## General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

## SRB-X

## SHUTTLE DERIVED VEHICLE ANALYSIS SOLID BOOSTER UNMANNED'LAUNCH VEHICLE CONCEPT DEFINITION STUDY



FINAL REPORT VOLUME II

TECHNICAL REPORT

D180-27351-2
FEBRUARY 1983

NASA/MSFC CONTRACT NAS8-34722

## SRB-X

## SHUTTLE DERIVED VEHICLE ANALYSIS SOLID BOOSTER UNMANNED LAUNCH VEHICLE CONCEPT DEFINITION STUDY

Volume II TECHNICAL REPORT<br>D180-27351-2<br>Feburary 1983

## DPD Number 618

## DR Number 6

Contract NAS8-34722

Submitted to The National Aeronautics and Space Administration George C. Marshall Space Flight Center<br>by<br>Boeing Aerospace Company<br>Seattle, Washington 98124

## FOREWORD


#### Abstract

The Shuttle Derived Vehicle Analysis Solid Booster Unmanned Launch Vehicle Concept Definition Study, hereafter referred to as the SRB-X study, NASA Contract NAS8-34722, was managed by NASA Marshall Space Flight Center (MSFC) and performed by the Upper Stage and Launch Vehicle Preliminary Design organization of Boeing Aerospace Company (BAC) in Seattle, Washington. Major support was provided by Thiokol/Wasatch Division and NASA Kennedy Space Center (KSC) Design Engineering Office. The NASA Contracting Officer's Representative (COR) was James E. Hughes.


## This final report is organized into the following documents:

## Volume I: Executive Summary

Volume II: Technical Report

## The following Boeing personnel were key contributors to the study:

Program manager . . . . . . . . . . . . . Vince Caluorỉ
Study manager . . . . . . . . . . . . . . Eldon Davis
Configuration design . . . . . . . . . . . Rich Reinert, John Olson
Performance . . . . . . . . . . . . . . . Ron Sullivan, Dani Eder
Structural design and mass properties . . . . Bob Conrad
Propulsion . . . . . . . . . . . . . . . . Harry Whippo
Avionics.
Jack Gewin
Flight control . . . . . . . . . . . . . . Bill Kaughan, Bill Smith
Facilities aidd ground operations. . . . . . . Rich Reinert
Programmatics . . . . . . . . . . . . . . Eldon Davis

## Other major contributors were:

Solid rocket motor analysis. . . . . . Thiokol/Wasatch Division
George Alford
David Hawkins
Launch facilities . . . . . . . . . . . KSC Design and Program Office Homer Brown
Frank McInerny
Tom Feaster
VAFB Pad Design
Capt. Marty Bittner

## Data exchange also occurred in the following areas:

Titan core stage II . . . . . . . . . . . . Martin Marietta
Aerojet Liquid Rocket Company
Centaur D-IT. General Dynamics
Payload shrouds. . . . . . . . . . . . . . Lockheed Missile and Space
Company
Company
Titan SRM
Titan SRM Chemical System Division Chemical System DivisionFor further information contact:
James E. Hughes
NASA MSFC
Marshall Space Flight Center, AL 35812
(205) 453-5726

Eldon E. Davis
Boeing Aerospace Company
Seattle, WA 98124
(206) 773-4545
(206) 773-4545

## CONTENTS

Page
1.0 INTRODUCTION ..... 1
1.1 Background ..... 1
1.2 Objectives ..... 1
1.3 Guidelines and Assumptions ..... 2
1.4 Scope of Activity ..... 2
2.0 SUMMARY ..... 4
2.1 Findings ..... 4
2.2 Recommendations ..... 8
3.0 CONCEPT AND CONFIGURATION TRADES ..... 9
3.1 Concept Options ..... 9
3.2 Screening Process Overview ..... 14
3.3 First Screening Analyses ..... 14
3.3.1 System Characterization ..... 14
3.3.2 Evaluation Factors ..... 17
3.3.3 Class A Vehicle Results ..... 23
3.3.4 Class B Vehicle Results ..... 28
3.3.5 Class C Vehicle Results ..... 43
3.3.6 Summary and Recommendations ..... 43
3.4 Second Screening Analyses ..... 48
3.4.1 Preliminary Assessment ..... 48
3.4.2 Final Assessment ..... 53
3.5 Third Screening Analyses ..... 57
3.5.1 Propulsion Characterization ..... 63
3.5.2 Structural Analysis ..... 85
3.5.3 Performance ..... 104
3.5.4 Stability and Control ..... 111
3.5.5 Facilities Analysis ..... 117
3.5.6 ROM Cost ..... 125
3.5.7 Summary ..... 129
3.5.8 Recommended Concept ..... 135
Page
4.0 CONCEPT DEVELOPMENT ..... 137
4.1 Performance Improvement Options ..... 137
4.2 Subsystem Analysis ..... 137
4.2.1 Propulsion Systems ..... 139
4.2.2 Structural Analysis ..... 150
4.2.3 Avionics Subsystem ..... 177
4.2.4 Stability and Control Analysis ..... 183
4.3 System Comparison and Analysis ..... 188
5.0 RECOMMENDED VEHICLE DESCRIPTION ..... 193
5.1 Configuration Characteristics ..... 193
5.1.1 General Arrangement ..... 193
5.1.2 Design Features ..... 193
5.1.3 Mass Summary ..... 202
5.2 Performance ..... 202
5.2.1 Flight Characteristics ..... 202
5.2.2 Payload Capabilities ..... 207
6.0 LAUNCH SITE OPERATIONS AND FACILITIES ..... 210
6.1 KSC Launch Site ..... 210
6.1.1 Operations ..... 210
6.1.2 Facility Modifications ..... 216
6.2 VAFB Launch Site ..... 216
6.2.1 Operations ..... 216
6.2.2 Facility Modifications ..... 216
7.0 IMPLEMENTATION PLAN ..... 222
7.1 Overview ..... 222.
7.2 Test Program ..... 222
7.3 Development Schedule ..... 226
7.4 Facility Modifications ..... 226
Page
8.0 COST ANALYSIS ..... 231
8.1 Overview ..... 231
8.1.1 Approach and Scope ..... 231
8.1.2 Methodology ..... 231
8.1.3 Cost Summary ..... 231
8.2 DDT\&E Cost ..... 233
8.2.1 Ground Rules and Assumptions ..... 233
8.2.2 Cost Estimates ..... 234
8.3 Cost per Flight ..... 239
8.3.1 Ground Rules and Assumptions ..... 239
8.3.2 Cost Estimate ..... 240
9.0 PROGRAM RISK ..... 245
10.0 LAUNCH VEHICLE ASSESSMENT ..... 246
11.0 SUPPORTING RESEARCH AND TECHNOLOGY ..... 249
12.0 REFERENCES ..... 250
APPENDIX A-FIRST SCREENING RESULTS ..... 251
APFENDIX B-SIJPPORTING WEIGHT DATA ..... 263

