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A STUDY OF HIGH DENSITY BIT TRANSITION
REQUIREMENTS VERSUS THE EFFECTS ON BCH
ERROR CORRECTING CODING

SUMMARY

This report constitutes the final fulfillment of the requirements
of the contract NAS8-33887. A comprehensive technical interim final
report was submitted in January 1982 and an interim report was
submitted on September 16, 1980.

The interim report of September 16, 1980 contained the recommended
design to achileve the required bit transition density for the HRM data
stream of the Space Laboratory Vehicle. It contained a recommended circuit
approach, specified the pseudo raiidom (PN) sequence to be used and
detailed the properties of the sequence. Calculations showing the
probability of failing to meet the required transition density were
included in this report. '

The technical interim final report of January 1982 included a
computer simulation of the data stream and PN cover sequence. All
worst case situations were simulated and the bit transition density
always exceeded that required. An interested reader is referred to
that comprehensive report (MSU report MSSU-EIRS-EE-81-5,  Appendix E).

In March 1982 the Preliminary Design Review (PDR) was held at
Martin Marietta/Denver and the critical Design Review (CDR) was held
at MBB in Munich, Germany in June 1982. This investigator attended
both meetings and reports have been filed for both of these activities.
These reports are included as appendices of this final report.

Several related activities were requested of this investigator and
the reports concerning these activities are alsc included as appendices
of this final report.

Tn summary it should be noted that the CSG Encoder/Decoder design
has been constructed and demonstrated by MBB and Martin Marietta/Denver.
The demonstrations were successful and all HRM and HRDM units will

contain the CSG encoder or CSG decoder as appropriate.
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APPENDIX A

REDUCING THE BIT ERROR RATE OF A DATA STREAM

A request was made to suggest a method that would be inexpensive
and yet effective for achieving an average bit error rate of 10-6 from
a data stream with an average bit error rate (BER) of 10_5. The

following material of appendix A is the response to this request.
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MISSISSIPPI STATE UNIVERSITY ﬁ

COLLEGE OF ENGINEERING

DEPARTMENT (OF ELECTRICAL ENGINEERING
DRAWER EE

MISSISSIPPI STATE, MISSISSIPPI 39762
PHONE (601) 325-3912

December 17, 1980

Mr. Russ Coffee
EF13 _
MSFC, Alabama 35812
Dear Mr. Coffee:

Enclosed is a write up concPrning a method of effectively lowering
the average BER from 1073 t» 106 for additive white gaussian noise.

This is only one possible method of many and it is to be stressed
that a detailed knowledge of the structure of the frame of data is
necessary to properly match the data source to the coding technique.

If I can be of any other help please contact me.

Sincerely,

Frank Ingels
Professor




1.

On Lowering the Average Bit Rate From 10 ° to Less than 10

6

Assumptions 107 average bit error rate due to additive white

gaussian noise.

Assume that 1% or 2% overhead may be added to data stream by

simply increasing number of words in frame and upping output

data stream rate by 17 or 27. , §.¢

™

Assume frame is roughly in multiples of 1000 bits.

(actually 1013 or less)

Structuring Frame in 1013 segments we may add 10 extra digits per

segment thereby producing 1023 bit segments. Thus we have a

(1.023, 1013, 1) BCH code which has 1013 information digits

(acutally 63 words, 16 bits each, will be 1008 digits and we

have 5 unused digits, Hence the overhead will actually be 15
digits out of 1008 for 1.488% overhead. Thus if the frame
consist of 63 words, 126 words or multiple of 63 words we '

may add error correcting for 1 digit out of 1000 for an

overhead of approximately

Probability of error in 1013 digits unencoded is:

'P(error,unencoded)

For the (1023,1013,1) code

P(error,encoded)

1-5%) [3

1 - P(0 errors in 1013 digits) i

1013 2

1 - (.99999) = 1,0078914+10"“ = 1.0078914% ’;' ¥

the probability of error in 1023 digits is:

1-[P(0 errors in 1023) + P(1 error in 1023)] | .
1-[¢.99999)1023 4 1023(.99999)19%22(1073)] |
5.19208f'x10-.5 = ,00519208%
4 :
i
t
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The equivalent average bit error rate due to additive gaussian

noise would thus be

_ 41023 5

[1-P(0 errors for 1023)] ) = 5,19208-10"

1

or

x1023 . 99994807

or

1023(L0310X = Loglo(.99994807)

X

«99999994

of Average Eq Bit Error Rate = 1-X = 5.05 x].O-8

Thus a significant reduction in equivalent bit error rate is

achieved through this simple encodirg.

The encoder is shown in Figure 1. The decoder may be an
encoder circuit plus a 1023 x1013 (or 106 digit) ROM or
the error trapping deocder shown in Figure Z. The tradeoff

is 1023 clock pulses versus 106 bits of ROM.

i i
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APPENDIX B

PROBABILITY OF ACHIEVING FRAME SYNCHRONIZATION

A request was made to conduct an analysis of the probability of
achieving frame synchronization (sync) within 3 frames of data with and
without a 1 bit per frame sync allowable error. The analysis was conducted

and the report follows as Appendix B.
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MISSISSIPPI STATE UNIVERSITY m

COLLEGE OF ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING
DRAWER EE

MISSISSIPPI STATE, MISSISSIPPI 39762
PHONE (601) 328-2012

March 15, 1982

Mr. Russ Coffey
EF-13
MSFC, AL 35812

Dear Mr. Coffey:

Enclosed is an independent analysis of the probability of achieving
frame sync in 3 frames of data. You miny notice that I have deemed it
necessary to include the possibility of errors occurring in the frame
count word when detecting the first frame sync word. This is necessary
since the second detection of a correct frame sync word (when in
Verify Mode) will automatically check to see if the frame count is
correctly incrementing (or decrementing if encoded with the PN sequence)
with respect to the first correctly determined frame sync word. Thus,
an error in the first frame count will result in non-verification in
the second frame count even if it is correct. ' )

If you have any questions, please call.
Sincerely,

Frank Ingels, Ph.D.

Professor

Department of Electrical Engineering
lan

Enclosures

cc: Mr. Frank Echols
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PROBABILITY OF FRAME SYNCHRONIZATION LOCK WITHIN

3 FRAMES FOR HRDM 2 MHZ DATA STREAM

ANALYSIS
Assumptions:
1. It is assumed that zero (0) errors are allowed in a 28
bit frame synchronization (sync) word and that (0) errors
are allowed in the frame count word for recognition to

occur.

2. To enter the Verification Mode (VM), from the Search
Mode (SM) it is required that the 28 bit frame sync word
be detected with zero errors.

3. To enter the Lock Mode (LM) from VM, it is required that
the 28 bit frame sync word be detected in the next
successive time location with no errors, and that the
frame count has incremented (or decremented) by 1 count
with respect to the first detected frame sync frame count.

4, The frame sync 28 bit pattern in question is:

1111 1010 1111 0011 0011 0100 0000 4 Bit ID.

Let the following terms be defined:
Po = Probability of zero errors in the 28 bit frame sync pattern.
Poc = Probability of zero errors in the 4 bit frame count pattern.
PFS = Probability of a false sync word occurring in the data

stream or in the slipped frame sync pattern.

A £ TR TR S PR e A



PVM = Probability of entering the Verification Mode from the
Search Mode
PLM = Probability of entering the Lock Mode from the

Verification Mode.

To determine the probability of sync Lock, P3F’ in 3 frames of data

we first note the following: For 2 successive frames we require

Por = Pym iy

For 3 successive frames, we have the following options:
A. Migsing the first frame due to errors, but locking on the
next two.
B. Receiving all 3 frames successively, thus, Lock up
occurred on first two.
¢ Missing the last frame due to errors, but Lock has occurred
(This is considered satisfactory since Lock occurred)

Thus:

P3F = PVM PLM (Probability of C) + (Prcbability of A) PVM PLM

+ P (Probability of B) .

W™ PLM
But

Probability of A = Probability we don't enter M =1 - Pim
Probability of B = Probability of zero errors for 3rd received
frame = PFC

Probability of C = Probability of error in frame count = 1 - PFC

10
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As a result,

P3F = PVM PLM a - PFG) +(1 - PVM) PVM PLM + PVM PLM PFC .

To enter VM from SM we must detect the frame sync pattern with zero
errors and not have detected a false frame sync pattern (which would
place us in an erroneous time slot, thus preventing the transition
from VM to LM on the next frame). At the same time, there must be

no errors in the frame count or the next frame count will not appear

to have incremented (or decremented) properly. Thus,

P = Po 1

™ - Ppg) Ppg -

To enter LM from VM we must detect the next frame sync pattern with
zero errors and not have an error in the frame count. (Note the
possibility of an erroneous frame sync occurring in the data is

not an option due to the time gating used in the detection algorithm.)

Thus,

We must first determine the probability of an erroneous frame

sync word, PFS'

False sync can occur two ways:

A, A slipped frame sync pattern can differ from the non
slipped frame sync pattern by only a few bits. If these
bits are changed by error on the channel, then false
frame sync will occur.

B. A false frame sync can occur in the data stream.

11




For situation A we note:

Frame Sync

1111 1010 1111 0011 0011 0100 0000 4 Bit ID

Slipped Frame Sync (two bits slip)

XX11 1110 1011 1100 1100 1101 0000 OO0XX

We note that since the 4 bit ID pattern in continuously changing

it must be considered a random bit pattern and each bit may match the
appropriate pattern with probability 1/2. Also note the slipped
frame sync word matches the original in 14 places and differs in

12 places. To have frame sync occur within the slipped portion,

we must thus have 12 bits changed by channel errors, 14 bits error
free and two bits match by random choice. Thus, for this two bit

slip we have the probability of false frame sync equal to

Prg = /2)% eER)!? (1 - mEr)4
2 Bit Slip
or
P 2 2.4965 x 10°°1 (BER = 107%) .
2 Bit Slip

A tabulation of the number of differences and number of random

match digits versus the number of bits skipped is tabulated in

Table I. Obviously a 28 bit.slip produces a 28 random match situation
and for a well chosen frame sync pattern no bit slips will produce
agreement in all places. A worst case bound on the probability of

false frame sync due to small slips in the bit stream may be

12
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obtained by assuming each of the T 27 bit slips produces 27

random matches and 1 difference. (BER = Channel Error Rate).

Thus,

Prs < 54 )74 (BER) = 4.0233 10712 (for BER = 107%) . | \

Bit Slips

In addition there are 3070-54 = 3016 ways for random data matches
to create false frame sync.

