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Title: Origin and Evolution of Osmoregulatory Mechanisms in Blue-Green Algae
(Cyanobacteria) as a Function of Metabolic and Structural Complexity;
Reflections of Precambrian Paleobiology?

(NAGW - 344)

Objectives: The objectives of the study are;

(1) To ascertain whether there exists any relationship between mode
of nutrition in the cyanobacteria (i.e. photonutotrophic,
photoheterotrophic or heterotrophic) expressed under aerobic or
anaerobic conditions and the nature of the solutes employed for
adjustment of intracellular water ,potential (osmoregulation);

(2) To determine whether there exists any relationship between struc-
tural complexity in the cyanobacteria (unicellular, simple
filamentous or multi-seriate branched) and the nature of the
solutes employed for adjustment of intracellular water potential;

(3) To conduct the studies on osmoregulation under environmental
conditions that correspond to those of the major stages in the
evolution of the Precambrian biosphere;

(4) To identify and characterize the uptake and enzymatic mechanisms
involved in the production and accumulation of the solutes
employed in adjustment of intracellular water potential by
representative nutritional and structural types of cyanobacteria,
under the environmental conditions proposed in the previous
objectives;

(S) To determine whether differences in metabolism underlie the
intracellular adjustment to lowered environmental water potential
achieved by the addition of sodium chloride or non-ionic
(penetrating or non-penetrating) solutes to the growth medium of
cyanobacteria;

(6) To ascertain whether genome size and other chemical character-
istics of the genetic material influence the nature of the
osmoregulatory response elicited under varying environmental
conditions in the representative cyanobacteria;

(7) To ascertain whether adjustment of intracellular water potential
in cyanobacteria is a multiphasic process culminating in the
accumulation of a solute (or solutes) compatible to enzymatic
functioning; and to determine whether the degree of complexity in
any multiphasic process is a function of metabolic, genetic or
structural complexity;

(8) To determine to what extent the inorganic and organic solutes
accumulating during osmoregulation account for balancing the
external water potential; and to ascertain whether the "sensing"
of changes in environmental water potential is by a turgor-
activated mechanism or not; and
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(9) To reconstruct a probable sequence of evolution of osmoregulatory
mechanisms as a function of the adaptive interaction between the
metabolic capabilities of Precambrian cyanobacteria and fluctu-
ating water potential in ecosystems of a changing Precambrian
biosphere.

Progress in achieving the stated objectives during the first year of Present
ZLant

Excellent progress has been made during the past seven months, since the
start of the funded research. The following is a summary of this progress and
the objectives partially achieved during the course of the research:

1. Twenty-four (24) of the twenty-nine cyanobacteria proposed for
culture (in Table 2 of first year proposal) have been successfully
cultured. A list of these is provided as Table 1.

It is beleived that the remaining five cyanobacteria
(Synechococcus, ATCC# 29154; Synechococcus, ATCC# 29403; Fischerella,
ATCC# 29161; Oscillatoria, PCC# 7805; LPP sL; ATCC# 29206) will be
cultured in the remaining five months of this first year of the
,rant.

The above cultures are now in the actively growing condition,
under a regular transfer protocol. This research required
considerable experimentation to achieve the proper environmental
conditions of light, temperature and physico-chemical characteristics
of the culture media.

Our group worked closely with certain staff of the American Type
Culture Collection (ATCC) facility. Personal communication with Dr.
Stjepko Golubic of Boston University during the First Symposium on
Chemical Evolution and the Origin of Life, organized by Dr. Donald L.
DeVincenzi, NASA Headquarters also aided in solving some of the
ancillary problems.

In addition, ;three additional blue-green algae ('cy--nobacteria')
provided by Dr. Lynn Margulis of Boston University during the same
Symposium on Origin of Life at Ames Research Center, Moffett Field,
California were also successfully cultured.

These cyanobacteria, in actively growing cultures, are now
available for use by other scientists working within the same program
funded by NASA. This represents, therefore, a valuable repository of
the "organisms of the Precambrian" for immediate use by these
scientists.

2. One third of the cyanobacteria (approximately) from the group (group
E of Table 1) of facultative chemoheterotrophs are now in large scale
culture for use in experimentation involving osmoregulatory solute
determination and NMR studies.

3. The principal osmoregulatory solute (compatible solute as well) of
the extremely halotolerant A hanothece 11alophytica, has been
identified as a betaine by NMR (Figure 1). This solute is found in
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cellular concentrations of five to fifteen times those of all of the
soluble carbohydrates and free amino acids combined (Table 2).

