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Although backward error recovery with recovery blocks(R9 's) has received con-
siderable attention from many researchers, no a!tempt has been made to stnicture
its implementation alternatives and then to evaluate /analyze their effecthrene::s. in
this paper we consider three different methods of implementing RB's. These are the
asynchronous, synchronnus, and the pseudo recovery point Implementations.

Asynchronous RB's are based on the concept of maximum autonomy in each of
concurrent processes. Consequently, establishment of RS's in a process is made
Independently of others and unbounded rollback becomes a serious problem.

In order to completely avoid unbounded rollback, it is necessary t.) :synchronize
the establishment of recovery blocks in all cooperating processes. Process auton-
omy is sacrificed and processes are forced to wait for the commitment to establish-
Ing a recovery line, leading to inefficiency in time utilization.

As a compromise between asynchronous and synchronous RB I s, we propose to
Insert pseudo recovery points so that unbounded rollback may be avoided while main-
taining process autonomy.

We have developed probabilistic models for analyzing these three methods
under standard assumptions in computer performance analysis, i.e. exponential dis-
tributions for related random variables. With these models we have estimated (1) the
Interval uetween two successive recovery lines for asynchronous RB's, (ii) mean loss
In computation power for the synchronized method, and (iii) additional overhead and
rollback distance in case PRP's are used.
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+. INTRODUCTION

Recent advances in H1,LSI and communicatiof network technologies have made

distributed processing feasible. While distributed processing can theoretically be

exploited to provide computation speedup, coat-effectiveness and tolerance of com-

ponent failure, several problems remain to be solved before its full potential can be

realized M practice. In this paper, we consider one such problem: that of I plementMg

backward error recovery for concurrent processes with recovery blocks.

The beat known technique of backward error recovery, the recovery block

(RS), was proposed by Horning [1] and Randeli [2]. it is a sequential program struc-

ture that consists of an acceptance test, a recovery poim(RP), and alternative algo-

rithms for a given process. A process saves its state at its recovery point and then

enters a recovery region. At the end of a recovery block, the acceptance test is

executed to check correctness of the computation results. In case an error is

i detected during the normal execution or the computation results fail to pass the

acceptance test, the process rolls back to an old state saved at the previous RP and

executes one of the other alternatives.

Unfortunately, however, for cooperating concurrent processes the rollback of a

process may cause other processes to roll back (this phenomenon is called rollback

propagation ) because of process Interactions and Imperfect checking of global

correctness. Moreover, rollback may propagate to further RP's since recovery points

of individual processes may not provide a globally consistent state for all processes

Involved. This rollback propagation continues until It reaches a recovery line at

which a globally consistent state does exist. In thk^ worst case, an avalanche of roll-

back propagation ( called the domino effect) can push the processes back to their

beginnings, thus resulting in loss of the entire computation done prior to the error

occurrenze.
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A detailed descr!;,'Um of the domino effect can be found In M. For converti-

once let us consider Figure t to visualise rollback propagation. Nroceas P l begins to

roil back because of unsuccessful acceptance test AT 41 . This rollback propagates to

the other two processes Pe and Ps. Eventually, the whole system has to restart

from recovery line RLe and the computation done between RLe and AT 41 has to be

discarded. The interval between the restart point and the time point at which an

error Is detected or the acceptance test fails, called the roUback distance, can be

used to represent the computation loss in rollback recovery.	 i

The domino effect is the major obstacle in Implementing the recovery block

scheme for concurrent processes. The designer is able to predict neither the time of

the occurrence of process interactions nor that of the appearance of recovery lines.

Nonetheless, it is not desirable to randomly place recovery points and acceptance

tests without considering process characteristics. Otherwise, it is possible to have a

disaster such as unbounded rollback propagations, a large rollback distance, and a

great number of largely useless recovery points occupying large amounts of memory

space, etc. Furthermore, decision on rollback propagation and determination of

recovery lines will become more complex though they can be made in a centralized

[4,6] or decentralized manner [8,: ,8].