## FIGURES

Page
2.1-1 Study Findings ..... 5
2.1-2 SRB-X Concept ..... 7
3.1-1 Configuration and Concept Vehicle Trades ..... 10
3.1-2 STS-SRM Steel Case Components ..... 11
3.3-1 Abbreviations and Codes ..... 29
3.4-1 LEO Performance Comparison ..... 58
3.4-2 Polar Performance Comparison ..... 59
3.4-3 GEO Performance Comparison ..... 60
3.4-4 Configurations Resulting From Second Screening ..... 62
3.5.1-1 SRB-X One-Segment Design ..... 67
3.5.1-2 Configuratio، B One-Segment Pressure and Thrust ..... 68
Time Histories
3.5.1-3 Two-Segment SRM Initial Design ..... 69
3.5.1-4 Two-Segment Motor Pressure and Thrust Time Histories ..... 70
3.5.1-5 SRB-X Three-Segment SRM Recommended Configuration ..... 73
3.5.1-6 SRB-X Three-Segment SRM Pressure and Thrust ..... 74Time Histories
3.5.1-7 Four-Segment First-Stage SRM ..... 75
3.5.1-8 SRB-X Four-Segment Second-Stage SRM Pressure and ..... 78 Thrust Time Histories
3.5.1-9 Isp Versus Expansion Ratio-Four-Segment Second Stage ..... 79
3.5.1-10 Nozzle Weight Versus Expansion Ratio-Four-Segment ..... 80 Second Stage
3.5.1-11 Nozzle Length Versus Expansion Ratio-Four-Segment ..... 81 Second Stage
3.5.1-12 S-1 Third-Stage SRM ..... 82
3.5.1-13 S-1 Third-Stage SRM Pressure and Thrust Time Histories ..... 83
3.5.2-1 Vehicles for Structural Analysis ..... 86
3.5.2-2 Bending Moment at Structural Design Maximum Q-Alpha ..... 91
3.5.2-3 SRM Structural Compatibility ..... 93
3.5.2-4 Structural Integration-Payload/Upper Stages/Shroud ..... 95
3.5.2-5 Forward Bearing Reaction System Existing Design ..... 96
3.5.2-6 D-IT Truss Adapter Payload Constraints ..... 97
3.5.2-7 FBR Limit Design Load Considerations ..... 99
Page
3.5.2-8 D-IT Fuel Tank Structural Compatibility ..... 100
3.5.2-9 T2 Structural Compatibility ..... 102
3.5.2-10 GEO Mission Shroud Weight Estimate ..... 103
3.5.3-1 LEO Performance Comparison ..... 108
3.5.3-2 Polar Performance Comparison ..... 109
3.5.3-3 GEO Performance Comparison ..... 110
3.5.4-1 Rigid Body Dynamic Simulation Results ..... 115
3.5.4-2 TVC Requirements and Capability ..... 116
3.5.5-1 Facility Requirements ..... 118
3.5.5-2 Access Platform Usage ..... 121
3.5.7-1 Configurations B3 and B6 ..... 134
3.5.7-2 Configurations B4 ..... 136
4.1-1 Configuration Performance Improvement Options ..... 138
4.2.1-1 Thrust-Time History ..... 141
4.2.1-2 Stage 2 Performance Trades ..... 144
4.2.1- $\overline{3}$ Stage 2 Performance Comparison ..... 145
4.2.1-4 Two-Segment Second-Stage SRB-X Motor ..... 147
4.2.1-5 Ideal Versus Designed Thrust Trace Comparison ..... 148
4.2.2-1 Interstage 1-2 Struts ..... 151
4.2.2-2 Axial Load Transfer Via Drag Strut During Flight ..... 154
4.2.2-3 Drag Strut Stiffness Verification ..... 155
4.2.2-4 Lateral Strut Stiffness Verification ..... 157
4.2.2-5 Shroud Configuration ..... 164
4.2.2-6 Bending Characteristics of Upper Stages ..... 166
4.2.2-7 Shroud Loads ..... 168
4.2.2-8 Selection of Shroud Skin Panel $\mathrm{t}^{\prime}$ s ..... 169
4.2.2-9 Shroud Sections ..... 170
4.2.2-10 Shroud Ring Assembly ..... 172
4.2.2-11 Stage 1 SRM Sidewall Bending Stiffness ..... 175
4.2.2-12 Stage 2 SRM Sidewall Bending Stiffness ..... 176
4.2.3-1 SRB-X Avionics Subsystem ..... 179
4.2.3-2 SRB-X Avionics Concept ..... 182
4.2.4-1 Control System Block Diagram ..... 186
4.2.4-2 Trajectory-Following Capability and Loads ..... 189
4.2.4-3 TVC Assessment ..... 190
Page
4.3-1 Vehicle Comparison ..... 192
5.1.1-1 Vehicle General Arrangement ..... 194
5.1.2-1 Stage 1 Design Features ..... 195
5.1.2-2 Stage 2 Design Features ..... 197
5.1.2-3 Stage 3 and Control Module Design Features ..... 198
5.1.2-4 Interstage 1-2 Design Features ..... 200
5.1.2-5 Shroud Design Features ..... 201
5.2.1-1 Mission Profile ..... 204
5.2.1-2 Nominal Trajectory Characteristics ..... 205
5.2.1-3 Shroud and Interstage 1-2 Separation ..... 206
5.2.2-1 Performance Capabilities ..... 208
6.1.1-1 KSC Ground Operations ..... 211
6.1.1-2 Payload Preparation, Checkout, and Encapsulation ..... 212
6.1.1-3 Vehicle Assembly and Launch Operations at KSC ..... 214
6.1.1-4 Vehicle Assembly Operations ..... 215
6.1.2-1 KSC Facility Modifications ..... 217
6.2.1-1 VAFB Ground Operations-SLC-6 ..... 218
6.2.1-2 Payload Preparation and Encapsulation at VAFB ..... 219
6.2.1-3 Payload Installation at VAFB ..... 220
6.2.2-1 VAFB SLC-6 Modifications ..... 221
7.1-1 SRB-X Program Summary Schedule ..... 223
7.3-1 Vehicle Development Schedule ..... 227
7.3-2 Stage 2 SRM Development ..... 228
7.4-1 Facility Modifications ..... 229TABLES
Page
1.4-1 Scope of Activities ..... 3
3.1-1 SRB-X Class A Options ..... 12
3.1-2 SRB-X Class B Options ..... 13
3.1-3 SRB-X Class C Options ..... 15
3.2-1 Configuration Screening Process ..... 16
3.3-1 STS-SRM Derivative Characteristics ..... 18
3.3-2 SRB-X Class A Stage Characteristics ..... 19
3.3-3 SRB-X Class B Stage Characteristics ..... 20
3.3-4 SRB-X Class C Stage Characteristics ..... 21
3.3-5 Stage and System Cost Characteristics ..... 22
3.3-6 Class A Performance Output ..... 24
3.3-7 Class A LEO Payload ..... 25
3.3-8 Class A LEO Fayload Cost per Pound ..... 26
3.3-9 Class A GEO Payioad Cost per Pound ..... 27
3.3-10 Class A Three-Stage Vehicles ..... 30
3.3-11 Class A Three-Stage Vehicles (Continued) ..... 31
3.3-12 Class A Four-Stage Vehicles ..... 32
3.3-13 Class A Four-Stage Vehicles (Continued) ..... 33
3.3-14 Conclusions and Observations ..... 34
3.3-15 Recommended Class A Concepts ..... 35
3.3-16 Class B LEO Payload ..... 36
3.3-17 Class B GEO Payload ..... 37
3.3-18 Class B Three-Stage Vehicles ..... 38
3.3-19 Class B Three-Stage Vehicles (Continued) ..... 39
3.3-20 Class B Four-Stage Vehicles ..... 40
3.3-21 Class B Four-Stage Vehicles (Continued) ..... 41
3.3-2.2 Class B Summary ..... 42
3.3-23 Conclusions and Observations ..... 44
3.3-24 Recommended Class B Concepts ..... 45
3.3-25 Class C Vehicles ..... 46
3.3-26 Vehicle Class Payload Comparison ..... 47
3.4-1 Class A Vehicle and Stage Characteristics ..... 49
3.4-2 Class B Vehicle and Stage Characteristics ..... 50
3.4-3 SRB-X Class A Vehicle Summary ..... 51

Page
3.4-4 SRB-X Class B Vehicle Summary ..... 52
3.4-5 Leading Candidates for Second Screening ..... 54
3.4-6 Class A Vehicle and Stage Characteristics ..... 55
3.4-7 Class B Vehicle and Stage Characteristics ..... 56
3.4-8 Performance Assessment ..... 61
3.5.1-1 SRM Mass and Performance Summary ..... 64
3.5.1-2 SRB-X One-Segment SRM Comparisons ..... 65
3.5.1-3 SRB-X Three-Segment SRM Comparisons ..... 72
3.5.1-4 SRB-X Four-Segment Second-Stage SRM Option Comparisons ..... 76
3.5.1-5 SRB-X Four-Segment Second-Stage SRM Performance Summary ..... 77
3.5.1-6 SRB-X Upper Stage (S-1) Motor Performance Summary ..... 84
3.5.2-1 Axial Load Factors ..... 87
3.5.2-2 Maximum Axial Load Factors and Shuttle Payload Compatibility ..... 89
3.5.2-3 Structural Design Maximum Q-Alpha Conditions ..... 90
3.5.2-4 SRM Structural Capability -Ultimate Externally Applied Loads ..... 92
3.5.2-5 D-IT Fuel Tank Ullage Lockup Pressure Requirement ..... 101
3.5.3-1 Performance Ground Rules ..... 105
3.5.3-2 Ideal Velocity ..... 104
3.5.3-3 Vehicle and Stage Characteristics ..... 106
3.5.4-1 Pitch Static Stability Assessment ..... 112
3.5.4-2 Class B Yaw Stability ..... 113
3.5.4-3 Rigid Body Trim Condition Summary ..... 114
3.5.5-1 Ground Facility Assessment ..... 119
3.5.5-2 MLP Impact ..... 122
3.5.5-3 FSS and RSS Impact Comparison ..... 123
3.5.5-4 WTR STS Facilities (SLC-6) Assessment ..... 124
3.5.6-1 SRM ROM Cost Trends ..... 126
3.5.6-2 Existing Design Use Summary ..... 127
3.5.6-3 KSC STS Facility Impact Cost Assessment ..... 128
3.5.6-4 SLC-6 Impact Assessment :-B3, B4, B6 ..... 130
3.5.6-5 SRM and Facilities Cost Discriminators ..... 131
3.5.7-1 Summary of Key Discriminators ..... 132
3.5.7-2 Configuration and Concept Assessment ..... 133
4.2.1-1 High-MEOP Four-Segment SRM Performance Summary ..... 140
Page
4.2.1-2 Two-Segment SRM Optimization Options ..... 143
4.2.1-3 Two-Segment Second-Stage SRM Performance Summary ..... 149
4.2.2-1 Strut Design Approach ..... 152
4.2.2-2 Axial Load Transfer Via Drag Strut at Liftoff ..... 153
4.2.2-3 Strut Tube Characteristics ..... 158
4.2.2-4 Reference STS Strut Data ..... 159
4.2.2-5 . Reference Weight Data-Forward and Aft Struts ..... 160
4.2.2-6 Forward Strut System Load Capability and Weight ..... 161
4.2.2-7 Aft Strut System Load Capability and Weight ..... 163
4.2.2-8 Shroud Design Approach ..... 165
4.2.2-9 Shroud Sections Skin Thickness and Weight ..... 171
4.2.2-10 Stage 2 Forward Skirt Design Approach and Weight ..... 174
4.2.3-1 SRB-X Avionics Equipment Weight and Heritage ..... 184
4.2.4-1 Control System Gains ..... 187
5.1.3-1 Vehicle Mass Summary ..... 203
5.2.2-1 Potential Performance Improvements. ..... 209
6.1.1-1 KSC Ground Operations Timeline Summary ..... 213
7.2-1 Major System-Level Test ..... 224
7.2-2 Major Integrated Vehicle Level Test ..... 225
8.1.3-1 Program Cost Summary ..... 232
8.2.2-1 Vehicle DDT\&E Cost ..... 235
8.2.2-2 Flight Hardware DDT\&E and First Flight Unit ..... 236
8.2.2-3 Facilities Cost ..... 238
8.3.1-1 FWC SRM Relative Cost ..... 241
8.3.2-1 Cost Per Flight ..... 242
8.3.2-2 Operations Cost Breakdown ..... 243
10.0-1 Launch Vehicle Characteristics ..... 247
10.0-2 SRB-X Assessment ..... 248

