@ https://ntrs.nasa.gov/search.jsp?R=19830010108 2020-03-21T05:42:15+00:00Z

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



N83-18379

(NASA-CR-16SE62) A POISSOM PFCCESS
APPROXIMATICE POR GENERALIZED K-5 CCNFIDENCE

BEGICNS (George Washington Univ.) 43 p
CSCL 12 Unclas

HC a03/MF AC!
G3/65 02742

A POISSCN PROCESS APPROXIMATION FOR
GENERALIZED K-S CONFIDENCE REGIONS

by _
e

Hossein Arsham L
Douglas R. Milier E

Serial T-470
19 November 1982

The George Washington University
School of Engineering and Applied Science
Department of Operations Research
Institute for Management Science and Engineering

Research partially supported by
National Aeronautics and Space Administration
Grant NAG 1-179 :




THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Department of Operations Research
Institute for Management Science and Engineering

Abstract
of
Serial T-470
19 November 1982

A PCISSON PROCESS APPROXIMATION FOR
GeNERALIZED K-S CONFIDENCE KEGIONS

by

Hossein Arsham
Douglas R. Miller

One-sided confidence regions for continuous cumulative distribu-~
tion functions are constructed using empirical cumulative distribution
functions and the generalized Kolmogorov-Smirnov distance. The band
width of such regions becomes narrower in the right or left tail of the
distribution. To avoid tedious computation of confidence levels and
critical values, an approximation based on the Poisson process is intro-
duced. This approximation provides a conservative confidence region;
moreover, the approximation error decreases monotonically to 0 as sample
size increases. Critical values necessary for implementation are given.
Applications are made to the areas of risk analysis, investment model-
ing, reliability assessment, and analysis of fault-tolerant systems.

Key words and Phrases: One-sided confidence regions for continuous cdf,
Empirical cdf, Generalized K-S statistics, Poisson process, Risk analy-
sis (assessment), Investment modeling, Reliability assessment, Fault-
tolerant systems.

Research Partially Supported by
National Aeronautics and Space Administration



THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Apnlied Science
Department of Operations Research
Institute for Management Scfence and Engineering

A POISSON PROCESS APPROXIMATION FOR
GENERALIZED K-S CONFIDINCE REGIONS

by

Hossein Arsham
Douglas R. Miller

1. INTRODUCTION AND SUMMARY

For constructing confidence regions for a continuous cumulative
distribution function (cdf) F(+) , based upon rhe empirical cdf Fn(-)
of sample size n , the Kolmogorov-Smirnov (K-S) distances have been
widely applied. One problem in applying the K-S distances is that the
constructed region has a constant band width for a given sample
size n and significance level (1-a) .

It is well known that by the definition of the empirical cdf,
for each x , nFn(x) is a binomial (n,F(x)) random variable. There~
fore the usual binomial confidence interval for F(x) , x fixed, can be
obtained. This confidence interval is valid at tnhe single point x
only and not for all x simultaneously.

The goal of this paper is to give a compromise between these
two extremes. For the point x in either tail one can construct a

one-sided confidence region, either upper or lower, with a narrower
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band in the neighborhood of x ; tha£ is, one has more confidence in the
one-tail probabilities at the expense of less confidence in the central
and other tail probabilities. Numerou statistics may be used to ~onstruct
such a confidence region, and these are discussed in Section 2.2.

In this paper the confidence region has one of the following

desirable forms:

F(x) € (6/n) + ‘YFn(x) , ¥x,y>1,¢E>0 (1.1)
F(x) € (8/n) + ¥F_ (x) , ¥x, 0<y<1,8>0 (1.2)
F(x) 2 -(8/n) + YF (), ¥x , Y>1, §>0 (1.3)
F(x) 2 -(8/n) + ¥F (x), ¥x , 0<y<1,6>0 (1.4)

The distribution of the generalized K-S statistics may be used to obtain
the significance level (1-a) of these desired confidence regions. Al-
though the closed form of o in terms of (Y,8,n) is available we have
shown that, due to computational difficulties and, moreover, the need for
extensive tables with three entries, a meaningful upper bound on the value
of o can easily and quickly be computed based on the Poisson process.
With this Poisson process approximation, a conservative confidence re-~
gion of the desired shape is obtained. Moreover, it is shown that the
error committed by this approximation becomes monotonically smaller as
the sample size grows larger. In the following sections we provide the
relevant background leading to the use of the generalized K-S distances,
describe the difficulties involved in implementing such distances, and
prescribe the Poisson process approximation to overcome these difficul-
ties. Some areas of approximation are identified, and tables and graphs

provided, along with examples of how they are used.
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2. CONFIDENCE REGION WITH NONCONSTANT WIDTH