We have identified a nine-carbon polyol that also fluctuates
with changes in external (medium) osmolarity. However, this solute
accumulates in concentrations too low to serve a major osmoregulatory
role.

The betaine content of A. halophytica not only increases
dramatically with increasing NaC1 molarity of the growth medium
(Table 2) but also increases in response to rapid changes in medium
osmolarity (i.e., upshock). Figure 2 depicts the change in this
methylamine with upshock in the light and dark. Note that betaine
content is higher in organisms grown or upshocked in media containing
glycylglycine buffer than in media containing MES buffer. We have
also found that betaine content falls with downshock, but not to
initial levels. There is preliminary evidence that betaine is
metabolized following downshock. Studies on this question are
currently in progress.

4. Betaine synthesis in A. halophytica requires light (Figure 2). This
organism is an obligate photoautotroph but does slnwly deplasmolyze
in the dark. However, growth will not continue in the dark.

5. Betaine is not merely a neutral osmoregulatory solute but also
displays counteracting effects on salt-inhibition of enzyme activity.
Glucose-6-phosphate dehydrogenase from A. halophytica was assayed in
the presence of increasing concentrations of KC1 (Figure 3).
Approximately 50% inhibition of activity was obtained between 0.3 and
0.4M KC1. This concentration has been shown to occur in A.
halophytica (see previous studies). Next, this enzyme was assayed in
a medium containing 0;4M KC1 plus either glycerol, proline or betaine
(Figure 4). Although some relief from salt inhibition was obtained
with proline and glycerol , betaine clearly was the superior counter-
acting, compatible solute. Figure 5 depicts the range of protection
afforded this enzyme by 2.0M betaine in assay media of increasing
KC1-molarity. This range covers the range of KC1 content that we
previously found for this cyanobacterium.

Finally, the effect of the extent of methylation of glycine on
protection against salt inhibition of glucose-6-Phosphate dehydro-
genase was examined (Figure 6). There was found a clear relationship
between degree of methylation and extent of salt counteracting
effect.

6. The source (organism) of the enzyme is a factor in the extent of
protection against salt inhibilion afforded by betaine. Contrary to
reports in the literature (82), a compatible, osmoregulatory solute
will not protect a particular enzyme regardless of source. We
obtained purified glucose-6-phosphate dehydrogenase from an
eukaryotic orgnism, Torula yeast and another prokaryotic organism,
Leuconostoc mesenteroides. The enzyme from the latter organism was
several-fold more salt tolerant than the enzyme from the former
organism. Betaine had dramatically different effects on the degree
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of salt protection for the enzyme from different sources (Figure 7).
The inherently more salt tolerant enzyme was actually inhibited by
betaine.

7. Betaine may exert its "counteracting effects" on salt inhibition not
by "restoring activity" of salt inhibited enzymes, but by lowering
the Kin of the enzyme nr se. Figure 8 shows the effect of betaine on
Km, independent of the presence of high KC1 in the assay medium. We
had reported earlier that KC1 inhibits enzyme activity in halotoler-
ant blue-green algae by causing an increase in Km. Betaine appears
to "allow" enzyme function in the presence of high internal K+ by
greatly increasing the affinity of the enzyme for its substrate --
for enzymes from certain, but not all, organisms.

8. The changes, both quantitative and qualitative, in amino acids
following upshock of the halotolerant, Aphanothene halophytica, have
been completely documented. The following major points can now be
made concerning these changes:

a) The predominant free amino acids in the pool are glutamic>
serine> glycine> aspartic> alanine; Table 3 and 4, Whereas the total
free amino acids do not increase as the salinity of the growth medium
increases (Table 2), an apparent increase occurs in this organism
upon upshock in median^ containing glycylglycine buffer (Table 3). No
similar increase is observed in upshocked cyanobacteria in medium
containing PIES buffer. The increase under the former buffer
condition appears in the "leucine fraction" of the analysis obtained
by ion exchange within the Beckman 19CL Amino Acid Analyzer.
However, we have now shown this "amino acid" to be the buffer glycyl-
glycine by using High Voltage Paper Electrophoresis. It is obvious
that the dipeptide glycylglycine itself is utilized by the alga
during upshock. Note that the "leucine" does not increase in
upshocked cells in MES buffer (Tables 3 and 4). There are reports of
other bacteria utilizing the amino acids of their growth media under
upshock conditions. Of even more interest to us is the consequence
of glycylglycine accumulation during upshock. The amino acid proline
accumulates in MES buffered-organisms following upshock. This is a
major difference involving an amino acid known to be involved in the
osmoregulatory mechanism (perhaps as a compatible solute) of
eukaryotic and prokaryotic organisms. It should be noted also that
glycylglycine is taken up from the upshock media under light, dark
and dark anaerobic conditions (Table S). Another major difference is
that lysine greatly increases in cyanobacteria upshocked in glycyl-
glycine, but not in cyanobacteria upshocked in MES buffered-medium.

