Metadata, citation and similar papers at core.ac.u

Provided by NASA Technical Reports Server

NASA 2126
Technical R
Paper |
2126

March 1983

Determination of Airpla
Model Structure From
Flight Data Using Splines
and Stepwise Regression

T

N @YX AMVHEIT HOAL

Vladislav Klein and
James G. Batterson

A ] To
LOAN COPYL RETURN
AFWL TECHNICAL LlBRAR_Y
~ KIRTLAND AFB, N. Mé”



https://core.ac.uk/display/42853237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA
Technical
Paper
2126

1983

NNASN

National Aeronautics
and Space Administration

Scientific and Technical
Iinformation Branch

TECH LIBRARY KAFB, NM

UM

Determination of Airplane
Model Structure From

Flight Data Using Splines
and Stepwise Regression

Vladislav Klein

The George Washington University

Joint Institute for Advancement of Flight Sciences
Langley Research Center

Hampton, Virginia

James G. Batterson

Langley Research Center
Hampton, Virginia



SUMMARY

A procedure for the determination of airplane model structure from flight data
is presented. The model is based on a polynomial spline representation of the aero-
dynamic coefficients, and the procedure is implemented by use of a stepwise regres-
sion., First, a form of the aerodynamic force and moment coefficients amenable to
the utilization of splines is developed, WNext, expressions for splines in one and
two variables are introduced. Then the steps in the determination of an aerodynamic
model structure and the estimation of parameters are discussed briefly., The focus
of the paper is on the application to flight data of the technigues developed. Here,
the parameters estimated from large-amplitude maneuvers are compared with a baseline
set of parameter estimates from standard small-amplitude maneuvers and steady-
state measurements. The model is further validated by comparing the predicted air-
plane motion with actual measured time histories. It is thus shown that the proce-
dure represents a further step toward the determination of a global model of an
airplane from flight data.

INTRODUCTION

A procedure is outlined in reference 1 for the determination of airplane model
structure from flight data, including nonlinear aerodynamic effects. This procedure
focuses on finding the form of and parameters in aerodynamic model equations using
a modified stepwise regression and several decision criteria. The aerodynamic func-
tions are approximated by polynomials in airplane response and input variables. The
procedure described was successfully applied to small-amplitude maneuvers,., When
applied to large-amplitude longitudinal maneuvers, the data were first partitioned
into subsets as a function of angle of attack. Then, each subset was analyzed sepa-
rately. This approach, however, has only limited application. First, each data
subset must have a sufficient number of data points for successful model determina-
tion. Second, for longitudinal maneuvers, the angle-of-attack intervals for individ-
ual subsets must not be so small that the functions vary so little that accurate
parameter estimation would not be possible,

In large-amplitude and high-angle-of-attack maneuvers the bhehavior of aerody-
namic functions in one region of angle of attack may be quite different from and
totally unrelated to their behavior in another region. In these cases, the polyno-
mial approximation for some aerodynamic nonlinearities would be inadequate., Polyno-
mials are determined everywhere by their values in any interval, no matter how small.
They can, therefore, follow a curve in one interval but depart from a curve or even
oscillate widely elsewhere. Even if a higher-order polynomial approximates the aero-
dynamic function sufficiently, the increase in the number of terms can lead to large
covariances of their estimates.

To avoid the disadvantages of the polynomial representation, spline functions
can be used. Splines avoid some difficulties of polynomials because they are defined
on preselected intervals and because the low-order terms may approximate various
nonlinearities quite well, The application of splines to airplane model structure
determination was first suggested in reference 2, Their use in real flight data
analysis was then investigated, and the results are presented in references 3 to 6.



The purpose of this investigation was to examine the use of polynomial splines
in one and two variables for postulating the aerodynamic model equations and for
determining a model structure by using a stepwise regression. This report is
an extension of the research reported in references 1, 5, and 6. The formulation of
aerodynamic model equations and the definition of polynomial splines are discussed,
followed by a discussion of model structure determination. The entire procedure is
tested on several examples,

SYMBOLS AND ABBREVIATIONS

AO,A1 coefficients of polynomial P(xz)

BO coefficient of polynomial Q(x1)

b wing span, m

Ca general aerodynamic force and moment coefficient

Ch coefficient of xh in spline function of x

Chs coefficient of x?x; in spline function of Xq0X,

C1 rolling-moment coefficient, MX/QSb

Cm pitching-moment coefficient, MY/QSE

Cn yawing-moment coefficient, Mz/qsb

CX longtiudinal-force coefficient, Fx/qs

CY lateral-force coefficient, FY/qs

CZ vertical-force coefficient, Fz/qs

c wing mean aerodynamic chord, m

Di coefficient of (x1 - x1i)T in spline function of X,

Dij coefficient of (x1 - x1i):‘_1(x2 - ij)i in spline function of X4 1%,
Dai’in'Dée,i co:zzéziizszlin spline function of Cz(a), Czq(a), and Czée(a),
F F-statistic

F_,F_,F forces along longitudinal, lateral, and vertical body axes, respectively, N

Z
g number of unknown parameters
h lag number
4 number of spline knots over range of %,
L number of spline knots over range of X5