Let F(*) be a cumulative distribution function, contin-

uous on R1 + The ordered sample from this distribution function will
be denoted by xl’n,...,xn’n , and the related empirical cdf by Fn(') .
Let D denote a general '"distance'" between the two distribution func-
tions F(*) , Fn(') (we use "distance'" in a nonmathematical sense,
essentially different from the mathematical conception of "norm"). Then
D(F,Fn) is said to be distribution free in the family of continuous F

if and only if

PID(F,F ) < d] = P[D(Fn(F_l),U) <d], denrt (2.1)

where U(*) denotes the cdf of the uniform [0,1] random variable. 1In
the following subsections we explain how some distribution-free dis-
tances are used to construct a confidence region over F(°) based on
Fn(') . Most of the distances we used in our study are those which,
under a simple null hypothesis ou the form of F(*) , F continuous,
become the usual statistics widely discussed and used in the goodness-

of-fit literature.

2.1 The Generalized K-S Distances

The generalized K-S distances are defined to be [see, for example,

Dempster (1959), Dwass (1959), or Pyke (1959)]

D;(Y) = szp [YF(x) - F_(x)] (2.2)
D (Y) = sup [F_(x) - YF(x)] (2.3)
X

Arsham (1982) tabulated the right tail distribution of these distances
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for some values of n and Y . Using D;(Y) one can construct a
confidence region of the form F(x) < §/n + YFn(x) having a narrower
band over either the left (Y > 1) or the right (0 < y < 1) tail. Simi-
larly, a confidence region of the form F(x) > YFn(x) - 6/n can be ob-
tained by utilizing the distribution of D:(Y) . The confidence region
becomes narrower over either the left (0 < Y < 1) or the right (y > 1)
tail. In the following we illustrate how such confidence regions can
be constructed.

Suppose one is interested in constructing a lower confidence
region that narrows over the right tail, F(x) 2 YFn(x) -6/n, ¥x,

Y>1, 8>0 . The significance level can be obtained by noting that
plof L) « 2| = plr) 2 vF ) - 6/, ¥ x| =1 -0, ¥v>1,8>0
n |y n n ? ’ ’

By the standard distribution-free argument, this probability can be

written as

PE); {%} < 6/ny:] = PEJn(x) < % x+ 8/ny, 0 €x < 1]

where Un(') is the empirical cdf of the uniform [0,1] random variate

1te

Pn(v,é)

and a=1 - Pn(Y,G) can be interpreted as a crossing probability.

Specifically,
1 - Pn(y,ﬁ) = P[?n(.) crosses Y(x) =‘%~x + G/ni] (2.4)

The closed formula of Pn(Y,G) in terms of (n,d,Y) is given by Dwass

(1959) and by Durbin (1973):

n

n-j-1
j=[14+(8/ny) ] [J

2 +§
P (v,8) =1 - nh_-ny¥o
n (2.5)

2n
n

](rwj - od@m? - ays + 8

for nZ(Y -1)£48 <€ n2 and y > 1 where the nctation [z] stands for

- 1%
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the largest integer € 2z, In later sections we return to the gereralized
K-S confidence region and establish an approximation to it based on the
Poisson process. In the last section of this paper we have graphically
displayed some confidence regions of the forms F(x) 2 YFn(x) - §/n and

F(x) € YFn(x) +68n,¥x,Y>1, 6>0.

2.2 Other Nonconstant Width Confidence Regions

K-S Distance with a Particular Weight Function. This distance is
defined by Anderson-Darling (1952) as

K = sup |F (x) - Fx) | *» WIF(x)] (2.6)
¥ ¢ 0<F (x)<1 n

where W[*] 1s a nonnegative weight function. When a suitable weight
function is chosen, many distribution-free distances are reduced to
K . For example, W(y) =1 leads to the two-sided K-S distauce.

n,w
~1/2 this distance can pro-

With the weight function W[y] = [y(1 - y)]
vide a two-sided confidence region discussed in Doksum (1977). Consider

the following normalized version of Kn w '
e

|r (x)-F&x) |
Dn = J; K v = vn sup g
W n, x:0<F(x)<1 VF(x) (1-F(x))

(2.7)

The two-sided coufidence region using Dn w can be obtained by noting
5

that

P[Dn,w <d(@,n,w)] =1-0a.