b) The amino acids changing to the greatest extent with upshock are
serine and glutamic acid.. These are also the major amino acids of
the free pool in this organism. The glutamic acid always decreases
to a major extent and the serine concomitantly rises. The relation-
ship is believed by the investigators to indicate a metabolic
relationship between the two in which glutamic acid may serve as an
amino donor for serine biosynthesis. Note also from Figures 9, 10
and 11, that this relationship exists in organisms upshocked in
light, dark and dark-anaerobic conditions. In addition, it should be
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noted that the relationship occurs independent of type of buffer
present in the upshock media. We feel that these findings are of
particular importance in view of zhe fact that serine is the
precursor to betaine and that this amino acid is "triggered" to
accumulate with increasing salinity under all environmental condi-
tions tested. The significance of this observation to osmoregulatooy
in cyanobacteria and to evolution of osmoregulatory mechanisms will
be discussed in detail below.

c) Figure 11 shows another interesting feature of upshocking this
cyanobacterium under anaerobic conditions. As previously mentioned,
one reported (17) possible source of energy in cyanobacteria under
dark anaerobic conditions is the following pathway:

Arginine	 Citrulline	 Carbamylphosphate + ADP

ATP + NH3 + CO2

The reserve polymer of
could break down under
arginine. As shown in
large quantities under
down product of its usi
then, have a primitive
capable of functioning

aspartic acid and arginine called cyanophycin
anaerobic conditions (dark) to furnish
figure 11, arginine does appear in relatively
this condition and NH (ammonia), the break-
., also accumulates. he cyanobacteria do,
source of energy (ATP) derived from a pathway
in the absence of oxygen and light.

Our results indicate that at least two possible osmoregulatory
solutes are synthesized in this cyanobacterium, betaine and proline.
Proline will accumulate (in media without glycylglycine) in both
light and dark, betaine will not (Figure 2).

9. The changes in total soluble carbohydrates, reducing carbohydrates,
total amino acids and individual amino acids following upshock in
light and dark of three different structural types of cyanobacteria
have been determined. These were the unicellular Synechocystis the
filamentous, LPP; and the branched Fischerella. The major findings
of this experimentation are as follows:

a) No betaine accumulated following upshock in NaC1 (sufficient for
plasmolysis and recovery) in any of the three structural types of
cyanobacteria. These results and several months of preliminary
experimentation to "find" betaines in other cyanobacteria, have led
us to tentatively conclude that betaine is a compatible,
osmoregulatory solute formed in halotolerant and halophilic oxygenic
photoautotrophs, but not in fresh water organisms of the same type.
All three of the structural types so tested were of fresh water
origin.

b) Quantitatively speaking, the solute class increasing to the
greatest extent in the Synecococcu.s, LPP (Oscillatonia type) and
Fischerella was that of the non-reducing carbohydrates. Non-reducing
carbohydrate amount is obtained by substracting reducing carbohy-
drates from total soluble carbohydrates in our analysis protocol.
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Figures 12-17 show the changes in total and reducing
carbohydrates in both light and dark for the three cyanobacteria,
seven and 24-hours after upshock.

Clearly, the evolutionarily most advanced Fischerella, contains
the greatest amount of non-reducing carbohydrate (Figures 12 and 13).
In addition, the non-reducing carbohydrate fraction (we believe one
molecular type) more than doubles with upshock after only seven
hours. Furthermore, this increase occurs in both light and dark.
The carbohydrate(s) synthesis then proceeds without an immediate
light requirement. There is little or no increase in reducing sugars
following upshock in the Fischerella.

A much different effect of upshock is seen in the less
evolutionarily advanced LPP (Figures 14 and 15). In this case, non-
reducing carbohydrates (again, we believe one chemical species) more
than doubles after six hours of upshock, bur, only in the light.
Deplasmolysis is also very much slower in the dark. Again, there is
no appreciable increase in reducing sugars with upshock.

Finally., the unicellular cyanobacterium Synechocystis behaves
much the same way as the filamentous LPP with respect to total carbo-
hydrate. However, under light conditions only, the reducing
carbohydrates (but not non-reducing fraction) increase with upshock.

It should be noted that only the Fischerella is cr pable of
growing in the dark on a carbohydrate source (i.e. chemolhetero-
trophi.cally).