Several refinements have been proposed to overcome the drawbacks ;n this

recovery block scheme. One approach is to put concurrent processes into a con-

trolled scope, either to synchronize the occurrence of acceptance tests or to direct

process interactions. For the former, Randeil [2] has suggested the conversation

scheme which requests every cooperating concurrent process to leave Its accep-

tance test at the same moment (called test line). He hits also proposed a language

structure in an abstract form for the conversation scheme. Other mechanizations of

the conversation scheme on the basis of the same concept but with more flexibility

have been devised by Kim [9]. Synchronized rollback recovery schemes for transac-

lions using a two-phase commitment protocol or transaction ordering are also studied

3
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In [10,11,12]. Russell' has proposed that information be retained for directed

Interactions from producers to consumers so that rollback propagation can be blocked

[13,14]. Another approach Is to save addlt i • ial states based on the occurr`nce of

Interactions; for example, the branch recovery point [15] and the system defined

checkpoint (SDCP) [16].

In this paper we propose to employ pseudo recovery points 2 (PRP -s) to allevi-

ate the rollback propagation problem by allowing a process to restart at a PRP in

case the process Is forced to roll back by others as a result of rollback propagation.

Therefore, we can classify these refinements into two categories, synchronized

recovery blocks and pseudo recovery points, providing a contrast with the third

category called asynchronous recovery blocks.

To implement the rollback recovery schemes, we have to consider various

trade-offs between these three categories and the characteristics of concurrent

processes. A satisfactory compromise should include an acceptable delay in process

completion due to rollbacks, the preservation of autonomy for each process, and pro-

grammer transparency. Therefore, optimal solutions may be a combination of these

three categories. A quantitative analysis is necessary to justify the solutions. For

example, it is necessary to determine the mean amount of computation undone in

case processes roll back, the optimal Interval between two successive synchroniza-

tions, the mean size of memory space required to save states, etc. However, because

the program behavior is unknown and execution proceeds stochastically, accurate

modelling is difficult.

In this paper, employing standard assumptions in computer performance analysis,

we have developed a model to quantitatively describe the characteristics of rollback

recovery schemes as well as their effectiveness. In the following section, several

2 We call it a pseudo recovery point(PRP) since there is no acceptance test before the saving of pro-
cess state at a PRA. The states recorded at PRP's may have been contaminated and thus can not be used to
recover a felled process.

4
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assumptions are discussed and then a model for asynchronous recovery blocks is

Introduced. Using this model, we employ simulation to present the probability distribu-

tion of the Interval between two successive recovery lines and the mean number of

states recorded during that interval. In Sections 3 and 4, the synchronization

method and the Implantation of pseudo recovery points are evaluated respectively.

The paper concludes with Section 5.

2. EVALUATION OF ASYNCHRONOUS RECOVERY BLOCKS

Let us consider the history diagram in Figure 1 to illustrate the activities of

cooperating concurrent processes P;, i=1,2 .... n. Process P; establishes its jth

recovery point RPj' without synchronizing with other processes. interprocess com-

munications are represented by, arrowed horizontal lines. Let set Acjl,...,n1, i.e. a

subset of concurrent processes. Then one may find a combination of RP1 for all i EA,

which forms a recovery line for set A, denoted as RLr for the rth recovery line. For

simplicity superscripts in representing recovery lines will be omitted in the sequel as

long as that does not result in ambiguity. The interval between two successive

recovery lines RL,. and RL,. +1 in p: -icess P; is a random variable and denoted by XT.

Since a recovery One provides globally consistent states to all members of process

set A, it is reasonable to assume that X,;. is stochastically identical for all i EA. Thus,

X, is used to represent the interval between the rth and (r+1)th recovery lines.

2.1. Modeling Assumptions

We make the following assumptions in our subsequent analyses.

