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b ABSTRACT

Although backward error recovery with recovery blocks(RB’'s) has recelved con-
siderable attention from many researchers, no a*tempt has baen made to stnicture
its implementation aiternatives and then to evaluate/analyze their effectiveness. In
this paper we consider three different methods of implementing RB's. These are the
asynchronous, synchronnus, and the pseudo recovery point implementations.

Asynchronous RB's are based on the concept of maximum autonomy in each of
concurrent processes. Consequently, establishment of RB's in a process is made
independently of others and unbounded roliback becomes a serious problem.

In order to completely avoid unbounded rollback, it is necessary tn synchronize
the establishment of recovery blocks in all cooperating processes. Process auton-
omy is sacrificed and processes are forced to wait for the commitment to establish-
ing a recovery line, leading to inefficiency in time utilization.

As a compromise between asynchronous and synchronous RB's, we propose to
Insert pseudo recovery points so that unbounded rolilback may be avoided while main-
taining process autonomy.

We have developed probabilistic modeis for analyzing these three methods
under standard assumptions in computer performance analysis, l.e. exponential dis-
tributions for related random variables. With these models we have estimated (i) the
interval between two successive recovery lines Tor asynchronous RB's, (i) mean loss
in computation power for the synchronized method, and (iif) additional overhead and
roliback distance in case PRP's are used.
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{. INTRODUCTION

Recent advances In V\.S| and communication network technologies have made
distributed processing fnelblo.‘WhIo distributed processing can theorstically be
sxploited to provide computation speedup, cost-effectivensss and tolerance of com-
ponent faliure, several problems remain tc be solved before its full potantial can be
reaiized in practice. In this paper, we consider one such probiem: that of implementing

backward error racovery for concurrent processes with racovery blocks.

The best known technique of backward error recovery, the recovery block
(RB), was proposed by Horning [1] and Randell [2]. it is a sequential program struc-
ture that consists of an acceptance test, a recovary poim(RP), and alternative algo-
rithms for a given pror.ess. A process saves its state at its recovery point and then
enters a recovery region. At the end of a recovery biock, the acceptance test is
executed to check correctness of the computation results. In case an error is
detected during the normal execution or the computation results fail to pass the
acceptance test, the process rolis back to an old state saved at the previous RP and

axecutes one of the other aiternatives.

Unfortunately, however, for cooperating concurrent processes the rollback of a
process may cause other processes to roll back(this phenomenon is called rollback
propagation ) because of process interactions and imperfect checking of global
cotrectness. Moreover, rollback may propagate to further RP's since recovery points
of individual processes may not provide a globally consistent state for all processes
involved. This rollback propagation continues until It reaches a recovery line at
which a globally consistent state does exist. In the worst case, an avalanche of roll-
back propagation (called the domino effect) can push the processes back to their
beginnings, thus r_esultlng in loss of the entire computation done prior to the error

occurrence.
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A detalled descripiion ot the domino effect can be found in [3]. For conveni-
ence let us consider Figure 1 to visualize roliback propagation. FProceas P, begins to
roll back because of unsuccessful acceptance test AT.‘  This roliback propagates to
the other two processes P, a;ad Ps. Eventually, the whole system has to restart
from recovery line RLg and the computation done between RLg and AT} has to be
discarded. The interval between the restart point and the time point at which an
error is detected or the acceptance test fails, called the rollback distance, can be

used to represent the computation loss in rollback recovery.

The domino effaect is the major obstacle in impiamenting the recovery block
scheme for concurrent processes. The designer is able to predict neither the time of
the occurrence of process interactions nor that of the appearance of recovery lines.
Nonetheless, it is not desirable to randomly place recevery points and acceptance
tests without considering process characteristics. Otherwise, it is possible to have a
disaster such as unbounded roliback propagations, a large rollback distance, and a
great number of largely useless recovery points occupying large amounts of memory
space, etc. Furthermore, decision on rollback propagation and determination of
recovery lines will become more complex though they can be made in a centralized

[4,56] or decentralized manner [6,:,8].

