General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

THE UNIVERSITY OF KANSAS CENTER FOR RESEA: :ic :IC

2291 Irvin Hum Dorve-Compers What

 Lennmee, Kermes cto45Trombone: (913)864-4832
"Wade suitable moor Math spementio

$$
\begin{gathered}
E 83-10177 \\
\text { CR.169784 }
\end{gathered}
$$

in the interest of early and wide dib. semination of Earth Resources Sem Program ininrmation and without lonely
in any use for any use move therese"

Adaptive Filtering af Radar Ines for Autofocus Applications

$$
\begin{aligned}
& \text { (B83-10177) ADAPTIVE FILTERInG OF EADAB } \\
& \text { 183-17940 } \\
& \text { IAAGES FOR AOTOFOCOS APPLICATICAS Final } \\
& \text { Report (Kansas Univ. Center for Research, } \\
& \text { Inc.) } 39 \text { P BC A03/MF AOI CSCL 17I Uncles }
\end{aligned}
$$

J. A. Stiles
V. S. Frost
J. S. Gardner
D. R. Eland
K. S. Shanmugam
J. C. Holtzman

Remote Sensing Laboratory
Technical Report
RSL TR 489-1, Final Report

June 1981

Remote Sensing Laboratory University of Kansas Center for Research. Inc. Lawrence, Kansas 66045

Supported by:

Jet Propulsion Laboratory
California Institute of Technology under Contract 955851

abstract

Autofocus techniques are meing designed at the Jet Propulsion Laboratory to automatically choose the filter parameters (i.e., the focus) for the digital synthetic aperture radar correlator; currently, processing relies upon interaction with a human operator who uses his subjective assessment of the quality of the processed SAR data. Algorithms have been devised applying image cross-correlation to aid in the choice of filter parameters, but this method also has its drawbacks in that the cross-correlation result may not be readily interpretable. Enhanced performance of the cross-correlation techniques of JPL was hypothesized given that the images to be crosscorrelated were first filtered to improve the signal-to-noise ratio for the pair of scenes. The results of experiments are described and images are show.

LIST OF FIGURES

Page
Figure 1 Multiplicative noise nodel for radar signals followed by cross-correlation, and then by minimum square error filtering as a preprocessing step for cross-correlation 9
Figure 2 Fading scenes (Images 1 and 2) were generated from a squared, segmented, averaged (within field boun- daries) Seasat-A SAR image. White noise with a x_{2}^{2} probability density function was used in a multi- plicative arrangement to produce fading scenes from the nonfading scene 10
Figure 3 Cross-correlation surface generation 11
Figure 4 Image 3 was couputed from Inage 1 using the adaptive filtering parameters "A" of Table 3. Image 4 was calculated from Image 2, also based upon parameters "A" of Table 3 12
Figure 5 Image 5 was generated from Image 1 using the adaptive filtering parameters "B" of Table 3. Image 6 was computed from Image 2, also based i'pon parameters "B" of Table 3 13
Figure 6 Shown above is the cross-correlation surface for Images 1 and 2 as photographed from an isometric display. The small trench running across the scene in the foreground of the peak is a display ariifact. The peak has agerally pyramidal shape 14
Figure 7 Pictured above is the cross-correlation suriface for Images 3 and 4. Cresting of the surface is seen; the shape is still primarily pyramidal 15
Figure 8 Illustrated above is the cross-correlation surfacefor Images 5 and 6. It has the same general charac-teristics as seen in Figure 715
Figure 9 The three cross-correlation peaks shown from above 17Figure 10 The three correlation peaks identically scaled, froma side view. The center peak belongs to the cross-correlation of Images 1 and 2 and has a lower in-tensity18
Figure 11 Side view of cross-correlation surface of Images 1and 2. Identical scales were used for photographson this page19

LIST OF TABLES

Page
Table 1 Cross-Correlation Inputs 20
Table 2 Filter Parameters and Their Functions 21
Table 3 Filter Parameters App? ed to Fading Scenes 22
Table 4 Cross-Correlation Results 23
Table 5 Width of the Correlation Surface Peak at Several Intensity Levels Below the Maxina (8 bit quantization of cross-correlation functions, all scalec identically by an arbitrary constant) 24

1.0 INTRODUCTION

The Jet Propulsion Laboratory maintains a digital symthetic aperture radar correlator which is now being utilized to process the raw data from the Seasat-A SAR mission wich took place in 1978. The data represent the complex video signal, and they must be filtered to produce images suitable for viewing. Current!y, filter parameters are chosen by a human operator, based solely upon subjective evaluation of image "quality". Alternative means for determining the "focus" parameters have been sought by JPL. One technique consists of crosscorrelating images generated as, say, the first and fourth looks which originate frem distinct spectral components of the complex SAR images.