## GLOSSARY

| ASE | airborne support equipment |
| :---: | :---: |
| AT | access tower |
| ATP | authorization to proceed |
| BAC | Boeing Aerospace Company |
| CCAFS | Cape Canaveral Air Force Station |
| CER | cost-estimating relationship |
| CG | center of gravity |
| C/O | checkout |
| COR | Contracting Officer's Representative |
| DDTơE | design, development, test, and evaluation |
| DOD | Department of Defense |
| EEC | extendable exit cone |
| ET | external tank |
| ETR | Eastern Test Range |
| FBR | forward bearing reaction |
| FFU | first flight unit |
| fps | feet per second |
| FSS | fixed service structure |
| FWC | filament-wound case |
| FY | fiscal year |
| GEO | geosynchronous Earth orbit |
| GLOW | gross liftoff weight |
| GSE | ground support equipment |
| GVTA | ground vehicle test article |


| HB | high bay |
| :---: | :---: |
| HEUS | high energy upper stage |
| HHC | hammerhead crane |
| HPM | high-performance motor |
| IEA | integrated electronics assembly |
| 10 C | initial operating capability |
| IUS | inertial upper stage |
| KSC | Kennedy Space Center |
| LC | launch complex |
| LEO | low Earth orbit |
| LETF | launch equipment test facility |
| LM | launch mount |
| LPS | launch processing system |
| MDM | multiplexer demultiplexer |
| MEOP | maximum expected operating pressure |
| MLP | mobile launcher platform |
| MSFC | Marshall Space Flight Center |
| MST | mobile service tower |
| NASA | National Aeronautics and Space Administration |
| OMS | orbital maneuvering subsystem |
| OPF | orbiter processing facility |
| OTV | orbital transfer vehicle |
| PCM | Parametric Cost Model |
| PCR | payload changeout room |
| PPR | payload preparation room |
| POST | Program to Optimize Simulated Trajectories |
| PSF | processing and storage facility |
| psf | pounds per square foot |
| psia | pounds per square inch absolute |



### 1.0 INTRODUCTION

This volume documents the technical effort associated with the selection and definition of the recommended SRB-X concept. Included are discussions concerning the trades leading to the selected concept, the analysis that established the concept's basic subsystem characteristics, selected configuration description and performance capabilities, launch site operations and facility needs, development schedule, cost characteristics, risk assessment, and a cursory comparison with other launch systems.

### 1.1 BACKGROUND

The SRB-X study was initiated by NASA in response to preliminary investigations that suggested future launch requirements could best be satisfied by a mixed fleet of manned and unmanned launch vehicles. Manned requirements are expected to be met by the space shuttle, at least to the turn of the century, but requirements for the unmanned vehicle are not specific at this time. The following, however, represent potential uses or benefits that indicate, when viewed collectively, that an unmanned vehicie couid be a valuable addition to the space transportation system (STS). Such a vehicle could-
a. Provide shuttle contingency or backup in the event of an out-of-service orbiter, major accident, or failure to achieve acceptable turnaround time.
b. Deliver payloads that exceed the size and mass constraints imposed by the shuttle.
c. Free the shuttle for missions unique to its capabilities, thus extending the life of the orbiter fleet.
d. Supplement the shuttle flight rate in the event launch needs increase appreciably. e. Deliver cargo considered hazardous or presenting additional risk to the shuttle.

The SRB-X is one of several shuttle-derived vehicle (SDV) concepts being considered for the unmanned launch vehicle role. The distinguishing feature of the concept is that, to the greatest extent possible, primary propulsion would use the space shuttle's solid rocket motors (SRM), boosters, or derivatives rather than the $\mathrm{LO}_{2} / \mathrm{LH}_{2}$ main propulsion system.

### 1.2 OBJECTIVES

The overall study objective was to provide a preliminary concept definition for NASA to compare with other candidates. The specific objectives were to-
a. Conduct trade and sensitivity analyses to determine the most promising concept.
b. Determine performance capabilities, mission and operational characteristics, and facility requirements.
c. Develop cost and schedule characteristics for the selected concept.

### 1.3 GUIDELINES AND ASSUMPTIONS

Principal guidelines and assumptions used during the study were-
a. Consideration of variations in STS solid rocket motor in terms of case material, number of segments, propellant, and nozzle design.
b. Consideration of other types of solids and liquid stages for intermediate and upper stages.
c. Interchangeability of payload and vehicle elements with STS as a desirable goal.
d. Launch from either Kennedy Space Center (KSC) or Vandenburg Air Force Base (VAFB).
e. An original initial operating capability (IOC) of 1987, subsequently revised to 1990.
f. Payload capabilities revised to--

1. Low Earth orbit (LEO)-comparable to STS (greater than or equal to $60,000 \mathrm{lb}$ )
2. Polar-STS mission 4 (greater than or equal to $32,000 \mathrm{lb}$ )
3. Geosynchronous Earth orbit (GEO)-existing and planned upper stages available by IOC (greater than or equal to $15,000 \mathrm{lb}$ with advanced cryogenics)

IOC was revised to 1990 to reflect NASA redirection of the earliest date for a new start-1986 rather than 1984. Accordingly, payload requirements were adjusted to reflect needs in the 1990's.

### 1.4 SCOPE OF ACTIVITY

The study consisted of 10 months of technical effort and 2 months of documentation. Emphasis during the first quarter was on investigating a wide range of concepts and conducting several screenings to obtain the selected concept. Visits were made to Thiokol/Wasatch Division, which is responsible for STS solid rocket booster (SRB) manufacturing, and to VAFB, KSC, and Cape Canaveral Air Force Station (CCAFS) launch facilities. During the second quarter, a preliminary definition of the selected concept was performed, followed by final system definition with emphasis on programmatics in the third quarter. Table 1.4-1 summarizes the scope of activity.
SECOND QUARTER

- PERFORMANCE IMPROVEMENT POTENTIAL


## - operational characteristics <br> - COMPLETE FACILITY REQUIREMENTS <br> - PRELIminary cost and schedule

FOURTH QUARTER

- documentation
0


## FIRST QUARTER

- DATA EXCHANGE WITH SUPPORTING CONTRACTORS
AND GOVERNMENT AGENCIES - AND GOVERNMENT AGENCIES
- PRELIMINARY PERFORMANCE
- ETR AND WTR INSPECTION
- FACILITY REQUIREMENTS
- CONCEPT SCREENINGS (3)


## THIRD QUARTER

- Final configuration definition
- FINAL PERFORMANCE CAPABILITIES
- GROUND OPERATIONS
- TEST PROGRAM
- FINAL COST AND SCHEDULES


### 2.0 SUMMARY

Over 1100 vehicle concepts were examined during the selection process for the recommended $\mathrm{SRB}-\mathrm{X}$ concept. Several screening cycles reduced the number of candidates when relative payload capability and impact on launch complex were considered primary evaluation criteria. Final configuration selection emphasized the ability to satisfy expected payload requirements for the 1990 's, with $15,000 \mathrm{lb}$ to GEO being the most demanding.

### 2.1 FINDINGS

Principal findings, including the selected configuration, are summarized in figure 2.1-1.