Following Doksum (1977), this can be written as:

P{(1 + a)"(x) - [2F_(x) +a] + F(x) + Fi(x) <0,¥x}=1-a

where a = (dz(n,a,w))/n ,» or equivalently
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2 F(x) »

[zp (x) + a+ /A(F_(x))
P n n

2F_(x) +a - /A(F_(x)) ] |
o) , ¥x| =1-0
(1+a)

2(1+a) (2.8)

2 2
where A[Fn(x)] -4aFn(x) + AaFn(x) + a“ .
Noé (1972) obtained a truncated power series which approximates
o for agiven n and d . The inversion of d in terms of a for
the statistic in (2.7) is

=2

a? =271

@ -2303 - snbe? - 2734 - 13207 + 114072073

- 277151 - 403507 Y + 1298102

- 91050 a™ . (2.9)
Neither the general term nor 2 general truncation error bound is known.
In practice, to construct the confidence region by using Dn,w one
chooses a level of significance 1 - a , then by means of the truncated
series (2.9) determines the corresponding value of a = d2/n . Thus one
obtains the two jagged shaped bounds ¢ and <, whose equations are
given in the probabilistic equation (2.8). Figure 1 shows a realization
of a sample of size 20 from the uniform distribution [0,1] with its
bounds for 957 confidence. In Figure 2 the sample size is set to be
n = 1000, A comparison of these two figures shows that for a larger
sample size, both bounds '"come in'" at both tails. The limitation of
using this distance as a solution to our problem is that one can obtain
only an approximated confidence region. Moreover, Canner (1975) has
noted that this distance is very sensitive to first anJ last order
statistics; this implies that the confidence interval is very narrow in
the tails at the expense of the center of the distribution.

A Modified K-S Confidence Region Based on Censoring. When a K-S
confidence region is constructed using the truncated or censored data,

TS S U+
Ui nthe I 400 ks
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0 T 1

Figure 1.--A realization of sample size n = 20 from U[O0,1]
together with the 957 confidence region based on

n,w =

-7 -
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the actual region would be a fixed width band over the right tail, since
in this case it is not required to remain within the band beyond the fth
failure in an "f out of n censored”" plan. Consider the following dis-
tance given in Barr and Davidson (1973):

T - sup |F(x) - F (x)] (2.11)
fan 0P (x)<(£/n) n

The two-sided confidence region using T can be obtained by noting

f,n
that

PT, < d(fn,a)} =1-a

£,
where the critical values d(f,n,a) are tabulated for some value of n
[Barr and Davidson (1973)]. Later Koziol and Byar (1975) provided the
asymptotic critical values as n approaches infinity. A good approxi-
mation formula for significance points is given by Dufour and Maag
(1978) when sample size exceeds 25. Figure 3 shows a typical confidence
region using a sample from a uniform distribution based upon the dis-
tance defined by (2.11).

Manija Confidence Region. Manija (1949) introduced the following

distance:

d_(a,b) = sup [F (x) - F(x)] , a<t
n n
XES
where
S={x | F(x) €a} VU {x | F(x) 21} .
By the general distribution-free argument, the distribution of d;(a,b)
is independent of F(+) , F continuous over the set S . A lower con-

fidence region using this distance can be obtained by noting that

P{U(x) 2 Un(x) - z(a,b,n) for all x e S} =1 - a

based upon a uniform empirical cdf path. A typical lower confidence
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Figure 3.-~A modified K-S confidence region based upon censoring '
data of U[0,1] .
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region based on this distance using a sample frem U[0,1] 4is shown in
Figure 4. The limitation of applying this distance in construcrion of a
confidence region is that it providea an approxinstion region only. The
asymptotic distribution of d;(a,b) is available, and is given in
Sahler (1968).

Tang Confidence Region. Tang (1962) developed a distance based
upon the ratio between the empirical and hypothetical cdi's. This dis-
tance is a special case of the Renyi (1953) distance. 7The Tang distance

is defined for 0 < b & n as

F (x)

Fal®) = TG

sup
x:0<F (x)<(b/n)
By the usual distribution-free argument, rn(b) has distribution inde-
pendent of F(e¢) , i{f F(*) 1is continuovs over the set

S=1{x | 0<F(x) €b/n<1}
A one-sided confidence region using tn(b) can be obtained by noting

that

Fn(X)
PF(X)?mforallxes =1 -0

Figure 5 shows a typical confidence region using a uniform empirical cdf
based on the rn(b) distance. The distribution of rn(b) in closed

form is available but it is not easy to implement.

3. THEORY OF POISSON APPROXIMATION TO
GENERAL1ZED K~S PROBABILITIES

Fo- generalized K-S confidence regions it is necessary to calcu-
late the crossing probabilities 1 - Pn(?,é) from equation (2.5). Faor

a given confidence lcvel (1 - a) it is necessary to find solutions of

- 11 -
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the equation o = Pn(Y,G) . To avcid these computational difficulties
and, moreover, to avoid generating very extensive tables with the three
parameters n , Y , and § , we have developed a conservative bound on
Pn(y,é) which is quite accurate and easy to compute based on the
Poisson process. The theory for thils approximation is presented in the
four theorems of this section.