M maximum lag number

MX’MY'MZ rolling, pitching, and yawing moments, respectively, N-m
m degree of polynomial spline in x,
N number of data points
n degree of polynomial spline in X,
P(xz) polynomial in X, of degree n
P roll rate, rad/sec or deg/sec
Q(x1) polynomial in x, of degree m
q pitch rate, rad/sec or deg/sec
- 1.2 . .
q ='EpV , kinetic pressure, Pa

2
R squared multiple correlation coefficient
r vaw rate, rad/sec or deg/sec
s i 2

wing area, m
Sm(x) polynomial spline in x of degree m
Smn(x1'x2) polynomial spline in Xq41X, of degree m in X, and degree n
in x5

2 . .
s estimated variance
t time, sec
A\ airspeed, m/sec
W(h) autocorrelation function at lag h
X general independent variable in one-variable spline approximation
x(i) independent variable at time t,;

m 0 if =x, < x_,

(x. - x.i)+ = J n I

S (x, - x, )" if x, > x..

3 J1 J Ji

y general dependent variable
y(i) dependent variable at time ty
« angle of attack, rad or deg
a midpoint of the g~interval of subset of partitioned data, rad or deg



B angle of sideslip, rad or deg

6a aileron deflection, rad or deg

6e elevator deflection, rad or deg

6r rudder deflection, rad or deg

e(i) equation error at time ti

ej coefficient of general independent variable xj
v(i) residual value at time ¢t

p air density, kg/m3

8 standard error of aerodynamic coefficient
Superscripts:

h,s degree of a polynomial

. derivative with respect to time

~ estimate

Subscripts:

crit critical

i or j value at which spline knots occur

max maximum value

jo) partial

Abbreviations:

ML maximum likelihood

MSR modified stepwise regression

Aerodynamic derivatives referenced to a system of body axes with the origin at
the airplane center of gravity:

oC GCI 6C1
€1 3 pb €4 3 rb € = oli)
2v t 2V B
6C1 601 6Cm
€1 T35 “ig, 38 Cn =T =
Sa a r r 4 4 49c
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AERODYNAMIC MODEL EQUATIONS

For the determination of model structure and estimation of aerodynamic param-
eters, the analytical form of the aerodynamic model equations must be postulated.
The expressions for coefficients of aerodynamic forces and moments used in this
report are based on the following principal assumptions:

1. The instantaneous aerodynamic forces and moments depend only on the instanta-
neous values of response and input variables. That is, no unsteady aerody-
namic effects are considered.

2. The dependence of longitudinal and lateral coefficients on response and input
variables can be expressed as

(@]
I

C (Byfl,Q,ée) (a = X, Z, oY ]ll’

C = Ca(ﬁlalplrléalér) . (a =Y, &, or n)



3, The resulting aerodynamic coefficients are obtained as sums of contributions
due to (a,B), and p, g, r, 6a, ée, and ér. The second group of these
contributions is, in general, a-dependent.

Considering the preceding assumptions, the aerodynamic model equations can be
written as

c, =C la, B)q=6e=0 + caq(oc) ac/2v + Caée(a) 8a (a =X, 2, or m) (1)
and
Ca = Ca(a'B)p=r=6 _§ =0 + ca (a) pb/2V + Ca (a) rb/2V + Ca () 6a
a r r da
+ C (a) & (a =¥, A, or n) (2)
a Y

ér

The expressions for the aerodynamic coefficients are similar to those used in
wind-tunnel testing practice. The first terms on the right-hand side of equa-
tions (1) and (2) represent "static" parts with controls fixed at zero deflections.
The remaining terms represent contributions of dynamic stability derivatives and
gontrol derivatives and their dependence on «. In equations (1) and (2), no
@ and B terms are explicitly introduced because of.their near-linear dependence
on the remaining variables. The effects of « and (B are included primarily in
contributions due to angular velocities,

The form of equations (1) and (2) indicates that each term in these equations
can be approximated by a spline either in («,B) variables or in the o variable. 1In
longitudinal maneuvers with small lateral coupling, equation (1) can be further
simplified by replacing the two-dimensional terms in («,B) by two terms in «. These
equations then take the form

2 -
c, = Ca(“)5=q=6e=o + CaB2(a) B + Caq(a) gc/2v

+ Caée(a) 5e (a =X, Z, or m) (3)

Equations (2) and (3) represent fairly general formulation of aerodynamic coeffi-
cients. 1In each particular case, however, the postulated aerodynamic model equations
should reflect any available a priori knowledge, based on wind-tunnel and/or theoret-

ical aerodynamic data.
POLYNOMIAI: SPLINES IN ONE AND TWO VARIABLES
Spline functions are defined as piecewise polynomials of degree m. When con-
tinuity restrictions are considered, the function values and derivatives agree at the

points where the piecewise polynomials join., These points are called "knots" and are
defined by the value of their projection onto the plane (or axis) of independent
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variables. A polynomial spline of degree m with continuous derivatives up to

degree m - 1 approximating a function f£(x) for x €?[xo,x }, can be expressed
max

as

m h k -
Sm(x) = Z Chx + Z Di(x - Xi)+ (4)
h=0 i=1
where
(x - x,)m (x » x.)
m i i
(x - xi)+. =
0 (x < Xi)

The values Xyr Xos eeey X are knots which obey the condition,
Xq < x4 < X5 < eee < %X, < X , and Gy and D, are constants. The spe-
cial case of equation (4) for m = 0 (a spline of degree zero) represents

an approximation by piecewise constants.