Configuration. The launch systern is a three-stage vehicle that relies heavily on technology available from existing programs. Stage 1 consists of two reusable foursegment STS SRB's. Filament wound cases (FWC) are baselined for performance reasons; however, no significant impact on recurring cost is expectex. Stage 2 aiso uses a solid rocket motor consisting of two of the STS FWC segments but with a new grain design and optimized nozzle. Stage 3 is a modified version of the Titan core stage II. Key features include a $50 \%$ increase in storable propellant loading and a higher expansion ratio nozzle. Avionics for vehicle guidance and control are located in a control module located immediately above stage 3. Due to load considerations, both stage 3 and the control module are enclosed within an interstage during the first 185 sec of flight. Any existing or currently planned upper stage can be accommodated for missions above LEO. The payload shroud allows accommodation of shuttle-sized payloads.

Performance. As a three-stage vehicle, over $60,000 \mathrm{lb}$ can be placed in a $100-\mathrm{nmi}$, 28.5-deg orbit; 49,000 lb into $100-\mathrm{nmi}, 90-\mathrm{deg}$ orbit; and $18,000 \mathrm{lb}$ into GEO transfer. Use of an advanced cryogenic stage, such as the high-energy upper stage (HEUS), would allow $16,000 \mathrm{lb}$ placed in GEO. Acceleration levels are compatible with payloads designed for shuttle delivery.

Facility Requirements. Facilities available at KSC and VAFB are adequate for system processing and vehicle assembly and launch. Most of the facilities are the same as for the shuttle; however, a limited amount of modification is necessary. Principal
origimal Padie ds OF POOR QUALITY




modifications at both sites include provisions for access platforms and umbilicals necessary for vehicle core elements; and at KSC, a new pad crane is also required.

Implementation Plan. The first launch of the SRB-X is projected within 4-1/2 years after phase C/D go-ahead. This schedule assumes no preimplementation effort and a conservative test program. Key tests include five test firings of the new stage 2 SRM and integrated vehicle tests to verify primary loadpaths, coupled dynamics, and facility interfaces. Most of the facility equipment can be installed on a noninterference basis relative to the shuttle. The lone exception is at KSC pad 39B, where installation could best be done with a 6 -month shutdown. Theoretically, however, pad 39A can handle all but 15\% (two or three) of expected launches at that time, barring any accident.

Cost. Development costs associated with the program are estimated at approximately $\$ 745$ million in 1982 dollars. The vehicle contribution is $\$ 630$ million and facility modifications (at KSC and VAFB), $\$ 115$ million. Cost per flight for the three-stage vehicle, based on six flights per year, is estimated at $\$ 100$ million.

Risk. The SRB-X concept is judged to be a low-risk program, primarily because of the extensive use of existing systems, components, and facilities. No new technology development areas were identified. The most significant risk is that of the availability of the Titan core stage II, used as the third stage for SRB-X. Titan production is presently scheduled to end 3 years prior to SRB-X IOC. Reopening of the production line has been estimated at $\$ 30$ to $\$ 40$ million. An alternative to this stage is an MX-type first stage; however, the LEO payload would be decreased by nearly 7000 lb .

Comparison With Non-SDV's. When compared with non-SDV's, such as growth Atlas, Titan, or Ariane, the SRB-X was found to have considerable advantages in payload capability, delivery cost per pound of payload, and operational flexibility. Principal disadvantages are higher development cost and potentially longer development time.

Conclusion. An SRB-X unmanned launch vehicle, as illustrated in figure 2.1-2, relying heavily on STS SRM and SRB technology was found to have performance, operational, and cost characteristics that would make it an effective supplement to the Nation's space transportation system, should the need exist.


Figure 2.1-2. SRB-X Concept

### 2.2 RECOMMENDATIONS

Recommendations from this study are not exclusive to SRB-X alone. They also deal with the general topic of SDV's that could supplement the shuttle. The rationale for this approach is that concepts such as SRB-X and those defined in references 1 and 2 have reached a level of maturity to allow an overall assessment and formulation of a launch vehicle plan. Accordingly, the following steps are recommended.
a. Compare the various SDV concepts against foreseeable mixed fleet scenarios. Several scenarios are appropriate because of the uncertainty that exists in shuttle launch requirements and operational capability. The expected output would be a recommended concept for each scenario investigated.
b. Address the critical elements that must be resolved for each selected SDVscenario combination. Such action would allow rapid response to the possibility of an urgent mixed-fleet requirement in the foreseeable future. Conceivably, this action may include some predevelopment effort.

An extensive launch vehicle data base exists. Action should be taken to convert this iniurmation into implementation plans for future needs.

### 3.0 CONCEPT AND CONFIGURATION TRADES

This section describes the various concepts considered and the analyses associated with selecting a preferred concept. Because a very large number of configuration options were possible, a rather complete discussion is presented to indicate how the preferred concept was selected.

### 3.1 CONCEPT OPTIONS

The development of candidate SRB-X concepts took into consideration the wide range of payload requirements to be satisfied at the beginning of the study as well as the large number of existing stages that could be utilized. To satisfy payload needs, three basic vehicle classes (designated A, B, and C) were identified. Differences between the classes are in the numbers of boosters used at liftoff: class $A$ uses a single booster; class B , two boosters burning in parallel; and class C , three boosters burning in parallel, Payload targets for each class are shown in figure 3.1-1. Three- and four-stage vehicles were investigated for each payload destination.

The stage options considered focused heavily on the use of the STS SRM, particularly for first- and second-stage application. The segmented or component nature of this SRM, as indicated in figure 3.1-2, provided the opportunity to use various combinations to form SRM's, ranging from one to five segments and consequently offering a wide range of options. Options available for third and fourth stages also included derivatives of the STS SRM as well as other existing SRM's and systems using storable and cryogenic propellant.

The class A vehicle concepts identified are shown in table 3.1-1. A total of 432 three- and four-stage options were identified. A given concept is formulated by combining one of the types of systems listed under each stage until a three- or four-stage vehicle is available. Examples of several options are indicated as well as the coding method used for identification in the performance model. Also to be noted is the addition of strapons for this class of vehicle as a means to provide additional payload capability. The only stage option indicated that was not currently available or in procurement as a basic system or a derivative thereof was the widebody Centaur. Not included at the time of concept identification was the HEUS; however, it was considered prior to the selection of the recommended configuration.

The class B vehicle options are shown in table 3.1-2. Because two boosters form the first stage, a wider range of options exists for the first and second stages relative to class A. Options for stages 3 and 4 are the same as for class A. A total of 432 vehicle

## ORIGINAL PAGE IS OF POOR QUALITY

SRB-X-146 $\begin{array}{lc}\text { BOOSTER STAGES } & \text { ONE } \\ \text { VEHICLE STAGES } & 3 \text { AND } 4 \\ \text { PAYLOAD TARGETS (SOW) KLBS } \\ \text { LEO } & 35,000 \\ \text { POLAR } & 25,000 \\ \text { GEO } & 7,000\end{array}$
UnMu:iか:
OF POOR QUALITY



## 65,000 45,000 12,000

Figure 3.1-1. Configuration
Onginal PAGE IS

Figure 3.1-2. STS-SRM Steel Case Components
Table 3.1-1. SRB-X Class A Options

- 432 combinations


[^0]


2ND STAGE OPTIONS

3RD STAGE OPTIONS


\[

$$
\begin{aligned}
& \text { STRAP-ONS } \\
& \hline \text { 1. } 2 \times 1 \text { SEGMENT SRB } \\
& \text { 2. TITAN } 35 \text { SEE S/O } \\
& \text { 3. } 3 \times 1 \text { SEG SRB } \\
& \text { 4. } 4 \times 1 \text { SEG SRB } \\
& \text { 5. TITAN } 7 \text { SEG S } / O \\
& \text { 6. DELTA CASTORS (14) }
\end{aligned}
$$
\]

ORIGINAL PAGE IS OF POOR QUALITY
Table 3.1-2. SRB-X Class B Options

tridertt derived
MX DERIVED
$\Delta \Delta$

1ST STAGE OPTIONS

1. $2 \times$ 3-SEGMENT SRB
2 2 $2 \times$ 4-SEGMENT SRB
2. $2 \times 5$ SEGMENT SRB

options were also possible for the class $B$ vehicle, Class $C$ vehicles considered are presented in table 3.1-3. A total of 216 options were identified.

### 3.2 SCREENING PROCESS OVERVIEW

The process of analyzing the large number of vehicle options and eliminating less desirable options involved three separate steps. An overview of this process is shown in table 3.2-1. Subsequent subsections will discuss each step in detail. The first screening step considered the total spectrum of concept options but was confined to using ideal delta V's. Only FWC's were considered because payload capability is a major criterion and it was felt that if a given concept could not satisfy the requirement with FWC, it certainly would fail with steel cases. Another major consideration was that of facility impact. A number of class A options involved strapons and class $C$ options provided large payload capabilities, but many options within both classes were eliminated due to severe facility impacts. As a result, only 12 basic configurations were considered for the second screening.

During the second screening analysis, the decision was made to utilize three-stage vehicles for LEO and polar and four-stage vehicles only for GEO missions. Velocity requirements were adjusted as a result of preliminary POST runs. Vehicle performance was determined for both steel and FW cases. Primarily as a result of the steel case performance assessment, the number of configuration options was reduced to six.