Several refinements have been proposed to overcome the drawbacks in this
racovery block scheme. One approach is to put concurrent processes into a con-
trolled scope, either to synchronize the occurrence of acceptance tests or to direct
process interactions. For the former, Randell [2] has suggestved the conversation
scheme which requaests every cooperating concurrent process to leave it3 accep-
tance test at the same moment (called test line). He has also proposed a language
structure in an abstract form for the conversation scheme. Other mechanizations of
the conversation scheme on the basis of the same concept but with more flexibility
have been devised by Kim [9]. Synchronized roliback recovery schemes for transac-

tions using a two-phase commitment protocol or transaction ordering are also studied
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in [10,11,12). Russell’ has proposed that (nformation be retained for directed
interactions from producers to consumers so that rollback propagation can be blocked
[13,14]. Another approach is to save additi - aa\l states based on the occusrsnce of
interactions; for example, the lbranch recovery point [16] and the system defined
checkpoint (SDCP) [186].

In this paper we propose to employ pseudo Tecovery points2 (PRP's) to allevi-
ate the rollback propagation problem by allowing a process to restart at a PRP in
case the process is forced to roll back by others as a resuit of rollback propagation.
Therefore, we can classify these refinements into two categories, synchronized
recovery blocks and pseudo recovery points, providing a contrast with the third

category called asynchronous recovery blocks.

To implement the rollback recovery schemes, we have to consider various
trade-offs between these three categories and the characteristics of concurrent
processes. A satlsfactf)ry compromise should include an acceptable delay in process
completion due to rollbacks, the preservation of autonomy for each process, and pro-
grammer transparency. Therefore, optimal solutions may be a combination of these
three categories. A quantitative analysis is necessary to justify the solutions. For
example, It is necessary to determine the mean amount of computation undone in
case processes roll back, the optimal interval between two successive synchroniza-
tions, the mean size of memory space required to save states, etc. However, because
the program behavior is unknown and execution proceeds stochastically, accurate

modelling is difficult.

In this paper, employing standard assumptions in computer performance analysis,
we have developed a model to quantitatively describe the characteristics of rolilback
recovery schemes as well as their effectiveness. In the following section, several

2 we call It 2 pseudo recovery point(PRP) since there Is no acceptance test before the saving of pro-

cess state at a PRP. The states recorded at PRP’s may have been contaminated and thus can not be used to
recover a falled process.

O DTS
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assumptions are discussed and then a model for asynchronous recovery blocks is
introduced. Using this model, we employ simulation to present the probability distribu-
tion of the interval between two successive recovery lines and the mean number of
states recorded during that ’interval. In Sections 3 and 4, the synchronization
method and the implantation of pseudo recovery points are evaluated respectively.

The paper concludes with Section 5.

2. EVALUATION OF ASYNCHRONOUS RECOVERY BLOCKS

Let us consider the history diagram in Figure 1 to illustrate the activities of
cooperating concurrent processes F;, i=1.2,...n. Process F; establishes its jth
recovery point RP,‘- without synchronizing with other processes. Interprocess com-
munications are represented by arrowed horizontal lines. Let set Ac{l,....n}, i.e. a
subset of concurrent processes. Then one may find a combination of RP} for all i €4,
which forms a recovery line for set A, denoted as RL? for the rth recovery line. For
simplicity superscripts in representing recovery lines will be omitted in the sequel as
long as that does not result in ambiguity. The interval between two successive
recovery lines RL, and RL,,, in process P; is a random variable and denoted by Xi.
Since a recovery line provides globally consistent states to all members of process
set A, it is reasonable to assume that X;‘ is stochastically identical for all t€A. Thus,

X, is used to represent the interval between the rth and (7 +1)th recovery lines.

2.1. Modeling Assumptions

We make the following assumptions in our subsequent analyses.

1. Autonomous Processes: Cooperative autonomy is regarded as the most important
requirement in distributed processing. Each process should be executed accord-
ing to its own program and environment, almost as if there were no processes to
Interfere with. Thus, a process is executing independently of others as long as

there is no conflict with others in accessing shared resources. Since
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synchronization is not enforced in this category of recovery blocks (i.e. asynchwo-
nous recovery blocks), processes will transmit messages or establish their

recovery points independently of other processes.

2. Perfect Acceptance Test: Acceptance tests should detect all errors within the
local process during the execution of recovery blocks and thus ensure the
correctness of local execution. It is in general difficult to guarantee the com-
plete correctness, but at least the computation results that have passed the
acceptance test should be “acceptable”[3]. The local acceptance test may or
may not detect external errors or erroneous messages because the local process

Is not aware of the global system and other processes.