The problem of multidimensional splines is addressed in reference 7. A space of
these splines is constructed by taking the tensor product of one-dimensional spaces
of polynomial splines. Because of the tensor nature of the resulting space, many of
the simple algebraic properties of ordinary polynomial splines in one dimension are
carried over. A spline in two variables x and x can be introduced for the
approximation of a function f(x1,x2) for x4 €:[x10'x1max] and x4 €:[x20'x2max]'

Then{ ?S in the one-dimensional case, the two ranges [X1O'x1max] and [x20’x2max] are
subdivided by sets of knots X134 and Xai where
X < X LI 4
10 11 < <%k © ®inax

X < X < ses < X < X
20 21 28 2max

The points (X1i’X2i) partition the above rectangle into rectangular panels. A poly-
nomial spline of degree m for x and of degree n for x with continuous
partial derivatives up to (m - 1) + (n - 1) degree on the rectangle defined by the

intervals [x1o,x 1 and [x20,x X] can be formulated as

Tmax 2ma

m n k L
_ h s _ m _ n
Sun®17%y) = 2 DL Cpg X%, * 2 Bylxy) (xp-x 0 2 Q(xy) (%, = x,00,
h=0 s=0 i=1 =1
k 2 m n
+ .Z > Dij(x,l - x0, (x, - xzj)+ (5)

where Pi(xz) and Q.(x1) are polynomials of degree n and m, respectively, and

Chs and Dij are constants.



As examples of using splines in the approximation of aerodynamic functions, the
vertical-force coefficient C and yawing-moment coefficient C, are considered.
In the first case, the form of Cz(a,q,ée) based on splines can be, according to
eqguation (3), written as

Cz(a,q,ée) = Cz(a)q=6 -0 + CZ (a) gc/2v + CZ (o) 6e (6)
e q de
where
k N
C,la) =C,(0) + C, + Z Dai(a - ),
« i=1
X 0
c, (@ =c, + ¥ p_la=-a)] P (7)
q q i=1

Equation (7) indicates that C_(a) 1s approximated by piecewise linear polynomials
(the first-degree spline}, whereas the remaining two functions are approximated by
piecewise constants (the zero-degree splines).

In the second case,

Cn(ar Blplrléalér) = Cn(a's)p=r=6 =5 =0 + Cn (a) pb/2v
a r P
+ C (a) rb/2V + C (a) & + C (a) & (8)
n n a n r
r da Sr
Using equation (5) for ¥, = a and x, = f, and selecting m = 0 and n = 1, the

function Cn(a,B) can be approximated as

k
0
c (a,B) =C + CB+ 17‘:1 (Bpy + A B (e - o),
2 8 k L 8
g D, . 1——j— - .)o
+ZBOj o1 - -, ZZ o b0 T el o
j=1 i=1 =1



where

8. Y (fBl < Bj)
181/, 3 3
B+Bj (B<-Bj)

There is always a positive value for fB.. In this approximation of Cn(a,B), it is
assumed that Cn(B) is an odd function, The remaining functions in equation (8) are
then represented by splines in «.

MODEL STRUCTURE DETERMINATION

The determination of an adequate model using the stepwise regression includes
three steps: the postulation of terms which might enter the final model, the selec-
tion of an adequate model, and the verification of the model selected.

As shown in the previous section, the general form of aerodynamic model
equations can be written as

y(t) = 90 + e1x1 + oo + Og_1 xg_1 (10)

In this equation, y(t) represents the resultant coefficient of aerodynamic force or
moment (the dependent variable), 6 to © _q are the constants in spline represen-
tation of the aerodynamic functions, and x4 to =Xg-4 are the airplane response and
input variables and their combinations (the indepengent variables)., When the aero-
dynamic model equations are postulated, the determination of significant terms among
the candidate variables (determination of model structure) and estimation of corre-
sponding parameters follow.

Assuming that a sequence of N observations of y and of x at times
t1, t2, wner tN has been made, the measured values denoted by vy(i) and x(i)},
where i =1, 2, ..., N, are related by the following set of N 1linear equations:

y(i) = eo + e1x1(1) + eee + eg_1 xg_1(1) + e(i) (11)

where €(i) represents the equation error, An adequate model for the aerodynamic
coefficients can be determined by applying the stepwise regression., The stepwise
regression technique is described in references 1 and 8, and its main features are
summarized in the appendix.

When formulating spline functions in expressions for an aerodynamic coefficient,
the degree of spline and the number and location of knots must be specified., A
set of knots is fixed in advance. The number of candidate knots for each spline



is limited only by the available computer memory. The stepwise regression proce-
dure then selects only the knots which are associated with statistically signifi-
cant parameters. In this way, a suboptimal number of knots and their locations

are obtained. A more detailed discussion on the application of statistical variable
selection technique to fit splines is contained in reference 9. The selection of
degree of spline is influenced by the form of an aerodynamic function which is to be
approximated, With little or no knowledge of that form, the model postulation can
start with splines of a low degree, that is, the zero degree or first degree., After
a tentative model structure is determined, the procedure can be repeated with higher-
degree splines for better approximation of the data,

Because of the combination of spline representation with the stepwise regression
technique, the number of knots for each spline in the postulated model structure
is limited only by practical considerations, that is, the available computer memory.
The knots can be positioned arbitrarily within the range of independent variables.
The estimation technique then selects only those knots associated with the important

terms in the model equation.