The final screening of the first quarter was done using delta V's from POST runs related to each vehicle option and for each mission. The analysis also involved updated stage performance and weight characteristics.

### 3.3 FIRST SCREENING ANALYSES

The primary objective of the first screening was to reduce the number of options so a more thorough analysis could be performed on those remaining. The approach used to accomplish the objective was to develop preliminary system characteristics in terns of weight and propulsion data for each vehicle stage option and determine vehicle level differences that would result in the elimination of some options.

### 3.3.1 System Characterization

Preliminary weight estimates were established in terms of stage inserts, inter--stages, and payload shrouds. Propulsion characteristics defined included specific impulse O. (Isp), Wrest, and propellant loading.


Table 3.1-3. SRB-X Class C Options
 -


ORIGINAL PAGE IS OF, POOR QUALITY
1ST STAGE OPTIONS


| THIRD SCREENING |
| :--- |
| - POST DELTA ${ }^{\prime}$ 'S |
| - UPDATED STAGE WEIGHTS |
| AND PERFORMANCE |
| - FW AND STEEL SRM |
| - 6 BASIC 3 STAGE |
| CONFIGURATIONS PLUS 4TH |
| STAGE FOR GEO |
| - CRITERIA |
| - PAYLOAD |
| - FACILITY IMPACT |
| - STABILITY AND CONTROL |
| - DEVELGFMENT COST |
| (PRELIMINARY) |

Table 3.2-1. Configuration Screening Process
SECOND SCREENING

- IDEAL DELTA V WITH
SELECTED ADJUSTMENT
- PRELIMINARY STAGE
WEIGHTS AND PERFORMANCE
- FW AND STEEL CASE SRM
- 12 BASIC 3 STAGE
CONFIGURATIONS
- CRITERIA
- 3 STAGE FOR LEO AND
POLAR
- 4 STAGE FOR GEO
PREBGRESS TO DATE
FEBRUARY 15, 1982
FIRST SCREENING
- IDEAL DELTA V
- PRELIMINARY STAGE
WEIGHTS AND PERFORMANCE
- FWC SRM
- ~ 1100 CONFIGURATIONS
3 AND 4 STAGE VEHICLES
- CRITERIA
- LEO AND GEO PAYLOAD
- G LEVEL
- FACILITY IMPACT
(QUALITATIVE)
C
COORDINATION BRIEFING
JANUARY 19, 1982

Characteristics associated with STS SRM derivates involving one through five segments are shown in table 3.3-1. It should be noted that the SRM's reflect use of FW rather than steel cases. This approach was used because the lower inert weight would give better vehicle performance; if a given concept could not satisfy performance targets with FWC, neither could it with steel. The longitudinal expansion ( 0.6 in ) is the same as that used for the shuttle. Five- and three-segment motors reflect the same nozzle as the four-segment SRM used with the shuttle. One- and two-segment motors reflect nozzles restricted to 132 -in diameter, as dictated by interstage constraints.

A complete listing of weight and propulsion characteristics for each type of stage considered, as well as weights for other vehicle elements, is presented for class $A, B$, and $C$ vehicles, respectively, in tables 3.3-2, -3 , and -4 . It will be noted that differences have been indicated for many of the characteristics for a given SRM depending on the stage application. Interstage weights relate to the stage indicated and the stage immediately above it. The exception is on class $B$ and $C$ vehicles where the interstage between stages 1 and 2 has been included within the subsystem weights of stage 1 . Shroud weights reflect the length of the stage involved as well as a percentage of the expected payload for the vehicle. A very preliminary estimate of unit cost is also included and supplemental cost data are provided in table 3.3-5.

### 3.3.2 Evaluation Factors

The primary factor used to screen candidate vehicle concepts was LEO and GEO payload capability. Key factors associated with the performance estimates are as follows:
a. LEO orbit with altitude of 100 nmi and inclination of $\mathbf{2 8 . 5}$ deg.
b. Staging orbit for GEO missions of 100 nmi .
c. Ideal delta $V$ for all destinations.

1. LEO: $30,000 \mathrm{fps}$.
2. GEO: $44,000 \mathrm{fps}$.
d. Shroud separation immediately after second-stage separation.
e. Zero and/or first-stage burns initiated together.
f. Liftoff thrust-to-weight ratio based on maximum SRM thrust.
g. Burnout thrust-to-weight ratio based on average thrust.

Ot Other factors, such as those that follow, were also used to evaluate and screen the vehiçle concepts:
SRB-X-35
Table 3.3-1. STS-SRM Derivative Characteristics

Table 3.3-3. SRB-X Class B Stage Characteristics


ORIGINAL PAGE IS
OF POOR QUALITY

SRB-X-78


```
c*3044 % **mact
```

*ramblura "o
a. Cost per payload pound delivered to destination.
b. Facility impact-qualitative.
c. Stage development cost--qualitative.
d. Maximum thrust-to-weight ratio of 8 -assumes tailoring could reduce to 4 .
e. Liftoff thrust-to-weight ratio exceeding 1.1.
f. GLOW not to exceed $6,000,000 \mathrm{lb}$.

### 3.3.3 Class A Vehicle Results

The performance and vehicle characteristics of each candidate (for all classes) were compiled in the format shown in table 3.3-6. In this case, a LEO mission was performed. Key outputs include payload, thrust-to-weight ratio, velocity split, shroud weight, and total liftoff weight.

Vehicle options for all classes were compared using several methods. The first involved a sequential listing of the best to worst, in terms of payload capability and cost per pound of payload delivered to destination. A second method was to look separately at three- and four stage vehicles and compare the individual stage options in terms of vehicle level performance.

### 3.3.3.1 Sequential Comparison

A partial listing of the LEO capability of class A vehicles is shown in table 3.3-7. A complete listing is provided in appendix A. As would be expected, the highest payload capability is provided by concepts using four stages, strapons, and advanced cryogenic upper stages (widebody Centaur). A capability of nearly $80,000 \mathrm{lb}$ was provided by a concept using four one-segment strapons, four-segment stage 1 , two-segment stage 2 , one-segment stage 3, and a widebody Centaur. A total of 236 concepts satisfied the target requirement of $35,000 \mathrm{lb}$.

A partial listing of the cost-per-pound comparison is shown in teple 3.3-8. It will be noted that the cheapest vehicle employs the use of several DOD SRM's (S1 and S3), which is considerably different from the best payload capability vehicle. The payload capability of this vehicle is down considerably ( $52,000 \mathrm{lb}$ versus $80,000 \mathrm{lb}$ ).

The ranking of the vehicles in terms of GEO payload capability is presented in table 3.3-9. The best vehicle for this application provides nearly $16,000 \mathrm{lb}$ and includes most of the same elements as the best LEO vehicle, with the exception of the third stage. A complete listing for GEO capability is also provided in appendix A. A total of 90 concepts satisfied the target value of 7000 lb .
Taßle 3.3-6. Class A Performance Output

Table 3.3-8. Class A LEO Payload Cost per Pound


## ORIGINAL PAGE IS OF POOR QUALITY

象



### 3.3.3.2 Stage-by-Stage Comparison

In this comparison, a reference vehicle was selected and each stage was investigated separately using its various options to determine their impacts. The abbreviations and codes used for this comparison are shown in figure 3.3-1. Comparison of three-stage vehicles is presented in tables 3.3-10 and -11 . Four-stage vehicles are compared in tables 3.3-12 and -13.

### 3.3.3.3 Conclusions and Recommendations

The conclusions and observations resulting from the class A analysis are presented in table 3.3-14. The concepts recommended for further investigation and supporting rationale are presented in table 3.3-15. It will be noted that the concepts have been grouped into "families" with a three-stage vehicle being used for polar missions and a fourth stage (Centaur) added to provide maximum LEO and GEO capability.

### 3.3.4 Class B Vehicle Results

### 3.3.4.I Sequencial Comparison

A partial listing of LEO and GEO capability for class $B$ vehicles is shown in tables 3.3-16 and -17 , respectively. A complete listing of those concepts satisfying the screening criteria is provided in appendix A. In the case of LEO capability, nearly $85,000 \mathrm{lb}$ was possible with a configuration consisting of: two four-segment SRB's for stage 1 , one five-segment $\operatorname{SRB}$ for stage 2 , one one-segment $\operatorname{SRB}$ for stage 3 , and a widebody Centaur for stage 4. A total of 38 concepts satisfied the target requirement of $65,000 \mathrm{lb}$, with all involving four-stage vehicles.

Maximum GEO capability obtained was nearly $15,300 \mathrm{lb}$. The associated configuration was considerably different from the LEO vehicle inasmuch as stage 1 employed two five-segment SRB's; stage 2, one two-segment SRB; stage 3, a Titan second stage; however, stage 4 was common in the form of the widebody Centaur. The maximum LEO capability vehicle was not far behind in terms of GEO capability at $15,000 \mathrm{lb}$. A total of 32 concepts provided the target payload of $12,000 \mathrm{lb}$.