Thus

-5
Prg = 112354755410 ~.

Data Match

The total probability of false frame sync is thus bounded by

Prg S 1:123547-10"° (for BER = 10~%)
i

The probability of O errors in the frame count is

= (1 - BER)* = (.9999)% = 9.9960006+10"1 (for BER = 107%) .

Prc
Therefore, we have for P, (for BER = 10—4) ?.
P = 9.967937-107% L
™ ‘ |
and for P, (for BER = 10_4) z =
P & 9.968049-107%
LM L[]
o
ORIGINAL PAGE IS
OF POOR QUALITY
13 %
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For two successive frames, we have the probability of frame sync

Lock as: (BER = 10-4)

& 9.936088-10%

Por = Pym Pry .

or
99,360887% of the time Lock up occurs within 2 frames.

For three successive frames we have the probability of frame sync

Lock as: (BER = 10-4)

1

P3F = PVM PLM(Z - PVM) 9967946510

or
99.67946% of the time Lock up occurs within 3 frames.

Table II shows the probability of frame sync Lock up for two and

three frames for BER's of 10-4, 10_5 and 10-6.

CONCLUSION

Dropping the 1 error tolerance in the 2MHZ frame sync detector

does not create an undesirable frame sync Locl: up situation.

14
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APPENDIX C

REPORT OF PDR (MARTIN/DENVER)

A report was submitted after attendance of the Preliminary Design
Review (PDR) held at the Martin Marietta/Denver facility in March 1982,

A copy of this report follows as Appendix C.
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A STUDY OF HIGH DENSITY BIT TRANSITION
REQUIREMENTS VERSUS THE EFFECTS ON BCH

ERROR CORRECTING CODING

A Monthly Progress Report
Covering the Period
March 1, 1982 -~ May 31, 1982

Submitted to:

George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Marshall Space Flight Center, Alabama 35812
Technical Monitor: Mr. Russ Coffey, EF-13

Submitted by:

Mississippi State University
Engineering and Industrial Research Station
Department of Electrical Engineering

Mississippi State, MS 39762

Principal Investigator: Frank M. Ingels:
Contract Number: NAS8-33887
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A STUDY OF HIGH DENSITY BIT TRANSITION
REQUIREMENTS VERSUS THE EFFECTS ON BCH

ERROR CORRECTING CODING

Work Summary (March 1, 1982 - May 31, 1982)

In March a preliminary design review (PDR) at Martin/Denver
was attended. Participants included representatives and/or personnel
from Martin/Denver, NASA/MSFC, NASA/KSC, M.B.& B. /Germany, MATRA/
FRANCE, MDTSCO/Huntsville. .

A review of the actual encoder schematic to be implemented for
the PN sequence generator was conducted by this participant. It
was judged to be the same as the circuit recommended in the research
report with two exceptions. These are; first that the circuit is
now loaded with a clear line and the appropriate starting point is
now achieved by use of complementing the appropriate outputs.

The CSG encoder decoder circuit apprrved is illustrated in
Figure 1 of this report. Note, output off the fifth stage is required
to achieve complementation of the sync ID biis.

Further questions will be clarified at the summer CDR meeting
concerning the actual circuit (verification that it is as Figure 1)
and to ascertain the operation of the counter used to start/stop

the encoder.

19
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APPENDIX D

REPORT OF CDR (MBB/MUNICH)

A report was submitted after attendance of the Critical Design Review
(CDR) held at the MBB facility in Munich, Germany in June 1982. A copy

of this report constitutes Appendix D.
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A STUDY OF HIGH DENSITY BIT TRANSITION
REQUIREMENTS VERSUS THE EFFECTS ON BCH
ERROR CORRECTING CODING

A REPORT
COVERING THE
CRITICAL DESIGN REVIEW
(CDR)

June = July 1982

Submitted to:

George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Marshall Space Flight Center, Alabama 35812

Technical Monitor: Mr. Russ Coffey, EF-13

Submitted by:
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Engineering and Industrial Research Station
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A STUDY OF HIGH DENSITY BIT TRANSITION
REQUIREMENTS VERSUS THE EFFECTS ON BCH
ERROR CORRECTING CODING

WORK SUMMARY (Critical Design Review - CDR)

During the period June 21, 1982 to June 26, 1982, a critical design
review (CDR) for the cover sequence generator (CSG) encoder/decoder for
Spacelah was held. This meeting was held at the Messerschmidt/Bohlm/Bolkow
(MBB) facility in Ottobraun, Germany. Representatives from McDonnell
Douglas Support Company (MIDSCO), Martin Marietta/Denver (MM/D), MATRA of
France, ERNO and NASA/MSFC attended this meeting.

A demonstration of the engineering prototype unit test procedure was
conducted. This demonstration encoded Eransmitted, received and decoded a
known data stream. Various possible fault conditions were demonstrated
along with the resulting front panel displays which indicated the fault
under demonstration.

The demonstration tests were satisfactory in both performance and test
design. Discussions with Dave Banerian of MM/D and Dick Burtzlaff (MM/D)
to ascertain the test philosophy and test design procedure were conducted
by this investigator. These discussions satisfied me as to the appropriate-
ness of the testing procedure. Copies of the first annual report by
Mississippi State University concerning the philosophy and design of the
CSG encoder and decoder (in particular the sequence chosen and the properties
desired) were requested by Mr. Jerry Malloy (MTDSCO), Mr. Don Rawson (MTDSCO)
and Mr. Chuck Kervin (MBB). After clearing the request with Mr. Bern Siler
of NASA/MSFC copies of these reports were distributed.

A discussion of the actual synchronization pattern being used in the
Space Lab data format for the data being encoded/decoded arose when there
was confusion over the nomenclature. The structure of the frame synchroniza-
tion word is illustrated in Figure 1 of this report. Note the 28 bit syn-
chronization pattern has the LSB of each 4 bit group om the left side while
the 4 bit frame LD count is structured in an opposite fashion with the LSB
on the right side. The proper hexidecimal code for the frame synchronization
(28 bit) pattern is FAF3 340X where the X stands for the 4 bit ID frame count

23




which varies from frame to frame. The computer software used for the tests
created the need to invert the data on a 4 bif basis.

There are six modes of HRDM operation. These are diagramed in Table 1.
Displayed in Table 2 are the two operational modes of the HRM.

Martin Mrietta/Denver has verified all 3040 bits of the desired cover
sequence pattern as generated by the HRM. Mr. Jerry Malloy and this
investigator inspected the computer print out of the MBB demonstration test
for approximately 300 bits and verified the synchronization word and proper
incrementation of the ID count for seven consecutive synchronization
patterns.

The test procedure of page 111 illustrates several routines used to
verify that each synchronization bit is actually involved in the synch
detector circuit operation. These routines developed by Martin/MBB are
original and interesting.

It is worth mentioning that the analysis of the probability that frame
synch lock is not acquired within 3 frames with and without a one error
tolerance by this investigagor and the analysis by MartinvMarietta/Denver
differ by less than .00019 percent. The difference lies in the inclusion
by this investigator of the probability of error in the ID bits in the
first frame which results in a discarding of that 3 frame sequence.

The CDR uncovered no problem, in design or philosophy. The CSG
encoder/decoder is effectively a finished product from the philosophy
and design viewpoints.

24



NORMAL STRUCTURE 1111 1010 1111 0011 0011 0100 0000 XXXX

STRUCTURE INVERTED
ON LETTER BY
LETTER BASIS 1111 0101 1111 1100 1100 0010 0000 XXXX

Figure 1.

TR el o L S e

L ML M M L
S 88 § S 8
B BB B B B

Structure of the Frame Synchronization Word
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APPENDIX E

INTFRIM FINAL REPORT

JULY 1, 1980 to DECEMBER 31, 1981

This appendix contains the interim final report which fully documents
the technical design, philosphy and system constraints behind the develop-
ment of the CSG circuitry. This system has been built, tested and
incorporated into the HRM and HRDM units by MBB/Munich and Martin Marietta/

Denver under the auspices of MDTSCO/Huntsville.
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EXECUTIVE SUMMARY

Digital data streams using non-return-to-zero-level encoding
(NRZ-L) as the signalling waveform are subject to periods of no level
change. The signalling waveform with not changing levels has énergy
content that is rich about the origin and of course does not contain
any edges in the waveform.

Proper operation of the ground station receiving such digital
data streams depends upon satisfactory bit synchronization. Bit
synchronizers typically require a certain minimum percentage of edges
in the received signalling waveform. This requirement is not alwavs
satisfied by NRZ-IL waveforms.

The purpose of this investigative study has been to determine a
satisfactory method of providing sufficient bit transitions (edges)
in the signalling waveform for the 2 MHz data link of the Space
Shuttle High Rate Multiplexer (HRM) unit.

The system design already in existence places several constraints
on any method used to ensure the desired bit transition density of at
least 1 bit transition in every 64 bits and at least 64 bit transitions
in every 512 bits.

These constraints are:

1. The method chosen must produce at least 1 bit
transition in every 64 bits and at least 64
transitions in every 512 bits.

2, The method chasen must not increase the present
bandwidth nor decrease the present information rate.

3. The method chosen must be compatible with the
existing BCH code.

4, The method chosen should have a minimal design
impact on the present system.

5. The method chosen must pass unaltered any data stream
whose data rate is greater than 2 MHz,

6. The method chosen should resolve the bit phase ambiguity
problem inherent in the Channel 2 return link of the KU-

Band system.
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Many methods for increasing bit transition densities in a data
stream exist. These methods have been summarized, discussed in detail
and compared one against another avrd against the constraints mentioned
above.

These methods include use of alternate Pulse Code Modulation (PCM)
waveforms, data stream modification by insertion, alternate bit inversion,
differential encoding, error encoding and use of bit scramblers. (Bit
scramblers come in many different versions such as: self synchronizing,
multi and single count, serial, cascaded and parallel scramblers).

Of all the methods discussed, one mebhod satisfied the desired
objective, met all constraints and had advantages that outweighed
disadvantages when compared against the remaining methods. This method
was chosen - the reset scrambles or simply the Psuedo-Random Cover
Sequence Generator (PN-CSG). This technique is fully analyzed and
a design implementation is proposed.

The method consists of modulo-2 addition of a PN sequence to
the data stream before the modulations of the Radio Frequence (RF)

transmitter. It is recommended that only the data streams and the

. & bit frame synchronization Identity Count (ID) be so modified. It

is recommended that there be no change in the 28 bit frame synchronization
word.

