@ https:/intrs.nasa.gov/search.jsp?R=19830011470 2020-03-21T04:10:24+00:00Z

ew metadata, citation and similar papers at core.ac.uk brought to you by i COR

provided by NASA Technical Reports Sen

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)


https://core.ac.uk/display/42853243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA Coantractor Repor. 165912

(NASA-CR-165912) METHODS FOR ESTIMATICN OF N83-19741

BULLEN TCURBULENCE SPECTFUM EATAMETFES

Firpal

Beport (Bolt, Berinek, and Newsan, Inc.)

21 p HC AOD2/MF a0}

CSCL 01C Unclas

G3/05 10567

MeTHODS FOR ESTIMATION OF BULLEN TURBULENCE

SPECTRUM PARAMETERS

WiLLiam D, Mark

BOLT BERANEK Anu NEWMAN INC.

CAMBRIDGE, MA 02238

CONTRACT NAS1-14837
MAY 1982

National Aeronautics and
Space Administration

Langiey Research Center
Hampton, Virginia 23665

LiGANY G3PY

SO 7
LANGLEY 27262 m JUNTER
- , L3257y, NASA
4 HALZTUN, VIREINGA -

N
e}




SUMMARY

In NASA Contractor Report 3463 [Ref. 1], maximum like-
lihood and constrained least-squares mnethods were developed
for estimating the parameters of the von Karman transverse
and longitudinal spectra and autocorrelation functions.
However, during the application of these methods to re-
corded turbulence measurements [NAS/ Contractor Report
3464, Ref. 2] it was discovered that a small percentage of
such records are better modeled Ly the Bullen spectra or
autocorrelation functions. The present report extends the
above mentioned maximum likelihood and constrained least-
squares methods to Bullen transverse and longitudinal
spectra and autocorrelation functions.
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INTRODUCTION

In Ref. 1, a general methodology was developed for
characterizing atmospheric turbulence velocity records,
estimating the parameters of the characterizations from
such records, and computing aircraft response statistics
from the characterizations. The characterization methods
were implemented in Ref. 2 using several turbulence

velocity records measured during the NASA MAT (Measurement

of Atnospheric Turbulence) program. The turbulence model
used in Refs. 1 and 2 assumes that a turbulence velocity
record w(t) can be expressed as the sum of "slow" and
"fast" components ws(t) and wf(t) - 1.e.

w(t) = ws(t) + wf(t)
= w (1) + 0.(8)z(t), | (1.1)

where

wf(t) = of(t)z(t) (1.2)
with

op(t) 20 (1.3)
and

E{z(t)} = 0, E{z%(t)} = 1, (1.4)

where E{--+} denotes the ;iathematical expectation or en-
semble average value of the quantity within the braces.
The three random processes {ws(t)} s {of(t)}, and {z(t)}

are assumed to be mutually statistically independent. Fur-
thermore, {z(t)} is assumed to be an ergodic Gaussian pro-

cess. The process {of(t)}is not assumed to be Gaussian.

Realizations of {of(t)} are assumed to vary slowly in com-

parison with realizations of {z(t)}, and realizations of
{ws(t)} are assumed to vary slowly in comparison with
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realizations of {wf(t)}. Hence, ws(t) has the appearance of
a slowly varying additive component to the process wf(t), and
wf(t) has the appearance of ordinary turbulence with a tem-

porally varying envelope that 1s governed by the behavior of
of(t). A more complete description of the above model can

be found in Ref. 1.

It has been shown in Ref. 3 that whenever the scale of
fluctuations of of(t) is of the order of ten or more times

the integral scale of z(t), the velocity spectrum of wf(t)

will, for practical purposes, coincide with the velocity
spectrum of z(t) except for a constant multiplicative factor.
Thus, if z(t) is regarded as ordinary turbulence with a

von Karman transverse or longitudinal spectrum, then to
within an excellent* approximation wf(t) will possess this

same spectral form. Hence, in Refs. 1 and 2, it has teen
assumed that the velocity spectral densities or autocorrela-
tion functions of w(t) are the superposition of the spectral
densities or autocorrelation functions of ws(t) and

o% z(t), where E? denotes a temporal average or expectation.