Let {X(t), 0 € t} be a homogeneous Poisson process with unit
rate. Let {Un(t), 0 €t €1} be the empirical cdf of 2 sample of n

U[0,1] random variables.

Theorem 1 For 0<yY<1l and §> 0, P(nUn(t/n) < t/y + 8/y,
0 <t €n) decreases monotonically as n increases. Furthermore,

lim P(nUn(t/n) <ty +8/y, 0t <n)

n-»oo

P(X(t) < t/y + 8/y, 0<¢t) (3.1)

- 5]
a-v g - vy

i=[6/v]+1
Proof Dwass (1974) shows that, for ¢>1 and d 20,
Nn
P(nU_(t/n) Sct +d, 0<t<n) =P| ] U, <d (3.2)
i=1

where y, , i=1,2,...,n , are i.i.d. U[0,1] random variables and N
i n

is an independent random variable with

k
1 n!
> = — ——— =
PN 2 k) {m] oot k = 0,1,2,... (3.3)
and
M
P(X(t) Sct+d,0<¢t)=pP| ) U, <d (3.4)
i=1

- 14 -
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where M 1is an independent random variable with

k
PM > k) = {%} , k=0,1,2,... . (3.5)

From (3.3) it follows that

st

Nn < Nn+1 . (3.6)
It follows from (3.3) and (3.5) that
1lim P(Nn 2k) =PM=2k), k=0,1,.e. & (3.7)

n-re

m
Define fd(m) =P Z Ui > d} 3 fd is a monotonically nondecreasing
i=]1

function such that

M o M
P{.Z Ui>d] ZP[ZU1>d|M=m]P(M=m)

i=1 m=0 |i=1

) f,(m) P(M = m) (3.8)
=0

E(fd ) .

It follows from (3.6) and the increasing nature of fd that
g
, f g

fd(Nn) < fd(Nn+l) , which implies that E(fd(Nn) < E(fd(Nn+1)) which,
together with (3.2) and (3.8), proves the monotonicity in the statement
of the theorem. It follows from the discreteness of the random variables
and (3.7) that 1lim f (N ) = f.{M) in distribution, from which

n-o n d
lim E(f (N )) = E(f,(M)) follows by dominated convergence; this,
n-»w d' ' n d

together with (3.2), (3.4), and (3.8), proves the limiting result in

(3.1). Finally, the second equality in (3.1) is given by Pyke (1959).//

Theorem 1 provides the necessary theory regarding crossing of
upper lines, y(t) = (1/y)t + (8/nY) , and Theorems 2, 3, and 4 deal
with the lower linmes, y(t) = (1/y)t - (§/ny) .

- 15 -

I -
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Theorem 2 For Yy >1 and 8§20, P(ﬁUn(t/n) >t/y -68/v, 0€¢t <€ n)

is monotone nonincreasing in n .

Proof Define ¢ =1/y , d = §/y , and Vn(t:) = nUn(t/n) , 0€t <€
n. Let P (c,d) =P(V(t)>ct-d,08¢c% n) ; then, for 0<c¢ <1
and d > 0 , we must verify

Pm(c,d) > Pn(c,d) . mn<n. (3.9)

. The proof is based on induction. We first verify (3.9) for m =

1l : Letting Sn,j = min(t: Vn(t) = j) . Pl(c,d) = P(Sl,l < d/e) = d/c
if d/¢ <1, and 1 otherwise. For n~> 1, if d/c <1, Pn(c,d? <
P(s, ) <d/e) =1-B(s | >d/e) =1~ (- d/c)" < d/c . This veri-
fies (3.9) for m=1. '

We now make the inductive hypothesis that (3.9) holds for m <k .
To comple;e the proof it suffices to show that this implies that (3.9)
is true for m = k . This inductive step of the proof uses, for fixed
k and n , dependent versions of {Vk(t), 0<t<k} and {Vn(t),
0 <t €£n} defined on the same probability space.

The process {Vm(t), 0 €t <m} is a pure birth process with ini-
tial distribution P(Vm(O) =0) =1 and transition rate function
Am(i,j;t) = (m-i)/(m~-t) if j=i+1, and O otherwise, i # j ,

0<t<m. Let D = min(t > 0: Vk(t) = t) . We shall define a modi-

k
fied version of Vk which jumps to o« when it crosses the diagonal:
Vk(t) ’ 0t < Dk
v (t) =
© , Dkgtgk

This process has transition function A&(i,j;t) = (k-i)/(k-t) if

j=i+1,i+1<t<€k orif j=o, t<i+1l, and =0 otherwise.