If the PN sequence is added to the frame synchronization word, it
is very likely that the special properties chosen for frame synchroni-
zation patterns would be violated. Furthermore, the decoder must
then search for four frame synchronization patterns if it is desired
to correctly detect the presence or absence of the PN cover sequence,
and to alleviate any phase ambiguity.

The probability of failing to provide the required bit transition
density is less than 2.44-10_17. A computer simulation program was
developed which tests the truncated PN sequence with random data streams.
The computer results. indicate that the output sequence to be transmitted
by the RF modulator will have a transition density of approximately 50%.
This should improve the overall KU Band system performance considerably
in the presence of low signal-to-noise ratios by increasing the bit

synchronizer's capability to stay locked to the incoming bit clock.
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The statement of work contains five distinct items in five distinct
paragraphs. The first three items are specifically addressed in
sections 2 and 3 with Table 3.1 preésenting a summary of the various
methods of HBTD encoding and comparing their relative performance in

so far as error propagation characteristics, transition properties

and system constraints are concerned. The appendix contains a

computer simulation of the system using the specific PN code recommended
in this study. The interim report of September 30, 1980 recommended

a specific PN sequence and this is detailed in section 4.B.
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CHAPTER 1

INTRODUCTION

The Spacelab (SL) is an orbital laboratory which remains attached
to the Space Shuitle for the duration of a mission. The SL will utilize
the KU-Band communication system of the Shuttle for communication with
the ground. Figure 1.1 is a simplified sketch of the return link. The
following paragraphs give a brief description of the SL return link,
for further information the reader is referred to References 1, 2, 3,
and 4.

The onboard experiment data is collected by the High Rate
Acquisition Assembly (HRAA). The HRAA consists of the onboard High
Rate Multiplexer (HRM) plus associated High Rate Links, and the ground
based High Rate Demultiplexer (HRDM). The return link, connecting
the HRM and HRDM, utilizes the Shuttle KU-Band Signal Processor (KUSP)
and the Tracking and Delay Relay Satellite System (TDRSS) which includes
the receiving station, and the bit synchronizer. The return link will
provide a bit-error-rate (BER) of at least lxlO-s with a Bit-Slip~
Rate (BSR) of less than 1x10~1°
are met. Herein lies the problem; the SL data stream violates the

provided certain system constraints

transition requirements of the bit synchronizer. This will be further
reviewed in Chapter II.

The HRM receives data from 18 experiments, 2 I/0 units and 2
records, and outputs data to the KUSP and the 2 recorders. Sixteen
of the 18 experiment channels are switchable and the other 2 are direct.
The HRM time multiplexes these 16 channels with the other data including
playback data from the recorders and serially transmitts the data to
the KUSP. |

The SL employs the KU-Band Link of the Shuttle and this link
utilizes the two operation modes of the KUSP; Mode 1 -~ Quadrature
Phase Shift Key (QPSK) modulation and Mode 2-FM modulation. The KUSP
has three channels of input data in each mode. Table 1.1 lists the
available input data in both modes. Figure 1.2 illustrstes the
interface between the HFM and the KUSP.

The HRM uses several different format structures for its ocutput.

Only the general user format, for frequencies less than 32 Mbps, will

b e ST s g g
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TABLE 1.1 AVAILABLE INPUT %&5A VIA
KU=-BAND LINK

PM MODE 1:

CHANNEL 1 - SAME AS FM Mode
CHANNEL 2 - SAME AS FM MODE

CHANNEL 3 - PAYLOAD DIGITAL OUTPUT, 2-50 MBPS WITH CLOCK,
NRZ-L, M, OR S

FM MODE 2:

CHANNEL 1 - 192 KBPS Bi-PHASE-L PCM AND VOICE FROM NSF

CHANNEL 2 - SELECT ONE OF FOUR INPUTS

- PLI (NARROW BAND BENT PIPE FROM DETEACHED PAYLOAD)
- PAYLOAD DIGITAL OUTPUT, 16 KBPS-2MDPS, 'NRZ-L, M,
OR S, OR 16 KBPS - 1.024 MBPS Bi-PHASE L, M, OR S
= OPERATIONAL RECORDER DUMP
- PAYLOAD RECORDER DUMP
CHANNEL 3 - SELECT ONE OF FOUR INPUTS
- Tv
- PAYLOAD DIGITAL OUTPUT, 16 KBPS-4 MBPS, NRZ-L, M, OR §
- PAYLOAD ANALOG OUTPUT, DC-4.5 MHz
- PLI (WIDE BAND BENT PIPE FROM DETACHED PAYLOAD)
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be discussed. For further information concerning the HRM formats; see
references 1 and 2. The user format consists of eight frames of 96
words each (768 words), each frame beginning with a sync or a status
word. The normal frame is composed of 6 lines by 16 words. Since
each of the 21 inputs to the HRM operate at bit rates assynchronous
to the output bit rate, fill data is required. The 13th or last word
of each line is a fill data indicator. The HEM employs a unique
method to provide the necessary fill data words. When a'line of
data requires f£i11, all the valid data words to the right of the
fi1ll word are shifted to the left thus making the fill word the 15th
word of the data line. The system requires that the fill data (stuffing)
indicator shall be constructed such that the probability of error in
interpreting the indicator is less than 10719, The HRM utilizes
a (31,16,3) BCH code to satisfy the required BER for the stuffing
indicator. The HRM encodes the 16 bit stuffing indicator into a 31
bit BCH code word capable of correcting 3 errors per word. When more
than one fill word is needed, the valid data words are again shifted
left and the 1l4th word of the previous line is inserted into the 1l4th
word of the present line.

" The general input data format is illustrated in Figure 1.3. The
input data to the HRM is as follows:

18 exprziments NRZ-L
HDRR NRZ-L Reverse playback 2 Mbp only
PLR Manchester I1 Reverse 1Mbp only
(Must be playback through HRDM)
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CHAPTER 2

STATEMENT OF PROBLEM AND CONSTRAINTS

2.A THE PROBLEM

An investigation of the effect of low bit transition density on the
performance of the Channel 2 KU-Band return link was conducted. The
results of this investigation indicated the SL will not meet the minimum
specifications of the TDRSS Users' Guide with respect to the bit syn-
chronizer. The end result of this failure to meet the bit synchronizer
(sync) specifications is loss of lock by the bit sync and subsequent loss
of data for an undefined period of time (Reference 5). To alleviate
this problem the SL must increase the bit transition density on the
Channel 2 KU-Band return link to a2 minimum of one bit transition every
sixty-four bits and sixty-four bit transitions within five-hundred-
twelve bits.

There are several different methods that may be employed to provide
the data stream with the necessary bit transition density. These methods
are discussed in more detail in Chapter III. This chapter deals mainly
with the problem and the constraints caused by the system. There are
four main constraints placed on the HBTD coder. They are listed in
Table 2.1 and discussed in the following paragraphs.

2.B PRIMARY SYSTEM CONSTRAINTS

The primary objective of the HBTD modification is to increase the
bit transition density of the data stream to at least one bit transition
every sixty-four channel symbols and sixty-four bit transitions every
five=hundred-twelve channel symbols. This is the absolute minimum
requirement by the TDRSS bit synchronizer at White Sands, New Mexico to
provide the desired BSR of 10-15 with the SL signal characteristics.

Since the 2Mbit channel is expected to operate at the maximum rate
of 2 Mbps for maximum utilization, the modification must not increase
the channel errors. The system requires that the fill indicator must
be able to locate the fill data with an accuracy of no less than 10-10.
The fill indicator is a (31,16,3) BCH code. A (31,16,3) BCH code takes
16 information bits and converts them into a 31 bit code word capable of

correcting 3 errors. Since the channel bit error rate affects the fill
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indicator word, any modification that increases the channel érror
would degrade the fill indicator. For example, L1f the system
modification produced only one additional error per channel error,
then the reliability of the fill indicator, as shown below, would be
4.6:10-8, which is unacceptable.

To illustrate the problem consider the effects of differential
encoding on BCH word error probability. Assuming the RF channel has
an average random error rate, due to additive white gaussian noise,
corresponding to 1 bit in 100,000 (that is an average bit error rate
of 1x10_5) one may calculate the probability of an erroneous decoding
of a BCH coded word with use of NRZ-L code and alsovwith use of a
differental encoding such as NRZ~M or NRZ-S.

The model to be used is:

Using NRZ-L Coded Data Stream

A single error on the RF channel in the BCH code word will result
in a single error in the data input to the BCH decoder. The BCH code
word can correct up to and including 3 errors out of 31 bits.

Thus the probability of erroneous decoding of the BCH word
(PEBCH) is :

PEBCH = 1 - [P(0) + P(1) + P(2) + P(3)] . (2.1)
where:
P(0) = Probability of no errors in the 31 bit word
P(1) = Probability of 1 error in the 31 bit word
P(2) = Probability of 2 errors in the 31 bit word
P(3) = Probability of 3 errors in the 31 bit word
In general P(X) i1s expressed as
P(X) = {?{] piq X (2.2)
where

is the probability of an RF channel error
is the 1 - p

is the number of errors in the word

2 K a v

is the number of bits in the word.

ST
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The expression ‘:i) relates to the number of different ways in which

X errors occur in an N bit word and

N’ N!
[x] - —— (2.3)
' (N=-X) I1X!

Using NRZ-M or NR7-S (Differéntial Encoding) Coded Data Stream
A single error on the RF channel in the BCH code word will result

in two adjacent errors on the data stream input to the BCH decoder.
(Reference is any text in communications, in particular: Reference 16,
page 324.)

Thus we have as the probability of erroneous decoding of the BCH
word with Differential Encoidng (PEBCHDE)

- PEBCHDE = 1 ~ [P(0) + P(1)] (2.4)

Where the expressions P(0) and P(l) are as defined in the
previous case. Note this expression for PEBCHDE reflects the fact that
2 RF channel errors in the BCH word will result in 4 errors presented
to the BCH decoder and this will result in erroneous decoding.

These calculations were performed using a double precision digital
computer program,

The results are

PEBCH = 3.01841884819964434 x 10~ +°
8

PEBCHDE = 4.64910190316402087 x 10 = .

One sees a significant difference in the error performance due to
erroneous decoding of BCH words!
For a 50 Mbps data stream the average length of time between

erroneous decoding of the BCH word would be approximately

160 seconds average between erroneous decoding of BCH words
using differential encoding (NRZ-M or NRZ-S)

16,000,000,000 seconds average between erroneous decoding of
BCH words using NRZ-L encoding.

