vided by NASA Technical Reports Server

General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

DRL 175

DOE/JPL-956205-82/2 Distribution Category UC-63

ORIGINAL PAGE IS OF POOR QUALITY

Quarterly Technical Report

No. 6329-6

on the

DEVELOPMENT OF METALLIZATION PROCESS

FSA Project, Cell and Module Formation Research Area

For the Period Ending September 30, 1982

Contract 956205

Prepared by:

Alexander Garcia III

Approved by:

A STEP 1973 23

Nick Mardesich
Manager, Advanced Programs

SPECTROLAB, INC. 12500 Gladstone Avenue Sylmar, California 91342

November 1982

The Flat-Plate Solar Array Project is sponsored by the U.S. Department of Energy and forms part of the Solar Photovoltaic Conversion Program to initiate a major effort toward the development of low-cost solar arrays. This work was performed for the Jet Propulsion Laboratory, California Institute of Technology by agreement between NASA and DOE.

(NASR-CR-169902) DEVELOPMENT OF METALLIZATION PROCESS, FSA PROJECT, CELL AND MODULE FORMATION RESPARCH AREA Quarterly Technical Report, period ending 30 Sep. 1982 (Spectrolab, Inc.) 13 p HC A02/MF A01 G3/44

N83-19220

Unclas 02833

ABSTRACT/SUMMARY

Solar cells without AR coating achieved efficiencies of 10.5% with the Type A Mo/Sn/TiH paste. Curve shape, series resistance, and shunt resistance are all excellent and comparable to silver paste controls. Other pastes were not successful.

TABLE OF CONTENTS

Section	Title	Page
1.0	INTRODUCTION	1
2.0	TECHNICAL DISCUSSION	2
3.0	CONCLUSIONS AND RECOMMENDATIONS	8
4.0	ACTIVITIES PROJECTION	9

Section 1.0

INTRODUCTION

The objective of this contract is the optimization, evaluation, and demonstration of a novel metallization applied by a screen printing process. The process will be evaluated on both CZ and non-CZ silicon wafers.

OF POOR QUALITY

Section 2.0 TECHNICAL DISCUSSION

Procurement delays and vendor error delayed the receipt of square pattern screens. The inefficient round pattern was used to test additional paste formulation.

The pastes are 80-85% solids using vehicle #3347. The metal content in parts by weight follows:

Type	TFS #	Sylvania 280-325 Mo	Atlantic Equipment Engineers SN 266 Sn	Ferro Plant PX-41 TiH
A	DP-E570	19.5	80.0	0.5
В	DP-E571	50.0	49.5	0.5
С	DP-E572	70.0	29.5	0.5
D	DP-E573	49.0	49.0	2.0
E	DP-E574	48.0	48.0	4.0

Eight cells of each paste type as well as silver controls were manufactured. The cells of each type were divided into four groups (of 2 each). The four groups were processed as follows:

- 1) $18"/1 \text{ mim. } 500^{\circ}\text{C}$ prefire, 1 min. 575°C H₂ fire
- 2) $18"/\text{min.} 500^{\circ}\text{C} \text{ prefire, 1 min.} 600^{\circ}\text{C H}_{2} \text{ fire}$
- 3) 9"/min. 500°C prefire, 1 min. 575°C H₂ fire
- 4) 9"/min. 500°C prefire, 1 min. 600°C H₂ fire

The results of this matrix are shown in Table 1. The best silver control had $V_{\rm oc}$ = 601, $I_{\rm sc}$ = 700, $I_{\rm 500}$ = 500, and $I_{\rm 450}$ = 586.