As explained in references 1 and 4, the regression analysis for model struc-
ture determination and parameter estimation provides the opportunity to use subsets
of measured data rather than the whole data set. This approach can, for example,
simplify the analysis of maneuvers for obtaining the lateral parameters in equations
for the coefficients C_,, C_., and C_. The measured data can be partitioned as a
function of @, and it can be assumed that for each subset the coefficients are func-
tions of o = @,, where @, 1is the midpoint of an a-interval of the ith subset.
Then, for each subset, equation (2) can be simplified to

c, (o Bspyx,8,,8,) = Ca(a’B)p=r=6a=6r=0 + cap(&) pb/2V + car(a) rb/2V + Caéa(&) 8,

+ Caér(&) &, (a =Y, &, or n) (12)

Thus, the spline functions in two variables (a,B) are replaced by splines in B, and
the remaining splines are replaced in a by constants.

The last step in model structure determination and parameter estimation is model
verification. The parameter estimates must have realistic values and should be com-
pared with wind-tunnel results and theoretical predictions. Wherever possible, the
least-squares estimates should be also compared with the estimates using different
techniques, that is, the maximum-likelihood estimation method. Ultimately, the model
should be a good predictor of airplane motion within the region of its assumed

validity.

EXAMPLES

In the following examples the technique for model structure determination and
parameter estimation was applied to measured data of a single-engine, low-wing
research airplane. The basic characteristics of the airplane and instrumentation
system are presented in reference 10. This airplane had undergone certain wing
leading-edge modification which allowed the airplane to be trimmed at angles of
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attack up to approximately 24°, The measured data were available in the form of
input and output time histories sampled at 0.05-second intervals. The input vari-
ables included the directly measured control-surface deflections. The variables ¢
and B were measured by wind vanes, and the airspeed was measured by an anemometer,
These measurements were corrected for the local airflow and offset with respect to
the airplane center of gravity. The remaining output variables included angular
rates and linear accelerations. These variables, together with the airspeed, were
used to compute the aerodynamic coefficients (ref. 1), for which the angular acceler-
ations were obtained by differentiation of spline fits of measured angular rates.
These data included basically three different sets of maneuvers. For the first set,
small-amplitude longitudinal and lateral maneuvers were excited by control-surface
deflections at trimmed conditions within the range of « between 4° and 24°. From
these maneuvers local models of aerodynamic coefficients were estimated. The second
set included the data from longitudinal quasi-steady flights. These flights were
represented by slow deceleration-acceleration maneuvers from which static parameters
were determined, Finally, the third set of data consisted of large-amplitude longi-
tudinal maneuvers and large-amplitude combined longitudinal and lateral maneuvers
with the o variation between 0° and 30°, The large-amplitude maneuvers were ana-
lyzed for determining the parameters of an extended model, that is, a model wvalid
over an extended range of «. The combined maneuvers were intended for the determi-
nation of the parameters of a model which would be valid within the flight envelope
containing prestall and stall maneuvers.

In figure 1, the three important longitudinal stability parameters estimated
from 30 small-amplitude maneuvers are plotted against the angle of attack correspond-
ing to the trimmed conditions, All these maneuvers were analyzed by the modified
stepwise regression (MSR) described in reference 1. Although the definition of "best
model" is subjective and an exhaustive search of all candidate models is prohibitive
in both cost and time, experience has shown that the MSR gives an adequate model.

For the wverification of results obtained, the maximum likelihood (ML) estimation
technique of reference 11 was applied to nine test runs. In this analysis, the model
structure was the same as determined by MSR., The ML: estimates are represented in
figure 1 by closed circles. Also plotted in figure 1 are the parameters obtained
from quasi-steady flight using expressions from reference 10.

The values of three lateral parameters obtained from 30 small-amplitude lateral
maneuvers are given in figure 2. 1In this case the yawing-moment derivatives were
selected., These parameters exhibit large scatter mainly in the stall and post-stall
region. This scatter is caused by small excitation of yawing motion of the tested
airplane, The estimates of the remaining lateral parameters are shown subsequently
to be more consistent., As in the previous case, some runs were also analyzed by the
MI, method, and the results are presented in figure 2. The estimates of longitudinal
and lateral parameters from small-amplitude maneuvers were assembled as a data base
for the comparison with the results from large-amplitude maneuvers,

Parameters From Large-Amplitude Longitudinal Maneuver

A large-—-amplitude longitudinal maneuver was analyzed using the polynomial spline
representation of aerodynamic force and moment coefficients. The time histories
of the input and response variables in this maneuver are presented in figure 3. From
these time histories the aerodynamic functions CX' CZ’ and Cm were computed, and
they are plotted in figure 4 against «a rather than time, In figure 5, the varia-
tion of rate of pitch gq and elevator deflection § with « is also shown. Both
figures indicate the range of dependent and independent variables available for use

1



in the regression equations and the distribution of measured points within the
a-range. This information can be utilized for the selection of knots and degree of

splines in the postulated model structure.