This assumptlon can be justified from the assumed mutual
statistical independence of {ws(t)}, {of(t)}, and {z/t)}

and the slowly varying behavior of {of(t)} relative to {z(t)}.

Since the spectrum of ws(t), by assumption, contailns

predominantly iow frequency or long wavenumber components,
the asymptotic slope of the spectrum of w(t) should be gov-
erned by the process z(t) which has been assumed to be de-
scribed by the von Karman spectral form. The von Karman
transverse and longitudinal spectral forms both possess the
asymptotic -5/3 slope when plotted on log-log coordinates
as required by classical turbulence theory [4]. However,
when the methods developed in Ref. 1 were applied to 7 real
turbulence records in Ref. 2, it was found that the asymp-
totic slopes of the spectra of 2 out of the 7 records were
distinctly different from -5/3. These are the spectra of
the lateral turbulence records from Flight 32 Run 4 and
Flight 30 Run 8 of the MAT program shown in Figs. 5 and 11
respectively in Ref. 2. Thus, an extension of the methods
developed in Ref. 1 to accommodate asymptotic slopes dif-
ferent from -5/3 would seem to be useful.
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Two methods were developed in Ref. 1 for estimating
"spectrum" properties of velocity records. The first method
is applicable to cases where the slow component ws(t) in

Eq. (1.1) is negligible in comparison with wf(t). This

first method utilizes the maximum likelihood method to
estimate the two paramet2ars of the von Karman transverse or
longitudinal spectral forms. The second method is appli-
cable to cases where ws(t) in Eq. (1.1) is not negligible.

This second method :tilizes a constrained least-squares inte-
gral fit of an autocorrelation function model to the auto-
correlation function of the measured turbulence record.

Both of these methods are extended in this report to models

" where the asymptotic slope of the spectrum of the component
z(t) is not constrained to be the classical value of -5/3.
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MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS
IN BULLEN TURBULENCE VELOCITY SPECTRA

In Sec. 3 cf Ref. 1, the maximum likelihood method was
used to develop equations for estimating the integrali scale
and intens.ty of the von Karman transverse and longitudinal
spectral forms. 1In this section, this method is extended to
the Bullen spectral forms given on pp. 200-202 of Ref. 5.

The Bulien spectral forms are determined by three parameters
rather than two as in the von Karman case. The third parame-
ter controls the asymptotic slope of the spectra when plotted
on log-lcg coordinates. When this asymptotic slope 1is set
equal to -5/3, the Bullen spectral forms reduce to the

von Karman forms.

The Bullen transverse and longitudinal two-sided wave-
number spectra are {p. 200 of Ref. 5]

1+87222k? (n+l)
(l+“ﬁ2Q2k2)n+372

¢BT(k) = o’L s (2.1)

and

2
(1+4m222k?)

2
¢BL(k) oL

n+l/2 _ (2.2)

where the above forms are one-half of the values given 1in
Ref. 5 because @BT(k) and ¢BL(k) are two-sided spectra rather

than one-sided as in Ref. 5, and where the parameter a in
Ref. 5 has been replaced by 2 to avoild later notational con-
fusion. L 1s the scale of the turbulence, o? is the mean-
square value, and £ is related to n and L by

I'(n)

e
e F(n+§)

L, (2.3}

where T'(a). is the gamma funct®*on. When n = 1/3, Eqs. (2.1)
and (2.2) reduce to the von Karman forms given by Egs. (3.18)
and (3.19) of Ref. 1.
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In the maximum likelihood procedure to be developed
belov, we shall cerive likelihood equations for the three
parameters oL, %, and n in Eqs. (2.1) and (2.2). When
solutions are arrived at for these three paramsters, one
can readily compute from n and 2

Vel r(m%)
L* ——m 1, (2.4)

r'(n)

according to Eq. (2.3), and then 02 = o?L/L, which yield
the scale L and mean-square value o?.