Table 1 ORIGINAL PAGE IS OF POOR QUALITY

Paste Type	Pre- Fire Speed @ 500°	Fire Temp. @ 1 min.	Cell	v _{oc}	I _{sc}	^I 500	¹ 450
A A A A A A	9" 9" 9" 18" 18" 18"	575 575 600 600 575 575 600	1 2 3 4 5 7 6 8	600 598 601 597 603 599 598 602	701 677 700 696 702 560 701 703	482 390 469 458 450 286 440 461	569 490 553 548 543 359 530 550
B B B B B	9 9 9 18 18 18	575 575 600 600 575 575 600*	9 11 10 12 13 14 15	600 598 600 597 602 602 598 596	687 676 689 644 681 686 692	377 297 369 282 345 331 409 389	488 398 478 371 451 438 515 497
0000000	9 9 9 18 18 18	575 575 600 600 575 575 600	20 17 19 18 21 23 22 24	594 589 592 587 597 598 600 596	617 369 668 300 684 667 687	194 109 246 90 305 285 350 347	266 150 345 123 415 388 463 453
D D D D D D	9 9 9 18 18 18	575 575 600 600 575 575 600	26 25 28 27 31 29 32 30	598 599 598 599 596 598 601 600	684 681 676 678 686 682 691 694	330 320 328 351 346 336 378 393	447 429 435 455 464 448 441 502
E E E E E E	9 9 9 18 18 18	575 575 600 600 575 575 600	33 34 35 36 37 38 39 40	596 596 598 597 598 597 600	668 639 674 677 672 669 690 685	260 229 265 262 295 286 333 318	356 312 363 417 396 385 440 420

ORIGINAL PAGE IS OF POOR QUALITY

These cells have no AR coating. The best silver solar cell has an efficiency of 9.3% and a fill factor of 0.627. The best Mo/Sn, Cell #1 from Group A has a fill factor of 0.609 and an efficiency of 9.0%. If the cells were AR coated, efficiency would rise to \sim 12.3% and 11.9% respectively.

From these results it was decided to continue work using only Type A paste. Four-inch screens were received but were of poor quality. Additional screens were ordered.

A lot of cells was processed using the screens. The front pattern metallization is shown in Figure 1. Cells were prefired at 500-550°C at a belt speed of 18" minutes. They were then fired at 575°-625° for 39-90 seconds. Silver controls were processed at the same time.

Figures 2 and 3 show the best Mo/Sn and Ag cells. The Mo/Sn cell was made using paste Type A with a 200 mesh 1 mil emulsion screen. The Ag cell was made with the same screen. The Mo/Sn cell was prefired at 500° C in an 18" zone at 18"/min. belt speed. It was then fired in H₂ for 90 seconds at 600° C.

The Mo/Sn metallization has a blue-gray color after the prefire which becomes metallic after firing similar to screen-printed silver. If the prefire is at a lower temperature, the initial color is brown and cells show more series resistance.

The two cells shown in Figure 2 have the following characteristics:

Cell		Voc	Isc	¹ 500	max	FF	<u> </u>
1728M-90	(Mo/Sn)	.601	.678	.596	.229	.73	10.5%
1728M-72	(Aq)	.601	.680	.600	.302	.74	10.6%

Neither cell has an AR coating.