3. Probability Distribution of Interactions: Usually, process behavior is modeled
as an ordered sequence which in turn is specified by the program and dependent
on the execution condition. Even if the processing sequence is given, the inter-
val between two successive interactions is variable due to conditional branches.
Locking and waiting at shared resources make it even more ur.lcertaln. Nonthe-
less, for both tractability and simplicity we have adopted here constant reference
rates in the multiprocessor and exponentially distributed intervals between two
successive message transmissions in the computer network. The inteirval for two

successlve interactions between FP; and P; is thus assumed to be exponentialy

distributed with mean 1/ Ay and A;=Aj for all i,j=1,2,....n and i#j.

4, Consistent Communications: Let two messages m, and m, be sent from F;
to P;. Consistent communications should satisfy : (1) every message sent from P,
to P; will be received eventually by F;, and (ii) m,and m, are received by P; in
the same order as that they are sent. Notice that in some packet-switched com-
puter networks, messages are allowed to be received by the destination out of

order. However, the order can be kept uvasily, for example, by time-stamping mes-
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sages at the time of transmission.

6. Distribution of Recovery Points: Because of process tndopendinco and the
uncertainty of execution conditions, the appearances of recovery points are ran-
dom and difficuit to model. To avoid complexity, establishment of recovery points

in a process is assumed to be an independent Poisson process with parameter

for process F;.

2,2, A Model for Asynchrono’s Recovery Blocks

Since individual recovesy points by themselves may not be sufficient in rollback
recovery due to the possibility of unbounded rollback propagations, we consider in
this paper only the formation of recovery lines for asynchronous recovery blocks
instead of separate individual recovery points. The requirements of a recovery line
for processes F;, fori=1,2,...n, can be stated as follows:

1. Each recovery line has to inciude one recovery point RP}

for every process F;.

2. Let the moment of establishment of the jth recovery paoint
in process P; be t[RP}] and let t¥ be the moment of the g th interaction
from P, to P,. For every pair (R} , RP}.) in a recovery line,
there does not exist an integer k such that tf'c[t[RP}], t[RP}]]
it t[RP}] < t[RP}] (otherwise, ti*<[t[RPf], t[RP}]]). This implies
that no communication from P; to F; (and vice versa) can be

sandwiched between ¢t [RFP}] and ¢t[RP}].

The basic idea underlying the model is to trace the occurrence ot toth recovery
points and interactions. Based on the assumptions in Section 2.1, random variable X,
can be modeled by a continuous-tine Markov process starting from a recovery line
(RL,) and ending at the next recovery line (RL.,,). For a set of processes,

,={P; |[1€A] where A={1,2,...,n], two types of states are defined:

7
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(a). End states S, and S,,,: transitions start from S, where all
processes have formed the rth recovery line, and end at S, ,,

upon establishment of the (r + 1)th recovery line.

(b). Intermediate states S = (z,, zp, . . . , Z, ), where z;=0
If the previous action of P, was an interaction, and

z;=1 If it was establishment of a recovery point.

Occurrences of interactions and recovery points in a process make the system
go through these states. Note that both S, and S,,, are equivalent to state

(1,1.....1). We can establiish the following transition rules:

R1. The system goes to state (z,,..,Z;-1.1.Zi+1....Zn)
from state (z,,...2;-1,0.Zi+1....%5 ) With rate u; upon establishment

of a recovery point in P;.

R2. The system leaves state (z,,...2;_;,1.Zi4}....%j 1. 1.Zj 41,..Z ) and
enters state (z,,...Z;1,0,%;+1...2j1.0.Zj41....T5) With rate A

if there is an interaction between F; and P;.

R3. The system arrives at state (z,,...2;_;,0.2;;,....Z5 )
from state (z;,..,2;-1.1,Z¢+1....2Z5 ) With transition

rate ), Ay where B;={j | z;=0, j#i and j €A}.
jeBy

R4. The system can transfer directly from state S, to state S,

n
with transition rate 3 ;.
k=1

Under these transition rules a Markov model is developed for three processes
P,, P, and Pj, and presented in Fig. 2. The single-arrow lines are unidirectional tran-
sitions. The double-arrow lines are bidirectional transitions in which left-hand side

parameters represent leftward transition rates and right-hand side parameters
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rightward transition rates. The number of states for a set of n processes is 2" +1,

When u=u;=u and Ay =A for all 1, j € A, the model can be simplified since all
intermediate states S=(x,zs . ..,z,) containing exactly v 1's in (2,23 ... .2p)
can ba replaced by a single state S,,. A simplified model is obtained under the follow-

ing transition rules and presented in Fi3. 3.

R1'. Foru =0,1,....n-1, the system will move to state 5,
from state S, with transition rate (n —u)u

when a new recovery point is formed.