For the spline approximation of all three aerodynamic coefficients, the form of
equation (6) was used, first with the first-degree spline for CX(a), Cz(a), and
Cm(a), and then with the zero-degree splines for the remaining terms. (See egs. (7)
for approximation of C, coefficient.) Seventeen knots for each spline were pos-
tulated as a; = 6°, @, = 7%, ceey a5 = 22°, The resulting estimates showed that
the zero-degree spline approximation of g-terms was rather coarse. Therefore, the
first-degree and second-degree splines were introduced instead, The second-degree
spline was then considered as the final approximation. As an example of options used
in the g-terms representation, the Cm () estimates are presented in fiqure 6. The

q
different spline approximations of all g-terms had only a small effect on the fit to
the data and on the estimated parameters in the remaining terms. The final estimates
of polynomial spline terms representing the three aerodynamic coefficients are plot-
ted against a in figure 7. The aerodynamic function estimates are compared with
the estimates from small-amplitude maneuvers and show very good agreement with those
results, The fit of the polynomial and spline models to the data and the usefulness
of the terms in those models can be revealed by the comparison of standard error
of aerodynamic coefficient & and the squared multiple correlation coefficient R2.
{See appendix for more detailed explanation.) The values of both coefficients are
summarized in table I. For small-amplitude maneuvers, the low values of o and high
values of R2 correspond to low-angle-of-attack regimes; conversely, 8 is larger
and R2 smaller for values of « between 20° and 24°.

In figure 8, the spline terms of CZ(a) and Cm(a) functions are compared with
the measurement of these relationships in the quasi-steady flight., This measurement
resulted in a double-value function Cz(a) and Cm(a) for values of q Dbetween 10°
and 22°, depending on increasing or decreasing values of ¢o. This phenomenon can
be caused by the aerodynamic hysteresis and by the hysteresis in the control system.
Because of the relatively small differences in both branches of Cz(a) and Cm(a)
curves with respect to the accuracy of these estimates, the hysteresis was not
modeled in equation (6).

Even if the agreement between the results from small- and large-amplitude maneu-
vers is very good, the resulting model is further verified by simulating the airplane
longitudinal response. This is done by using the extended model approximated by
splines and by using the elevator deflection time history from a selected independent
maneuver, The time histories of input and response variables are presented in fig-
ure 9, and the response variables V, a, and q are compared with those predicted
by the model. The comparison reveals good prediction capabilities for the model,

Parameters From Large-Amplitude Combined Maneuvers

The time histories of one of the combined maneuvers are given in figure 10. The
response variables exhibit a persistently excited lateral motion due to the rudder
and aileron and longitudinal motion due to elevator deflections and coupling between
lateral and longitudinal modes. From this particular maneuver, the variation of
aerodynamic coefficients with a is shown in figure 11, and the variation of lateral
variables is shown in figure 12. Both figures indicate the amount of excitation of

dependent and independent variables in regression equations,

12



In the first step of data analysis, simplified models for the lateral coeffi-
cients were formulated. For the coefficient Cn' the aerodynamic model equation had
the form

C_=C_(a) B+ C_(a) pb/2v + C_ {a) rb/2V + C (a) &6 + C (a) & (13)
n n n n n a n r
B P r da Sr

with zero-degree splines for all terms included. The equations for C and C had
a similar form. In the next step of the analysis, more complicated models with two-
variable splines in a« and B were used. This formulation is expressed by equa-
tions (8) and (9) for the coefficient C_. The main differences in the results of
the two approaches were found in parameters of the yawing-moment equation. This
might indicate that the most pronounced nonlinearities in f are in the coefficient
Cn' Figure 13 presents the estimates of CnB within the range of g from -4°
to 4° from the three combined maneuvers, Each maneuver covered a different range of
a and used a Ch (ax) and Cn(a,B) spline in the model. Both sets of estimates are
compared with those obtained from small-amplitude maneuvers. As shown in figure 13,
the second approach gives more consistent estimates which also agree better with the
data base than the results of the first approach. The only difference remains in the
region of « from 16° to 24°, 1In this area, the spline approximation of Cn(a,B)
resulted in directional instability, whereas the small-amplitude data have essen-
tially positive values. Exclusion of the two-dimensional spline Cn(a,B) from the
model also had an effect on the remaining parameters, mainly the damping in yaw Cy o
r

The estimates of this parameter are given in figure 14. The second model improved
the consistency of the estimates and the agreement with the results of small-
amplitude manuevers.

The estimates of three parameters in the rolling-moment equation with the spline
Cl(a,B) in the model are shown in figure 15, Consistent results were obtained
for parameters CIB and Clp, but some scatter is apparent in the estimates of C‘r.
From the remaining lateral parameters, the values of CY y CY ’ C1 , and Cn
8 br da 6r
were estimated with good confidence, but rather larger scatter was observed in the
estimates of the other parameters.

For the verification of previous results and for obtaining more accurate esti-
mates of lateral parameters, the measurements from 12 combined maneuvers were joined
together into one set of data. The resulting ensemble of about 13 000 data points
was then partitioned into 22 subsets according to the values of «., The modeling
of the lateral parameters was conducted mostly on 1° subspaces of the 0° to 30°
a-space. As an example, the model for Cn was postulated as

5
- Bi
Cn(a’B’P’r'éa’ér) = Cn B+ z : Cn . Bl ~-TET + Cn pb/2V
B = Bt + p

(14)

+ C_ rb/2V + C 5., + C 8
n néa a né Y

r r
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where a denotes the midpoint of an «a-interval. The knots of the spline in f were
selected at 4°, 8°, 12°, 16°, and 20°. The estimates of parameters from partitioned
data are presented in figure 16. 1In general, these estimates are more consis-

tent than those from individual maneuvers and are closer to the results from small-
amplitude maneuvers. The nonlinear variation of the lateral coefficients with 8
for o = o, and with the remaining lateral variables equal to zero, is demonstrated
in fiqure 17 for three different values of gq. Finally, the values of Cn(a,ﬁ) for
B » 0 and all remaining independent variables equal to zero are plotted in fig-

ure 18. The results from the partitioned data have confirmed the previous conclu-
sion about the most pronounced nonlinearities in c, with B and about the small
nonlinear variation of the remaining two coefficients with this variable.