1. Autonomous Processes: Cooperative autonomy is regarded as the most important

requirement in distributed processing. Each process should be executed accord-

Ing to its own program and environment, almost as if there were no processes to

Interfere with. Thus, a process is executing independently of others as long as

there is no conflict with others in accessing shared resources. Since

5
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synchronization Is not enforced in this category of recovery blocks (i.e. asynchro-

nous recovery blocks), processes win transmit messages or establish their

recovery points Independently of other processes.

2. Perfect Acceptance Test: Acceptance tests should detect all errors within the

local process during the execution of recovery blocks and thus ensure the

correctness of local executes. it is in general difficult to guarantee the com-

plate correctness, but at least the computation results that have passed the

acceptance test should be "acceptable"[3]. The local acceptance test may or

may not detect external errors or erroneous messages because the local process

Is not aware of the global system and other processes.

3. Probability Distribution of Interactions: Usually, process behavior is modeled

as an ordered sequence which in turn is specified by the program and dependent

on the execution condition. Even if the processing sequence is given, the inter-

val between two successive interactions is variable due to conditional branches.

Locking and waiting at shared resources make it even more uncertain. Nonthe-

less, for both tractability and simplicity we have adopted here constant reference

rates in the multiprocessor and exponentially distributed intervals between two

successive message transmissions In the computer network. The ante,-val for two

successive interactions between Pi and Pf is thus assumed to be exponentially

distributed with mean 1/lV and Xtf=lam for all i,j =1,2,...,n and i#j.

4. Consistent Communications: Let two messages ma and ms be sent from P{

to P? . Consistent communications should satisfy : (1) every message sent from Pt

to Pj will be received eventually by Pf , and (ii) ma and me are received by Pf in

the same order as that they are sent. Notice that in some packet-switched com-

puter networks, messages are allowed to be received by the destination out of

order. However, the order can be kept easily, for example, by time-stamping mes-

6
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sages at the time of transmission.

OFNIN& PAGE IS
OF POOR QUALITY

6. Distribution of Recovery Points: Because of process independence and the

uncertainty of executes conditions, the appearances of recovery points are ran-

dom and difficult to model. To avoid complexity, establishment of recovery points

In a process is assumed to be an independent Poisson process with parameter 14

for process Pi.

2.2. A Model for Asynchrono%.s Itecovery Blocks

Since individual recovr" points by themselves may not be sufficient in rollback

recovery due to the possibility of unbounded rollback propagations, we consider in

this paper only the formation of recovery lines for asynchronous recovery blocks

Instead of separate individual recovery points. The requirements of a recovery line

for processes P;, for i=1.2 .... n, can be stated as follows:

1. Each recovery line has to include one recovery point RP1

for every process P;.

2. Let the moment of establishment of the jth recovery point

in process Pj be t [RPj ] and let tQ ' be the moment of the g th interaction

from P{ to Pt.. For every pair (R.°, , RPM:) in a recovery line,

there does not exist an integer k such that tk 'c[t [RPM ], t [RPf^ ]]

If t [RPi] s t [RP^^ ] (otherwise, tx E[t [RPM ], t [RPM]]). This Implies

that no communication from P; to Pj (and vice versa) can be

sandwiched between t [R4] and t [RP;t

The basic idea underlying the model is to trace the occurrence of both recovery

points and interactinns. Based on the assumptions in Section 2.1, random variable Xr

can be modeled by a continuous -time Markov process starting from a recovery line

(RL,.) and ending at the next recovery line (RLr+1)• For a set of processes,

[2Ai [Pj JiEAj where A=^1,2,...,nj, two types of states are defined:
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(a). End states Sr and Sr+1: transitions start from Sr where all

processes have formed the rth recovery line, and end at Sr +1

upon establishment of the (r+1)th recovery line.

(b). Intermediate states S = (x 1 , xR, ... , xn ), where xt=0

If the previous action of Pt was an interaction, and

x{ =1 if it was establishment of a recovery point.

Occurrences of interactions and recovery points in a process make the system

go through these states. Note that both Sr and Sr+1 are equivalent to state

(1,	 1). We can establish the following transition rules:

R1. The system goes to state (xl,..,xt_1,1,xt+1,..,xn)

from state (xl,..,xi_1,Q,x{+1,...xn) with rate Aj upon establishment

of a recovery point in Pt.