The unacceptability of adding additional errors to the system is

obvious.
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The fourth criterion, minimal impact on the present system,
results from the fact that the system is in the production stage and
any major changes would be very costly. Approximately $100,000 cost
results from a minor change alone due to the paper work required.

2.C SECONDARY SYSTEM CONSTRAINTS

Additional criteria, dealing with the implementation, results
from the expected characteristics of the data stream. The modification
must pass unaltered data emanating from any source other than the HRM
and data rates greater than 2 Mbps from the HRM. These constraints
result from the physical location of the modifications and the
operational functions of the HRM. All data emitted from the HRM via
the 2 Mbit channel will be NRZ-L. The above stated constraints apply
to both the encoder and decoder. There decoder must also resolve the
phase ambiguity problem which results when a Bi-Phase NRZ-L data is
used. Since NRZ-L employs a high level to represent a one and low level
to represent a zero, it is possible for the data stream to become
inverted. That is to say a transmitted one is received as a zero and
vice versa. Therefore the decoder must be capable of detecting and
correcting the inverted data stream. These secondary system constraints
are listed in Table 2.2,

]
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CHAPTER 3
DIFFERENT METHODS AVAILABLE TO ALLEVIATE THE PROBLEM

Two basic types of modifications exist to improve the Bit
Transition Density of the Channel 2 data stream to the minimum
requirements of the bit synchronizer. They are: (1) Use an alter-
native PCM waveform or (2) modify the data stream. The remainder of
the section is devoted to describing several methods for accomplishing
these modifications. '

3.A ALTERNATE PCM WAVEFORM

The 2 Mbit channel presently employs a NRZ-L waveform. There
are several other binary waveforms available. Several of the most
common are shown in Figure 3.1. The most frequently used waveforms,
for high bit transition density applications, are the Bi-Phase and
Delay Modulation waveforms. Both are widely used in the tape
recording industry.
3.A.1 Bi-Phase

The three main types of Bi-Phase waveforms are; Bi-Phase Level,
Bi-Phase-Mark, and Bi-Phase-Space. Bi-Phase Level is also called
Split Phase or Manchester Code. All three waveforms provide at least
one transition for each bit cell. They produce single output errors
for a single input or channel error. The hardware required to imple-
ment each is moderate in complexity. All three Bi-~Phase waveforms are
self-synchronizing. The main disadvantage of all three is bhat Bi-
Phase modulation requires twice the bandwidth of the present NRZ-L
to provide the same information rate. Therefore the use of Bi-Phase
would require either an increase in the present bandwidth or a
decrease in the information rate. Neither case is acceptable since

it violates one of the main system constraints.

3.A.2 Delay Modulation
Delay Modulation (DM) is a procedure for encoding binary data

into rectangular waveforms of two levels according to the following
rules for DM-M:
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l. A one is represented by a transition from one level to the
other at ithe midpoint of the bit cell.

2. A zero is represented by no transition unless it is followed
by another zero. The case of consecutive zeros is
represented by a transition at the end of the leading zero
bit cell.

In the case of DM-S the rules for ones and zero are enterchanged.
These rules are illustrated in Figure 3.1.

Delay Modulation has several attractive properties:

1. The majority of the signalling energy lies in frequencies
less than one~half the symbol rate.

2. The power spectrum is small in the vicinity of f=90
(that is at D.C.).

3. DM provides at most one transition per bit cell and at the
least 2 bit transitions every 3 bit cells; thus, providing
a bit stream with a very high bit transition density.

These properties provide DM with the advantage of inherent self-
timing information using phase modulation which is not present i
NRZ-L, while requiring approximately the same bandwidth as NRZ-L. DM
is also suitable for use with tape recorders, especially when higher
packing density is required, or with systems which require high bit
transition densities.

DM requires a given 3 bit sequence to assure proper bit sync.

This sequence is 101 for DM-M. This sequence has a high probability of
occurring one or more times in any random data bit stream. The
probability that one or more 101 bit sequences will occur increases
rapidly as the number of bits in the data sequence increases. The
following equation may be used to obtain a close approximation of the
probability of 101 occurring n or more times in m bits (the number

of bits per sequence).
Pm(IOIZp) = 1-Pm(101§p) = 1—(Pm(101=0)-+Pm(101-1) + ...

Pm(101-(n-1)) (3.1)

]
|

- g
B N L S SN, R I e VAT Pl

RN et — s e

T =S I



ORIGINAL pagE 16
s
OF POOR QuaLITY

i Wherae:
; ar) w K k~-r e}
| raoen = (1) (567) (o)
9 = the probability of any 3 bits not being 101 -%

Po " the probability of any 3 bits being 101 --%

ke m=2
[k] . k!
r (k~-x)Ir!

For exaumple, let m be 16 (for 14 binary bits) then the probability of
a 101-bit sequence occurring one or more times is:

P16(101-1) = 1-P (101=0)

=1-.154 = .846

s 1= QUG L M )l i

~ 1410
(3.2)

In other words, there is a 84.6% probability of a 101 pattern occurring
and hence providing bit sync within a 16 bit sequence. Thus, one
should expect a bit sync lock within a very short time upon the start
up of a DM encoded sequence. The main disadvantage of Delay Modulation
is that single errors into the decoder will yield double erroxs out of
the decoder. This results from the comparison of the present and most
recent bit to determine the value of the previous bit. Thus the
property that produces the improved bit transition density also makes
DM incompatible with the BCH code used by the fill indicator.

3.B DATA STREAM MODIFICATTON

There are several me. .3 of modifying the present data stream to
meet the bit transition requirements. The fixrst method that comes to
mind is to simply invert every other bit or alternate bit inversiom.
3 Other means such as differential encoding, a bit insertion. technique

or error correcting encoding techniques are commonly used to improve
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the bit transition density of a data stream. Bit scrambling is
another technique which is employed to increase the bit transition in
a sequence. Each of these methods are discussed in the followiang
paragraphs. '

All the aforementioned techniques require the same bandwidth

for the same information rate as the present system.

3.B.1 Alternate Bit Inversion
Alternate bit inversion is probably the simplest method for

invressing the transition density. This technique inverts every other
bit «f the data stream. It yields excellent results in the case of
Zong s2quences of bits of the same value., The implementation is very
simple except for the synchronization with the data stris and a bit
slip will result in the inversion of the original data styeam. Single
channel errors produce single output errors. The main disadvantage
of this technique is the inability to guarantee the bit transition
density. In the case of an alternating input data stream, this
procedure will produce an output sequence of bits of the same value
equal in length to the input sequence. Since the SL data stream is
excepted to contain long runs of alternating bits this method must

be discarded. Additional logic could be added to the encoder and
decoder to prevent this occurrence but the logic required would be

quite complex and require additional considerations.

3.B.2 Differential Encoding

The use of differential encoding as a means of improving the bit
transitions density has received considerable use in other systems,
especially when the data stream contains long strings of bits having
the same value; all ones or all zeros. This technique has advantage
over alternate bit inversion in that an alternating bit sequence
retains half of the original transitions. There are two types of
differential coding, NRZ-M and NRZ-S as illustrated in Figure 3.1l.
NRZ-M uses a change of state to indicate a one and no change for zero,
while NRZ-S indicates a zero by a change in level and no change for a
one. Differential encoding provides a 50% transition density for an
alternating input data stream and a 100% transition density for

sequence of the same value provided the value is the one represented

L

¥
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by a change of state, one for NRZ-M and zero for NRZ-S. If the
values is the level represented by no change, nothing is gained by
different encoding. Therefore one must design for the level which
1s most dominant in the data stream and know that the sequence
lengths of the other level will not result in a loss of lock by the
bit sync. Another disadvantage of differential encoding is that
single input errors produce double output errors. Since the dif-::
ferential encoding propagates the number of channel errors and can
be designed for only a single case of bit sequence of the same value
instead of for both, it must be eliminated as a possible solution.

3.B.3 Bit Insertion

Bit insertion technique are also commonly used to increase bit

transition density. There are several different types of bit insertion
techniques. Some add bits to the data stream while others use blocks
of bits to replace certain data sequences. However, 2ll of these
techniques share the need for a complex timing and counting circuitry.

The basic concept for all insertion techniques is the need to recognize

when to insert and when to remove their speicfied patterns. For example,

assume a bit replacement technique is to be used to meet the sixty-four
in five-hundred-twelve requirement. The obvious way to guarantee that
the data stream would meet this requirement would be to have at least
one transition every eight bits. This would mean that an eight bit
pattern would have to be inserted in place of any eight bit sequence of

the same value. The selecticn of the particular pattern to be used for

insertion must be chosen in a manner similar to that of a synchronization

pattern for frame sync. The insertion sequence must meet the following:

1, The probability of it occurring naturally in the data
stream must be extremely small. Since it is very
desirable to avoid false recognition at the receiver,
which would result in a misinterpretation of wvalid
data for inserted data.

2. The inverse of the sequence must also be available. Since
the bit sequence of the same value may be either ones or

zeros, two separate sequences are needed.
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3. The effects of channel errors must be considered. Should the
ground recelver accept no errors, one error, two errors, etc?
If a short sequence such as the eight bit one used in the
'example is selected, then the no error case would probably be
best. The probability of no errors in any 8 bits 1is .99992
thus the probability of not recognizing the inserted pattern
due to channel error would be about 8x10-5, slightly greater
than the channel error rate of 1x10-5. In the one error case
the probability of false synchronizatidn detection would be
much higher than the gain in recognizing a valid insertion

with a single error.

By employing this simple insertion technique, one does not

take advantage of the natﬁral transition that might occur

prior to and following the sequence of the same value. As
stated above the timing and clocking circuitry would be complex
even for this simple case. For this reason bit insertion is
not the most favorable method although it can be designed to
meet the system constraints given in Chapter 2., But it should
be noted that only the replacement type can be employed. The
inserting of additional bits would decrease the information rate
and therefore this type is not acceptable. Since the amount

of additional bits cannot be predetermined.