Let Sg, J=1,2,++,N denote the periodogram (unsmoothed
am

spectrum) ples descrihed on pp. 74-80 of Ref. 1. The
mathematical expectation of a typlcal spectrum sample SJ
can be expressed as

E{SJ} : §; = ozLFJ(R,n) . j=1,2,***N (2.5)

where for the Bullen transverse spectrum one has from Eq. (2.1)

1+8w222k§(n+1)

FJ(Q,n) =
(1+uw222k§)

and for the Bullen longitudinal spectrum one has from Eq. (2.2)

FJ(E,n) = — 2
(1+un292k§)

n+l/2 °? (2.7)

where kJ is the wavenumber at th=2 location of the jth spectrum
sample SJ.

Turning now to derlvation of the likelihood equations
for estimating the srectrum parameters, when Eq. (2.5) is
substituted into Egq. (3.15) of Ref. 1, one has for the loga-
of the joint rrobabllity density function of the N spectrum
samples SJ, J=1,2,++*,N
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tnlp(s,,S,,  +,5)] =

= -{Nln(ozL)+2nFl(l,n)+2nF2(2,n)+-o-+£nFN(£,n)

1 Sx Sz SN 1\
3T F(L,n) + F_(4,m) oot FN(ETETJ’ (2.8)

where Eq. (3.12) of Ref. 1 also has been used. Equation (2.8)
is to be maximized with respect to the three parameters
o?L, %, and n. Thus, differentiating Eq. (2.8) with respect

to o2L, %, and n and setting the resulting three expressions
equal to zero ylelds after minor manipulations:

] &S
2 s
N , S
ji: 31 RnFJ(Q,n) Fj i oLl =0 (2.10)
=1 - S
and
9 S]' 2
() 35 F (4,m) | ey - 9L = 0 . (2.11)

j=1 J

Equatiors (2.9) through (2.11) are three nonlinear simul-
taneous algebralc equations for the spectrum parameters
62L, %, and n in terms of the periodgram samples S s 5,5

SN and the functions F (2,n) given by Egs. (2.6) and (2.7)

for the Bullen transveroe and longitudinal spectrum forms
respectively. However, Eq. (2.9) can be substituted into
Eqs. (2.10) and (2.11) so that only two nonlinear equations
need to be solved simultaneousiy. Let us first define

’

d
G‘jn(g"n)éé—pj Ln FJ(l,n) (2.12)
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and
Gyn(1,0) & 3 &nF,y(2,n) (2.13)

which apply to either the transverse ~r liongitudinal Bullen

spectral forms as appropriate. Then substituting Eq. (2.9)

into Eqs. (2.10) and (2.11) and using the definitions 2.12)
and (2.13), we obtain instead of Egs. (2.10) and (2.11),

N
Lo Sy
j=1 GJQ(R,n) -ETJ*—T 5 g;i FITTTHT = 0 (2.14)
and
N <§‘ S ’
1 i =
Lj(ln)—"—(‘}jy ﬁ)f,i—(—l—-y]-o. (2.15)
j=1 i=1 4 _

Equations (2.14) and (2.15) are to be solved simulta-
neously for the two spectrum parameters £ and n. These
solutions £ and n are then to be substituted into Eq. (2.9)
to yleld the parameter o’L. Equation (2.4) is then to be
used to evaluate the scale L, and o2 then can be evaluated

by o2 = o?L/L. Thus, Egs.(2.9), (2.14), and (2.15) are the
solution to the problem of naximum likelihood estimation of
the Bullen spectrum parameters o’L, &, and n which yield
0%, L, and n.

The solution to Eqs. (2.)4) and (2.15) can be readily
sarried out by numerical means a“ong the lines illustrated
in Appendix F of Ref. 1. To carry out these solutions,

the functions GJQ(Q ,n) and G'j (L,n) are required for the
Bul.len transverse and longitudinal spectra. By differentiat-
ing the natural logarithms of Eqs. (2.6) and (2.7), one

can readily show for the Bullen transverse spectrum that

8n222k2(n+%) 1—8n222k3(n+1)
G, (,n) = 4 _
J L+ln? 22 (2n43)4321% 2 K] (n#1)
(2.16)



and
8n222kj .
G, (2,n) = - an(1+4megey?)
Jn*7? 1487722k} (n+1) Jo?

and for the Bullen longitudinal spectrum that

8n222k?(n+;)
= 1 J- 2
ng(l,n) "2

1+4m202)2
TR

and

= - 2922
6yp(2,0) = -In(1+4n222K})

(2.17)

(2.18)

(2.19)
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CONSTRAINED LEAST-SQUARES ESTIMATION OF TURBULENCE
AUTOCORRELATION FUNCTION PARAMETERS
First Method

In this section, the method developed in Sec. 4 of
Ref. 1 is extended to the case where the spectrum and auto-
correlation functions of component wf(t) in Eq. (1.1) are

better modeled by the Bullen forms rather than the von Karman
forms used in the cited reference. The parameter estimation

method developed below is applicable to situations where the

component ws(t) in Bq. (1.1) is not negligible.