R2. The system leaves state (xl,..,xt_l,i,xti+1,..,xj_1,1,xf+l ... xn) and

enters state (x1,..,x:-1,O,xt+1, x^ -1•Q^x^+l, .xn ) with rate XU

If there is an interaction between Pt and Pj.

R3. The system arrives at state (x1,..,xt-1,0.x:+1.••,xn)

from state (xl,..,xt_l,l,xt +l.••,xn) with transition

rate F; Xt f where Bt = [j I x f =0, j of and j EA;.
f EBt

R4.The system can transfer directly from state Sr to state S,.+1

n
with transition rate E µk.

k=1

Under these transition rules a Markov model is developed for three processes

P 1 , P2 and P3, and presented in Fig. 2. The single-arrow lines are unidirectional tran-

sitions. The double-arrow lines are bidirectional transitions in which left-hand side

parameters represent leftward transition rates and right-hand side parameters

8	 s
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rightward transition rates. The number of states for a set of n processes Is r+1.

When A, =µ f =µ and A j, =A for all i, j E A, the model can be simplified since all

Intermediate states 5=(x l ,x 2 , ... , x„) containing exactly u 1's In (x l ,x 2, ... ,s„)

can be replaced by a single state S,. A simplified model is obtained under the follow-

Ing transition rules and presented in Fii1. 3.

R1'.For u = 0,l,...,n-1 , the system will move to state S'y +1

from state .& with transition rate (n —u )µ

when a new recovery point Is formed.

R2'. For all u z 2, the system is able to leave state 9U

for state SU _2 with rate u u —1 x .
2

R3 1 . For all u z i, there is a transition from state S. to

state 91 _1 with rate u (n —u),\.

R4 1 . The system can transfer directly from the entry state Sr

to the terminal state Sr +1 with transition rate nµ

2.3. The Analysis of Asynchronous Recovery Blocks

With the model developed above, we can characterize the behavior of asynchro-

nous recovery blocks In terms of the degree of interprocess communications and the

distribution of recovery points. With the exponentially distributed interprocess com-

munications and recovery points, Xr for all r becomes stochastically identical. Let X

denote a random variable representing the interval between two successive recovery

lines, Lj the number of states saved in process Pj during interval X. The probability

distribution of X and the mean value of A are derived below.

9



L The distribution of X

Let the state space +=^0.1.2,...,m; where m=2" be the set of states of the

foregoing continuous-time Markov process with the following convention for number-

Ing state:

(a).Sr--> state 0,

n
(b). an intermediate state (x l ,xg, ... , xn ) --> state (E xt 2t - 1 +1), and

(c). S'+1 --> state M.

Then, the Chapman -Kolmogorov equation becomes

dt rr(t) _ ir(t )H

where H is the (m.xm) transition matrix [h (u,v)] in which the (u,v) element is the

transition rate from state u to state v, and ir(t) is a vector whose kth element is

the probability that the system is in state k at time t. The initial condition is

rr(0)=[1,0,0 .... 0]. The interval between two successive recovery lines, X, is equal to

the time needed for transition from state 0 to state m. Therefore, the density func-

tion of X, namely f, (t), is given by

f•(t)=Air.W

R The mean value of A

Since we are only concerned with the number of recovery points established by

process Pt during interval X, a discrete Markov chain is used. To compute the mean

value of Lt , a new Markov chain, denoted by Yd , is constructed based on the previ-

ous m•. el with the following two steps.

(a). Convert the previous model to a discrete model:

The new chain, Yd , has the same states as the previous Markov process.