OR.GINAL PACE IS

- 16 - OF POOR QUALITY
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Note that A&(t) > A;(t) , 0€¢t <k, if k<n . This implies that |
Vi) , 0€ e <k} ¥ (VI() , 0< t €k} and furthermore that Vj
and Va can be defined on the same probability space so that

P(Vi(t) ? Vé(t), 0t < k) = 1 [see Kamae, Krengel, and O'Brien (1977)
and references therein]. From this we get the joint distribution of Dk

and Vn(Dk) . Using these distributions we define {V;(t), Dk €t <k}

and {V;(t), D St< n} : Given {Dk = s}, Vi is a birth process
with initial state V;(s) =j , where j=min(i: i 2 s) and transition %
rate function Ag(i,j;t) = Xk(i,j;t) , s<t<k. Given (Dk = 35,
v, (@) = i} , V; is a birth process with initial state V;(s) =i and
transition rate function A;(i,j;t) = An(i,j;t) , $<$t<n . Further-
more, {(vl;(t), v;‘(c)), c<e<pl}, (i), p €t<k}, and {Vi(v),
Dk €t € n} are conditionally independent given Dk , V;(Dk) , and
Vg(Dk) . Let Vk(t) = Vl'((t) , 0€¢t< Dk , and v;(c) , Dk St<k.
Let Vn(t) = V;(t) , 0t < Dk , and V;(t) , Dk €t €n. These de-
pendent processes, Vk and Vn , will be used in the induction step of
the proof.

(For the sake of completeness, we give an explicit construction
which can be shown tc yield the above (Vk’ Vn) : Let xk,i , 0 €1 k-1,
and xn,i ,0<1i<nl be k+n i.i.d. uniform [0,1] random variables
defined on the same probability space. Let Gm’i(yls) =1-

+
exp| - /57 A_(1,i*1;t)dt| be the cdf of the holding time of V_  in
state i given the passage to 1 occurs at s, m=k , 0 < i< k-1, and

m=n, 0<1i<n-1. We first construct {Vk(t), 0<t<k} . Let

- o1 - _
S0 %0 Y0 T G 0% 0l 5%,0  Sk1 T Yo ot Ykt T
_1 _
G i1 S, 0 Sigien T Sk, Y Yo ot Siok T Sk T Yk

- 17 -
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Let Vk(t) = max(i: Sk i €t) , 0t <k . This defines Vk and also
1]
D= min(t > 0: Vv (8 = t) . Now let us consider {Vn(t), 0<t<n}.
On the interval [O,Dk] . Vn and Vk
P | -
one. Let Y . = cn’i(xk’il sn’i) v 1f S s = Su gt Yy <o,

must be ordered with probability

. - . -1 .
0<i<k. Let j=min(i: sn,i + Gn,i(xk,il Sn,i) > D]> ; define
_ -1
0" cn’j(xn’jl D) and S 5 -

= ¢l -
lee Y o= Gn,z(xn,zl Sp,g) 3 S g =Syt Y g As before, let

=D + Yn Then for j < £ € n-1

s+l

Vn(t) = max(i: Sn,i € t) . It can be shown that the processes Vk and
Vn have the properties claimed in the preceding paragraph by appealing
to standard construction techniques such as are found in Heyman and
Sobel (1982, Ch. 4) ard comparison “echniques such as those found in
Kamae, et al. (1977) and Stoyan (1977).)

Now consider the dependent processes {Vk(t), 0<tgk} and

{Vn(t), 0 £t €£n} constructed above. Letting G(s,i) = P{Dk < s,

Vn(Dk) i},

)
Q.
o
N
re
VAN
=
o

]

P {c,d) = s P(V_(£) >ct = S» V (D) = i)dG(s,1)

1)

J P(Vn(t) > ct

)
(=%
=]
N
(g
N
»
=

]

k S » vn (Dk)

« P(V(t) >ct-d, s<t<n|D =5, V(D) = i)dG(s,1)
(3.10)
and
P (c,d) = fP(V, () >et-d, 0<t<s | D =5, V(D)= i)

. PCVk(t) > ct

[}
&
[77]
N
ct
N

1]

k | D =s, V(D) = i) dG(s,1)

(3.11)
The inequality P(Vk(t) >ct-d, 0t <s | Dk = g, Vn(Dk) = i) P

PV (t) >ct ~d, 0<t<s | D =5, V(D)= i) follows from the
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k
(3.10) and (3.11), it suffices to verify

ordering between V! and V; . Thus to prove (3.9) for m =k from

PV () > et -d, s St <k | D =8, V (D) = i)

(3.12)
>p(vn(t)>c:-d,s<c<nlnk-s,vn(nk)-i).