The autocorrelation function model used here is

m
P . A b
$(8) 4 of 05(E58,n) + ) aj&",  O<kely (3.1)
i=0
which replaces Eq. (4.1) of Ref. 1. The quantity EZ is the
mean-square value of the "fast" component wf(t) in Eq. (1.1),
¢B(£;2,n) is either the Bullen transverse or longitudiral
autocorrelation function, as appropriate, with ¢B(0;2,n) = 1,
and ng
= 1 -
9y _(8) 2, a8, Osbsky (3.2)
1=0

is a polynomriil model of the autocorrelation function of the
"slcw" component ws(t) in Eq. (1.1) assumed valid within the

range 0<E<€H as in Sec. U of Ref., 1.

The quantities ;g , Ly, n, and Ay i=0,1,***, m are to be

evaluated from the autocorrelation function R(f} of a mea-
sured turbulence record w(t) by minimizing the quantity

E’H‘ m lz
E 4 f |REE) - 010g(Estm) - ‘):aiai, ag, (3.3)
i=0C

10
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where the minimization procedure 1s constrained by the two
sdditional relations:

N N
S e, (2,n) —(1—-78 ! ] 0
’ - - (3.4)
s%f Jn FJ L,n ﬁ%__;_l, Filg,nSj
and
N o
FRE S P Si—; , (3.5)
£ N J?f T('!L,n

where perlodogram samples SJ and S1 in the wavenumber range
szkz. and kiakg, only are to be included in the summations
in Eqs. (3.4) and (3.5) as explained below.

Ordinarily, the wavenumber spectrum content of the "slow"
component w_(t) in Eq. (1.1) 1s concentrated in the low

wavenumber Fegion. Thus, we assume there cxists a wavenumber
kn' such that for wavenumbers kzkg,, the -=ctrum content of

a turbulence record w(t) is dominated for all k;kr, by con-
tributions from the "fast" component wf(t) only. It is
advantageous to choose the smallest value of kl' that satisfies

this condition. The two constraint equations (3.4) and (2.5)
are to be evaluated using reriodogram samples SJ and Si taken

only 1n the region k3k,, where the wavenumber content of the
process wf(t) in Eg. (1.1) 13 everywhere dominant. By
hypothesls. then, within this region k;kz,, the wavenumher

spectrum is well represented by the appropriate (transverse
or longitudinal) Bullen spectral form. Equations (3.4) and
(3.5) are two of the three likelihood equations available for
evaluating the three Bullen spectrum pezrameters.

To examine why the third likelihood equation (2.14) is
often not useful in the repion k;ki,, we examine the behavior

of GJQ(Q,n) for large values of kJ for both the transverse

n



and lcngitudinal cases. For large values of kg, one can

readily see from Eq. (2.16) that for the case Df the Bullen
transverse gpeéctrum one has

20242
8n7£2k3(n+%) -8" R, kj(n'.’l)
1 32n“1“k3(n+1)

GJZ(Q,n) ~

= - 2(n+l) oo
I (3.6)

and, similarly, from Eq. (2.18) for the case of the Bullen
ongitudinal spectrum one has approximately for large k

J
. 8n222k§(n+%)
G, (2,0) ~ - £ ‘
J ') Uw212k§
=2 ke, (3.7)

Thus, for large values of kﬁ for both the transverse and
irngitudinal cases G10(2,n)‘approaches the same constant

value of =2(n+l)/R. "Examination of Pigs. 20 and 21 on

pp. 90 and 91 of Ref. 1 shows that when n = %, this constant
value is approximately reached for values of kal/L. Let

