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SUMMARY

In NASA Contractor Report 3463 [Ref. 1], maximum like-
lihood and constrained least-squares nethods were developed
for estimating the parameters of the von Karman transverse
and longitudinal spectra and autocorrelation functions.
However, during the application of these methods to re-
corded turbulence measurements [NASA Contractor Report
3464, Ref. 2] it was discovered that a small percentage of
such records are better modeled by the Bullen spectra or
autocorrelation functions. The present report extends the
above mentioned maximum likelihood and constrained least-
squares methods to Bullen transverse and longitudinal
spectra and autocorrelation functions.



A
INTRODUCTION

In Ref. 1, a general methodology was developed for
characterizing atmospheric turbulence velocity records,
estimating the parameters of the characterizations from
such records, and computing aircraft response statistics
from the characterizations. The characterization methods
were implemented in Ref. 2 using several turbulence
velocity records measured during the NASA MAT (Measurement
of Atmospheric Turbulence) program. The turbulence mode
used in Refs. 1 and 2 assumes that a turbulence velocity
record w(t) can be expressed as the sum of "slow" and
"fast" components ws (t) and wf (t) — i.e.

w(t) = ws (t) + wf(t)

= w s (t) + a f (t)z(t),	 (1.1)

where

wf (t) = Q f (t)z(t)	 (1.2)

with

af (t) >. 0	 (1.3)

and

E{z(t)} = 0
3%
	 E{z2(t)} = 1,	 (1.4)

where E{ ••• } denotes the ;,athematical expectation or en-
semble average value of the quantity within the braces.
The three random processes {w s (t)} , [o f (t)), and {z(t)}

are assumed to be mutually statistically independent. Fur-
thermore, {z(t)} is assumed to be an ergodic Gaussian pro-
cess. The process Jo f (t)}is not assumed to be Gaussian.

Realizations of {o f ( W are assumed to vary slowly in com-

parison with realizations of {z(t)}, and realizations of
{ws (t)} are assumed to vary slowly in comparison with
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realizations of {wf (t)). Hence, ws (t) has the appearance of

a slowly varying additive component to the process wf (t), and

wf(t) has the appearance of ordinary turbulence with a tem-

porally varying envelope that is governed by the behavior of
af(t). A more complete description of the above model can

be found in Ref. 1.

It has been shown in Ref. 3 that whenever the scale of
fluctuations of a f (t) is of the order of ten or more times

the integral scale of z(t), the velocity spectrum of wf(t)

will, for practical purposes, coincide with the velocity
spectrum of z(t) except for a constant multiplicative factor.
Thus, if z(t) is regarded as ordinary turbulence with a
von Karman transverse or longitudinal spectrum, then to
within an excellen* approximation w f (t) will possess this

same spectral form. Hence, in Refs. 1 and 2, it has teen
assumed that the velocity spectral densities or autocorrela-
tion functions of w(t) are the superposition of the spectral
densities or autocorrelation functions of w s (t) and

of z(t), where of denotes a ttmporal average or expectation.
This assumption can be justified from the assumed mutual
statistical independence of {w s (t)}, { a i ( 'U',}, and {z!t)}

and the slowly varying behavior of {a f (t)} relative to {z(t)}.

Since the spectrum of w s (t), by assumption, contains

predominantly low frequency or long wavenumber components,
the asymptotic slope of the spectrum of w(t) should be gov-
erned by the process z(t) which has been assumed to be de-
scribed by the von Karman spectral form. The von Karman
transverse and longitudinal spectral forms both possess the
asymptotic -5/3 slope when plotted on log-log coordinates
as required bj classical turbulence theory [4]. However,
when the methods developed in Ref. 1 were applied to 7 real
turbulence records in Ref. 2, it was found that the asymp-
totic slopes of the spectra of 2 out of the 7 records were
distinctly different from -5/3. These are the spectra of
the lateral turbulence records from Flight 32 Run 4 and
Flight 30 Run 8 of the MAT program shown in Figs. 5 and 11
respectively in Ref. 2. Thus, an extension of the methods
developed in Ref. 1 to accommodate asymptotic slopes dif-
ferent from -5/3 would seem to be useful.