For the additional comparison of results from small- and large-amplitude maneu-
vers and from individual ‘runs and partitioned data, the values of standard error 8
and squared multiple correlation coefficient R2 for all cases are summarized in
table IT. For small-amplitude maneuvers and partitioned data the minimum values of
8 and maximum value of R2 correspond to low values of ¢, and the other values
correspond to high values of q. From the values of & and R2, it could be con-
cluded that at high angles of attack only the model for Cn was not able to fully
explain all the variation in the measured data. This conclusion indicates that some
additional terms in the model should be considered. Models for c, used in large-
amplitude maneuvers without partitioning brought some improvements in R? and 3
over the same values from previous maneuvers.

The combined maneuvers were primarily intended for the estimation of lateral
parameters, However, an attempt was also made to estimate the parameters in the
pitching-moment equation from these data. A possibility of aerodynamic coupling was
considered and the model was postulated as

c (a,pra,r,6.,8.,8.) =¢C + C gc/2Vv +C_ &
m p a’ e r mp=q=r=5a=5e=<5r=0 mq m(se e
3 4
+C 8 +c |Bl + > ¢ B -~ B.
m6e3 e mB {5 mBiI 1|+
+ C_ |pb/2v]| + C_ |rb/2v| + C |6 | + C 15 , (15)
m m m a m r
P r da Sr
where
0 (Bl < 8;)
|8 -8B, =¢CB -8B (g > 8,)
|+ By (8 < -py)

The estimates of the most significant parameters in the model are presented in fig-
ure 19. Their comparisons with the estimates from small- and large-amplitude longi-

tudinal maneuvers indicate good estimates of Cm and Cm terms. Some discrepan-
Se
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cies with previous results are visible in the estimates of C, » For the values of
q

Cn from partitioned data, R2 varied between 63 percent and 37 percent. This indi-

cates a strong possibility of modeling error in equation (15). The low values of R

are in contrast with values of R in table I for both small- and large-amplitude

longitudinal maneuvers.

For the verification of the estimated lateral parameters, the aerodynamic model
from partitioned data was used. The equations of motion for a = 22.5° were inte-
grated with the initial conditions and control time histories from a flight trimmed
at a = 20°, The control input for this independent maneuver consisted of a doublet
in aileron followed by a doublet in rudder. The predicted time histories are plotted
against the actual flight data in figure 20. The comparison of these time histories
shows an acceptable agreement between them.

CONCLUDING REMARKS

The application of polynomial splines and stepwise regression for the determina-
tion of airplane model structure from flight data has been demonstrated. First, a
form of the aerodynamic force and moment coefficients compatible with the utilization
of splines in one (angle of attack) and two (angles of attack and sideslip) vari-
ables was developed. Then, the model postulated for the analysis of flight data from
large—-amplitude maneuvers was discussed. The procedure of model determination was
used in several examples. Whenever possible, the resulting parameters were verified
by comparison with a baseline formed by the estimates from small-amplitude maneuvers
and steady-state measurements. The airplane equations of motion, employing the model
obtained, were numerically integrated to simulate the airplane responses to actual
flight inputs. These responses were then compared with the measured flight time
histories of response to that input.

The main conclusions from the research reported can be summarized as follows:

1. In order to obtain a global aerodynamic model from flight data, it was advan-
tageous to use large-—amplitude longitudinal and combined maneuvers in which the lon-
gitudinal and lateral motion were excited over an extended range of angle of attack.

2. When postulating the aerodynamic model with little or no a priori knowledge
of its form, the approximating splines can be of low degree (zero or first). After
a tentative model structure is determined, the procedure can be repeated with higher-
degree splines for better approximation of the data.

3. Because of the combination of spline representation with the stepwise regres-
sion, the knots can be positioned arbitrarily within the range of independent vari-
ables. The number of candidate knots for each spline is limited only by the avail-
able computer memory. '

4, A set of one-dimensional splines in the angle of attack can closely approxi-
mate uncoupled longitudinal maneuvers. For the combined maneuvers, however, two-
dimensional splines in the angle of attack and sideslip must, in general, be con-
sidered. To avoid the complexity of two-dimensional splines, the data from combined
maneuvers can be partitioned into subsets according to the values of angle of attack.
The lateral parameters from partitioned data were more consistent and closer to the
baseline than results from individual large maneuvers,
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The procedure presented represents another step towards the determination of
a global model of an airplane from flight data. It can provide valuable informa-
tion about aerodynamic forces and moments acting upon the airplane in large-amplitude
maneuvers and/or maneuvers in high-angle-of-attack regions.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

January 17, 1983
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APPENDIX

STEPWISE REGRESSION

This appendix describes the basic principles and features of the stepwise
regression which is used to determine aerodynamic model structure from flight data.
This procedure begins with the assumption that there are no variables in the postu-
lated regression equation other than the bias term 6,. B2An effort is then made to
find an optimal subset of variables by inserting independent variables into the model
one at a time. The first independent variable selected for entry into the equation
is the one that has the largest correlation with the dependent variable y. Suppose
that this variable is Xqe This is also the variable that produces the largest
value of the F-statistic for testing the significance of regression. The variable is
entered if the partial P-statistic exceeds a preselected critical F-value

where 61 is the estimated parameter associated with Xy and 52(91) is the vari-
ance estimate of 6.