3.B.4 Error Encoding

Telecommunication systems often. employ different types of error
correcting codes to improve their bit transition demsity. In this
manner, the error correcting codes provided two services. First, they
improve the channel bit error rate and second, they provide an increase
transition density. This type of method is employed by the 50 Mbit
channel of the shuttle as well as by many other systems. All these
systems add addition bits to the data and thus decrease the information
rate. Therefore they are not viable candidates for the HBTD modification,
but are included in the following for completeness. '

The following discussion concerning the output symbol transition
density of the 1/3 convolutional encoder with alternate symbol inversion
is based on the material »y M.K. Simon and J.F. Smith in Reference 6 and
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illustrated in Figure 3.2. Simon and Smith have determined, for a parti-
cular class of convolutional codes, that alternate symbol inversion assures
a maximum transition-free run of output symbols, and hence its minimum
transition density. This maximum length is independent of the data source
model, independent of the code connections, and dependent only én the
code constraint length and rate. Simon and Smith separate all 1l/v
convolutional codes into three classes of codes: Veven, Vodd for
transparent codes, and v odd for nontransparent codés. A transparent
code is one which provides the complement of the output sequence for
the complement of the input sequence. A simple test to determine if a
code 1is transparent is each row of the generator matrix C has an odd
number of ones then the code is transparent,

The generator matrix C for the 1/3 convolutional code employed by
the Space Telescope (ST)

1101101
C= 1001111 (3.3)
1010111
where the right hand column represents the present input and the left
hand column represents the oldest (content of the last shift register K,
the code constraint length) input.
Since v = 3, odd and each row of C contains an odd number of ones,
i the convolutional code is a member of case 2. Simons and Smith state
é for v odd and transparent codes, the only input bit sequence that will
produce an output alternating sequence longer than Nmax symbols, where
Nmax is defined as

¥ = EZiI -
b Nmax K + —k 1+v (3.4)

K = the code constraint length; rkf] denotes the smallest

integer greater than or equal to X.

is the alternating sequence. Furthermore, if the encoder is such that
& the alternating input sequence produces the alternating output sequence,
A then this output sequence can continue indefinitely, i.e., alternate

symbol inversion will not produce a finite transition-free symbol sequence.
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Reference 6 provides a test to determine if a case 2 code will
produce an alternating output for an alternating input. Split the
dd and -g-even
is composed of all the odd columns of C and Eeven all the even colummns.

geﬁerator matrix C into two matrices C where C

- -0 —odd
If the number of ones in each row of the matrix formed by stacking
godd on top of Eeven alternates even, odd, even, ... or vice versa,
then an alternating input sequence will produce an alternating output i
sequence. Testing the generator matrix, it is found the number of §
ones in each row of the test matrix does not alternate even, odd or ;
vice versa. Therefore the maximum number of transition-free output
symbols from the 1/3 convolution encoder with alternate symbol !

. | k-1
Nmax K+ {;_;]- l+v

-7+ -711:|-1+3

inversion is

3-1

= 12. (3.5)

The maximum number of transition-free output symbols was also
determined to be 12 in References 7 and 8. Magnavox in Reference 7
utilized an extensive computer analysis to arrive at a maximum of 12
Baument, et al., Reference 8, used a slightly different mathematical
approach to obtain 12 as the maximum bits between transitions and

therefore the system is guaranteed to meet the 1 in 64 requirement.

w—...««_.-,—w-..,..‘,-...‘

Simon and Smith also prove in Reference 6 the 1ll-bit input
sequence 01110100100 yields the output 010000000000001. Neither
this output sequence nor its compliment can be repeated within the
next 33 output symbols. The next input will produce at least one E :
additional bit transition therefore the average bit transition for A
this worse case plus one addi;ional input is 2 transitions per 16

output symbols which yields an average of 1 transition every 8 : .

output symbols. Therefore the output of the 1/3 convolutional
encoder with alternate bit inversion and generator matrix given
in Equation 3.3 will meet both the 1 transition per 64 bits and 64

transitions in 512 or an average of 1 transition every 8 bits.
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If the 12-bit input sequence is 01110100100 the output will be
010000000000001100. '

If the 12-bit input sequence is 01110100101 the output will be
010000000000001011.

Since the output of the 1/3 rate convolutional encoder will
have a transition at least every 13 bits independent of the data
input, it is not necessary to examine the equipment preceeding
the encoder. However if the chamnnel interleaver is utilized it is
necessary to determine if it is possible to obtain 64 or more symbols
out of the interleaver without a transition. The channel interleaver
is shown in Figure 3,3. This interleaver will take any two symbols
within 30 of each other and separate them by at least 119 bits.
Equation 3.6 may be used to express a typical output symbol bi
in terms of the input symbols a

i .
Bytt ™ 230 T Ppei-120, T 2g-119, 3219 (3.6a)
bipy - O 32119, (3.6b)
where

j = 0, 30, 60, 90, 120, ...

i=0,1, 2,3, ..., 29

Therefore, a typical output sequence of the interleaver would resemble
a sampling of the input sequence with the samples being taken every
119%h bit for sequences up to 30 bits in length. In order for the
interleaver to have an output of 64 consecutive symbols of the same
value, the input data must be such that samples of the input sequence
separated by 119 symbols be of the same value. The length of input
symbols corresponding to 64 output symbols is approximately 3511. Also
noting that the output of the interleaver is comﬁined with a PN

cover seqﬁence of 1ength‘30, it would appear highly unlikely that a
string of 64 ones or zeros will occur, however due to the systematic

construction of the components of the system, it is possible that a

ORI A st
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sequence of data does exist that will yield a string of 64 output
symbol without a transition. Since the actual structure of the data
is presently unavailable it is not possible to examine this problem
more closely. It would be necessary to examine very closely the
structure of the data and how that structure is effected by the
various components of the system.

3.B.5 Bit Scramblers

A bit scrambler is a digital machine whichk maps a data sequence

into a channel sequence and with the special mapping of a periodic
data sequence into a periodic channel sequence with period much
greater than the data period. For periodic source, the channel
sequence produced by the scrambler, also, has many transitioms.

The basic element of all scramblers is a feedback shift register
generator (FBSRG) with tap polynomial h(x); where h(x) is a
primitive polynomial over the field GF(p), p is prime. The manner
in which this element is connect determines whether the scramblers is
self-synchronizing or not. The self-synchronizing group utilizes
the data sequence to drive the FBSRG, The non-self synchronizing
group, often call reset, utilizes the FBSRG as a maximal length (ML)
generator and modulo adds the ML sequence to the data. Each group

is discussed in the following paragraphs.

3.B.5.a Self-Synchronizing Scramblers

The self synchronizing group maybe subdivided into two types
called multi-counter scramblers (MCS) and single-counter scramblers
(SCS). Both types consists of a '"basic self-sync scrambler" and a
"monitoring logic". Figure 3.4 illustrates the '"basic self-synchroni-
zing scrambler' (BSS). The logic circuit determines the scrambler
type Figures 3.5 and 3.6 show the MCS and SCS respecgively.

]

: *
The BSS when excited by a periodic sequence of period 's

will respond with a periodic line sequence which has either ﬁériod

's' or a period which is the least common multiple (LCM) of 's

*A sequence has period 's' if it is the smallest period in the
sequence.
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* .
and pm—l (denoted by LCM(s,pm-l). The period with which the scrauwbler

responds is a function of the initial values stored in the scrambler
storage elements, (its initial state) and there is only one such
state (for each phase of input sequence) for which the line sequence
has period 's'. For all other such initial states the line sequence
has the larger period. The preceding statements are Savage's Theorem
1 for BSS (See Reference 9 for proof).

The logic circuit employed by the MCS and SCS are used to detect
the presence of a periodic sequence of low period on line and alter
the starting state of the BSS to insure the line sequence has
period of LCM (s,pm-l).

3.B.5.a.1 Multi-Count Scrambler
The logic used by the MCS is more general than the SCS and allows

for the simultaneous detect of sequences of several periods. The MCS
employs N counters, one for each period 'si', 1<i<N, and the ith

counter will generate +1 if it reaches its threshold tg, . The

counter is reset whenever the reset lead is nonzerc so that ts1
consecutive zeros on the reset lead of the ith counter will cause it to
reach its threshold. Whenever a counter reaches its threshold a 'l'

is added to the feedback line of the BSS, thereby change the state of
the BSS. Thus, the line sequence will then be changed from period

'ai' to period LCM(Si,pm-l) where the yth counter was the one reaching
threshold. At the same time, all counters are reset.

Thus, the MCS shown in Figure 3.5 will scramble a periodic
sequence of period 's' if 's' divides 'si‘ (denoted by ‘s'/'si') for ,
some 1, 1<i<N, and will produce a periodic line sequence of period
LcM ('si',pm-l) if the following two conditions are met:

1) The tap polynomial h(x) of degree m is primitive over GF(p)
where data sequences have components from GF(p).

2) The thresholds tsy » 1<§ <N are chosen as

i

*pm-l is the period of the maximal length sequence generated by
BSS in the absence of an input.
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ts, > (m-1) + max 'sy' . (3.7)

1<j<N
I

If all input priiods divide 'so' , then the statement holds when
condition (i) 1s met and a threshold of tg >m  is used. The above

is Savage's MCS theorem. (See Reference 9 for proof.)

3.B.5.a.2 Single-Counter Scramblers

The SCS 1is designed to scramble periodic binary sequences whose
periods divide either 'sl' or '92' or both. Since th utilizes
only one counter, it may be less ‘costly to build than the MCS in
some case. The SCS operates in the same manner as the MCS.

Savage's SCS theorem states that a SCS exists which will
scramble all periodic binary sequences with periods which divide
'sl' or '32' where s,<s, and s, does not divide s, (denoted by
8 X 32) if

1) the tap polynomial h(x) of degree 'm' is primitive

over GF(2),

2) 5, and 32 are relatively prime to Zm-l, and

3) a counter threshold, t, qgsz(Zm—l) -

2m-1 + 2 1is chosen.

See Reference 9 for proof.

3.B.5.a.3 [Transition Density for Self-Synchronizing Scramblers

Transitions occur frequently in a scrambled periodic sequence
and in one period of a scrambled sequence there are approximately
half as many transitions as there are digits. These have been
illustrated in Reference 9 when the source is binary and the
scrambler input periods are relatively prime to Zm—l, where m
is the size of the BSS.

Assuming the BSS generates a line sequence with period '%' when
the input has period 's', the source is binary, the BSS has 'm' stages,
and 's' is relatively prime to 2"-1; then '2' 1is an 's'(2"-1)
component vector. If the binary line sequence is converted into a
line signal by the mapping 1+ +1, 0+ ~1 and if it is linear modulated,




!
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then Savage's Transition theorem states "The binary vector '&' of length
s(zm-l) representing the response of a binary scrambler to an input

of period 's', when 's' and 2"-1 are relatively prime, has at least

one transition every 's' + 'm' digits and has a total of Tr(%)
transitions where

m
1|22 1| 2® 3.8)
2 121~ @™y ~ 2 | P

This theorem may hold for reset scrambler also, but Savage's proof
does not take into count the reset scrambler. Therefore prior to

applying these bounds to the reset scrambler further evaluation is
needed.