However, the left-hand side of (3.12) is independent of i and the
right-hand side achieves its largest value for i = j-1 , where j =
min(2: £ 2 s) , thus it suffices to verify

P(Vk(t)>ct-d,s€t<k|Dk=s, Vk(S)=J')

(3.13)
>P(vn(t)>ct—d,s<t€nIDk=s, Vn(S)=j-'1)

The probability expressions in (3.13) are equivalent to those involving
processes with a fewer number of transitions: The right-hand side may
be evaluated by labeling (s,j-1) as the origin and recognizing that in
the remaining interval of length n - s , the process is equivalent to
counting n - j + 1 order statistics. With the appropriate scaling
this gives

P(V,(t) >ct -d, s<t<n|D =5,V (s) = j-1)

(3.14)
- - cln=s) —dei s
= P[Vn_j+1(t) >y,(t) = a-jtl °© + cs-d-j+1, 0t < n 3+1]
Similarly, for the left-hand side of (3.13),
P(Vk(t) >et-d, s<t<k| Dk = s, Vk(s) = j?
_ _ c(k-s) s _s
= P[Vk_j(t) > yz(t) = S t + cs-d-j, 0t € k J] (3.15)

A\

P(V_5(8) >y, (6), 0 <t < k=3)

the last inequality following from yl(t) > yz(t) , 0t gk-j . If
yl(O) > 0 , then (3.14) equals zero and (3.13) follows trivially. If

yl(O) > 0 , we use the facts that the slope of yl(-) is less than 1,

- 19 -
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m=k-j <k and r-j+l > k-j , to invoke the inductive hypothesis,

proving (3.13). This completes the proof of Theorem 2, //

Theorem 3 For Y> 1 and § >0,
P(nU_(t/n) > t/y - 8/y, 0 € t < n) > B(X(t) > t/y - 8y, 0 < t)
(3.16)
Proof The proof of Theorem 3 parallels that of Theorem 2: Define
c=1/y,d=26/y, and Un(t) = nUn(t/n) , 0€t<€n, Let Pn(c,d) =
P(Vn(t) >ect-d, 0€¢t € n) , and let P _(c,d) = P(X(t) >ct-d, 0% t) .
Note that Pl(c,d) 2 P_(c,d) follows from the fact that a uniform [0,1]
random variable is stochastically less than an exponential random vari-
able witli mean 1. Next, make the inductive hypothesis that Pn(c,d) 2

P (c,d) , n <k . Consider the process Vk , letting D = min(t > 0:

k
Vk(t) = t) , and define the process VL(t) = Vk(t) , for 0€ ¢t < Dk .

=, for D St <k . Note that the transition function of Vi is

greater than the transition function of the Poisson process X ; thus,
it is possible to construct dependent versions of VL and X such that

P(V&(t) >2X(t), 0t < k) = 1 and from this get a construction of Vk
and X such that P(Vk(t) 2 X(t), 0€tg Dk) =1 . Using analogs of
(3.10) and (3.11) we obtain

P(V,(t) >ct -d, 0Kt <s | D =5, X() = 1)
>P(X(t) >ct -d, 0Kt <s | D =5, X(D) = 1)

from the construction on [O,Dk) and note that it suffices to demonstrate
P(V, () >ct -d, s<t<k|D =5, X(p) = 1)

(3.17)
> P(X(¢) >ct -d, s<t | D =s, X(D) = i)

UriGHNAL PAGE 18
- 20 - OF POOR QUALITY.



glggug; gﬂff ",3 T-470
to complete the proof. The right-hand side of (3.17) is less than or
equal to

P(X(t) et -d, s €t | X(s8) =3 -1)

(3.18)
- P(X(t) > y3(t) mct+cs-d-jJ+1,0¢€ t)

where j = min(f: 2 # 8) . The left-hand side of (3.17) equals

p(vk(:) >ct-d, s <t <k | D =8, V(s) = 1)

= BV (£) > y,(0) = 2%‘5‘38-1 t+cs~d-j, 0t < k) (3.19)

> p(vk_j(:) > yy(t), 0 <t <k-3) .

Equations (3.18) and (3.19) combined with the inductive hypothesis veri-

fy (3.17) completing the proof of Theorem 3. //

Theorem 4 For Yy>1,6>0,
1im P(nU (t/n) > t/y - 6/y, 0 € t € n)
o n
= P(X(t) > t/y - 6/y, 0€ ¢t) (3.20)

= exp(-8z/Y) ,

where 2z 1is the nonnegative root of the equation

Y(1 - e ?) =2 (3.21)