The second variable chosen for entry is the one that now has the largest corre-
lation with y after adjusting for the effect on y of the first variable entered,
X, in this case., These correlations are referred to as partial correlations. In
general, at each step, the independent variable having the highest partial correla-
tion with vy is added to the model if its partial F-statistic exceeds the prese-
lected Fcrit' At each step of the procedure, all variables entered into the model
previously are also reassessed by examining their partial F-statistics. A variable
added at an earlier step may be redundant because the relationship between it and the
remaining variables now in the equation has reduced its value of Fp to less than
Forite If this happens, the significant variable is deleted from the regression
model, The procedure terminates when all significant terms have been included in the
model,

As a new variable enters the model, several useful quantities are calculated at
each stage of the stepwise regression. All these quantities should be examined for
the final model selection. First, the user can consider the total F-value for a
given model of Q@ wvariables calculated as the ratio of the mean sqguare due to the
regression to the mean square of the residual., This ratio is given as

[v(i) - 312

[y(i) - $(i)12

N
2
i=1
N g -1
2
i=1
where

, X
y =5 2 v(i)
i=1
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APPENDIX

This number usually increases to some maximum value as new variables enter the
regression, but then decreases slightly as the new terms are less effective in
reducing the residuals., Heuristically, the maximum F-value represents a model which
best fits the data with a minimum number of parameters. Second, the squared multiple
correlation coefficient R? is calculated, This number, expressed as a percentage,
is a %easure of the usefulness of the terms, other than 00, in the model. The value
of R would be 100 percent for a model that perfectly fit the data. Third, at each
stage, the partial F-values F, for each parameter are printed. The user should
look for consistency in the values of F,. For example, if one value of F is only
slightly greater than Forit and all other values of F are much greater, the user
may not want to include the variable with the small value of F in the model. The
fourth aid in model selection is the estimated normalized autocorrelation function
for the residuals. The estimate of the autocorrelation function at lag h is given

by

N-h

A(h) === 3" wi) vii +h) (h =0, 1, «uu, M)
i=1

where h 1is the lag number and M 1is the maximum lag number, which is usually

10 percent of N. The normalized autocorrelation function is calculated as
ﬁ(h)/ﬁ(O). This function should approach that for white noise with a value of 1 at
zero lag and values of 0 at lag for 1 to M. 1In applications, when the value of F
for a parameter makes the utility of an independent variable questionable, the con-
tribution of that variable to the actual model structure can be assessed by observing
the effect of the variable on the autocorrelation function of residuals. The fifth
number that aids the user is the standard error in the residuals 3, which is printed

at each stage of the regression,

One learns from experience that not all of the five criteria listed above are
"optimally" satisfied for any single model., However, the stepwise regression and its
associated information criteria do significantly reduce the number of possible models
from which the user must choose. Moreover, as the model structure is determined,
so are the parameter estimates, Finally, ambiguity in the model selection can also
be resolved by requiring that the estimated parameters make sense physically and that
the selected model have good prediction capability.

The selection of a set of candidate model variables from which the stepwise
regression can build a model should rely on the user's a priori knowledge of the
physical system that is to be modeled. For the airplane, such assumptions as the
most influential variables and symmetry considerations have led to the following
logic for selection of candidate model variables for a spline analysis of the longi-
tudinal maneuver. {See egs. (6) and (7) for CZ.) Though it appears lengthy and
awkward, this formulation of the FORTRAN code allows for simple deletion, addition,
and/or change in candidate model variables,

DO 910 I=1,NPTS
X(1,I)=ALPH(I)
X(2,1)=C/(2*VEL(I))*Q(I)
X{3,I=DELE(I)
DO 911 III=4,39
911 X(III,I)=0.
IF(ALPH(I).GE.XKNOT(1)) X(4,I)=ALPH(I)-XKNOT(1)
IF(ALPH(I) .GE.XKNOT(1)) X(5,I)=X(2,I)

18



In the preceding printout,

NPTS = Number of data points
X(J,I) = Value of jth model variable at ¢t .
for specific values of