U3 now suppose that k s approximately equal t~ 1/L or
larcer., In this case, yhnr, in the region kj’ X where the

summation in Eq. 72.14) would he used, we see from Eqs. (3.6)
and (3.7) that Eq. (2. 1“) would become, approximately,

(2n+l) ~ Sy -0
iy -4 2% w0

12



or, dividing both sides of Eq. (3.8) by N,

| N
- L?%tl.). “N ] Z F‘TT] * ’ (3.8)
J= J‘l

i=]1

which is satisiied for all values of 2 and n. Hence, when the
smallest useable value kz' of kJ is in the region where

. S .6) or §3 .7) is satisfied, the 1lkelihood equation
%3.1 ? is satisfied for all values of 2 and n and therefore 1is
useless for the purpose of determining these values. The
functions GJ (2,n) given by Eqs. (2.17) and (2.19) do not

approach constant values with respect to kJ as kJ gets arbi-

trarily large; hence, the likellhood equation given by Eq.
(2.15) or (3.4) does not suffer from the above described
limitation of Eq. (2.14).

To compare the present least-squares methodology with
that in Sec. 4 of Ref. 1, we see that the Bullen autocorre-
lation functions ¢B(£;Q,n) in Eq. (3.3) have one more parame-

ter (n) than the von Xarman autocorrelaticn functions ¢K(§;L)

in Fq. (4.3) of Ref. 1. Furthermore, in the present least-
squares procedure, there is one more equation of constraint,
Eq. {(3.4), than in th~ lezst-squares procedure described in
Sec. 4 of Ref. 1. Hence, minimization of the quantity "E"
given by u‘q (3.3) can h~2 ra2garded as determining the single
parameter Jf of the "fast" component wf(t) in Eq. (1.1).

Similarly, in Sec. 4 of Ref. 1, minimization of "E" given
Wy Eq. (b. :) of that refecrence also detarmined the single
parameter of of the "fast" component wf(t). The reader is

referred to Sec. 4 of Ref. 1 for a more thorough discussion
of the least-squares procedure.
Derivation of Algehraic Equations for
Autocorrelation F:nction Parameters

The equation of constraint (3.4) contains two unknown
parameters £ and n. Thus, one can regard that equation as

13
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determining n as a function o7 & — i.e., n=n(R). Hence,
assuming that this function n=n(%) has been determined from
Eq. (3.4), the second equation of constraint (3.5) can be
expressed as

N .
o2 o 1 < 55 (3.9)
A CYERN AT )_., FIE A0 T
=1

where the subscript f and the overbar have been left off o f ir

Eq. (3.9), and where the integral scale L has been expressed
as

L =L'[n(0)]2 , (3.10)

where from Eq. (2.4), one has

/7 Tn(2)+3]

where in Egs. (3.10) and (3.11) n has been expressed as a
function of £ as determined by Eq. (3 k). Hence, Egs.

(3.4) and (3.9) together determine o as a function of ¢ —
i.e., 02 = 0%(%). Assuming that o? is a monotonic function
of %, Eqs. (3.4) and (3.9) also determine £ as a function of

L= 2(c?). (3.12)

Thus, assuming that Eq. (3.4) has determined n as a function
of 2, the function ¢B(£;2,n) has been reduced to dependence

on only a single paraneter % which sbhall bc denoted by
0p(£32) 8 oplesn,n(0)] . (3.13)

Assuming further that % has been determined as a function of
o? a% through the additional relationship (3.5), Eq. (3.3)

then can be expressed as




P

f E m 2

E =f R(E)-0%61[E52(0)] - > aett ag, (3.14)
i=0

0

where we have used the notation of Eq. (3.14) and the abbre-

viacion o? = 0% .