Proof Given € > 0 , let kE be an integer such that

P(x(t) > t/y - 8/y, 0 ¢t < vk, + 8)
(3.22)
< P(X(t) > t/y - &/y, 0S¢t) +¢

This follows from Pyke (1959, Theorem 2, equation 9). Define Ui n
]

min(t: nUn(t/n) = i) , 1=1,2,...,n, and X, = min(t: X(t) = 1) R

i
i=1,2,...,n . It follows from Miller (1976) that the joint distri-

butions of {U , 1 = 1.2,...,min(n,k€)} converges to that of

i,n

- 21 -
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{X;, 1 =1,2,...,k .} . This implies

1)

lim P(aU_(t/n) > t/y - 8/y, 0 € ¢t € n)
n+o

< 1im P(ab (t/n) > t/y = §/y, 0 € t < min(n,vk_+ 8)) (3.23)

n-e

= P(X(t/n) > t/y - 8/v, 0€ t S yk_+8) .

Equations (3.22) and (3.23) imply that

lim P(nU_(t/n) > t/y - 8/y, 0 < t < n)
e (3.24)
< P(X(t/n) D t/y-6/y,0€¢t) +¢ .

Theorem 3 and (3.24) verify the limit in (3.20). The second equality

on (3.20) is given by Pyke (1959). !/

4, IMPLEMENTATION AND SOME NUMERICAL RESULTS

In the following we provide some aspect of our findings related
to Theorems 2, 3, and 4 in more detail. The goal is to construct
confidence regions of the form F(+) € YFn(-) +6/n, Yy>1l . Some
numerical results are provided, together with some examples of how these
results are used. In the construction of an upper confidence region,
one is interested in at least one of the following problems.

(i) Given the desired shape of an upper c;nfidence region of the form
F(*) € YFn(-) + &§/n , that is, given (§,Y,n) , what is the sig-
nificance level a of such a confidence region?

(i11) Given (n,y,a) , find a § such that the corresponding upper
confidence region has 100(1-q)% confidence.
(iii) What value of <y can ensure that the upper confidence region of

the form above has 100(1-q)% confidence?

- 22 -
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(iv) What is the smallest sample size n necessary to ensure that

e + YFn(x) » given (0,Y) , is an upper confidence region with

100(1-a)% confidence, where 6 = §/n ?

The "exact" solutions to all these problems can be found using
formula (2.5). Due to the computational difficulties in implementing
such a formula and, moreover, the need to construct several extensive
tables for each problem, we use Theorem 3, which shows that a conserva-
tive approximate solution for all these problems is possible. Moreover,
by Theorems 2 and 4 the error committed by this approximation goes to
zero monotonically as the sample size grows larger. Table I shows the
numerical results for some values of 6§ , Y , and n as computed by
formula (2.5). The last column of this table provides the Poisson ap-
proximation computed by formula (3.20) of Theorem 4. We notice that
these "exact" values of o converge to their Poisson approximations as
n , the sample size, increases as expected. The curves of Figure 6 are
derived from additional computation by formuias from Theorem 4, Specif-
ically, for a given § and n find a y such that the upper confi-
dence region has at least 100(1-a)% confidence. By Theorem 4 cne can
approximate o as

o = exp [ 67]

where 2z 1s the nonnegative root of the equation (3.21). Thus after
some manipulation, one obtains

8
log(a)

Y= log [(6 + log(a))/8] . (4.1)

The above results are used in the next section, where we provide some

real world applications. Similar results can be developed by

- 23 -
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Figure 6. Poisson approximation to the significance level a, for the
confidence region of form F(.) € YFn(-) + &8/n .

- 29 -



ORIGINAL PAGE 1S

OF POOR QUALITY T-470

implementing Theorem 1, but since we have no compelling application for

these cases, we have not pursued their implementation.

5. SOME APPLICATIONS
Since the idea of constructing a confidence region over the cdf,
based on the generalized K-S distance, is new, we present some areas of

application where this idea is useful.

5.1 Application in Risk Analysis

Gross, Miller, and Soland (1980) studied and gave details of
confidence region construction of a risk profile defined as R(t) =
1 - F(t) . In the following we take one of their examples and apply
our findings. Their data base is a typical simulated risk profile based
on a sample of 500 observations. It is desired to construct a confi-
dence region R(t) < 2Rn(t) + d with 1-0 = 95% confidence. They
utilized the formula given in (2.5) and obtained the "exact' value d =
.0075 . Although their approach is straightforward, it was necessary
to write a large and tedious program to find the d value. The desired
region is equivalent to the upper confidence region 2Fn(t) +d ., Using

the result of Theorem 4 one obtains the following r=lation from formula

(4.1):
S+log(a) _ ylog(a)
3 = exp ;

where log(a) 1is the natural logarithm of a . This relatively easy
equation can be solved by numerical methods. We employed the method of

binary search and obtained & = 3.760 and therefore the conservative

- 30 -



ORIGINAL PAGE IS
OF POOR QUALITY T-470

value for d = 2;%%9 = ,00752 . In fact, from Figure 6 one can easily

obtain an accurate enough solution. Figure 7 shows a typical simulated

risk profile with its confidence region.