### 3.3.4.2 Stage-by-Stage Comparison

Again, this comparison investigated each stage, one at a time, and the options associated with that stage in terms of vehicle level impact. Comparison of three-stage vehicles is presented in tables 3.3-18 and -19 and four-stage vehicles in tables 3.3-20 and -21. Some of the more interesting concepts are summarized in table 3.3-22.

ORIGINAL PAGE IS OF POOR QUALITY

ABBREV.
E
0-4(2)-4-1-0
NAME
SEGMENT SRB (NUMBER INDICATES QTY)
SEGMENT SRB
S SEGMENT SRB
SEGMENT SRB
TITAN STRAP SRB 5 SEGMENT (2)
TITAN STRAP-ON 7 SEGMENT (2)
DELTA CASTORS (14)
IST STAGE LAND LAUNCHED MISSILE
IST STAGE SEA LAUNCHED MISSILE
2ND STAGE LAND LAUNCHED MISSILE
CENTAUR DI -T
WIDE BODY CENTAUR
TITAN 2ND STAGE
INERTIAL UPPER STAGE
TITAN TRANSTAGE
DELTA 2ND STAGE
TITAN IST STAGE

SRB-X-90
0
Table 3.3-10. Class A Three-Stage Vehicles

- beSt second stage (fixed 1ST AND 3RD)

| OPTION | PAYLOAD (K LBS) |  | COST/LBS |  | OTHERFACTORS/ <br> COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | LEO | GEO | LEO | GEO | MAX G |
| $0-4-1-C-0$ | 26.7 | 3.3 | 1090 | 8790 | 5.6 |
| $0-4-2-C-0$ | 29.4 | 3.6 | 1050 | 8600 | 10.5 |

- BEST THIRD STAGE (USING GOOD SECOND STAGE)

| $* 0-4-1-C-0$ | 26.7 | 3.3 | 1050 | 8790 | 5.6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $0-4-1-W B C-0$ | 33.1 | 4.4 | 1117 | 8440 | 4.7 |
| $* 0-4-1-T 2-0$ | 25.4 | $<0$ | 1020 |  | 4.5 |
| $0.4-1-53-0$ | 15.7 | $<0$ |  |  |  |
| $0-4-1-S 1-0$ | 23.3 | $<0$ |  |  |  |
| $0-4-1-1-0$ | 0.3 | $<0$ |  |  |  |

- OTHER INTERESTING CONCEPTS

| $* 0-4-2-$ T2-0 | 29.3 | 0.2 | 960 | $-\cdots$ | 7.0 (TO LEO) |
| :--- | :--- | :--- | :--- | :--- | :--- |

CONCLUSION: BEST 3 STAGE OPTION FOR BOTH MISSIONS: 4-1-C RETAIN 4-2-T2 AND 4-1-T2 FOR 4 STAGE VEHICLE

* SELECTION FOR THE INDICATED COMPARISON PARAMETER
Table 3.3-11. Class A Three-Stage Vehicles (Continued)
- BEST ZERO STAGE (STRAPONS) - WITH GOOD 3 STAGE VEHICLE

| OPTION | PAYLOAD (K LBS) |  | $\operatorname{cost}$ (\$/LB) |  | OTHER FACTORS/COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | LEO | GEO | LEO | GEO | MAX G |
| 0-4-1-C-0 | 26.7 | 3.3 | 1090 | 8790 | 5.6 PAYLOAD TOO LOW |
| * 1(2)-4.1-C-0 | 38.7 | 5.6 | 980 | 6840 | 6.9 LIFTOFF T/W MARG. |
| 1(3)-4-1-C-0 | 42.9 | 6.3 | 990 | 6740 | 6.8 FACILITY AND/OR |
| 1(4)-4-1-C-0 | 46.8 | 7.0 | 1000 | 6750 | 6.8 LIFTOFF G PROB. |
| (14)DC-4-1-C-0 | 30.6 | 4.1 | 1410 | 10590 | 7.0 PAYLOAD TOO LOW |
| * T05-4-1-C-0 | 41.3 | 6.0 | 1160 | 7330 | $6.9)$ |
| T07-4-1-C-0 | 45.8 | 6.8 | 1030 | 6900 | 6.8 LEAST $\triangle$ DEV COST |

- OTHER INTERESTING CONCEPTS

| T05-4-2-C |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T07-4-2-C |  |  |  |  |

CONCLUSION: ALL HAVE MLP FLAME HOLE CHALLENGE
RETAIN TITAN 7 SEG AND 5 SEG STRIAPONS AND POSSIBLY (2) 1 SEG SRB

* SELECTION FOR INDICATED COMPARISON PARAMETER
Table 3.3-12. Class A Four-Stage Vehicles

$$
\begin{aligned}
& \text { OTHER FACTORS/COMMENTS } \\
& \text { MAX G } \\
& \begin{array}{l}
\text { PROPER SIROUD } \\
\text { NOT INCUDED } \\
\text { COMPLEXITY }
\end{array} \\
& \text { cOMPLEXITY } \\
& \begin{array}{c}
\text { MAX G } \\
5.6 \\
5.6 \\
5.4 \\
5.1
\end{array} \\
& \begin{array}{l}
5.1 \\
4.6
\end{array} \\
& 7.1 \\
& \text { CONCLUSION: } 4 \text { Th Stage doesn't help with centaur 3rd stage }
\end{aligned}
$$

$$
\begin{aligned}
& \text { other interesting concepts } \\
& \begin{array}{lll}
\checkmark & 0-4-1-T 2-C & 40.2
\end{array} \\
& 5200 \\
& 4800 \\
& \text { CONCLUSION: RETAIN titan } 2 \text { nd as third stage for leo and add centaur for } \\
& \text { geo missions } \\
& \begin{array}{l}
\checkmark \text { SELECTION FOR INDICATED COMPARISON PARAMETER } \\
* \text { MODIFIED IUS }
\end{array}
\end{aligned}
$$

- BEST ZERO STAGE (STRAP-ONS) - WITH BEST 4 STAGE VEHICI_E

| OPTION | PAYLOAD (K LBS) |  | COST ( $\$ /$ LB $)$ |  | OTHER FACTORS |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | LEO | GEO | LEO | GEO | MAX G |
| 0-4-1-T2-C | 40.2 | 7.5 | 970 | 5200 | 4.5 |
| $* 1(2)-4-1-T 2-C ~$ | 54.9 | 10.8 | 870 | 4460 | 4.4 |
| 1(3)-4-1-T2-C | 60.1 | 11.8 | 870 | 4440 | 4.4 |
| 1(4)-4-1-T2-C | 64.8 | 12.8 | 880 | 4460 | 4.4 |
| DC-4-1-T2-C | 44.4 | 8.4 | 1190 | 6340 | 4.4 |
| $*$ T05-4-1-T2-C | 58.3 | 11.4 | 930 | 4720 | 4.4 |
| $*$ T07-4-1-T2-C | 62.6 | 12.2 | 910 | 4670 | 4.4 |

- OTHER INTERESTING CONCEPTS

| T07-4-2-T2-C | 67.7 | 13.0 | 870 | 4730 | 6.3 |
| :---: | :---: | :---: | :---: | :---: | :--- |
| T07-3-1-T2-C |  |  |  |  |  |

* RETAIN TITAN ANO (2) 1-SEGMENT STRAP-ONS FOR FURTHER COMPARISON
- 3 STAGE VEHICLES EVEN WITH STRAPONS HAVE MARGINAL GEO PERFORMANCE
Table 3.3-14. Conclusions and Observations
 - STRAPONS BOOST 4 STAGE PERFORMANCE TO CLASS B (TWO BOOSTER) LEVEL
- STANDARD CENTAUR IS ADEQUATE AS FOURTH STAGE
- "GOOD" VEHICLE: 4 SEQ BOOSTER; 1 SEQ STR; TITAN IND STAGE; D-IT CENTAUR
- could operate as three or four stage vehicle
- TITAN 2ND STAGE/CENTAUR INTEGRATION HAS BEEN DONE