As discussed in JPL internal memoranda [1, 2], when the SAR data are not optimally focused, the first and fourth look images will be offset from each other spatially, and the offset can, theoretically, be determined through registration techniques (using cross-correlation algorithms). However, the images generated have statistically independent noise degradation (i.e., independent fading noise) since the scenes arise from different portions of the complex spectrum of the SAR data. Although the underlying microwave reflectiv:ty scene is ideally the same for the image being correlated, a strong correlation peak cannot usually result due to the formation of different noise sample functions in the two scenes.

It was proposed that the cross-correlation approach would work better if the two scenes were first filtered to improve signal-to-noise characteristics, prior to crors-correlating. An adaptive minimum mean square error image filter developed by Frost et al. [3] at the Remote Sensing Laboratory was candidate for preprocessing two one-look images
"amplitude" image was squared so that intensities could be displayed. Next, the image was segmented into "homogeneous" regions as determined by field boundaries (the scene is an agriculturally developed region in lowa).

The noisy areas within the field boundaries were "colored over" on the digital image display at the Remote Sensing Laboratory, with the mean values of those areas determining the intensity that would replace the fading scene. Next, this segmented, averaged image (shown in Figure 2) was input to an algorithm which regenerates fading values according to the relation $[5,6]$

$$
\begin{equation*}
P_{R}=\frac{\overline{P_{R}}}{2 N} \cdot y \tag{1}
\end{equation*}
$$

where N represents the number of looks for the radar (assumed integer) and y is a random variable whose probability density function is given as a $x_{2 N}^{2}$. Thus, a random number generator was employed to replace average intensities. No pixel correlation was used to color the spectrum of the noise; this approach is supported by the observation that the pixel-to-pixel correlation is not highly significant for $N=1$ images even though there are several pixels per resolution distance (actual experiments were conducted with the SAR $580 \mathrm{~N}=1$ data, which was digitally processed, and not sampled at the large interval (-17 m) of the comercially available Seasat-A SAR data). Since white noise was used, it is possible the results of the overall experiment would change somewhat if samples were correlated (say, run through a linear fil'ter prior to multiplication with the "defaded" scene).

Two $N=1$ images were computer generated with different noise sample functions as seen in Figure 2.. These images were next input

0 UGELATION RESULTS

The cross-correlation surface peak and its surrounding region for Images 1 and 2 is shown in Figure 6. It is characterized by a meak correlation maximm, and it is pyramidal in shape, with no strang sidelobe structure. This surface was photographed from an isometric display; a 64 by 64 pixel region from the original 512 by 512 pixel surface is represented. The equivalent rectangular width of this surface is 53 pixels by 53 pixels. The peak value of the cross-correlation is listed in Table 4. The cross-correlation of Images 3 and 4 is viewed in Figure 7. The adaptive filtering effects have caused the crosscorrelation peak to have more sharply crested zones away from the peak. The equivalent rectangular width is 57 pixels square; the cross-correlation peak is listed in Table 4. Likewise, the cross-correlation of Images 5 and 6 (processed with identical filter parameters (B) of Table 4) is shown in Figure 8. Again, it is noted that a more sharply crested fali-off of the peak is produced by the MMSE filtering. The equivalent rectangular width is 59 pixels square; the cross-correlation peak is listed in Table 4.

The three cross-correlations are shown together in Figures 9 and 10. Note that all images were scaled identically so that a direct comparison could be made. To examine more closely the fine structure of the peaks, they were rephotographed as side views, and they are shown in Figures 11, 12, and 13. We see that although the crosscorrelation of Images 1 and 2 (original fading images), which is given as Figure 11, has a smaller equivalent rectangular width than the preprocessed cross-correlations, it is apparent that the surface is sharper near the peak for Figures 12 and 13 (Image 3 cross-corre-
estimator and research is continuing along these lines.
Previous research of Fries and Modestino [8] has shown the statictical limitation of the autocorrelation peak for scenes similar to the "source" image of figure 2. Thus, it is known that the cross-correlasion peak cannot rise above a certain level on the average, even if the two image inputs to the cross-correlation consisted of identical values $\hat{r}(t)$ on a pixel-by-pixel basis due to preprocessing. That is, the type of scene limits its own unnormalized autocorrelation peak. Fries and Modestino also have shown this effect to be functionally dependent on edge density and average intensity correlation between neighboring fields [8]. One could consider the agricultural test region chosen to be somewhat a worst case example of SAR scenes for analysis. The greatest difference in cross-correlation peaks for nonprocessed versus preprocessed scenes would be seen for two ingependent, white noise fields; this case might be thought of as the best case for demonstrating potential of the MMSE filtering approach.

ORIGINAL PAGE IS OF POOR QUALTTY

Figure 1. Multiplicative noise model for radar signals followed by cross-correlation, and then by minimum mean square error filtering as a preprocessing step for crosscorrelation.

ORIGIIIAL PAGE IS
OF POOR QUALITY

Figure 3. Cross-correlation surface generation.

ORIGINAL PAGE IS

 OF POOR QUALITY

Figure 5. Image 5 was generated from Image 1 using the adaptive filtering parameters "B" of Table 3. Image 6 was computed from Image 2, also based upon parameters "B" of Table 3.