Let G	 + E µk be the normalization factor. The transition
t=1	 k=1

10
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probability from state u to state v in Yd Is equal to: for u, v = O,l,...,m,

p(u,v) = h 
Gv 

ifujov, and p(u,u) = 1— t p(u,v)
vn LVOW

M. Arrivals at a state S„ = (x l ,x $,... ,rt ,... ,x„) where xt =1 can be

grouped into two classes. One is formed as a result of the occurrences of

RP's In Pt and the other Is formed as a result of interprocess communica-

tions and establishments of RP's in processes other than Pt . Accordingly,

the state Su = (xl,x^,...,xt, ,xu ) with xt =1 can be split Into two states 3u'

and 5,", representing the two classes, respectively. Both states have the

same departure processes as that of Su. However, all arrivals -it state S„

due to the occurrence of recovery points in Pt enter state Su' whereas all

other transitions are made to Su". Hence the number of RP 's associated

with state Su' is represented by that of arrivals at Su'.

Figure 4 shows the conversion and the split of state Sg = (1,0 ,0) of the Markov

chain for the three concurrent processes in Figure 2. With the new discrete model, 	 ,

Yd , we can calculate the the mean number of visits to state Su ', denoted as Nsy,,

and the mean value of 4 using the following relationship:

E ( L4) = E E(Ns„.)
where +yd is the state space of Yd, 	

sY 
E*rd

Suppose process Pt detects an error or fails the acceptance test at one of its

recovery points RPj , where j= 1,2,...,4. The rollback of Pt may propagate to k

processes in the process set, Qd = JP, I I CA( where A= f  1.2,...,n 1. Let Di be the

rollback distance associated with the k processes and RPf for j =1,2,_Lj . Then, X

represents the supremum of these random variables, I.e., DA. In Figure 5, the mean

values of X are plotted as a function of n. It shows that X increases drastically

when there Is an increase in the number of processes involved in the rollback

recovery. The density function of X, f,(t), is plotted in Figure B. For all the three

11
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cases In 199. 0, there In a sharp In"is near t =0, which Is due to direct transition

between Sr and Srf1 and a longer transition time needed once the system enters

intermediate states.

Let p = ( 	t A )/ t µt ) which represents the relative ratio between the
01 julJot	 R•1

density of interprocess communications and recovery point establishments. With a

fixed value of p and varying values of µ's and \'s for three processes, we have par-

formed computer simulation and the results are tabulated in Table 1. The minima of X

and L, occur when the dist°ibution of recovery points among these processes Is uni-

formiy balanced (i.e., 1A1=µs=µ3). The distribution of Intarprocess communications

does play an important role in determining the probability of rollback propagation but

has little effect on X and L j once the set of processes involved In rollback recovery

Is determined.

3. SYNCHRONIZED RECOVERY BLOCKS

The almalest way of avoiding unbounded rollback propagations is to synchronize

the establishment of recovery points during process execution. In this method,

Interactions are Inhibited between any pair of processes during their establishment

of recovery points. There are th ree conceivable strategies in deciding when a syn-

chronization request is to be issued: (1) at a constant interval; (2) when the time

elapsed since the previous recovery line exceeds a specified value; or (3) when the

number of states saved after the previous recovery line Is larger than a prespecif led

number. The Implementation of the first strategy is simple since the synchronization

request Is issued without any knowledge of the state of execution. Nevertheless,

this strategy may become very Inefficient since It is possible to make synchronization

requests immediately after the formation of recovery Ones. For the second and third

strategies, rollback distance and the number of ssved states are prevented from

becoming too large. However, in this case each process must be aware of the

occurrence of a recovery line whenever it is established.

12
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Upon the receipt of a ization request, every process has to prepare for

establishing a recovery line and also has to wait for the commitment (for establishing

a recovery line) from other processes before It exocutaa sn acceptance test. Thus,

all cooperating processes perform thslr acceptance tests at the same Instant upon
\	 •:1

receiving the commitments from all other processes. Let Pq -ready, for j 3c

be the flags in process Pt to indicator commitments from P! . The steps for ,iynchronl-

zation in each process Pt are described as follows:

1. execute 'its own normal process" until "acceptance test";

2. set Pa-ready := ON and then broadcast Ptt-ready;

3. while not (ail Pij -ready = ON) do

receive messages;

9 s message is PH ready then set Pjj -ready := ON

else record the message

4. do "acceptance test' and record process states.