R2'. For all u > 2, the system is able to leave state 5,

for state S, _; with rate ’—"-(3-‘2;9-&

.

R3'. For all u = 1, there is a transition from state .5, to

state 5,_, with rate u (n—u)A.

R4'. The system can transfer directly from the entry state S,

to the terminal state S, with transition rate nu.

2,3. The Analysis of Asynchronous Recovery Blocks

With the model developed above, we can characterize the behavior of asynchro-
nous recovery blocks in terms of the degree of interprocess communications and the
distribution of recovery points. With the exponentially distributed interprocess com-
munications and recovery points, X, for all r becomes stochastically identical. Let X
denote a random variable representing the interval between two successlve recovery
lines, L; the number of states saved in process P, during interval X. The probability

distribution of X and the mean value of [, are derived below.
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A The distribution of X

Let the state space ¥={0,1,2,....m{ where m =2" be the set of states of the
foregoing continuous-time Markov process with the following convention for number-
ing state.-

(a). S,--> state O,

N
(b). an intermediate state (z,,zp, . . . , Z,) --> state ()} z2'~! +1), and
- {=1
(c). S,y ==> statem.

Then, the Chapman-Kolmogorov equation becomes

%n(t) = n(t)H

where H is the (m xm) transition matrix [~ (u,v)] in which the (u,v) element is the
transition rate from state u to state v, and n-(t) is a vector whpse kth element is
the probability that the system is In state k£ at time . The initial condition is
m(0)=[1,0,0...,0]. The interval between two successive recovery lines, X, is equal to
the time needed for transition from state 0 to state m. Therefore, the density func-

tion of X, namely f,(t), is given by
7a(t)= Fmn(e)

B. The mean value of L;

Since we are only concerned with the number of recovery points established by
process P; during interval X, a discrete Markov chain is used. To compute the mean
value of L;, a new Markov chain, denoted by Yy, is constructed based on the previ-

ous m:. el with the following two steps.

(a). Convert the previous model to a discrete model:

The new chain, Y4, has the same states as the previous Markov process.

n n
let G = 2 2 Ay + Z‘ Uy be the normalization factor. The transition
izl §=1,5% k=1

10
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probability from state u to state v in Yy Is equal to: foru, v = 0,1,....m,

pluw) = M“_G..ﬂ ifurv,andp(u.u) = 1- ﬁ pluy)

vslvey

(b). Arrivais at a state S, = (z,,z3,....%;,... Z,) Where z;=1 can be _
grouped into two classes. One is formed as a result of the occurrences of
RP's in P, and the other is formed as a resuit of interprocess communica-
tions and establishments of RP's in processes other than P;. Accordingly,

the state S, =(z,,z;.....%,._Zx) With 2,=1 can be split into two states S, '

and S,", representing the two classes, respectively. Both states have the
same departure processes as that of S,,. However, all arrivals at state S,
due to the occurrence of recovery points in P, enter state S,' whereas all

other transitions are made to S,". Hence the number of RP's associated

with state S’ Is represented by that of arrivais at S,,".

Figure 4 shows the conversion and the split of state S, = (1,0,0) of the Markov
chain for the three concurrent processes in Figure 2. With thé new discrete model,
Y4, we can caiculate the the mean number of visits to state S,’, denoted as Ns,,'-
and the mean value of L, using the following relationship:

E(L)= Y, E(Ns,)

5, '€¥
where ¥y Is the state space of Y. ey

Suppose process P, detects an error or fails the acceptance tast at one of its
recovery points RP}. where j=1,2,....L;. The rollback of P, may propagate to k&
processes in the process set, (1, = iP,l l€A} where A={1,2,...n]. Let Df be the
rollback distance associated with the k processes and RP} for j=1.2,..,L;. Then, X
represents the supremum of these random variables, l.e., DL“ . In Figure 5, the mean
values of X are plotted as a function of n. it shows that X increases drastically
when there is an increase in the number of processes involved in the rollback

recovery. The density function of X, f_(t), is plotted in Figure 8. For all the three

11




ORIGINAL PAGE 1S
8hin and Lee: Analysis of Recovery Blocks OF POOR QUALITY

cases In Fig. 8, there In a sharp puise near £ =0, which is due to direct transitions
between S, and S,,, and a ionger tranaition time needed once the system enters

intarniediate states.

letp= (2 2 Ag)/ ( 2 Mg ) which represents the relative ratio between the
in] ju1 dmt ' T3}
density of interprocess communications and recovery point establishments. With a
fixed value of p and varying values of u's and \'s for three processas, we have per-
formed computer simulation and the results are tabulated in Table 1. The minima of X
and L, occur when the distribution of recovery points among these processes is uni-
formly balanced (l.e., u,=uz=us). The distribution of intarprocess communications
does play an important role in determining the probability of roliback propagation but

has littie effect on X and [; once the set of procasses involved in rollback recovery

is determined.