The problem, now, is to determine the values of ¢? and
3y, i=0,1,---,m that minimize the value of E given by

Eq. (3.14). This determination is carried out by finding
velue of o? and a,, 1=0,1,---,m that satisfy

oE  _

9 =0

] , §=0,1,--+,m il (3.15)
g

Differentiating Eq. (3.14) with respect to aJ, J=0,1,++-,m

and with respect to o2 and setting the resulting equations
equal to zero yields the following set of m+2 nonlinear
algebraic equations for a , a , +--, a_ and g?:

°H mo by SH
"
ot [ eleglesecatrfass D oy [e7ac = [elReeas,
) i=0 0

e
]

0,1,°++,m (3.16)

and

€, +r R 2

s cbg[&;uwz]!qsg[&;z(o?>]dé;

0 ! Cl d02 i
13 + 2
m H 36 [£;0(a2)]
+ Sa, [ {o? B2 4 elre;n(o2)1) etac
!;‘O 1 0 at d02 B
[3 teo. 2
H donlE32(c?)] .
= [ o =g S olleLeN R, (3.17)
T do?

o

15
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where the function 2(o?) is determined by Eqs. (3.4) and
(3.9) as described below. '

Unfortunately, the derivatives of ¢;[€;£(02)] with

respect to £ turn out to be impractical to evaluate due, in
part, to the dependence of the parameter n on £ that occurs
in the expression for L'[n(2)] given by Eq. (3.11). Hence,
the second method described below is recommended instead.

Second Method

Let us examlne the large k behavior of the Bullen
transverse and longitudinal spectra, Eqs. (2.1) and (2.2).
For large k, these spectra are asymptotically equal to

8r22%2k2(n+l)

- 2
pp(K) ~ 0 L(un212k2)"+3/2 (3.18)
and ‘
. ) ) 2
¢pp, (k) ~ o°L Cntiepey 2 (3.19)

The logarithms of Eqs. (3.18) and (3.19) can be readily
expressed as

log¢BT(k)~1og[2(n+1)02L]—(2n+1)log(2ﬂ2)-(2n+l)log1(

(3.20)
and

1og¢BL(k)~10g(2ozL)-(2n+1)1og(2nz)-(2n+1)1og k. (3.21)
Hence, when considered as a function of k, Egqs. (3.20) and

(3.21) are both of the form

log¢B(k) ~ C - (2n+l)log k, (3.22)

16
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where C 1s a constant. Thus, when plotted on log-log co-
ordinates, both the Bullen transverse and longitudinal
spectral forms are asymptctically linear for large k with

a slope equal to -(2n+l). In particular, for the von Karman
transverse and longitudinal spectra, we have n = 1/3 which
yields the we.l known asymptotic slope of -5/3. The form of
Eq. (3.22) suggests the following well-conditioned proce-~
dure for determining the parancter n:

1. Tabulate and plot the logarithm of the empirically
determined turbulence velocity spectrum as a function
of log k.

2. Identify the region of approximate linearity of the
data in the large k regime.

3. Form a least squares fit to the data usirg the
functional form given by the right-hand side< of
Eq.»(3.22) and solve for C and n.

4, Retain the value of n thus obtained.

Once n is evaluated as in steps 1 to U4 above, the Bullen
spectral forms given by Egs. (2.1) and (2.2) can be regarded
as being dependent on only two additional parameters ¢° and
L [after substitution of Eq. (2.3) into Egs. (2.1) and (2.2)].
Thus, after evaluation of n as above and substitution of
Eq. (2.3) into Eqs. (2.1) and (2.2), the procedure for estimat-
ing o% and L given on pp. 92 to 110 of Ref. 1 applies directly

to the Bullen spectral forms @BT(k) and ¢BL(k) also. The

only exception is that the von Karman transverse and longitudi-
nal autocorrelation functions and their derivatives given by
Egqs. (4.48) to (4.52) of Ref. 1 must be replaced by the cor-
responding Bullen forms which are [5]: for the Bullen trans-
verse spectra (verticai and lateral components):

-\n T -

$5(8) =ﬂ2ﬂ (32—5) K (BE) -8 Kn_l(s‘é)] (3.23)
- nifl 1 B

w® = iy () eExn(ei)-2<n+1)Kn_l<eE)l , (3.24)

for the Bullen longitudinal spectra:

17
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. ¢
3@ = iy (&) &0 a (3.25)
+\Nn
BE = - 25 (8) 6D, (3.26)

where, for both the transverse and longitudinal cases,

L /T I’(n‘l%-)
B = .i- = —ﬂr . . (3.27)

Equations (2.23) through (3.27) reduce to Egs. (4.48) through
(4.52) of Ref. 1 when n is set equal to 1/3 which is the
value of n for the von Karman case.
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