Establishment of recovery linen upon synchronization requests Is shown in Figure

T. Synchronization causes the com putation power to be diminished because

processes have to wait for the commitment (as in step 3). Let yj be the Interval

between the receiving of a synchronization request and the moment that process P;

reaches its next acceptance test (in step 1). Then, according to the assumptions in

Section 2.1, yt is an exponentially distributed random variable with parameter µ{. Let

Z=maxly 1 , yx, ... , y„;. The total loss in computation power Is CL =2 (Z-yt ). The
{sl

mean lose becomes

CL = n. ( 1 -&(t )) dt - F, i
o	 i= 1 W

where & (t ) is the distribution function of G, and equals n (1-e -A").
t =1

13
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4. IMPLANTATION CF PgEUDO RECOVERY POINTS

In the construction of a recovery block, usually, an acceptance test is a number

of executable assessments provided by the programmer and then followed by a state

saving. Note that process states can also be :7ecorded upon any other requests if

they are considered useful in the rollback recovery. A pseudo recowov point (PRP)

Is defined as a recovery point that is established without a preceding acceptance

test and is proposed here as an alternative for avoiding the domino effect in a set of

cooperating concurrent processes. With a monitor as the interprocess communication

means, Kim [16] and Kant and Siibersrhatz [16] discussed methods for implanting

recovery points in a central manner. Similarly, we consider a method for implanting

PRP's in the set of cooperating concurrent processes in a decentralized manner.

To make every recovery point RPJ4 in process Pi maximally useful for rollback

error recovery, there shou;d be corresponding recovery points in the other processes

that have to roll back as a result of the rollback propagation from Pi . If such

recovery points do not actually exist, a pseudo recovery point, PRP4j{^, has to be

Inserted in process Pi, for a given 17- in procf-ss Pi . Further, in order to avoid the

need of tracing recovery points at that particular moment, a PRP is psiAhlished in

each of the other processes involved for RPi. An algorithm for implanting PRP's is

given below.

(1). When pj establishes a recovery point RP,4, it broadcasts a PRP

Implantation request to other processes.

(2). If Pi• receives the implantation request, it records its state as PRPfi,

upon the completion of the current instruction without an acceptance test.

'.s

Then Pi , broadcasts the commitment Ci-.

(3). Every process executes its own normal task after it establishes

RPM or PRP However, the messages sent -.o a proLass by Pi- prior to Ci.

14
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have to be retained In the state saved.

Assume that process P{ detects an error before establishing RPf +1 and that

Shin and toot Analysis of Aecmwy Blocks

this error is local to P{. The recovery Nne (called a pseud- recovery ice, PRLf)

formed by RPf and all PRPf "s is able to recover these processes even if the error

has already propagated to other processes. However, when the error detected in A

Is due to error propagation from another process, Pl (and therefore not local to P{),

the contents of PRPfs may have already been contaminated if this error occurred

prior to establishing PRP1 . The restart from the pseudo recovery line formed by both

RPf and all PRPj""s may just reproduce the same error. Therefore, rollback prop -ga-

tion may continue until every process involved has rolled back to a pseudo recovery

Nne past at least one of its recovery points. Most of the processes involved are

assured to reach the pseudo recovery line by rolling back past only one recovery

point. A few processes may have to roll back past more than one RP dJe to random

Interprocesses interactions, and this can not be avoided unless a forced synchroni-

zation is employed as discussed in Section P. Consequently, the pseudo recovery

line allows the processes to have the shortest rollback distance for backward error

recovery without synchronization. Note that the pseudo recovery line is now

guaranteed to contain correct states of all concerned processes. An algorithm of

rollback recovery with these pseudo recovery points Is given by:

0 ). If an error is found in process P{ , set p := i where p is a rollback pointer.

(2). Pp rolls back to its previous recovery point RPf. All processes Pi•

affected by the rollback of Pp roll back to their respective

pseudo recovery points PRPP'.