APPENDIX

IF(ALPH(I) .GE.XKNOT(2))
IF(ALPH(TI) .GE.XKNOT( 2))
IF(ALPH(TI) .GE.XKNOT(3))
IF(ALPH(TI) .GE.XKNOT(3))
IF(ALPH(I) .GE.XKNOT(4))
IF(ALPH(I) .GE.XKNOT(4))
IF(ALPH(I) .GE.XKNOT(5))
IF(ALPH(I) .GE.XKNOT(5))
IF(ALPH(I) .GE.XKNOT(6))
IF(ALPH(I) .GE.XKNOT(6))
IF(ALPH(I) .GE.XKNOT(7))
IF(ALPH(I) .GE.XKNOT(7))
IF(ALPH(I) .GE.XKNOT(8))
IF(ALPH{I) .GE .XKNOT(8))
IF(ALPH(I) .GE.XKNOT(9))
IF(ALPH(I) .GE.XKNOT(9))
IF(ALPH(I) .GE.XKNOT(10))
IF(ALPH(I) .GE.XKNOT(10))
IF(ALPH(I) .GE.XKNOT(11))
IF(ALPH(I) .GE.XKNOT(11))
IF(ALPH(I) .GE.XKNOT(12))
IF(ALPH(I) .GE.XKNOT(12))
IF(ALPH(I) .GE.XKNOT(13))
IF(ALPH(I) .GE.XKNOT(13))
IF(ALPH(I) .GE.XKNOT(14))
IF(ALPH(I) .GE.XKNOT(14))
IF(ALPH(I) .GE.XKNOT(15))
IF(ALPH(I) .GE.XKNOT(15))
IF(ALPH(I) .GE.XKNOT(16))
IF(ALPH(I) .GE.XKNOT(16))
IF(ALPH(I) .GE.XKNOT(17))
IF(ALPH(I) .GE.XKNOT(17))
IF(ALPH(I) .GE.XKNOT(7))
IF(ALPH(I) .GE.XKNOT(13))

910 CONTINUE

VEL(I) =
N, C=

(¢ 4%

Airspeed V
Wing mean aerodynamic chord

X(6,I)=ALPH(I)—-XKNOT(2)
X(71I)=X(211)
X(8,I)=ALPH(I)-XKNOT(3)
X(9,I)=X(2,I)
X(10,I)=ALPH(I)~-XKNOT(4)
X(11,I)=X(2,1)
X(12,1I)=ALPH(I)-XKNOT(5)
X(13,I)=X(2,1)
X(14,I)=ALPH{I)-XKNOT(6)
X(15,I)=X(2,I)
X(16,I)=ALPH(I)-XKNOT(7)
X(17,1)=%X(2,1)
%X(18,I)=ALPH{I)-XKNOT(8)
X(19,1)=X(2,1I)
X(20,I)=ALPH(I)-XKNOT(9)
X(21,1)=Xx(2,1)
X(22,I)=ALPH(I)-XKNOT(10)
X(23,1)=X(2,I)
X(24,I)=ALPH(I)-XKNOT(11)
X(25,1)=X(2,1I)
X(26,I)=ALPH{I)-XKNOT(12)
X(27,1)=X(2,1)
X(28,1)=ALPH(I)-XKNOT(13)
X(29,I)=x(2,I)
X(30,I)=ALPH(I)-XKNOT(14)
X(31,I)=Xx(2,I)
X(32,I)=ALPH(I)-XKNOT(15)
X(33,I)=xX(2,1)
X(34,I)=ALPH(I)-XKNOT(16)
X(35,I)=x(2,1I)
X(36,I)=ALPH(I)-XKNOT(17)
X(37,1)=X(2,I)
X(38,I)=X(3,I)
X(39,I)=X(3,1I)

at t;, Q=

The symbols XKNOT(

)

Pitch rate

¢, and
indicate knots

q,

i
The table actually gives the logic for creating the

(39 x N) matrix containing the time histories of each of the 39 candidate independent

variables.,

in the program with

I

1’17.

The 17 knots in angle of attack can be set at any value the user deems
adequate for the data by setting XKNOT(TI)

Changing

the candidate model variables can easily be accomplished by substituting the new

variable for any of the 39 candidates listed.

limited only by the size of the computer memory.

The number of candidate variables is
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TABLE I.— COMPARISON OF STANDARD ERRORS AND SQUARED MULTIPLE CORRELATION

COEFFICIENTS FROM DIFFERENT MANEUVERS FOR LONGITUDINAL DATA

RAerodynamic
coefficient

Small-amplitude Large-amplitude
maneuvers maneuvers
~ 2
6 R ~
o R2
o T
Min. Max. Min. Max.
0.0011 0.020 71.5 99.9 0.014 96.5
.0064 .042 88.3 99.9 .039 98,6
.0052 .028 89.1 99.5 .033 93.5

TABLE II.- COMPARISON OF STANDARD ERRORS AND SQUARED MULTIPLE CORRELATION
COEFFICIENTS FROM DIFFERENT MANEUVERS FOR LATERAL DATA

Small-amplitude Large—amplitude
maneuvers maneuvers
Aerodynamic Separate runs Partitioned data
coefficient c R2 : -

c R? o R?
Min. l Max. |Min.|Max.| Min. Max. |Min.|Max.| Min. Max. {Min.jMax.
C 0.0026(0.0120/94.3}99.9(0.0072[{0.,0390|96.4(99.1j0.0066|0.0360{81.6|99.3
C .0014| ,0062|88.9|96.,5| .0049} ,0084193.7|94.5| .0026| .0095(86.1[(97.4
C .0008| ,0040|60.6|99,.3| .0032( ,0057|88.,9{96.4| .0027{ .0064{78.5|96.6
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Figure 1.- Estimated longitudinal parameters from quasi-steady and small-amplitude
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Figure 6.- Estimated damping-in-pitch variation with angle of attack from large-
amplitude maneuver using splines of different degrees.
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Figure 11.- Concluded.
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Figure 13.- Comparison of derivative of yawing moment due to sideslip estimated from
different maneuvers and using different spline approximations.
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