Studies are currently in progress to identify the individual
carbohydrates in the various fractions.

c) The changes in free amino acids in the three fresh-water cyano
bacteria did not correlate with those found for the carbohydrates.
These changes are quantitatively represented in Figures 18-20„ The
greatest changes occur in the unicellular Synechocystis and
filamenLous LPP. No increase in total amino acids were observed for
the Fischerella.

Figure 18 shows the approximate 50% .increase in total amino
acids in Synechocystis after seven hours of upshock. This occurred
both in light and dark. The levels returned to near control after 24
hours.

Figure 19 shows the much greater increases in total amino acids
following upshock of the ,filamentous LPP. In this case, as in the
previous one, the changes are very much greater in the light than in
the dark. In addition, the levels remain high, and even double the
non-upshocked control, but only in the light.

Figure 20 shows a slight, transitory change in amino acids in
the upshocked Fisherella in the light, but a return to control levels
after 24 hours. Clearly, amino acids are not as quantitatively
important in this rather advanced cyanobacterium.

{
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d) Qualitative changes in the amino acids of the three fresh water
cyanobaeteria proved to be more interesting. Tables 6, 7 and 8 show
that for all three organisms the five major (quantitatively amino
acids are glutamic acid, aspartic acid, serine, alanine and proline.
Glutamic acid is always most abundant, followed by the other four in
orders varying among the three species. Four of the same amino acids
are the most prevalent in Aphanothece as well.

Figures 21, 22 and 23 depict the changes following upshock in
those amino acids most affected by the treatment.

First, some generalizations are evident. In all organisms,
proline, arginine and lysine increase in the light during upshock.
However, proline and arginine require light for their synthesis,
except in the case of Fischerella.

In both Synechocystis and Fischerella glutamic acid decreases
following upshock, but increases in the filamentous LPP, especially
in the dark.

Quantitatively, proline is the major amino acid changing with
changing salinity in both Synechocystis and the LPP, but only in the
light. However, proline greatly increases only in the dark in
Fischerella. Obviously, the large increase in amino acids in the LPP
Alga following upshock, is due almost entirely to proline and glycine
(Figure 22).

Significance of the Research Accomplished During the Past Seven Months

The specific findings reported above are significant with respect to
qualification of certain conclusions concerning cyanobacteria and the nature
of compatible solutes that have been recently reported in the literature.

First, there exists the problem of too closely grouping the cyanobaeteria
(or blue-green algae) to other gram-negative bacteria, as is frequently done
(1). Gram-negative bacteria (not c ,;anobacteria however) show increases in
glutamic acid and/or proline and gamma aminobutyric acid (GABA) following
upshock. Obviously from our data this does not occur. In fact, the halo-
tolerant cyanobacterium Aphanothece, always showed a decrease in glutamate
with upshock concomitant to an increase in serine, even as K was
increasing. Furthermore, we have been unable to find any GABA, even at the
nanomole level in this organism.

Secondly, our data show that proline and glycine, two solutes often found
in osmoregulating eukaryotes s do accumulate in certain cyanobaeteria under
certain environmental conditions. In one case (Aphanothece) both betaine and
proline accumulate.

As previously reported, we appear to also find, again in certain
cyanobaeteria, the glucosylglycerol involved in osmoregulation. However, a
recent review in Science by Yancey, et al. (3) reports only this
osmoregulatory solute (osmolyte) for the cyanobaeteria. The major thesis of
this particular article was the great uniformity (and lack of diversity) of
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chemicals evolved for the purpose of osmoregulation. We believe, from our
initial data, that, there is considerable diversity in osmoregulatory solutes
employed by the cyanobacteria from adaptive evolution to water and saline
stress.

Thirdly, and of considerable importance to non-blue-green bacteria, amino
acids in the growth (culture) medium may be taken up (or diffuse in) during
upshock. These amino acids may, if the case involving A ham anothece is	 j
repeated, influence the nature of the solutes formed during osmoregulation. 	 ^I
Early heterotrophic bacteria, which were probably the earth's first
prokaryotes, almost certainly had amino acids available to them. One of the
most common of these was almost certainly glycine, and perhaps, the dipcptide,
glycylglycine. These amino acids may have directed the pathways of
osmoregulatory solute production.