3. SYNCHRONIZED RECOVERY BLOCKS

The simnlest way of avoiding unbounded roliback propagations is to synchronize
the establishment of recovery points during process execution. In this method,
interactions are inhibited between any pair of proceases during their establishment
of recovery points. There are three conceivabie strateglies in deciding when a syn-
chronization request is to be issued: (1) at a constant interval; (2) when the time
elapsed since the previous recovery line exceeds a specified value; or (3) when the
number of states saved after the previous recovery line is larger than a prespecified
number. The implementation of the first strategy is simple since the synchronization
request is issued without any knowledge of the state of execution. Neverthealess,
this strategy may become very inefficient since it is possible to make synchronization
requests immadiately after the formation of recovery linas. For the second and third
strategies, rollbback distance and the number of seved states are prevented from
becoming too large. However, in this case each process must be aware of the

occurrence of a recovery line whenaver it is established.

12
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Upon the receipt of a sy« chronization request, every process has to prepare for
establishing a recovery line and aiso has to wait for the commitment (for establishing
a racovery line) from other processes before it axocutes an acceptance test. Thus,
all cooperating processes pnﬂ;oﬂn thair acceptance tests at the same instant upon
receiving the commitments from all other processes. Let P -rsady, for j=1.2,...n,
be the flags in process P to indicate commitments from P;. The steps for synchroni-

2ation in each process P, are described as follows:
1. exscute "its own normal process” until "accertance test';
2. set Py—ready := ON and then broadcast Py —ready;

3. while not (all P;~ready = ON) do
receive messages;
if o message is Pj; —ready then set P, ~ready := ON

else record the message

4, do "acceptance test” and record process states.

Establishment of recovery lines upon synchronization requests is shown in Figure
7. Synchronization causes the computation power to be diminishad because
processes have to wait for the commitment (as in step 3). Let y; be the interval
between the receiving of a synchronization request and the moment that proceas P
reaches its next acceptance test (in step 1). Then, according to the assumptions in

Section 2.1, y, Is an exponentially distributed random variable with parameter 4. Let

Z=max{¥;. Y2 - - - . Yn}- The total loss in computation power is CL=§ (Z-yq)- The
is1
mean loss becomes

— - _ _ “.l'..
CL-n_[(l F (t))dt ‘gm

where F, (t) is the distribution function of Z, and equals fl(l-e ™,
is]

13
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4. IMPLANTATION TF PSEUDO RECOVERY POINTS

in the construction of a recovery block, usually, an acceptance test is a number
of executable assessments provided by the programmer and then followed by a state
saving. Note that process sta’tes can also he recorded upon any other requests if
they are considered useful in the rollback recovery. A pseudo recovery point (PRP)

Is dafined as a recovery point that is established without a preceding acceptance

test and is proposad here as an alternative for avoiding the domino effect in a set of
cooperating concurrent pruocesses. With a monitor as the interprocess communication
means, Kim [15] and Kant and Silberschatz [16] discussed methods for implanting
recovery points in a central manner. Similarly, we consider a method for implanting

PRP's in the set of cooperating concurrent processes in a decentralized manner.

To make every recovery point RP} in process FP; maximally useful for rollback
error recovery, there shou.d be corresponding recovery points in the other processes
that have to roll back as a result of the rollback propagation from F;. If such
recovery points do not actually exist, a pseudo recovery point, PRP}", has to be
inserted in process F; for a given RP} in process P;. Further, in order to avoid the
need of tracing recovery points at that particular moment, a PRP is esiablished in
aach of the other processes involved for RP}. An algorithm for implanting PRP's is

given below.

(1). When F; establishes a recovery point RP}, it broadcasts a PRP

implantation request to other processes.

(2). If P; receives the implantation request, it records its state as PRP}"
upon the completion of the current instruction without an acceptance test.

Then P;. broadcasts the commitment C;..

(3). Every process executes its own normal task after it establishes

RP} or PRP}'. However, the messages sent 10 a process by Py prior to C;

14
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have to be retained in the state saved.