3
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Two methods were developed in Ref. 1 for estimating
"spectrum" properties of velocity records. The first method
is applicable to cases where the slow component w s (t) in

Eq. (1.1) is negligible in comparison with w f(t). This

first method utilizes the maximum likelihood method to
estimate the two parameters of the von Karman transverse or
longitudinal spectral forms. The second method is appli-
cable to cases where ws (t) in Eq. (1.1) is not negligible.

This second method :tilizes a constrained least-squares inte-
gral fit of an autocorrelation function model to the auto-
correlation function of the measured turbulence record.
Both of these methods are extended in this report to models
where the asymptotic slope of the spectrum of the component
z(t) is not constrained to be the classical value of -5/3.

4	 ^.
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MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS

IN BULLEN TURBULENCE VELOCITY SPECTRA

In Sec. 3 cf Ref. 1, the maximum likelihood method was
•	 used to develop equations for estimating the integral scale

and intensity of the von Karman transverse and longitudinal
spectral forms. In this section, this method is extended to
the Bullen spectral forms given on pp. 200-202 of Ref. 5.
The Bullen spectral forms are determined.by three parameters
rather than two as in the von Karman case. The third parame-
ter controls the asymptotic slope of the spectra when plotted
on log-log coordinates. When this asymptotic slope is set
equal to -5/3, the Bullen spectral forms reduce to the
von Karman forms.

The Bullen transverse and longitudinal two -sided wave-
number spectra are [p. 200 of Ref. 51

(k) = 02  1+81TIZ2k2(n+l)	 (2.1)BT	 (1+41T20k2)n+3 2

i

where the above forms are one-half of the values given in
Ref. 5 because 0 BT (k) and (DbL (k) are two-sided spectra rather

than one-sided as in Ref. 5, and where the parameter a in
Ref. 5 has been replaced by R to avoid later notational con-
fusion. L is the scale of the turbulence, a 2 is the mean-
square value, and A, is related to n and L by

A. _	 r(n)	 L ,	 (2.3)
,r r(n+2)

where t(n).is the gamma funct'.on. When n = 1/3, Eqs. (2.1)
and (2.2) reduce to the von Karman forms given by Eqs. (3.18)
and (3.19) of Ref. 1.

5
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In the maximum likelihood procedure to be developed
below, we shall derive likelihood equations for the three
parameters Q 2 L, 1. and n in Eqs. (2.1) and (2.2). When
solutions are arrived at for these three parameters, one
can.readily compute from n and R

r r(n+1)
L	 2	 1 ,	 (2.11)

r(n)

according to Eq. (2.3), and then 02 = o 2 L/L, which yield
the scale L and mean-square value 02.

Let S , j = 1,2, ••• ,N denote the periodogram (unsmoothed
spectrum) samples described on pp. 74-80 of Ref. 1. The
mathematical expectation of a typical spectrum sample S^j
can be expressed as

E{Si } _. ffj = Q 2 LFj (Z,n) ,	 J=1,2,...N	 (2.5)

where for the Bullen transverse spectrum one has from Eq. (2.1)

1 +87 2 k 2 k^ (n+l )

F^(R,n) _ (1+0r2A2k2)n+3/2
J

(2.6)

and for the Bullen longitudinal spectrum one has from Eq. (2.2)

F (Z,n) = --	 2	 (2.7)
3	 (1+4Tr' 9. 2 k2 )n+1/2

where k  is the wavenumber at the location of the ,jth spectrum

sample SJ.