Fourth, recent research on the pathway of betaine synthesis in higher
plants by Andrew Hanson and his coworkers at Michigan State (2) confirms that
serine is the precursor betaine. The pathway is as follows:

Serine---ethanolamine 	 N-methylethanol.amine

-a.-dime thy lethanolamine t--chol.ine

betaine aldehyde --->-betaine

However, these investigators have focused their attention to the steps in this
pathway that are responsive to increasing water stress or salinity--after the
formation of serine. They further note that betaine synthesis requires light,
especially for the formation of one carbon metabolite derivatives of formic
acid. Our data certainly agree with those indicating a light requirement for
betaine synthesis. However, we believe that our data also show that the
decreased water potential and/or salinity trigger the synthesis of serine.
Serine formation is the limiting step for betaine synthesis and later stages
in the pathway may or may not be stimulated by decreasing water potential or
increasing internal salinity. Furthermore, we believe that the serine, while
certainly not of photorespiratory origin, probably comes from the non-
phosphorylated, D-glyceric pathway.

Fifth, and finally, our data also challenge, or at least qualify, the
statement made by Yancey et al (3, p. 1217) that the "counteracting effects
[to salt inhibition of enzymes] [of betaine] are independent of the species
source of protein. Mammals, teleost, amphibian and elasmobranch proteins
respond similarly in the presence of counteracting solutes, regardless of
whether they experience these salutes in vivo" and on p. 1221.

"Through the use of compatible solute systems, proteins are able to work
in the presence of high or variable solute concentrations, and the
[genetic] modifications of vast numbers of proteins is avoided."

We agree with the importance of their assessment of the evolutionary role
of compatible solutes, as this gives even more justification for the
objectives of our proposed research. However, our experience (reported here)

C;	 8
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with glycine-betaine and glucose-6-phosphate dehydrogenase from different
sources, leads us to call for more experimentation on protein modification in
organisms employing greatly different osmoregulatory systems.

Presentations and publications Resulting from the Research.

(1) Two abstracts will be published in
presented at the Annual Meeting of
Physiologist August 10, 1983 at

These abstracts are entitled:

the journal Plant Pbri'siology of papers
the American Society of Plant

(a) gffect of betaine on the activity of salt-inhibited glucose--6-
phosphate dehydrogenase from the halotol.erant cyanobacterium,
Aphanothece halo h tics and two other non-halophili c micro-
organisms - by Ken Pavlicek and John H. Yopp

(b) Influence of the environment on
synthesized by the halotol^aYant
halophyti.ca during water stress
Rebecca Pavlides.

the amino acids and betaine
cyanobacterium, A lanothece
- by John H. Yopp, Ken Pavlicek and

(2) Manuse ipts in preparation

(a) Yopp, J. H. Role of betaine and amino aci.is to osmoregulation by
the extremely halotolerant cyanobacterium, Aphanothece halt , h tics -
to be submitted to origins of Life - 1983

(b) Tomlinson, J. and J. H. Yopp. Solute changes during osmoregulation
in cyanobacteria of different structural and ecological types - to
be submitted to Journal of Phycology_ - 1983

(3) Published abstracts from NASA-supported research:

(a) Pavlicek, K. V. and J. H. Yopp 1982. Betaine as a compatible solute
in the complete relief of salt inhibition of glucose-6-phosphate
dehydrogenase from a halophilic blue-green alga. Plant Physiol.
69(4): 56.
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ORIGINAL. PAGE P3

Table 3
	

OF POOR QUALITY

Changes in Free Amino Acids* in A. halophytica Grown in Either Glycylglycine

or MES Buffer Following Upshock (1.0m NaC1 2.75m NaCl - Medium) in the Light

Amino Acid Buffer Type

Gly-Gly MES
Initial 24 hr 72 hr Initial 24 hr 72 hr

Glutamic Acid 21.00 8.09 9.86 17.30 6.25 6.58

Serine 4.12 8.14 12.70 4.92 8.11 6.04

Glycine 1.42 3.59 2.22 1.66 1.93 0.75

Aspartic Acid 1.41 1.41 1.66 1.55 1.32 0.97

Alanine Acid 0.86 0.11 0.86 1.63 1.32 0.64

Lysine 0.47 2.12 0.55 0.73 0.74 0.39

Valine 0.44 0.10 0.51 0.21 0.56 0.29

Leucinet 0.41 7.63 11.80 0.49 0.49 0.23

Histidine 0.34 0.36 0.35 0.42 0.42

Threonine 0.30

Cysteine 0.26 0.40 0.22 0.21

Isoleucine 0.25 0.13 0.26 0.34 0.33

Phenylalanine 0.13 0.14 0.18 0.14 0.14 0.11

Ammonia 0.09 0.72 0.74 0.54 0.58 0.49

Tyrosine	 0.09	 0.19	 0.12

Methionine	 0.19	 0.18

Arginine

proline	 1.8	 2.16

* Concentrations are expressed as mg x 10- 8 per cell

t This amino acid co-chromatographs with the buffer glycylglycine; the
increase observed in this buffer for leuci.ne is then, actually glycyl-
glycine.
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Table 4 ORIGINAL PAQE 1$
OF POOR QUALITY