Figure 7. Pictured above is the cross-correlation surface for Images 3 and 4. Cresting of the surface is seen; the shape is still primarily pyramidal.

Cigure 9. The three cross-correlation peaks shown from ahove.

Figure 13. Side view of cross-correlation surface of Images 5 and 6 .

Table 2

Filter Parameters and Their Functions

Parameters

Functions

Filter Size	filter impulse response width
Number of Filters	sets $N F-1$ thresholds for σ^{2} / μ^{2}, which (NF)
are then mapped into filter indices	
Observation Window	
Size	window size in which σ^{2} and μ^{2} are computed
Maximum Alpha	sets the rate of decay within a filter as a function of filter index
multiplying factor on the input pixel	
Input Gain	values adjusts the fi?ter indices up or down maps the observed noise-to-signal ratio $\left(\sigma^{2} / \mu^{2}\right)$ 'nto a filter index
Alpha Bias	

Table 4
 Cross-Correlation Results

Image Number	Correlation Peak $\left(\times 10^{7}\right)$	Equivalent Rectangular Width
1 and 4	1.648	53.0
2 and 5	2.096	58.7
3 and 6	2.020	58.4
7 (autocorrelation)	1.986	\cdots

OF POOR QUALITY

ORIGINAL PAGE 13
APPENDIX

The minimum mean square error filter for stochastic estimation of fading radar signals based upon the multiplicative SAR image model $[5,6]$ was developed and reported previously $[7,3]$. The implementation of this filter, in effect, determines whether a region under observation is "homogeneous" (e.g., a white noise field) or not (contains a boundary, or for some other reason possesses a signal-to-noise ratio lower than the theoretically calculable value). NF-1 thresholds exist with which to compare the observed value of σ^{2} / μ^{2}, where

$$
\begin{aligned}
& \mu=\frac{1}{(w s)^{2}} \sum_{i=1}^{(w s)^{2}} x_{i} \\
& \sigma^{2}=\frac{1}{(w s)^{2}-1} \sum_{i=1}^{(w s)^{2}}\left(x_{i}-u\right)^{2}
\end{aligned}
$$

ws equals the window dimension (square in this implementation).
The quantized levels of σ^{2} / ν^{2} are mapped into filter indices, NF total filters. The filter chosen is used as a mask to multiply on a pixel-by-pixel basis with the underlying image data. As the observation window moves, different filters are picked to apply to the data. Within a filter, the exponential decay of weightings is governed by the constant alpha max.

The following computer output lists the filters used on Image 3 (generated from Image 1) and gives the number of filter usages.

The adaptive implementation of the MMSE filter wis written by Stephan A. Smith* and Victor Frost of the Remote Sensing Laboratory. *Now at Texas Instruments, Dallas, Texas.

ORIGINAL PAGE 13
OF POOR QUALTTY

ORIGINAL PAGE IS
OF POOR QUALITY

1
0nm
－ono
－NOO
000
000
000
monenamm
0000000
0000000
0000000
0000000
0000000

monnmame Mogogam frnm nio 0000000 0000000

5ONMNO
－00N00
－Jamos
이양ㅇㅇ
0000000
0000000
20
~ 0
Nom
No
00
00

nowirunconn
NMing Mn Minocloum －00 000v000

Nomincon $\infty \infty 0$＋0， varmumaa －inomono oomomoc 0000000 ＊
onm
－aの
－NO
－NO
000
00°
000

0.004116	0.013924
0.002297	$0.0 C 6386$
0.000993	$0.0 C 2297$

$$
\begin{aligned}
& \underset{\sim}{\sim}
\end{aligned}
$$

$\stackrel{8}{4}$
－$\infty 000$ or－0．00
いomovimo
－nNへNに noローrruo $\cdots 0000000$
 THI

Mosononm 0000000 00－0－00 －000000 0000000 －0000́Ó

－000－m OJningo GNNONNEI 000MOOO －0́cóóó
0.50 － 0 －00nnos N－MNONONG OEMNMFO －

Mno 00．00m nooviroo －yoning以OMN․ no000000 ncónóóo

OMNMNMO mooogom
 0000000 잉ㅇㅇㅇㅇㅇ 000000 000000

－sNNNが கom N －nMnMn－
잉ㄷํㅇㅇ
0000000
－＇．
00000

 $\underset{\sim}{\sim}$
」vinooons $\rightarrow \infty$－ いいうNNN゙タ ONNのNNO nuvoー000 $\cdots 0000000$ nóóóóóó 픈
$\underset{\sim}{\rightleftarrows}$
」－のヘ0000－ いOnmmonno いとかんnany －nnanनo nuvooooo 40000000 nóóóóó 퐃
stinnnes －00N00－ ftamaty －007000 －000000 0000000 ○́ÓÓÓO

ORIGINAL PAGE 13 OF POOR QUALITY

ORIGINAL PAGE 15 OF POOR QUALITY

mmauonmma - ocninminmeo