3.B.5.a.4 Self-Synchronizing Descramblers
The descramblers for the MCS and SCS are shown in Figures 3.7 and

3.8, respectively. The descrambler is said to be out of synchronism
with the scrambler if either (1) the values in the BSS and the delay
elements differ from those stored in the corresponding sections of
the scrambler or (2) if the counters in the monitoring logic are not
at the same levels as those at the scrambler or both. Examining

Figure 3.7 or 3.8, it can be seen that the delay elements of the
L

N

'st is the largest expected period (number of delay elements). The

monitoring logic at the scrambler and descrambler will be at the

descrambler will be purged after 's_ ' clock intervals, provided

same level after an additional 's_' clock intervals provided no line

errors have occurred. Therefore Ehe descrambler will require at most
2 x 'sN' clock intervals free of error (channel errors or bit slip)
to recover sync.

The primary effect of a channel error on the descrambler is to
introduce additional =rrors. If the effect on the monitoring logic is
negleciad, the descrambler will produce approximately w(h) as many
output errors as channel errors, where w(h) is the number of non-

zero terms in the tap polynomial h(x).

e g e
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3.B.5.a.5 The Spectrum of the Scrambler Output
Assume a linearly modulated carrier, a binary source, and the
source 1s converted into a waveform such that 0 = -1, 1 = +1. Let
TO be the time interval alloted to each binary digit and let &(t)
be the waveform generated by the binary sequence £ . ‘ i
If 2 418 the out:puf of the scrambler for an equiprobable, ; '
independent source input, then 2 1s a sequence of independent,
equiprobable, binary digits. Thus the autocorrelation function ’
of (t) is f’*‘" .
|l
1- T [tl<T, '
0 . !‘l’l> TO ;
and the power density spectrum for 3.((:) is ’
sin « fTo 2
S(f)=T —— (3.10)
° £ T
o
Now let the source be periodic, with period 's' such that the :
line sequence has period TO(LCM(S , 2%-1)) ; then the power density
spectrum for &(t) is ‘
i
. |
2 @ !
1 sin 7 fTO u j i
S (f) = y §(£) +'1‘° T fTo sP'I'l o @ §(f - _PT1 ,
u 1. 1 v b
*A-g-F) e L 8-y (3.11) <y
0 j=- o
where P = 27-1
'I'1“= -sTo | '

u 1is a function of the scrambler input (the number of 1l's in
L+ !Lk , k a multiple of P, depends on the input; R'K represents k
cyclic shifts of 2) .
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In other words the principle effect of scrambling is to decrease
the number of tones in a given bandwidth by a factor which is approxi-
mately P and to decrease the level of each tone by approximately the
same factor. The bandwidth is unchanged.

3.B.5.a.6 Serial, Cascaded, and Parallel Scramblers

Self-synchronizing scramblers may be classed in subgroups

depending on the inter connects between the scramblers. A single
scrambler with m delays is called a serial scrambler. The scramblers
described in the above were serial.

Scramblers may also be connected in cascaded, meaning the output
of one is fed to the input of the next scrambler. Cascade scramblers
ate inferior to serial scramblers with the same number of delay
elements. For example 4 serial scramblers connected in cascade (see
Figure 3.9) has a longest output period (output of the &th scrambler)
of only the LCM(s,h(Zm-l)) and a pr&bability of occurance of (1_2-2m)
vhere as a single scrambler with 4m delays has a maximum output period
of LCM(s,Z“m-l) with a probability of occurance of (1-2-4m). Therefore
a serial scrambler is preferred to a cascaded scrambler.

Scramblers may also be connected in parallel. The main advantage
of parallel scramblers is the reduction of the number of output errors
to input errors. Parallel scramblers use two inputs thereby requiring
additional components for series input sequences. Figure 3.10 shows
the configuration for parallel scramblers. Examining Figﬁre 3.10, if
an error occurs on input 'a', w(h) + 1 errors will be produced by the
output, but if an error occurs on input b only one will be produced
in the output. Therefore, in the case of parallel inputs, the output
errors will be reduced for line b. This technique provides little
improvement for random errors occurring in serial data; however.

References 9 and 10 provide additional information on self-
synchronizing scramblers. The main point concerning self-synchronizing
scramblers is that the principal effect of infrequent channel errors on
the descrambler is to multiply the number of channel errors by w(h),
where w(h) 1is the number of non-zero terms in the tap polynomial h(x).

R T A R SRR SR T ey g ot
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3.B.5.b Non-Self Synchronizing (Reset) Scramblers.

The reset scrambler is simple, consisting of a maximal-length
sequence generator modulo 2 added to the data sequence prior to
modulation. The reset scrambler must be provided with synchronizing
pulses in order to relock on sync. Since the ML sequence is
1n§ependent of the data stream there is no multiplication of output
errors relative to input errors..

At present the number of transition for a given sequence length
is unknown. It is possible that the reset scrambler may provide the
same Tr(L) as the self-synchronizing scrambler, but the proof utilized
by Savage9 cannot be directly applied to the reset scrambler.

The scrambler and descrambler for the reset group are identical
maximal-length sequence generatof for binary data. Figure 3.11
shows the reset scrambler. The synchronizing pulse may be obtained
from the frame sync or another sync pattern found in the data stream.
Since the sync pattern would be utilized to reset and start the ML-
sequence, it would not be scrambled.

The self-synchronizing scramblers are poor candidates for the -
SL due to the multiplication of channel errors. The reset group is
a better candidate provided a lower bound can be determined for the
number of transitions for a given sequence length, and is discussed
"in the next Chapter. (See Reference 12 for a brief summary on
scramblers.)

Table 3.1 summarizes the possible methods discussed in this
section for improving bit transition density of the 2 Mbit SL Link.
Only the reset scrambler remains as a viable option. The reset
scrambler is actually a PN Cover Sequence which is modulo-2 added
to the data stream. This technique is examined in further detail
in Chapter 1IV.
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UALITY
CHAPTER 4 OF POOR Q

PSEUDO-NOISE COVER SEQUENCE
(Reset Scrambler)

In the preceding chapter, different techniques were examined
to determine their capability of resolving the bit transition density
problem of the SL 2 Mbit Return Link and these techniques are
summarized in Table 3.1. Only the PN Cover Sequence (or Reset Bit
Scrambler) was ¢apable of meeting all the system constraints listed
in Tables 2.1 and 2.2. This chapter deals primarily with the particular
PN sequenc: chosen for the SL, however a brief general discussion of

PN sequences is also given.

4.A PSEUDO-NOISE (PN) SEQUENCES.

Pseudo-Noise Sequences are binary-valued, noise-like sequences
in that they are purely random. That is any bit in the sequence may
be a one or a zero with equally likely probability. However their
primary advantages are that they are deterministic, easily generated
by feedback shift registers, and they have a correlation function
which is highly peaked for zero delay and approximately zero for
other delays. By proper selection of the tap polynomial, which
indicates the feedback connections, a maximal linear (ML) sequence
or m-sequence is generated. Figure 4.1 illustrates a general ML
sequence generator. A ML sequence haa & length, L = 2“-1, where
'n' 1s the number of stages in the shift register (SR). The number

of ones in the sequence equals the number of zeros plus one. There
are "

n n
‘:2 -1.] zeros and "2 -1] + 1 ones.
2 _ 2

The number of transitions within the sequence is approximately half the

number of bits in the sequence. The number of transition equals

[

equal to the number of stages in the SR, 'n'. The statistical

n
22-‘j] . The maximum number of bits without a transition is

RN 2o BTG N R T LA
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distribution of ones end zeros is well defined and always the same.

There are exactly 22 (p+2)

runs of length 'p' for both ones and
zeros in every maximal sequence where 'p' 1s any positive integer
less than 'n', including zero. However, the relative positions of
their runs vary from ML sequence to ML sequence depending on the tap
polynomial and the method of connection., The main propertias of ML

sequencea are listed below.

1. Thea number of ones in a sequence equals the number
of zeros within one bit.

2. The statistical distribution of ones and zeros is
well defined and always the same. Relative positions
of their runs vary from code sequence to code sequence,
depending on the tap polynomial and the method of
connection, but the number of each run length
does not.

3. Autocorrelation of a maximal linear code sequence
is such that for all values of phase shift the
correlation value is -1, except for the 0 to 1
bit phase shift area, in which correlatica varies
linearly from the -1 value to 21 (the sequence
length).

4., A modulo-2 addition of a maximal linear code with
a phase shifted replica of itself results in another
replica with a phase shift different from either
of the originals.

5. Every possible state, or m-tuple, of a given n~-stage
generator exists at some time during the generation
of a complete code cycle. Each state exists for only
one clock pulse. The exception is that the all-zeros
state does not normally occur and cannot be allowed.
(For additional information concerning ML sequences,
see Reference 13, pp. 53-72 and Reference 14.)

The particular ML sequence, the reasons for choosing it, and a

statistical statement of the probability of not incurring sufficient
transitions are discussed in the following paragraphs.
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4.B THE PARTICULAR PN SEQUENCE FOR THE COVER SEQUENCE
GENERATOR (CSG)

It is a common engineering practice to select a ML sequence whose
length is at least equal to the number of bits, between synch-words,
since the sync pattern in better left alone. The SL general user
format contiins 304C bits between each 32 bit sync word (28 bit
sync pattern and a 4 bit ID word), therefore the sequence generated
by the CSG should have a length equal to or greater than 3040,
Although a 12‘“ degree polynomial yields a ML sequence length of
4095 bits and is8 the smallest sequence that could be used, it
is not a Mersenne prime sequence and is therefore susceptible to
interperodicty. For this reason a 13th degree polynomial was chosen.
It will generate a 213-1 = 8191 bit sequence before repeating itself;
its composition will vary depending upon the tap poiynomial used.

A 13 stage PN generator is a Mersenne prime generator. Various tap

polynomials are available for use and some are listed as follows:

g(x) = 1+ X + X + x* + x13

g¥X) =1+ X4 + Xs + X7 + Xg + Xl0 + X13

g(X) = 1 + X+ X4 + X7 + Xg + Xll + Xl3

etc.