## OBSERVATIONS:

## - TITAN ND STAGE GOOD MATCH IN STACK

- RESTART APPEARS READILY AVAILABLE - BETTER LEO PERFORMANCE THEN CENTAUR


## - 1 SEG VERSUS 2 SE SECOND STAGE - OPEN ISSUE

- OPTIMIZATION OF SECOND STAGE NEEDS TO BE DONE
37gis
Table 3.3-15. Recommended Class A Concepts

| FAMILY | CONFIGURATION CODE | APPLICATION 1 | RATIONALE FOR CONTINUED INVESTIGATION |
| :---: | :---: | :---: | :---: |
| 1 | $0-4-1-C-0$ <br> T05-4-1-C-0 | $\begin{aligned} & L, ~ P, G \\ & L, ~ P, ~ G \end{aligned}$ | - bASIC REF VEHICLE - MSFC CONFIG 3 <br> - RETAIN UNTIL POST TRASECTORY ANALYSIS; IS COMPLETED |
| 2 | $\begin{aligned} & 0-4-1-T 2-0 \\ & 0-4-1-T 2-C \end{aligned}$ | $\begin{aligned} & P \\ & L, G \end{aligned}$ | - 1 VERSUS 2 SEG TRADE HT, STABIL, FACIL, PERF TRADE-OFFS |
| 3 | $\begin{aligned} & 0-4-2-\mathrm{T}-0 \\ & 0-4-2-\mathrm{T} 2-\mathrm{C} \end{aligned}$ | $\begin{aligned} & P \text { P/ G } \end{aligned}$ | $\begin{aligned} & \text { - T2 PROVIDES NON-CRYO LEO/POLAR } \\ & \text { CAPABILITY } \end{aligned}$ |
| 4 | $\begin{aligned} & \text { T05-4-1-T2-0 } \\ & \text { T05-4-1-T2-C } \end{aligned}$ | $\mathbf{P}$ L, G | - ENHANCES BLOCK 2 PERF FOR 1990-95 REQUIREMENTS <br> - 1 SEG IS ADEQUATE WITH STRAP-ONS |
| 5 | $\begin{aligned} & 1(2)-4-1-\mathrm{T}-\mathrm{O} \\ & 1(2)-4-1-\mathrm{T} 2-\mathrm{C} \end{aligned}$ |  | - IF STS FACIL PROVE MORE DESIRABLE, SRB S/O PROVIDE COMPARABLE PERF AND UNIT COST BUT MORE DEV COST THAN BLOCK 3 <br> - MINIMUM VEHICLE DEVELOPMENT COST |

D P - POLAR, L - LEO, G - GEO

## ORIGINAL PAGE IS OF POOR QUALIT <br> OF POOR QUALITY



Table 3.3-16. Class B LEO Payload
SRB-X-61
Table 3.3-17. Class B GEO Payload

$\frac{135^{\circ} 5 T A S E}{3 M A 75}$



Table 3.3-18. Class B Three-Stage Vehicles
Table 3.3-19. Class B Three-Stage Vehicles (Continued)

Table 3.3-20. Class B Four-Stage Vehicles

- BEST FOURTH STAGE (WITH GOOD з STG VEHICLE)

| OPTION | PAYLOAD (K LBS) |  | COST ( $\$ /$ LB) |  | OTHER FACTORS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | LEO | GEO | LEO | GEO | MAX G |  |
| $* 4(2)-2-C-0$ | 40.8 | 5.5 | 930 | 6,930 | 9.7 |  |
| $* 4(2)-2-C-T T$ | 44.5 | 4.9 | 1,080 | 9,890 | 8.1 |  |
| $4(2)-2-C-I U S$ | 44.8 | 4.4 | 1,520 | 15,510 | 7.9 |  |
| $4(2)-2-C-C$ | 58.7 | 11.3 | 870 | 4,500 | 7.4 \| DOES NOT REFLECT |  |
| $4(2)-2-C-W B C$ | 65.8 | 12.9 | 900 | 4,580 | 6.7 PROPER SHROUD |  |
| $4(2)-2-C-S 3$ | 52.1 | 6.6 | 780 | 6,080 | 26.9 TOO HOT |  |

- OTHER 2ND/3RD/4TH STAGES COMBINATIONS

| $4(2)-4-C-T T$ | 46.0 | 4.7 | 1,130 | 11,100 | 11.3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $* 4(2)-2-T 2-C$ | 60.9 | 11.7 | 790 | 4,110 | 6.2 |
| $4(2)-3-T 2-C$ | 60.5 | 11.3 | 830 | 4,430 | 6.4 |
| $* 4(2)-4-T 2-C$ | 65.0 | 12.0 | 800 | 4,320 | 9.1 |
| $* 4(2)-4-1-C$ | 70.1 | 11.1 | 760 | 4,770 | 7.4 |

* SELECTION FOR INDICATED PARAMETER
Table 3.3-21. Class B Four-Stage Vehicles (Continued)

$\checkmark$ RETAIN FOR FURTHER COMPARISON
Table 3.3-22. Class B Summary




### 3.3.4.3 Conclusions and Recommendations

The conclusions and observations resulting from the class B analysis are presented in table 3.3-23. Five concepts are recommended for further consideration, as shown in table 3.3-24.

### 3.3.5 Class C Vehicle Results

This particuiar class of vehicle appeared to have the least amount of interest partly because other SDV concepts were more adapted to providing such large payload capability. Accordingly, this class received the least amount of analysis. A list of some investigated concepts is in table 3.3-25. It can be observed that three-stage vehicles of this class do not come close to satisfying the LEO target of $95,000 \mathrm{lb}$ or the GEO target of $17,000 \mathrm{lb}$; a number of four-stage concepts satisfied both targets. It was recommended that class $C$ vehicles not be investigated further at this time because: (1) other SDV's, such as those using $\mathrm{LO}_{2} / \mathrm{LH}_{2}$ in the lower stages, offer better capability; (2) there is very little evidence of relatively near-term payload requiring this much mass; and (3) the three parallel-burn first-stage boosters would press the limit of KSC launch platforms and be incompatible with those available at VAFB.

### 3.3.6 Summary and Recommendations

Some of the more interesting concepts for each vehicle class are summarized in table 3.3-26 to enable a class-to-class comparison. The observations made from these data are as follows:
a. Titan strapons make class A competitive with class B and offer the potential for using Titan facilities.
b. Vehicle core (selected second, third, and fourth stages) could be common between class A and class B.
c. Class $C$ vehicles offer considerable payload but approach facility modification feasibility limits-no additional effort warranted.

The recommendations from the first screening are as follows:
a. Pursue both class $A$ and class $B$ vehicles as indicated in their respective sections.
b. Strapon class $A$ versus class $B$ is key trade.
c. SRM second stage for both classes requires further investigation.

1. One segment versus two segment for class $A$.
2. Two segment versus four segment for class $B$.
Table 3.3-23. Conclusions and Observations

- 3 STAGE VEHICLES DO NOT SATISFY PERFORNIANCE TARGETS FOR THIS CLASS - 4 STAGE VEHICLES SATISFY TARGETS AND STS PERFORMANCE
- "GOOD" VEHICLE: 4 SEG BOOSTERS; 2 SEG SRM; TITAN 2ND STAGE; D-IT CENTAUR
COULD OPERATE AS A THREE OR FOUR STAGE VEHICLE
- OBSERVATIONS:
- TITAN 2ND STAGE GOOD MATCH IN STACK
- WITH RESTART - BETTER LEO PERFORMANCE THAN CENTAUR

- CONFIGURATION GEOMETRY IS A CHALLENGE
- 5 SEG BOOSTERS OFFER PERFORMANCE GROWTH
Table 3.3-24. Recommended Class B Concepts

- 3 STAGE VEHICLES

| OPTION | PAYLOAD (K LBS) |  | COST/LB |  | MAX G | GLOW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | LEO | GEO | LEO | GEO |  | $10^{6}$ LB |
| $5(3)-4-T 2-0$ | 67.3 | 5.4 | 750 | 9280 | $10.9(4)$ <br> $7.9(1)$ | 6.0 |
| $4(3)-5-1-0$ | 59.9 | $<0$ | 780 | - | 6.4 | 6.0 |

- 4 STAGE VEHICLES

| $4(3)-5-1-W B C$ | 102.8 | 18.3 | 660 | 3720 | 5.9 IN 3RD | 5.8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| $4(3)-4-1-W B C$ | 97.1 | 17.3 | 680 | 3820 | 6.0 IN 3RD | 5.5 |
| $5(3)-3-S 1-W B C$ | 95.4 | 18.4 | 700 | 3610 | 6.8 IN 2ND | 5.8 |
| $5(3)-3-T 2-W B C$ | 94.4 | 18.2 | 740 | 3810 | 7.7 IN 2ND | 5.8 |
| $4(3)-5-T 2-W B C$ | 93.2 | 17.8 | 740 | 3890 | 7.8 IN 2ND | 5.5 |
| $4(3)-5-1-C$ | 92.3 | 14.6 | 650 | 4120 | 7.1 IN 3RD | 5.8 |
| $* 5(3)-4-T 2-C$ | 92.0 | 17.0 | 690 | 3810 | 8.9 IN 2ND | 6.1 |
| $* 5(3)-4-1-C$ | 99.7 | 15.7 | 630 | 3980 | 7.1 IN 3RD | 6.4 |
| $* 4(3)-5-T 2-W B C$ | 105.0 | 20.0 |  |  |  |  |

* MOST PROMISING
SRB-X-79

Table 3.3-26. Vehicle Class Payload Comparison

d. Compare Titan second stage, Centaur, and MX first stage for SRB-X third-stage application.
e. Maintain MSFC configurations 3 and 6 as references.
f. If possible, develop evolutionary story of class A to class B (e.g., strapons, common upper stage core).
g. No further assessment of widebody Centaur since payload target can be met with standard D-IT.