Changes in Free Amino Acids* in A. halophytica Grown in Either Glycyl8lucine

or MES Buffer Following Upshock (1-Om NaC1	 2.75m NaC1 - Medium) in the Dark

Amino Acid Buffer Type

Gly-Gly MES
Initial 24 hr 72 hr Initial 24 hr 72 hr

Glutamic Acid 21.00 6.33 11.90 17.30 16.40 11.50

Serine 4.12 13.50 13.20 4.92 6.82 10.50

Glycine 1.42 1.52 2.30 1.66 1.18 0.46

Aspartic Acid 1.41 1.48 1.47 1.55 1.16 1.27

Alanine 0.86 0.74 0.65 1.63 0.99 0.82

Lysine 0.47 1.16 1.86 0.73 1.06 0,99

Valine 0.44 0.54 0.48 0.21 0.47 0.29

Leucinet 0.41 7.29 9.66 0.49 0.45 0.21

Histidine 0.34 0.31 0.42 0.29

Threonine 0.30

Cysteine 0.26

Isoleucine 0.25 0.23 0.19 0.34 0.24

Phenylalanine 0.13 0.09 0.07 0.14 0.18

Ammonia 0.09 0.81 0.71 0.54 0.63 0.67

Tyrosine 0.47

Methionine 0.19

Arginine 0.49

Proline 1.94 2.62

* Concentrations are expressed as mg x 10- 8 per cell

t This amino acid co-chromatographs with the buffer glycylglycine; the
increase observed in this buffer for leucine is, then, actually Slycylglycine.
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Table 5

Changes in Free Amino Acids in A. halophytica As a Function of Tight and Oxygen Availability

Following Upshock (1.Om NaCI 	 2.75m NaCl-Medium)

Amino Acid Treatment Regime
Light Aerobic Dark Aerobic Dark Anaerobic

Initial 24 hr 72 hr Initial 24 hr 72 hr Initial 24 hr 72 hr

Glutamic Acid 21.00 8.09 9.86 21.00 6.33 11.90 22.40 28.30 1.30

Serine 4.12 8.14 12.70 4.12 13.50 13.20 2.43 5.71 11.30

Glycine 1.42 3.59 2.22 1.42 1.52 2.30 0.43 0.51 0.41

Aspartic Acid 1.41 1.41 1.66 1.41 1.48 1.47 0.83 0.76 0.90

Alanine 0.86 0.11 0.86 0.86 0.74 0.65 0.25 0.64 0.14

Lysine 0.47 2.12 0.55 0.47 1.16 1.86 0.68 0.40 0.50

Valine 0.44 0.10 0.51 0.44 0.54 0.48 0.15 0.22 0.15

Leucinet 0.41 7.63 11.80 0.41 7.29 9.66 0.87 12.80 19.60

Histidine 0.34 0.36 0.35 0.34 0.31 0.11 0.06

Threonine 0.30 0.30 0.07 0.08

Cysteine 0.26 0.40 0.22 0.26

Isoleucine 0.25 0.13 0.26 0.25 0.23 0.19

Phenylalanine 0.13 0.14 0.18 0.13 0.09 0.07

Ammonia 0.09 0.72 0.74 0.09 0.81 0.71 0.34 0.43 1.05

Tyrosine	 0.09	 0.19	 r	 0.28	 0.26

Methionine	 ^ ^

Arginine 	 0.49	 0.19	 0.43

Proline

* Concentrations are expressed as mg x 10-8 per cell

t This amino acid co-chromatographs with the buffer glycylglycine, the increase observed in
this buffer for leucine is, then, actually glycylglycine

17
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Table 6

Changes in Free Amino Acids* in Synechouptis sue. As a Function of Light
Following Upshock