The first polynomial listed yields the fewest number of
conne¢tions which would be desirable if a shift register implementation
was used for producing the code. '

Since the sequence zenerated is 8191 digits long and only 3040
digits exist between the frame synchronization patterns, a truncation
of the sequence is desirable.

Deciding upon the particular 3040 bit piece of the sequence is
dependent upon the structure of the sequence. It is highly desirable
to avoid long strings of alternating l's and 0's due to the very likely
prospect of these strings occurring in the data. Factors which enter
into the sequence structure are the initial condition (or contents) of
the PN sequence shift register and the tap polynomial.

Figures 4.2 and 4.3 illustrate the methods of modifying the data
stream emanating from the HRM. Figure 4-2 illustrates the shift

Biipotisaitan oo
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reglster type of encoder for RDBT and Figure 4.3 illustrates the ROM
type of encoder for HDBT. In either case the same sequence will be
utilized. It should be noted that the frame sync and ID portion are
not altered.

The sequence will have the run length distributions,shown in
Table 4.1, for all tap polynomials and initial start vectors (the
arrangement of these various runs will vary of course or there would
be no difference in the sequences).

In general there are 2n-(p+2)

runs of length p for both ones
and zeros in every maximal sequence, except that there is only one
run of length n {ones) and one run of length n~1 (zeros).

A computer program based on an algorithm presented by Robert
Gold in Reference 14 was used to generate the complete sequence of
8191 bits. This sequence was examined and the particular portion
of 3040 bits was selected. This sequence is shown in Table 4.2. The
zero-one distribution for this truncated 13 stage PN sequence is
illustrated in Table 4.3. An examination of Table 4.3 reveals that
this truncated sequence maintains the properties of a ML seq:.<nce.
Although they are not perfectly retained, it is very close. Since
the SL data stream is expccted to contain lbng runs of alternate
ones and zeros, the truncated sequence must be examined for these also.
Table 4.4 lists the number and lengths of all alternating runs

contained in the truncated sequences.

4.C PROBABILITIES ASSOCIATED WITH THE SEQUENCE

Now let us investigate some probabilities of not achieving the
transition density requirements.

In order for failure to achieve a transition in 64 bits to occur

it must have a data sequence that exactly matches the PN sequence for

64 bits. Since the PN sequence is statistically independent of the

data sequence in bit by bit as well as string by string fashion we have

Prob (of more than 63 bits with no transition)
= (.5)6% = 5,4210108 x10720 .

The requirement that 64 transition in 512 bits occur may be
thought of from the following viewpoint:
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TABLE 4.2 TRUNCATED SEQUENCE FOR THE CSG
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TABLE 4.4

DISTRIBUTION OF ALTERNATE ONES/ZEROS FOR
THE TRUNCATED 13 STAGE PN SEQUENCE

RUN LENGTH
(BITS)

14
12
11
10

P - SRR Y-

NUMBER OF RUNS

S NN~

16
21
35
102
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The PN sequence is random in nature and contains approximately equal
ngmbers of ones and zeros with a corresponding large number of bit
transitions. In fact from the run length table one may observe that
approximately 4096 transitions between various run lengths will occur.
This amounts to roughly a 50% (or 1 tramnsition per 2 bits) transition
density. Thus, for less than 64 transitions to occur in a total of
512 bits we must have the data match the 512 bit random sequence in
all bit positions except for 63 bits or 62 bits, or 61 bits, etc.

63
P(<64/512) = ) [5;2) (.5)°1? (4.1)
k=0

71

= 3.946" x 10”

Thus, we see that the dominant factor is the probability of less
than at least 1 transition in 64 bits which is ~5.42 x 10-20.

0f course there are 448 possible chances for a 64 bit string to
have no transitions in 512 bits.

Thus, the transition density requirements should be met with
at least a failure probability of no more than

-2.434 x107Y |

A computer simulation program was developed which tests the
truncated CSG Sequence for achieving the high bit density transitions
by modulo-2 addition with the data stream. This program is explained
and listed in the Appendix. Since little is known about the SL data,
the program generates a sequence of random numbers to represent the
SL data stream. Several runs were made using different seed numbers
to produce different random sequences. These random sequences were
also truncated to various lengths and repeated tc simulate periodic
data sequences. The computer results indicate that the output sequence
of the CSG will have a transition density of approximately 50%, an
average of one transition every two bits. Although the computer
simulation was not exhaustive, it is sufficient to substantiate the
theoretical probability of meeting the required bit tramnsition density
of the SL 2 Mbit return link.

v T R P o A AL



CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

In conclusion only the PN Cover Sequence of the six possible
techniques examined is capable of meeting or exceeding the System
Constraints placed on the HBTD encoder (See Table 5.1). Since the
PN Cover Sequence is NRZ-L and employs the HRM clock, it will not
alter the preseiit bandwidth or data rate. The probability of not
meeting or exceeding the required bit transition density is at most
2.434 x 10-17. Since the PN Cover Sequence is independent of the
data stream, it will not propagate channel errors, a single input
error yilelds a single output error. Thus the PN Cover Sequence 1s
compatible with the existing BCH code. The above mentioned are
three primary constraints listed in Table 2.1. The fourth constraint
deals with the means use to implement the CSG and will éa:y
depending on whether shift register or ROM techniques are employed.
This constraint is also effected by the Secondary Comstraints in
Table 2.2. However the circuitry required to meet the secondary
constraints is basically the same for all six techniques and since
the truncated PN Sequence is one of the least complicated to implement,
the fourth constraint presents no major problem.

Since the actual implementation of the CSG is beyond the scope
of this contract, it was not covered in the preceding material. However,
a specificai i ns document concerning the PN Cover Sequence Generator
Encoder/Decoder was constructed and submitted with the April 1981
monthly progress report. A copy of this specifications document is
included in the Appendix. It contains diagrams for the purpose of
enhancing the concept of the CSG encoder and decoder. These figures
illustrate the functional properties‘desired for both the CSG
encoder and decoder which will enable them to meet the secondary
constraints of Table 2.2,

A second method of implementation was also put forth in the
November 1980 Monthly Report for meeting the secondary constraints.
This method differs in that the 4 ID Bits are used to designate whether
the CSG encoder had been activated or by passed. This modification

gy
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varies only slightly from the original truncated sequence, 4
additional bits are added increasing the sequence length to 3044
bits. This would not effect any of the first three constraints
of Table 2.1 and would require moderate chenges in the implementa-
tion. A copy of the November 1980 Monthly Report is included in
the Appendix for convenience.
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APPENDIX A
COMPUTER SIMULATION PROGRAM

A computer simulation program was developed which tests the
PN-Sequence for achieving the high bit density transitioné by modulo-
two addition with the data stream.

The computer program will generate several different PN-Sequences
for given generating polynomials (represented by IX) with given initial
conditions (represented by IG). Both IX and IG are written in octal
representation. The program generates, via subroutines, a sequence of
random numbers which simulates the input data stream to the Cover
Sequence Generator (CSG) Encoder.: Any specified portion of this random
sequence can be used to simulate a periodic input sequence. Thus the
program can generate periodic sequences of varying lengths and transition
densities to simulate the input data stream to the CSG Encoder. The
modulo-two sum of the PN-Sequence and the simulated imput data is
calculated. This modulo-two sum represents the output data stream
of the CSG Encoder. All three sequences are printed and the total
number of transitions for each is determined and printed.

The program will also determine for the output sequence the run
lengths for all bits of the same value and the order of their occurrence.
This information is stored and printed in two groups, onme for the all
Zeros case and the other for the all ones case. Examination of these
two groups permits a determination of whether the output sequence
satisfies the required transition density.

The status of the requirement of one transition every sixty-four
bits is determined by simply checking the number of bits per run in each
group. The second requirement of sixty~four transicion within five-
hundred-twelve bits is slightly more complicated to evaluate. An
average of one transition every eight bits will satisfy this requirement.
Thus by locating all runs of length eight or greater and examining the
runs prior to and following each of these, a determination concerning
this requirement can be made. Note the output sequence alternates
between the two groups. The question of which group to start with, zeros
or ones, depends upon the value of the first output bit ('XOR OF THE
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GENERATED BITS'). If the bit is a one start with the "LENGTHS OF
GROUPS OF ONES'" and if the first output bit is a zero stert with the

"LENGTHS OF GROUPS OF ZEROS".

—
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APPENDIX B

' SPECIFICATION DOCUMENT FOR PN COVER SEQUENCE
GENERATOR ENCODER/DECODER

1.0 Introduction

This Statement of Work (SOW) is to establish the requirements for
the definition and fabrication of Cover Sequence Generator (CSG) encoders
and decoders and associated cabling hardware for utilization in Spacelab.

The encoder shall be utilized in the interface between the Spacelab
HRM 2Mbps output and the Orbiter KU-band signal processor to ‘format the
bit stream to ensure minimum bit transition density.

The decoder shall be utilized in the interface between ground
station receivers and HRDM(s) to restore the reformatted data to the
non-encoded configuration and to resolve output bit ambiguity.

2.0 Scope
The contractor shall provide the necessary effort to define and

fabricate:
(a) CSG encoders and associated cabling and hardware both for the
Spacelab moduls and pallet modules.
(b) CSG decoders for implementation and integration into:
1. ATE at KSC
2. SLDPF at GSFC
3. POCC at JSC
The contractor shall provide the necessary effort to support the High
Data Link Test scheduled at JSC - April 1982 by having available a
CSG encoder/decoder qualification unit set and providing engineering and
test support.
The contractor shall prepare and maintain a schedule plan which imple-
ments this SOW.

3.0 Deliverables
. One (1) Set of Documentation
. One (1) CSG E/D Qualification Set
. Two (2) CSG Encoders
. Three (3) CSG Decoders
. Associated Hardware and Cabling
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4.0 Specifications

The units shall be manufactured in accordance with Spacelab
flight and GSE requirements. The quality program shall be in
accordance with NHB 5300.4(1C). Functional characteristics shall
be in accordance with Appendix B, 1.

5.0 Acceptance
Acceptance tests will be performed at the contractor plant. The

acceptance data package will be provided to NASA for review and L
approval. The review by NASA will be completed with 30 days of submittal.

6.0 Reviews

Design and development reviews shall include but not be imited to
the following:

PRR
PDR
CDR
Acceptance Review (AR)

The contractor will present additional reviews as required.
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APPENDIX B-1

COVER SEQUENCE GENERATOR ENCODER/DECODER
PRELIMINARY SPECIFICATION

1.0 Scope
This appendix defines the preliminary requirements for design of

the CSG Encoder/Decoder elements and will be used as the basis for
development of the part 1 CEI Detail Specification (CM-04).