ORIGINAL PAGE IS OF POOR QUALITY

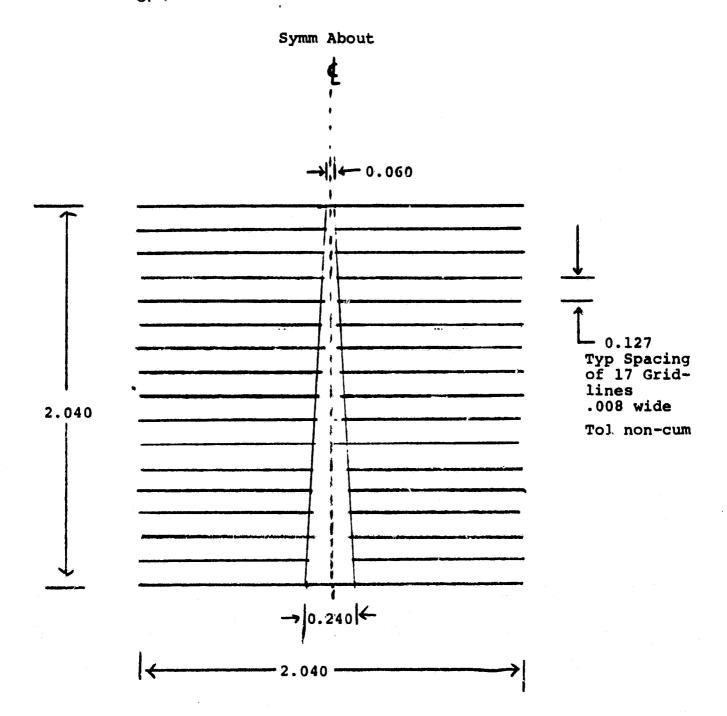
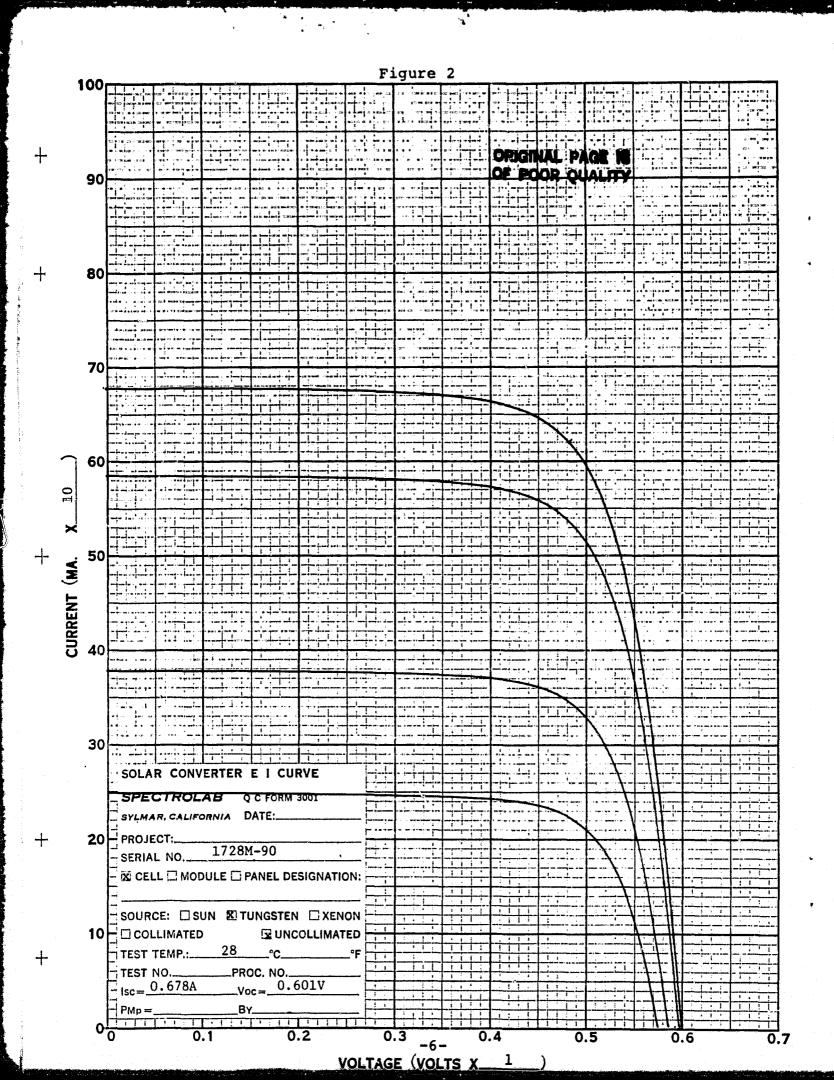
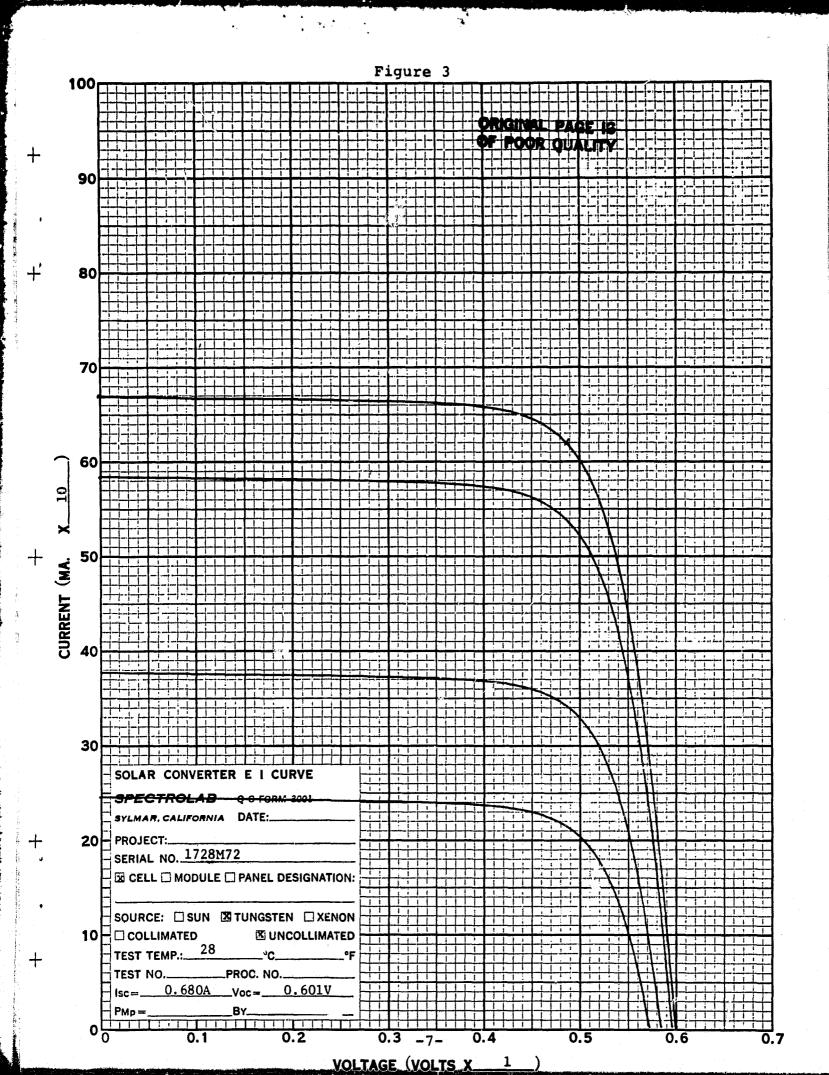
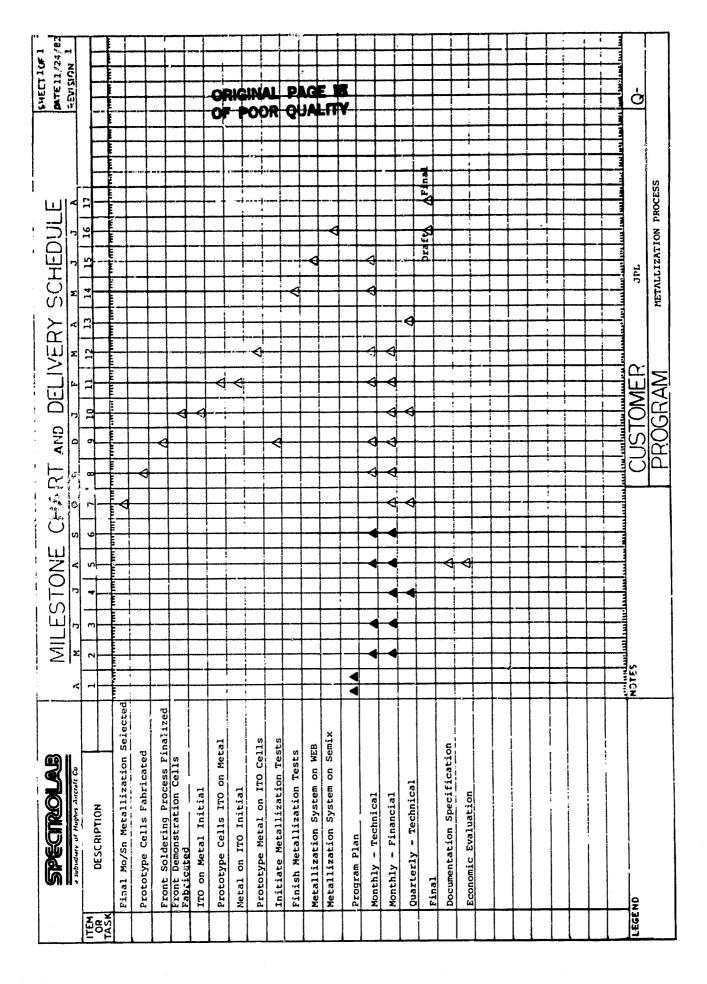




Figure 1
FRONT METALLIZATION PATTERN

Section 3.0

CONCLUSIONS AND RECOMMENDATIONS

Work will continue exclusively on the Type A paste. Cells made with this paste have characteristics almost identical to silver paste cells.


Section 4.0

ACTIVITIES PROJECTION

At the request of JPL the contract was redirected to include the evaluation of indium tin oxide (ITO) conductive AR coatings.

This evaluation necessitated a no-cost extension of the contract.

A new Milestone Chart and Deliverable Schedule is shown on the following page.

.