Turning now to derivation of the likelihood equations
for estimating the spectrum parameters, when Eq. (2.5) is
substituted into Eq. (3.15) of Ref. 1, one has for the loga-
of the ,joint probability density function of the N spectrum
samples Si , J=1,2, • • •,N

6
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Rn[p(S I' S 2 ,-- * .SN A

- Nin(a2L) +knFl(k , n)+LnF2 ( k,n)+...+LnFN(k,n)

+	 1	
Si	

+	 S 2	 + ... +	 SN	 (2.8)QLL R 1 R,n	 F2 R,n	 FN R,n
1

where Eq. (3.12) of Ref. 1 also has been used. Equation (2.8)
is to be maximized with respect to the three parameters
a 2 L, k, and n. Thus, differentiating Eq. (2.8) with respect

to 0 2 L, i, and n and setting the resulting three expressions
equal to zero yields after minor manipulations:

N S
a 2 L = 1

N ' F^ k,n
(2.9)

N	 S
Fat knF^(k,n)	 F k n - o 2 L = 0	 (2.10)

J=1

and

N	
S

a knF (k,n)	 J	 - a 2 L = 0	 (2.11)
^n	 j	 F^ k,n

J =1	 -	 -

Equations (2.9) through (2.11) are three nonlinear simul-
taneous algebraic equations for the spectrum parameters
a 2 L, k, and n in terms of the periodgram samples S 1 , S2,•••,

s  and the functions F i (k,n) given by Eqs. (2.6) and (2.7)

for the Bullen transverse and longitudinal spectrum forms
'	 respectively. However, Eq. (2.9) can be substituted into

Eqs. (2.10) and (2.11) so that only two nonlinear equations
need to be solved simultaneously. Let us first define

G
jk

(k,n) Q 
aL 

kn F
i

(k,n)
	

(2.12)

7
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(2.13)

which apply to either the transverse ^r longitudinal Bullen
spectra l forms as appropriate. Then substituting Eq. (2.9)
into Eqs. (2.10) and (2.11) and using the definitions 2.12)
and (2.13), we obtain instead of Eqs. (2.10) and (2.1+),

N G (t,n)	
S	

- l	
Si	

= 0	 (2.14)

	

j R	 F^ ,n	 N
^=1	 1=1

N	 S	 N S

G(t,n)	 1	 i	 = 0	 (2.15)3n
F^ Q,;Z	 N 7-4fi k,n

A

Equations (2.14) and (2.15) are to be solved simulta-
neously for the two spectrum parameters I and n. These
solutions Z and n are then to be substituted into.Eq..(2.9)
to yield the parameter 02 L. Equation (2.4) is then to be
used to evaluate the scale L, and a 2 then can be evaluated

by 0 2 = 0 2 L/L. Thus, Egs.(2.9), (2.14), and (2.15) are the
solution to the problem of maximum likelihood estimation of
the Bullen spectrum parameters 02 L, k, and n which yield
a 2 , .L, and n.

The solution to Eqs. (2. 1.4) and (2.15) can be readily
parried out by numerical means a'ong the lines illustrated
in Appendix F of Ref. 1. To carry out these solutions,
the functions G jX (R,n) and Gjn (Q,n) are required for the

Bu:.len transverse and longitudinal spectra. By differentiat-
ing the natural logarithms of Eqs. (2.6) and (2.7), one
can readily show for the ButZen transverse spectrum that

81r 2 t'k 2 (n+2 )	 1-8Tr'E2k2 (n+l)

	

G^jR (R,n) =	 Q 1 +47r2R?2 (2n+3)'+32W414k4(n+l)

(2.16)

and

8
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Gjn(1,n)

and for the

GJR(k,n)

and

Gin(t,n)
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CONSTRAINED LEAST-SQUARES ESTIMATION OF TURBULENCE

AUTOCORRELATIO;; FUNCTION PARAMETERS

First Method

In this section, the method developed in Sec. 4 of
Ref. 1 is extended to the case where the spectrum and auto-
correlation functions of component w f (t) in Eq. (1.1) are

better modeled by the Bullen forms rather than the von Karman
forms used in the cited reference. The parameter estimation
method developed below is applicable to situations where the
component ws (t) in Eq. (1.1) is not negligible.

The autocorrelation function model used here is

m

of 0 (C;k,n) + 7 ai^i'	
0<^,<EH	 (3.1)

i=o

which replaces Eq. (4.1) of Ref. 1. The

mean-Squa:E value of the "fast" component

OB(^;R,n) is either the Pullen transverse

autocorrelation function, as appropriate,
and	 m

^w (C) -	 ai^i^	 0^4^:CH
s	 i= 0

quantity , is the
1

w f (t) in Eq. (1.1),

or longitudinal

with OB (0;Z,n) - 1,

(3.2)

is a polynomial model of the autocorrelation function of the
"slow" component w s (t) in Eq. (1.1) assumed valid within the

range 0<E<^, as in See. 4 of Ref. 1.