1.1 Purpose and Description

The Cover Sequence Generator Encoder serves the purpose of
reformatting the Spacelab HRM 2MBPS serial bit stream in order to
satisfy data handling constraints for minimum bit transitions density,
The CSG Encoder will be physically located on board the Spacelab
vehicle and will be functionally located between the Spacelab HRM
2 MBPS output and the Orbiter KU Band Signal Processor (KUSP).

A complementary decoder shall be utilized to restore the
reformatted data to the non-encoded configuration. The decoder shall
be functionally located in the interface between the ground station : g
receiver and the HRDM. Figﬁtenxil,illustrates the functional location
of the encoder and decoder units. FigyreB.2 illustrates the portion of
the data stream to be reformatted and the portion of the data stream
which is not to be reformatted. Note that use of the frame synchroniza-
tion pulse generated by the HRM is necessary to turn the CSG Encoder
on and off at the proper time. Nofe further that either the synthesis
of the frame synchronization pulse or use of such a pulse from the HRDM
will be necessary in the decoder. Furthermore, because of possible

phase inversion of the data stream (including the frame synchronization

word), the synthesis of the frame synchronization pulse if necessary
will require a frame synchronization pattern or the inverted frame
synchronization pattern. If however, the HRDM supplies the frame !
synchronization pulse it will take the possibility of inverted data
into account.
The CSG encoder/decoder consists basically of a PN sequence which
is derived using a 13th order polynomial. The sequence so generated is
truncated to 3040 bits to match the data stream between frame

synchronization .pulses.

e N A BN
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a) CSG Encoder Functional Location
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b) CSC Decoder Functional Location
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oy

T

o



oy f

IN )
o
[- -]
” W - g g9oandtlg
W 5 wea13s IR WNH C°9
<F:
£3
28
=0
o4
o
o6
POPPV OTNPOH
acuanbag Nd sey uorliod STYL
R R
QoM “S°d 114 8¢
qgoM °S°4 119 8T "RVAYLS VIVa 119 0%0¢t ai 119 ¢
ar 119 % .

R N

b s o

SNSRI TR




B can A Rt ol ¥ i

81

A printout of the desired 3040 bit sequence will be furnished to
the contractor by the contracting agency. Figures B.3 and B.4 illustrate
the functional properties desired for both the CSG encoder and decoder.

These diagrams are provided for the purpose of enhancing the communication

of the concept of the CSG cncoder and decoder.

IN NO WAY ARE THE FIGURES B,3 AND B.4 INTENDED OR SHOULD BE' CONSTRUED

TO BE RECOMMENDED DESIGN APPROACHES.

The basic system requirements are:

For the Cover Sequence Geénérator (CSG) 'Encoder

1. Data input shall be NR2-L from the HRM formatter varying
discretely at a rate between 125 KBPS to 2 MBPS. The encoder shall
wrtilize a frame synchronization pulse from the HRM to turn the PN

encoder on and off.
2. Only HRM 2 MBPS data line (Data rates vary from 125 HEPS
2 MBPS) formatted data will be CSG encoded.

For chg Cover Sequence Generator (CSG) Decoder
1. If no HRM frame synchronization (nominal 2 MBPS data rate)
word occurs in the data stream from the bit synchronizer the data shall

be passed on unaltered.
2. For HRM 2 MBPS formatted science data with proper frame
synchronization word the data outputs phase will be unaltered and the

cover sequence removed.

In Figure B.4 the Timing Gate and the Time Coincidence Gate serve:
the purpose of determining that the clock and frame sync are indeed a
2 MBPS rate rather than a higher rate. The hold portion of the Time
Coincidence Gate is to activate the cover sequence generator for a
major portion of a :;ame.

It should be noted that the frame synchronization detector protion
of the CSG decoder must contain capability for and follow the same frame
synchronization search, acquire and maintenance mode protocol as that
specified in the HRDM specifications.

These following statements describe the basic HRDM frame

synchronization operation and frame synchronization pulse location.
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1. Frame synchronization is achieved by searching for two
consecutive frame synchronization words. When the first word is
recognized the 4 bit ID count is set in a counter. This count is then
updated by 1 count and upon receipt of the next frame synchronization
word the new 4 bit ID count 18 compared to the updated count and if
there is agreement frame synchronization is achieved.

At this time a pulse is generated (from high to low) which
laats for one bit time during the 32nd bit of the frame synchronization
word.

The data that is received during these two frame synchronization
words is discarded.

2.0 Requirements

2.1 Performance
2.1.1 CSG Encoder
The CSG Encoder will reformat the 2 MBPS HRM serial bit stream with
the following constraints. '
a. The probability of not having at least one transition in 64
bits shall be 5.4210108 x 10-20 or less
b. The probability of not having 64 transitions in 512 bits
shall be 3.945% x 1077} or less
¢. The combined failure probability shall be 2.434 x10™17
or less
d. The reformatted data stream shall not increase or decrease
the information rate
e. The reformatted data shall be compatible with the existing
BCH code
f. The mechanization of the PN cover encoder shall have a minimal
impact on the existing system
g. Source voltage for the PN cover encoder will be provided by
a 28 voit input DC to DC converter
h. There shall be no increase in RF bandwidths
i. The HRM sync word shall be unaffected by the CSG sequence
j. There shall be no error propagation due to the use of the CSG
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The recomnended 13th order polynomial sequence is

g(x0 = 1 4+ x9 - xlo + x12 + x13 which shall be truncated to
a 3040 digit data stream

The CSG shall pass through any data without an HRM frame
sync undisturbed

The CSG shall ignore any frame sync pulse signal that
indicates a total data rate greater than 2 MBPS

Parts for the CSG shall be EEEE.

2.1.2 CSG Decoder

The CSG Decoder will reformat the 2 MBPS HRM data streams with
the following constraints:

b.

C.

The CSG Deocder shall pass data without HRM frame sync (normal
or complementary) undisturbed

The CSG Decoder shall pass NRZ-S, NRZ-M and Bi~¢ data
undisturbed, assuming basic NRZ-L compatible logic levels

The CSG Decoder shall have the capability to recognize both
normal and complementary HRM frame sync. (If available the
CSG Decoder may substitute a frame synchronization pulse

from the HRDM in lieu of generating this information within
the Decoder itself. The availability of this frame synchroni-
zation pulse from the HRDM must be resolved between the

contractor and the contracting NASA agency.)
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APPENDIX C

A STUDY OF HIGH DENSITY BIT TRANSITION
REQUIREMENTS VERSUS THE EFFECTS ON BCH
ERROR CORRECTING CODING

A Monthly Progress Report
Covering the Period
November 1, 1980 - November 30, 1980

Submitted to:

George C. Marshall Space Flight Center
National Aeronautics and Space Administration
: Marshall Space Flight Center, Alabama
= 35812

Submitted by:

Mississippi State University
Engineering and Industrial Research Station
Department of Electrical Engineering
Mississippl State, Mississippi
39762

Principal Investigator: Frank Ingels
Associate Investigator: William O. Schoggen

Contract No. NAS8-33887

TS




87

A STUDY OF HIGH DENSITY BIT TRANSITION
REQUIREMENTS VERSUS THE EFFECTS ON BCH
ERROR CORRECTING CODING

Work Summary
Period: (November 1, 1980 to November 30, 1980)

A meeting was held at NASA-MSFC on November 10, 1980. Participants
were Mr. David Mann (MSFC), Mr. Ellington Pitts (MSFC), Miss Virginia
Johnson (MSFC), one representative from MDTSCO, Mr. W. O. Schoggen (MSU)
and Dr. F. Ingels (MSU). The purpose of thé meeting was to discuss
the latest requirements on the system to be'implemented for achieving
a high density bit transition data stream for the 2 MBPS HRM formatted
science data.

The requirements are:

For the Cover Sequence Generator (CSG) Encoder

1. Data input shall be NRZ~-L from the HRM formatter. However,
the encoder shall pass NRZ-S, NRZ-M or Bi-¢ data streams in unaltered
fashion as long as they have proper logic levels'(that is logic levels
compatible with the HRM NRZ-L data).

2. The encoder shall pass unaltered data streams of 2 MBPS which
emanate from the system other than from the HRM formatter. These data
streams will not contain a frame synchronization pattern similar to
that of the HRM 2 MBPS formatted science data.

3. Only HRM 2 MBPS formatted data will be CSG encoded. If the
HRM formatted data is being transmitted at a faster rate it shall not
be encoded.

For the Cover Sequence Generator (CSG) Decoder

1. If no HRM frame synchronization (2 MBPS data rate) word occurs - ‘
in the data stream from the bit synchroaizer the data shall be passed on %J '
unaltered. '

2. For HRM 2 MBPS formatted science data with proper frame syn-
chronization word the data output shall be non-inverted in phase and
the cover sequence removed.

3. The decoder shall pass NRZ-M, NRZ-S, or Bi-¢ data without
alteration. It is assumed that these data streams will have compatible
logic levels with the HRM 2 MBPS formatted science data stream.
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The CSG Encoder block diagram is illustrated in Figure C+1.''The
CSG Decoder block diagram is illustrated in Figure C.2.

In Figure 2 the Timing Gate and the Time Coincidence Gate serve
the purpnse of determining that the clock and frame cync are indeed a
2 MBPS rate rather than a higher rate. The hold portion of the Time
Coincidence Gate is to activate the cover sequence generator for a
major portion of a frame. .

After recognition of a frame éynchronization word the 4ID bits
of the frame synchronization pattern are encoded to provide a 4 bit
pattern for the decoder to use for determining that the cover sequence
has actually been added to the data stream.

The design is fail safe in that the HRM 2 MBPS formatted data will
pass through unaltered if the Encoder fails to activate the CSG, however,
in this event the data stream is not guaranteed to contain a sufficient
bit transition density.

In Figure C.2 thedouble frame synchronization word detectors suffice
to determine 1f the data stream enamating from the bit synchronizer is
in non-inverted or inverted phase. In the case of the inverted phase
the data stream is reinverted automatically. The 4ID bits are cecked
for the presence of the cover sequence and if it is present and if the
Time Coincidence Gate agrees that the data stream is a 2 MBPS rate
then the cover sequence generator is activated.

The 4 Bit Delay is necessary for inspection of the 4ID bits
prior to activation of the cover sequence generator.

LI
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