5.2 Application in Investment Modeling

The Investment Department of the World Bank developed a trading
strategy for U.S. Treasury Notes. The strategy aims to maximize the
rate of return from its investment in Treasury Notes. The basic idea
behind the strategy is based on trend-following. Turning points in the
movement of prices or yields can be identified as generating 'buy" and
"sell" signals. '"Buy" signals imply that Treasury Notes be bought for
all cash proceeds, and "sell" signals imply that all Treasury Notes held
be sold and all cash proceeds invested immediately in Federal funds
until the next "buy" signal. Federal funds represent money that banks
hold and which can be lent to other banks to fulfill their reserve re-
quirements. The interest rate that banks pay when they borrow Federal
funds is called the Federal funds rate; these loans usually are made on
an overnight basis,

When the "buy" and "sell" signals are generated from the trend-
following strategy, the rate of return is calculated on a quarterly
basis, They are then compared with some "neutral" strategy--for example,
the rate of return in pure Federal funds investment strategy; that is,
investing all money in Federal funds daily, on an overnight basis.

The differential rates of return, or the difference between
the rates of return from the trend-following strategy and the rates of

return from the Federal funds strategy, are calculated on a quarterly
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Figure 7. Simulated risk profile and confidence regions: risk profile
Rn (———) based on 500 simulated observations; K-S 95%
upper bound Rn + .056 (—e©-), generalized K-S 95% upper
bound 2Rn + .0075 (—%——) approximated by the Poisson

process.
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the differential rate of return is positive, the trading strategy is
superior in that quarter; if it is negative, the Federal funds strategy
is superior. The measures of performance chart how much better or worse
the trading strategy performs than the Federal funds investment strategy
in the long run. The World Bank defines ''reward" as the expected value
of positive differential return, and "risk" as the expected value of
negative differential return. Let

r, = differential rate of return;

d
then
Reward = E[Max(O,rd)]

Risk = E[Min(O,rd)] .

Using the daily historical prices and yields from June 1974 through
December 1981, Table II can be obtained, where the quarterly rates of
return during this period are presented.

The World Bank is interested in constructing an upper confidence
region for the cdf of the differential rate of return of the following
form:

F(ry) S YF (r)) +6 , Yy>1,86>0

with a 95% confidence. This can easily be done as follows. Let us, for
a given 6 = .17 , construct an upper confidence region of the form (1.1)

with o € .05 . With & = 30(.17) = 5.14 and using (4.1) we obtain,

$
Y= T 1og[ (6 + log(a))/8]

Yy=1.5.

The same result can be obtained directly from Figure 6. Thus,
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1.5 Fn(rd) + .17 , - < 4 < 4

is an upper bound for the cdf of the differential rate of return with at
least 952 confidence, with the characteristic of having more confidence
in risk taking circumstances. Figures 8 and 9 show the empirical cdf

obtained from Table II together with the upper confidence region fcllow-

ing two-year and five-year Treasury notes, respectively.

5.3 Reliability Estimation

Suppose an item has a lifetime distribution F(t) = P(L & t) ,
t 20 . In some contexts, such as the analysis of a pro-rated warranty,
it is desirable to have more accurate estimates in the left tail of the
distribution. This leads to a confidence interval of the form:

F(t) € YFn(t) + 68, t20

with y> 1.

5.4 Recovery Times in Fault-tolerant Systems

Critical systems must often meet very high reliability require-
ments. This high reliability is achieved by incorporating fault toler-
ance into the system. [A typical application is flight-critical
avionics computers for aircraft, Hopkins, et al. (1978), and Wensley,
et al. (1978).] When a fault occurs in such a system the system must
detect it and take appropriate remedial action, reconfiguring itself so
that the offending component no longer has potential for contributing to
system failure. The length of time needed to achieve detection and re-

configuration has a very strong influence on system reliability; thus
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Figure 9.--An upper confidence region for cdf of differential rate
of return following two-year notes trend.
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TABLE I1

QUARTERLY RATES OF RETURN*

Differential of
Rate of Return
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Funds
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it is important to accurately estimate the recovery (or coverags) time
distribution C(t) = P('rR it) ,t?0, from data which may be obtained
from bench tests, simulations, or actual operation. Since long recovery
times pn:e a much greater threat than shorter ones, a confidence inter-
val should take the fcrm

c(t) » ycn(t) -§, t20,

where Cn(') is the empirical c¢df and Y > 1 .

wat FASE 19
ORIGINAL FASE
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