The quantities OTI , Z, n, and ai , i-0,1," ', m are to be

evaluated from the autocor:^clation function R(&', of a mea-
sured turbulence record w(t) by minimizing; the quantity

F.	 m	 2

E	 H^R(^)- a10,(&;t,n) - ^ai i^ dE,	 (3.3)f 
C	 i=C

10



where the minimization procedure is constrained by the two
additional relations:

S	 177  S i
Gjn(k'n) F^ i,n -
	 Fi Q,n	 0	

(3.4)

J	 i^

and

>\t	
Ŝ _0 2 L &N 47

6=4 F^IC n^

J-1	 ')
(3.5)

where perlodogram samples S^ and S i in the wavenumber range

ki 3k,, and ki >,k t , only are to be included in the summations

in Eqs. (3.4) and (3.5) as explained below.

Ordinarily, the wavenumber spectrum content of the "slow"
component w (t) in Eq. (1.1) is concentrated in the low
wavenumber legion. Thus, we assume there exists a wavenumber
k i , such that for wavenumbers k;k, „ the -ictrum content of

a turbulence record w(t) is dominated for all k>,k r , by con-

tributions from the "fast" component w f (t) only. It is

advantageous to choose the smallest value of k R , that satisfies

this condition. The two constraint equations (3.4) and (3.5)
are to be evaluated using neriodogram samples S i and Si taken

only in the region k>,k o , where the wavenumber content of the

process w f (t) in Eq. (.l.l) is everywhere dominant. By

hypothesis; then, within this region k,k, „ the wavenumber

spectrum is well represented by the appropriate (transverse
or longitudinal) Bullen spectral form. Equations (3.4) and
(3.5) are two of the three likelihood equations available for
evaluating the three Bullen spectrum parameters.

To examine why the third likelihood equation (2.14) is
often not useful in the region k,k, „ we examine the behavior

of G'1 (k,n) for large values of k  for both the transverse

11
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k 

+^.
£ (3.7)
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CO

and longitudinal cases. For large values of kone can
readily see from Eq. (2.16) that for the case 0 the Bullen
transverse spectrum one has

8Tr't'k' (n+2) - 87 2 £ 2 ki (n+1)

Gj£(£,n)	
£	 32n " £ "kj(n+l)

_ 2( k

1)	 k.-co
	

(3.6)

and, similarly, from Eq. (2.18) for the case of the Bullen
.ongitudinaZ spectrum one has approximately for large kJ

G (£,n) - -
i 8n2£2k.j (n+^)

j£	 £	 4720k2
.

a

Thus, for large values of k. for both the transverse and
:inngitudinal cases G `jo (ZO ) O approachos the same constant

value of -2(n+l)/£. Examination of Figs. 20 and 21 on

pp. 90 and 91 of Ref. 1 shows that when n = 3 , this constant

value is approximately reached for values of k i >1/L. Let

u: now suppose that k £ , Is approximately equal t ,, 1/L or

larger. In this case, then, in the region k^>k £ , where the

Summation in Eq. 2.1 11) would be used, we see from Eqs. (3.6)
and (3.7) that Fq. (2.1 11 ) would become, approximately,

(2n+1) 	" 1	 S,i 	 l N1	 Si a 0

X-1
-	 k	 F j 4.,n	 N	 Fi £,n

12
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'	 or, dividing both sides of Eq. (3.8) by N,

N	

S	
N	 N	

S
(2n+1)	 1	 1	 1	 i	 : p, (3.8)

	

F^ , n ^ N /,a,^ N	 F^^
J
ul	 _=1	 i=1

which is satisfied for all values of A and n. Hence, when the
smallest useable value k t , of k  is in the region where

3 6) or ( 3.7) is satisfied, the likelihood equation
is satisfied for all values of R and n and therefore is

useless for the purpose of determining these values. The
functions GJn (t,n) given by Eqs. (2.17) and (2.19) do not

approach constan t, values with respect to k  as kJ gets arbi-

trarily large; hence, the likelihood equation given by Eq.
(2.15) or (3.4) does not stiffer from the above described
limitation of Eq. P.111).

