0
            ENII IF
29 CO\TTINUE
            FRINT, ST(I,TO, S):',ST(I)
            FFIINT, < ST(2,T0,1) = , ST(2)
            FEINT, "ST(3,T0,1):",ST(3)
            FFINT, *ST(4,T0,1):*,ST(4)
            S0 T0 33
            31 CONTINUE
            RK:=K
            I=1
```



```
            I=2
            KK=KK + 1.0
            CALI. SUM&I,FKK,FRST,FFRLT,COUN,TERM,L,T,ST)
```


ORIGINAL PAGE IS OF POOR QUALITY

```
    I = 3
    RK = RK + 1.0
    CALL SUM(I,RK,FRST,PRLT,COUN,TERM,LT,ST)
        I = 4
        RK = RK + 1.0
        CALL SUM(I,RK,FRST,PRI_T,COUN,'TERM,LT,ST)
    33 CONTINISE
C
        FI(1)= IXP1 - ST(1)
        FI(2) = 1XP2 - ST(2)
        FI(3) = INP3 - - ST(3)
        FI(I)=1.0-str(A)
    A......... CALCULATE THE FIK.S
            FIK(1) = 0.0
            CALLL TNO(ILLA,FI.AMAX,AL.G,K,FI,XXX)
            FIK(2) = XXX
            CALI THREE(ALG,K,FI,XXX)
            FIK(3) = XXX
            CALLL FOUR(BLA,RLAMAX,F゙IK,XXX)
            FLK(4) = XXX
            - CALL FIVE(ALG,K,FI,XXX)
            FTK(5) = XXX
            CALL SIX(FT,ALG,K,XXX)
            FIK(6) = XXX
            CALIL SEUEN(FT,ALG,R,XXX)
            FXK(?) = XXX
            CALLL ETGHT(FJ,ALO,K,XXX)
            PTK(B) = XXX
            CALL NINE*(ALG,K,FI,XXX)
            FIK(%) = XXX
            CALLL TEN(FI,AL.G,K,XXX)
            FJ.K(10) = XXX'
                O
                O
O ............. EVALUATE TIE CURRENT FROBMBILITIES
    n0 34 I=1,10
    IF (FIM(I') .LE. X' ) THEN IO
    FIK(I) =0.0
    ELSE DO
    FIK(I) : FIK(I)
    ENG IF
    34 CONTINIE
    [10 35 T=4,MM
    IF (FHINEH(I) .LEE. XI* ) THEN IO
    F|TMEW(I) = 0.0
    ELSE DO
    FHINEW(I) = FHINEW(I)
    ENO 1F
    35 COHTINUE
```

```
        FRO(1)=Fl゙O(1) & FHNNEW(1) #FFIK(1)
        DO 30 I =2, 10
        PKO(I) = FRO(I) + FHINEW(I) :H FIK(2)
    36 CONTINIJE
        PKO(11) = FRO(11) + FHINEW(11) ;: FIK(3)
        M0 37 I=12,14
        FRO(I)= FRO(I) + PHINEN(I) & PJK(A)
    37 CONTINUE
        PRO(15):FRO(15) + PHINEW(15) & PTK(S)
        IO 40 I= 16, 17
        FRO(I) = FROU(I) + PHINEW(I) :F FIK(b)
    40 CONTINUE
        FRO(18) = FRO(18) + FHTNEW(18)*FFRK(7)
        IIO 41 I=19,24
        FKO(I) = FORU(I) + FHINEU(I) :H FIK(G)
    41 CONTINUE
        FFO(25) = FRO(25) + FHINEW(2G) &: FTK(9)
        FKO(26) = PRO(26) + FHLNEW(26) & FIN(10)
C
```



```
C
        IO &4 I=1,10
    44 FSI(I) =0.0
    FFSI(1)= FHINEW(1)
    H0 45 I=2,10
    45 FSI(2) = FGI(2) + FHINEN(I)
    FSI(3) = FHLNEW(1T)
    H0 4; J=12,14
    46 FGI(4) = FST(A) + FMINEN(T)
        FSI(S) = FHINEW(IS)
        [10 47 I=16,17
    47 FSI(6)=FSI(6) + FHINEN(I)
        FSI(7) = FHIMEN(1B)
        IIO 48 I= 19.24
    48 FSI(B)=FGI(B) & FHINEN(I)
        FSI(9) = F*HNEN(25)
        FSI(10) = FHINEW(26)
0
C
    10 50 T = = 1, 10
    50 TRSUH=TMSSUH + FGI(I) #FFIK(J)
    IF (TRSUM .GE. (1.0 - ENRON ) 人 00 %O 333
    K=K+1
    {0 S1 I=1,4
    FRST(I) = ST(t)
    FRLT(I)=LT(T)
    51 CONTIMUL
        15 SG T=1,N\
    5S FHJOLU(I) = FHINFW(I)
        G0 r0 25
333 COMTINUE
```

SUMMA : $=0.0$
$11073 \quad I=1$, NN
SUMMA $=$ SUMMA +FFOO(T)
73 FLOFRO(I) $=[110010(F \mathrm{FO}(I))$
FKINT, SUM OF FROBAKIIIITIES , SUNMA
WFITTE (6,130)

IIO $135 \quad I=1,68$
WFITE (G, 140) TSTAR(I), FGTAR(I), PSTAF (I)
140 FOKMAT(, $7 \times, I 4,7 X, F 28.20,6 X, F 28,20)$
135 CONTINUE
WK゙ITE (6,150) K
 WRITE (6, 160) TO

WFITTE (6, 162)
 $110 \quad 165 \quad I=1$, NN
WRITE (4,170$)$ I, RL, OFRO(I), FKO(I)

165 CONTINUE STOF
ENH
0

- SUEROUTTNE EVAL (NN,PHIDLI, PSTAR;TGTAR,FHINEW) DOUBLE FRECISION FHIOLD(26), FGTAR(68), FHINEU(26) INTEGER TSTAR (68)
LIOUBLE FTECESJOM PHIJ
INTA XIK/1.00E-62/
[10 77 JFi I , MN
FHINEW(J) $=0.0$
77 CONTINUE
J. : $=0$
(10) $31 \mathrm{~J}=1$, NM
$I=I+1$
FHT.J $=$ FHIOLOM(J)
FHINEU(J) = FHI, J: FSTAF(T) + FHINEW(J)
M.J $=\operatorname{TSTAF}(I)$

IF (MJ.EQ. O) GO TO 91
no $79 \mathrm{KK=1,MJ}$
$I=1+1$
L.JK : TSTAAR(T)

FHTNEW(L.JK) $=$ FHINE:H(LJK)
ELSE IO
FHINEW(L.JK) = FHTHEW(I.JK) + FHTJ * FGTAE(I)
EM1 IF
79 CONTTMUE
B1. COMTITUE
RETURA
EHID

OF POOR QUALITY