(3). For every affected processes Pi ', if the rollback has not passed its most

recent recovery point, then set p := V and go back to step 2.

16
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In Figure 8, the establishment of PRP's in processes Pl . Pp, and Ps Is HIus-

trated. When P9 falls its acceptance test Art, an processes. have to restart from

the pseudo recovery line formed by (RPi , PRP12 , PRPis ) if Pl and P2 are affected

by the rollback of P9.

In the above algorithm, we can find that every process needs to preserve a

recovery point for restart in case it fails. Also (n-1) pseudo recovery points are

needed for a process to form a pseudo recovery line with other processes where n is

the total number of concurrent processes. It is therefore required to save n states

for every RP, i.e. one RP and (n-1) PRP's, and all old RP's and PRP's except those in

the pseudo recovery lines I PRLJ I i = 1,...,n, and RP, is the most recent RP in P;;

can be purged when a new recovery point is established, thereby reducing storage

requirements for saving RP's and PRP's. Note that rollback distance is bounded by

the supremum of f y 1 ,y 2 , ... , yn I where y; is the interval between two successive

reca/ery points of process Pj . The additional time overhead for every recovery point

;s (n-1)tr where t,, is the time needed to record the process state. These over-

heads should be assessed against the gain of process autonomy and avoidance of

unbounded rollback propagations.

S. CONCLUSION

We have quantitatively evaluated three different recovery blocks employed in

backward error recovery for concurrent processing. The recovery block dealt with in

this paper is defined in software and comprises an acceptance test and a state

saving. The environment of concurrent processing considered here is not restricted

to any particular method of interprocess communications or system structure.

We have estimated the overhead required to avoid the domino effect when

recovery or pseudo recovery points are employed. For both the synchronization

method and the implantation of pseudo recovery points, the overheads are largely

related to the construction of synchronization, RP's and PRP's. They would become
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an unacceptable burden when synchronizations and pseudo recovery points are con-

structed frequently but interprocess communications rarely occur. At the other

extreme, i.e. asynchronous recovery blocks, it may result In a longer rollback distance

due to unlimited rollback propagations (in place of synchronization and PAP insertion

overheads).

In this paper, we have considered the distribution of the interval between two

successive recovery lines instead of the actual rollback distance. The rollback dis-

tance after an error is detected is related to the probability of error occurrence, error

detection, and rollback propagation, etc. However, the interval X does represent an

!--iner bound for the real rollback distance.

To select a suitable strategy or a combination of these three methods, we have

to first examine the properties of concurrent processes such as the amount of inter-

process communications and the distribution of recovery points. Then, we weigh the
i

trade-off between the loss of computation power during normal operation and the

Increase in response time due to rollback recovery. For instance, the asynchronous

method or a longer synchronization period is not acceptable for time-critical tasks in

which a delay in system response beyond a certain value, the system. deadline,

leads to a catastrophic failure. The implantation of pseudo recovery points is also

Inefficient for concurrent processes when they establish recovery points

frequently(thus requiring many PRP's to be implanted) and rarely communicate with

each other. In general, if mere knowledge of the execution state in concurrent

processes can be obtained, a better strategy for implementing recovery blocks can

be derived.

17
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case 1	 2
(1.0.1.0.1.0)	 (1.5,1.0,0.5)

3 4 5
(µ l ,µe,µs) (1.0,1.0,1.0) (1.5,1.0,0.5) (1.5,1.0,0.5)

(X i2.1\23AW) (1.0,1.0,1.0)	 (1.0,1.0,1.0) (1.5,0.5,1.0) (1.5,0.5,1.0) (0.5,1.5,1.0)

E(X) 2.598 3.357 2.600 3.203 3.354
E(L) 2.500 4.847 2.453 4.533 4.967
E(L2) 2.500 3.231 2.453 3.022 3.111
E(La) 2.500 1.616 2.453 1.511 1.656

E L +L +L 7.500 9.693 1	 7.360 1	 9.065 1	 9.933

Tab! 1. Mean Values of X and L, for constant p
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