To compare the pre ent least-squares methodology with
that in Sec. 4 of Ref. l,-we see that the Bullen autocorre-
lation functions 0B (&;t,n) in Eq. (3.3) have one more.parame-

ter (n) than the von Karman autocorrelaticn functions 0K(4;L)

in Eq. (4.3) of Ref. 1. Furthermore, in the present least-
squares procedure, there is one more equation of constraint,
Eq. (3.4), than in `}c least-squares procedure described in
Sec. 4 of Ref. 1. H^nce, minimization of the quantity "E"
given by Eq. ( 3: 3) can bn r•,parded as determining the single
parameter 7f of the "fa:-,t" comonnent wf (t) in Eq. (1.1).
Similarly, in Scc. 4 of Ref. 1, minimization of "E" given
'?y Eq. (4.5) of that reference also determined the single
parameter 02 ofof the "fast" component w f 

W. The reader is

referred to Sec. 4 of Ref. 1 for a more thorough discussion
of the least-squares procedure.

Derivation of Algebraic Equations for

Autocorrelation F_nction Parameters

The equation of constraint (3.4) contains two unknown
parameters R and n. Thus, one can regard that equation as

13
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determining n as a function o."' Q — i.e., n-n(t). Hence,
assuming that this function n=n(t) has been determined from
Eq. (3.4), the second equation of constraint (3.5) can be
expressed as

N
Q2 =	

1 
	

,	 s.	 ,	
(3.9)

L' n(Q)j QN ^^ F^ Q,n Q

j=1

where the subscript f and the overbar have been left off 
f 

ir.
Eq. (3.9), and where the integral scale L has been expressed
as

L = L'[n(Q)]£ ,	 (3.10)

where from Eq. (2.4), one has

VT F[n(2)11]
L'f_n(C] =	 rL- o ^ 2 	(3.11)

where in Eqs. (3.10) and (3.11) n has been expressed as a
function of i as determined by Eq. (3.4). Hence, Eqs.
(3. 4 ) and (3.9) together determine 02 as a function of 2 —
i.e., Q2 = 0 2 (Q). Assuming that 62 is a monotonic function
of Z. Eqs. (3.^:) and (3.9) also determine k as a function of
Q2

Q = ti(Q 2 ).	 (3.12)

Thus, assuming that Eq. (3.4) has determined n as a function
of Q, the function A B (C;k,n) has been reduced to dependence

on only a single parameter Z which shall be denoted by

^
B
t
 (&;Q) A ^ [ ^ ;Q,n(R)] .	 (3.13)

Assuming further that R has been determined as a function of

Q 2 = of through the additional relationship (3.5), Eq. (3.3)

then can be expressed as

Of

14



t

M
	 2

E	 R(	 B;R(a2)^ - / a :,E	 d^,	 (3.141

	

°	 i=0

where we have used the notation of Eq. (3.14) and the abbre-

viation a 2 = of .

The problem, now, is to determine the values of 0 2 and
ai , i=0,1,•••,m that minimize the value of E given by

Eq. (3.14). This determination is carried out by finding
vs l:.e of a 2 and ai i=0,i, • • • ,m that satisfy

8a = 0	
J = 0,1,...^m	 M = 0	 (3.15)

a

Differentiating; Eq. (3.14) with respect to aP J=0,1,••-,m

and with respect to 62 and setting the resulting equations
equal to zero yields the following set of m+2 nonlinear
algebraic equations for a o , a l , •••, am and a2:

	

CH	
[^)]	

mEH 	^H
CF J ^`)0B;QdE+ 	 a i r^ i+j

d& = r C`)R(^)d^,

	

 
i=0	 0

j = 0,1,...,m	 (3.16)

and

i

	

o2 ^R^ Q2 a s:C; p (cr2)jdk 
+ 6 	 &;k(a) 2 ] 0B[E ;R(a' )3dC

o a	 dQ2

 