```
O
C
    SUBROUTINE THO(DLA,RLAMAX,AL.G,K,FI,XXX)
    DOUBLE PRECISION ILA(A),ALG(B),FI(A)
    DOUBLE FRECISION RLAMAX,XXX
    XXX = ALG(1) w:%K
    XXX = XXX : DLA(1) : FI(1) / Kl.AMAX
    RETURN
    ENH
C
C
C
    SURROUTIME THREE(ALG,K,FI,XXX)
    IOURLE FRECISIDN ALG(3),FI(4)
    IOURLE FRECISION XXX
```



```
    RETURO
    ENII
C
```



```
    SUBROUTINE FDUR(ILA,RLAMAX,FIK,KXX)
    HOUDLE FRECISION DLA(4);FIK(10)
    HOUBLE FFEEISION FLAMAX,XXX
    XXX = DLA(2): FIK(3) / FLLAMAX.
    RETHEN
    EMLI
C
C
    SUBKQUTINE FIUE(ALG,K,FI,XXX)
    IOUBLE FRECISION AL.G(3),FI(4)
    IOURLE FRECISION XXX
    IF (K.gT. 1 ) GO T0 1005
    XXX = 0.0
    G0 T0 1006
    1005 XXX=( ALG(Z):0:(K-2)) # 3 : FT(3)
    XXX = XXX - ( (AI_(G(2)**(%-2)) & 6 # FI(2) )
```



```
1006 CONTINUE
    FETUEN
    ENSI
C
C
    SUBROUTINE SIX(FT,ALG,K,XXX)
    DOUBLE FBECISION FI(A),ALO(3)
    IOUBLE FRECISION XXX
    IF ( R.GT. 1) GO TO 1011
```

$X X X=0.0$
RETURN

REYURN
ENLI

SURROUTINE SEVEN(FI, ALG, $K, X X X)$
DOUBLE PRECISIUN FI(4),ALG(3)
HCOULE PRECISION XXX
TF (K KGTm 2) GO TO 1021
$X X X=0.0$
RETURN

RETURN
END
0

SUBROUTINE ETGUT (FT, ALGYK:XXX)

LOUBLE PRECISION XXX

EETURN
ENII
0
C
SUBROUTINE NINE (ALG, K, FI, XXX)
DOUBLE FHECSESON ALG(3),FT(4)
DOUBLE FRECTSION XXX

RETURN
END
0
C
C
SURROUTINE TEN(FI,ALG,R,XXX)
HOUBLE FRECISICN FI(4), ALG(3)
LIOUBLE FRECISIGN $X X X$
IF (K KGT. 1) GOTO 1031
$X X X=0.0$
RETURN

RETURN
ENI

ORIGINAL PAGE IS OF POOR QUALITY

```
C
C
    GUBKOUTINE SUM(I,RK,FRST,FRLT,COUN,TERM,LT,ST)
    IOUSLE FRECISION FRST(4),FRLT(4),COUN(4),LT(A),STY(4)
    IOUBLE FRECISION FK,TERM
    RK = KK - 1.0
    CALLL TRM(I,FKK,FRLLT,COUN,LT,TEROM)
    ST゙(I) = PRST(I) + TERM
    RETURN
    END
C
C
C
    SUBROUTINE TRM(I,FK,FFLLT,COUN,LT,TERM)
    HOUBLE FRECJSION FRLT(4),COUN(4),LT(4)
    nOUBLE FRECISION TERN,RK
    LT(I) = FFKIT(I) + COUN(I) .. MLOG(KKK)
    IF (LT(I) .BT. - 50.0) GO TO 500
    TERM = 0.0
    RETHRN
    500 TERM = MEXF( LT(I) )
        RETINEN
        ENII
```