Amino Acid Treatment Regime and Time

Light Dark
Initial 6 hr 24 hr Initial 6 hr 24 hr

Glutamic Acid 1.18 1.25 0.91 1.12 1.15 1.29

Serine 0.34 0.35 0.18 0.14 0.16 0.16

Aspartic Acid 0.23 0.35 0.19 0.09 tr 0.13

Alanine 0.18 0.16 0.16 0.06 0.12 0.06

Proline 0.11 0.38 0.67 tr tr 0.06

Valine 0.09 0.07 0.07 0.06 0.06 0.05

Threonine 0.08 0.12 0.12 0.05 0.06 0.07

Lysine 0.07 0.16 0.13 0.04 0.08 0.12

Glysine 0.07 0.19 0.13 0.06 0.10 0.09

Histidine 0.07 0.07 0.05 0.05 0.05 0.06

Leucine 0.03 0.03 0.03 0.02 0.03 tr

Tyrosine 0.02 0.08 tr tr tr tr

Phenylalanine 0.02 0.02 tr 0.02 tr tr

Isoleucine 0.02 0.02 0.01 tr 0.01 0.01

Arginine 0.02 0.04 0.06 tr 0.01 tr

* Concentrations are given in mg per g dry weight algae

A
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Table 7
ORIGINAL PAGE I3
OF POOR QUALITY

Changes in Free Amino Acids in UP n. As a Function of Light Following

Upshock

Amino Acid	 Treatment Regime and Time

bight nark
Initial 6 hr 24 hr Initial 6 hr 24 hr

i

Glutamic Acid 0.48 1.15 0.56 0.48 0.84 0.75

Serine 0.04 0.11 0.11 0.06 0.07 0.04

Aspartic Acid 0.16 0.19 0.08 0.10 0.12 0.12

Alanine 0.05 0.08 0.06 0.06 0.10 0.06

Proline 0.04 0.03 0.35 0.02 tr tr

Valine 0.02 0.03 0.02 0.02 0.03 0.02

Threonine 0.02 0.07 0.07 0.02 0.03 0.02

Lysine 0.01 0.05 0.03 0.02 0.04 0.04

Glycine 0.03 0.43 0.25 0.03 0.04 0.03

Histidi.ne tr 0.01 0.01 0.01 0.01 0.01

Leucine 0.01 0.02 0.01 0.01 0.01 0.01

Tyrosine 0.01 0.03 0.06 0.02 0.01 0.01

Phenylalanine tr 0.01 0.01 0.01 tr tr

Isoleucine. 0.01 0.01 0.01 0.01 0.01 tr

Arginine 0.02 0.07 0.03 tr 0.02 0.01

* Concentrations are given in mg per g dry weight algae

19
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Table 8

Changes in Free Amino Acids in Fischerella muscicola As a Function of Light

Following Upshock

Amino Acid	 Treatment Regime and Time

Light Dark
Initial 6 hr 24 hr Initial 6 hr 24 hr

Glutamic Acid 3.11 2.16 1.68 2.16 1.64 2.52

Serine 0.45 0.55 0.29 0.56 0.55 0.63

Aspartic Acid 0.45 0.65 0.28 0.37 0.70 0.29

Alanine 0.67 0.62 0.34 0.86 0.46 0.47

Proline 1.62 1.91 1.67 0.83 1.19 0.65

Valine 0.08 0.07 0.06 0.28 0.22 0.12

Threonine 0.12 0.16 0.07 0.14 0.13 0.14

Lysine 0.20 0.42 0.38 0.22 0.36 0.19

Glycine 0.32 0.21 0.13 0.44 0.27 0.43

Histidine 0.02 0.04 0.02 0.03 0.02 0.02

Leucine 0.05 0.05 0.03 0.11 0.07 0.17

Tyrosine 0.09 0.17 0.12 0.10 0.04 0.08

Phenylalanine 0.04 0.04 0.02 0.06 0.04 0.05

Isoleucine 0.03 0.03 0.03 0.06 0.03 O.n

Arginine 0.13 0.16 0.30 0.16 0.13 0.16

A

d

* Concentrations are given in mg per g dry weight algae
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Figure 1. Carbon-13 Nuclear Magnetic Resonance Spectrum of Glycine Betaine
Using 0.5 m1 Microcell.
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Figure 2. Changes in Betaine Content of Aphanotheee halophytica Auer Upshock
in bight and Dark Conditions and in Either Glycylglycine or MES
Buffer.
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Figure 3. Effect of Increasing Concentrations of KC1 on in vitro Activity of
Glucose-6-Phosphate UehydroEennse from Apbanothece halophytica

.