EH	 2 2ch^[^; Q,((72 )
	 d 	 t	 2	 i+

 ?-;=-o
ai l

	

	 o -	 -fie	 + m ^^;^( a )] ^ d&
 o	 d62	 B

cs —	
a9	 0+( ^;L (0 )] R(&)dE ,	 (3.17)

o	 d02

15
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where the function x.(0 2 ) is determined by Eqs. (3.4) and0'^
(3.9) as described below. 	 ^A,,

Unfortunately, the derivati ves of ^B[&;x.(02)] with	
'b

respect to R turn out to be impractical to evaluate due, in
part, to the dependence of the parameter n on t that occurs 	 •
In the expression for L'[n(t)] given by Eq. (3.11). Hence,
the second method described below is recommended instead.

Second Method

Let us examine the large k behavior of the Bullen
transverse and longitudinal spectra, Eqs. (2.1) and (2.2).
For large k, these spectra are asymptotically equal to

0BT(k) ~ Q2L87222k?Zn+3/2
	 (3.18)

( 4 Tr .t x

and

4t
BL (k) _ 

0 2 L

	

	 ( 3 .19)
(47r 2 k 2 zk ) n+1/2

The logarithms of Eqs. (3.18) and (3.19) can be readily
expressed as

log^p BT (k)-log[2(n+l)a 2 L]-(2n+1)log(27t)-(2n+1)log k

(3.20)
acid

logq)sL(k)-log(202L)-(2n+1)log(27t)-(2n+1)log k.	 (j.21)

Hence, when considered as a function of k, Eqs. (3.20) and
(3.21) are both of the form 	 .

log^pB(k) - C - (2n+1)log k, 	 (3.22)

16
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where C is a constant. Thus, when plotted on log-log co-
ordinates, both the Bullen transverse and longitudinal
spectral forms are asymptctically linear for large k with

i

	

	 a slope equal to -(2n+1). In particular, for the von Karman
transverse and longitudinal spectra, we have n - 1/3 which
yields the well known asymptotic slope of -5/3. The form of
Eq. (3.22) suggests the following well-conditioned proce-
dure for determining the param.-ter n:

1. Tabulate and plot the logarithm of the empirically
determined turbulence velocity spectrum as a function
of log k.

2. Identify the region of approximate linearity of the
data in the large k regime.

3. Form a least squares fit to the data usirg the
functional form given by the right-hand Eid,• of
Eq. (3.22) and solve for C and n.

4. Retain the value of n thus obtained.

Once n is evaluated as in steps 1 to 4 above, the Bullen
spectral forms given by Eqs. (2.1) and (2.2) can be refarded
as being dependent on only two additional parameters a and
L [after substitution of Eq. (2.3) into Eqs. (2' ' 1) and (2.2)3.
Thus, after evaluation of n as above and substitution of
Eq. (2.3) into Eqs. (2.1) and (2.2), the procedure for estimat-
ing 02f 	 L given on pp. 92 to 110 of Ref. 1 applies directly

to the Bullen spectral forms 0BT(k) and 0BL(k) also. The

only exception is that the von Karman transverse and longitudi-
nal autocorrelation functions and their derivatives given by
Eqs. ;4.48) to (4.52) of Ref. 1 must be replaced by the cor-
responding Bullen forms which are [53: for the Bullen trans-
verse spectra (vertical and lateral components):

n
^B (^) = r n 	 Kn B^() S^ Kn-1(B^)	 (3.23)

n
TB(C)	 T n r
	 1 BTKn (BT)- 2(n+l)Kn-1 ( BT) 	,	 (3.24)

for the Bullen longitudinal spectra:

17



_ n

^B() a r n (2, Kn (S^)	 (3.25)

jB() - 7nj ( 2) n 
Kn-1(S),	 (3.26)

where, for both the transverse and longitudinal cases,

L	 '^ I'(n+2)
8 = k =	 r n	 (3.27)

Equations ('.23) through (3.27) reduce to Eqs. (4.48) through
(4.52) of Ref. 1 when n is set equal to 1/3 which is the
value of n for the von Karman case.

I.
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