Assume that process F; detects an error before estabushl;lg RP},, and that
this error is local to ;. The recovery line (called a pseud- recovery line, PRL})
formed by RP} and all PRP}'"s is able to recover these processes even if the error
has aiready propagated to other processes. However, when tr;e error detacted in F;
is due to error propagation from another process, P, (and therefore not local to F;),
the contents of PRP}‘ may have already been contaminated if this error occurred
prior to establishing PRP}‘. The restart from the pseudo recovery line formed by both
RP}‘ and ali PRP}‘"s may just reproduce the same error. Therefore, roliback prop-ga-
tion may continue until every process involved has rolled back to a pseudo recovery
line past at least one of its recovery points. Most of the processes involved are
assured to reach the pseudo recovery line by roliing back past only one recovery
point. A few processes may have to roll back past more than one 3P due to random
Interprocesses interactions, and this can not be avoided unless a forced synchroni-
zation is employed as discussed in Section 2. Consequently, the pseudo recovery
line allows the processes to have the shortest rollback distance for backward error
recovery without synchronization. Note that the pseudo recovery line is now
guaranteed to contain correct states of all concerned processes. An algorithm of

roliback recovery with these pseudo recovery points is given by:
(1). I1f an error is found in process P, set p := i where p is a rollback pointer.

(2). P, rolis back to its previous recoveiy point RFP. All processes P;
affected by the rollback of Pp roll back to their respective

pseudo recovery points PRPF.

(8). For every affected processes F;’, if the rollback has not passed its most

recent recovery point, then set p := i’ and go back to step 2.

15
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In Figure 8, the establishment of PRP's in processes P,, Pp, and Py is illus-
trated. When Pj fails its acceptance test AT3. all processes have to restart from
the pseudo recovery line formed by (RP!, PRP}%, PRP}®) it P, and P, are affected
by the rollback of Ps. ’

In the above algorithm, we can find that every process needs to preserve a
recovery point for restart in case it fails. Also (n—1) pseudo recovery points are
needed for a process to form & pseudo recovery line with other processes where n is
the total number of concurrent processes. it is therefore required to save n states
for every RP, i.e. one RP and (n-l) PRP's, and all old RP's and PRP's except those in
the pseudo recovery lines { PRLf | i = 1,...n, and RP} is the most recent RP in P}
can be purged when a new recovery point is established, thereby reducing storage
requirements for saving RP's anq PRP's. Note that rollback distance is bounded by
the supremum of {y,.¥2. ... .Yn} Where y; is the interval between two successive
reco/ery points of process P;. The additional time overhead for every recovery point
's (n~1)t, where t, is the time needed to record the process state. These over-
heads should be assessed against the gain of process autonomy and avoidance of

unbounded rollback propagations.

5. CONCLUSION

We have quantitatively evaluated three different recovery blocks employed in
backward error recovery for concurrent processing. The recovery block dealit with in
this paper is defined in software and comprises an acceptance test and a state
saving. The environment of concurrent processing considered here is not restricted

to any particular method of interprocess communications or system structure.

We have estimated the overhead required to avoid the domino effect when
recovery or pseudo recovery points are employed. For both the synchronization
method and the implantation of pseudo recovery points, the overheads are largely

related to the construction of synchronization, RP's and PRP's. They would become
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an unacceptable burden when synchronizations and pseudo recovery points are con-
structed frequently but interprocess communications rarely occur. At the other
extrems, l.e. asynchronous recovery blocks, it may result in a longer roliback distance
due to unlimited roliback propigations (in place of synchronization and PRP insertion

overheads).

in this paper, we have considered the distribution of the interval between two
successive recovery lines instead of the actual rolilback distance. The rollback dis-
tance after an error is detected is related to the probability of error uccurrence, error
detection, and roliback propagation, etc. However, the interval X does represent an

i*wnar bound for the real roliback distance.

To select a suitable strategy or a combination of these three methods, we have
to first examine the properties of concurrent processes such as the amount of inter-
process communications and the distribution of recovery points. Then, we weigh the
trade-off between the loss of computation power during normal operation and the
increase in response time due to rollback recovery. For instance, the asynchronous
method or a longer synchronization period is not acceptable for time-critical tasks in
which a delay in system response beyond a certain value, the system deadline,
leads to a catastrophic failure. The implantation of pseudo recovery points is also
inefficient for concurrent processes when they establish recovery points
frequently(thus requiring many PRP's to be implanted) and rarely communicate with
each other. In general, if meore knowledge of the execution state in concurrent
processes can be obtained, a better strategy for implementing recovery blocks can

be derived.
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