23



ORIGINAL PAGE IS

OF POOR QUALITY

C3,

Se
-C
CLo 00

0

C
4) 0
u u
c -2
0 ch,

CY) 0

0
(D
L- 4-u u
a 0

o
0 -C

U C
( 01)

ILU

0
r..:

Cp%

C;

30

zo

z0

Z
LU
u
z
0
u

^d

k-j^	 C) C) (D 0	 C)
%0 0 44 0

(104UOD 40 %),AIIAIIDV



y	 r	 • ^	 ^s
1

Figure 4. Effects of Increasing Concentrations of Various Osmotica on the
Activity of KC1 - Inhibited Glucose-6-Phosphate Aehydrogenase from
Aphanothece halophytica
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Figure 5. Effects of Glycine Bet.aine (2.01) on the Activity of GlueosewG-
Phosphate Dehydrogenase Activity of Ahnnothue in-19iull,^^tira in
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Figure 6. Effects of Successively Methylated Derivatives of Glycine (1-OM) on
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Figure 7. Effect of Glycine Betaine on the Activity of KC1 - Inhibited
Glucose=6-Phosphate Dehydrogenase from Torula Yeast and the
Halotolerant Bacterium, Leuconostoc mesenteroides
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Figure 8. Effect of Glycine Betaine on the Km of Glucose-6-Phosphate
Dehydrogenase from Torula and Leuconostoc
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Figure 9. Changes in Certain Amino Acids in A hanothece halophytica Following
Upshock in Media Containing Glycylglycine Buffer in the light and
in the Dark
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Vtgure 10. Changes in Certain Avino Acids In
FollowIng Upshock in Media containing M88 Wfor In the Light and
in the Dark
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Figure 11. Changes in Certain Amino Acids and Ammonia in Aphanothece
halophytica Following Upshock in Dark, Anaerobic Conditions
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Figure 13. Changes in Redvcing Carbohydrates in Fischerella Following Upshock
in Light and Dark
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Figure 14. Changes in Total Soluble Carbohydrates in a LPP Cyanobacterium
Following Upshock in Light and Dark
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Figure 15. Changes in Reducing Carbohydrates in a LPP Cyanobacrerium
Following Upshock in Light and Dark

35



ORIGINAL PAGE
 L 'V

OF POOR

LIGHT CONTROL
LIGHT UPSHOCK c
DARK CONTROL-------t7
DARK UPSHOCK

6
	

24
TIME (hr)

t

5
t'
O
Q ;•4 .

0
rn 13

Ln

w 2
LU

Ou
c^
v
E

0



Y

A

Figure 16. Changes in Total Soluble Carbohydrates in Synechocystis Following
Upshock in sight and Dark	 s
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Figure 17. Changes in Reducing Carbohydrates in Synechocystis Following
Upshock in Light and Dark
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Figure 18. Changes in Total Free Amino Acids in Synechocystis Following
Upshock in Light and Dark
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Figure 19. Changes in Total Free Amino Acids in a LPP Cyanobacterium
Following Upshock in Light and Dark
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Figure 20. Changes in Total Free Amino Acids in Fischerella Following Upshock
in Light and Dark
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Figure 21. Changes in Certain Free Amino Acids in Synechocystis Following
Upshock in Light and Dark
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Figure 22. Changes in Certain free Amino Acids in a LPP Cyanobacterium
Following Upshock in Light and Dark
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Figure 23. Changes in Certain Free Amino Acids in Fischerella Following
Upshock in Light and Dark
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Timea course proposed for research designed to achieve the objectives

Year 1:

Culture of all structural and nutritional types of cyanobacteria pro-
posed (see Table 2, original proposal for first year, June 15, 1982 -
June 14, 1983); this objective must be met before research on the other
objectives progresses);

(2) Culture of the above strains under conditions that will elicit photo-
autotrophy, photoheterotrophy, and chemoheterotrophy. This objective
will confirm the existence of the appropriate nutritional capabilities
of the cyanobacteria, as indicated from the literature.

(3) Following the changes is osmoregulatory solutes after upshock for approxi-
mately one-third of the strains.

Year 1 will then involve partial achievement of Objectives 1 through 3

Year 2 (actually the next eighteen months);

(1) Following the changes in osmoregulatory solutes after upshock in
approximately one half of the organisms,

(2) Experimentation to achieve goals 5, 6, and 7.

Year 3 (actually the last six months and any proposed extension);

(1) Following the changes in osmoregulatory solutes after upshock for
the last one sixth (approximately) for the cyanobacteria;

(2) Experimentation designed to achieve goals 8 and 9.

Detailed Breakdown of the Second Period of Funding:

(1) The first six months of the second eighteen months of funding will involve
experimentation to determine the metabolites and metabolic pathways in-
volved in the formation of the osmoregulatory solutes using the C-13
NMR. Concomitant enzymatic studies will be conducted to verify the specific
enzymes involved in the formation of these precursor metabolites.

44

(2) The subsequent twelve-month period of the second eighteen months of
funding will involve experimentation designed to achieve objectives 5,
6, and 7.
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