### 3.4 SECOND SCREENING ANALYSES

A second screening analysis was initiated to further reduce the number of options and to address factors resulting from review of the first screening. These factors included the following. First, consideration of several new stage options: the Titan first stage as SRB-X stage 2 and the Delta second stage for SRB-X stage 3. Secondiy, reconsideration of a derivative of the MX first stage for SRB-X stage 3 application. This was the result of the concern associated with the phaseout of the Titan vehicle. Finally, evaluation of the options for the condition of the STS SRM and derivatives using steel rather than filament wound cases. This factor was the result of the uncertainty at this point in time regarding the reusability and cost of the FWC. This particular analysis was accomplished using two separate steps.

### 3.4.1 Preliminary Assessment

As a result of the first FWC coarse screening, 10 launch vehicle configuration families were recommended for further analysis. Consideration of the stage options mentioned above increased this number to 12.

Stage and vehicle element characteristics used in the preliminary assessment are, shown in tables 3.4-1 and -2. Again, inerts for the STS SRM derivatives reflect steel cases. The other change relative to the characteristics used in the first screening is that shroud weights have been changed against fourth as well as third stages.

Vehicle level performance and other characteristics associated with the candidate configurations are shown in tables 3.4-3 and -4 . These data led to the conclusion that four vehicle families and one individual configuration should be dropped from any further assessment. These include the following;

| Family | $\frac{\text { Configuration }}{\text { T05-4-1-C }}$ |
| :--- | :--- | | Rationale |
| :--- |
| Other strapon configurations |
| offer better performance and |
| equivalent facility impact. |

## Original pace be OF POOR QUALTY

c! \#DA sucis
Table 3.4-1. Class A Vehicle and Stage Characteristics $\$$

| APPLLC. |  | CODE Mumber | PROP |  |  |  | vac thr | 15P | $\begin{aligned} & \text {-renf } \\ & \text { ture } \\ & \hline \end{aligned}$ |  | throat aREA | $\begin{aligned} & \text { UNIT } \\ & \text { cost } \end{aligned}$ | SHROUD UELCHTS FIXED PER LB P/LL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| strapons | san exist | $\begin{aligned} & n A_{1} \\ & i n \theta a \end{aligned}$ | casoce 250090 | 153200 167800 |  |  | 2300000 | $\begin{aligned} & 277 \\ & 266 \end{aligned}$ | 96.05 | $10.0$ | 2450.8 1832.2 | $\begin{array}{r} 9800006 \\ 15000000 \end{array}$ | $0$ |
| Stage 1 | SRE $1 \times 4$ St | A 111 | 1107900 | 184108 | 5009 | $\bullet$ | 2856808 | 267.2 | 125.6 | 7.72 | 1987.1 | 7808008 | - |
| STAGE 2 | SAB $1 \times 1$ ST | $A^{2} 1$ | 314898 | 68309 | 2590 | $\bullet$ | 8 | 285.2 | 125 | 28.3 | 543 | 890808 | $\cdots$ |
|  | Sfiz $1 \times 2$ St | A 22 | 586908 | 87898 | 2580 |  | 1298600 | 277 | 125 | 14.8 | 1934.9 | 11909088 | - 0 |
| - | Tist | A 25 | 288549 | 17686 | - | - | 529000 | 391.4 | 208 | 18 | 390 | 10000898 | - 0 |
|  | CENT D1-T | A 31 | 33098 | 4859 | 1508 | 275 | 30809 | 44 | 44 | 57 | 43.0 | 13900898 | ${ }^{1590} .12$ |
|  | TITT34D 2 ND | A 3 | 66389 | 7250 | 1589 | 50 | 10 | 316 | 2.8 | 35.4 | 93.1 | 10090ee | 2358.12 |
|  | S-1 | A 35 | 96608 | 9009 | 1590 | 100 | 522490 | عаз | 52 | . 8 | 193 | 7009889 | 2350.12 |
| B) | D2N0 $\times 4$ | A37 | 51476 | 740 | 1500 |  | 39408 | 314 | 410 | 65 | 44.4 | 100000 | 2350 |
| Stage 4 | CENT Di-T | ${ }^{\text {A }} 43$ | ${ }^{30008}$ | 4856 | - | 75 | 38809 | 44 | 44 | 57 | 43.9 | 13090009 | 5509.12 |
|  | D | A 46 | 51476 | 7140 | - |  | 39480 |  | 10.2 | 65 | 14.4 | 100900ө9 | 2350. |
| (1) titan finst stage <br> (1) delta second stage <br> Sts sam's use steel cases |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 3.4-2. Class B Vehicle and Stage Characteristics $\$$

Table 3.4-3. SRB-X Class A Vehicle Summary

| FAMILY | CONFIGURATION CODE | PAYLOAD (K LBS) |  |  | GLOW (M LBS) | MAX G'S (STAGE) | APPROX. HT (FT) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | LEO | POLAR | GEO |  |  |  |
| A1 | $\begin{aligned} & 0-4-1-\mathrm{C}-0 \\ & \text { TO5-4-1-C-0 } \end{aligned}$ | 24.6 38.1 | $\begin{aligned} & 20.2 \\ & 31.2 \end{aligned}$ | $\begin{aligned} & 2.8 \\ & 5.3 \end{aligned}$ | $\begin{aligned} & 1.7 \\ & 2.8 \end{aligned}$ | $\begin{aligned} & 5.7 \text { (2ND) } \\ & 5.2 \text { (2ND) } \end{aligned}$ | 280 |
| A2 | $\begin{aligned} & 0-4-1-T 2-0 \\ & 0-4-1-T 2-C \end{aligned}$ | 23.0 37.1 | 18.2 31.2 | $<0.0$ 6.7 | 1.8 4.8 | $\begin{aligned} & 4.5 \text { (2ND) } \\ & 4.1 \text { (1ST) } \end{aligned}$ | 280 |
| A3 | $\begin{aligned} & 0-4-2-T 2-0 \\ & 0-4-2-T 2-\mathrm{D} 2(4) \\ & 0-4-2-T 2-C \end{aligned}$ | 26.2 $\sim 33.2$ 41.7 | 20.7 27.0 35.0 | 0.2 1.3 7.6 | 2.1 2.1 2.1 | 6.9 (2ND) <br> 5.0 (2ND) <br> 6.0 (2ND) | 305 |
| A4 | $\begin{aligned} & \text { T05-4-1-T2-0 } \\ & \text { T04-4-1-T2-C } \end{aligned}$ | 37.7 53.9 | 30.2 45.3 | $\overline{10.3}$ | 2.8 | 4.1 (15T) | 280 |
| A5 | $\begin{aligned} & 1(2)-4-1-\mathrm{T} 2-0 \\ & 1(2)-4-1-\mathrm{T} 2-\mathrm{C} \end{aligned}$ | 34.8 50.4 | 27.8 42.4 | 1.2 9.6 | 2.6 2.6 | $\begin{aligned} & 4.2 \text { (1ST) } \\ & 4.1 \text { (1ST) } \end{aligned}$ | 280 |
| A6 | $\begin{aligned} & \text { 0-4-T1-D2(4)-0 } \\ & 0-4-T 1-C-0 \end{aligned}$ | $\begin{array}{r} 30.9 \\ 37.8 \end{array}$ | 25.0 31.8 | $\begin{aligned} & 1.0 \\ & 6.7 \end{aligned}$ | 1.7 | 5.0 (2ND) <br> 8.1 (2ND) | 240 |

Table 3.4-4. SRB-X Class B Vehicle Summary


A2
4-1-T2-0
4-1-T2-C

A

B5

B7
7
3(2)-T1-T2-0
3(2)-T1-T2-C

Performance no better than A3; does not provide evolution to class $B$ vehicles.

Inferior to A4.

Insufficient polar performance with three stages. Primary reason is high inert weight of stage 3.

Reasonable payload; structural integrity not assessed but is very suspect.

### 3.4.2 Finai Assessment

The nine remaining configurations are indicated in table 3.4-5. The performance analysis of these configurations relative to the first screening involved the following adjustments: (1) jettisoning of shroud at 1 psf rather than at end of second-stage burns (2) use of a coast maneuver after second-stage burn, and (3) more optimum launch
 characteristics, it was also decided to determine performance for STS SRM's using both steel and FW cases. Characteristics of candidate stages involving steel SRM's were previously shown in tables 3.4-1 and .2. An equivalent set of data, except for the use of FWC SRM, is presented in tables $3.4-6$ and -7. A final performance adjustment revised payload requirements to reiate to time periods rather than to classes of vehicles. In addition, if possible, it would be desirable to satisfy polar requirinents with three-stage vehicles due to height considerations. The revised viewpoint on requirements is follows.

|  | Payload (1000 1b) |  |
| :---: | :---: | :---: |
| Revised performance requirements | 1987-90 | 1991-95 |
| Steel cases if possiole |  |  |
| Three stages for LEO and polar | 40 and 30 | 45 and 35 |
| Four stages for GEO | 8 | 12 |

Table 3.4-5. Leading Candidates for Second Screening

$$
\operatorname{sen}
$$ NON CRY FOR POLAR

- best strap-on vehicle
non cryo for polar
alternate ord stage
non cryo for polar
ref. class b vehicle
- one vehicle all applications
- 4 vs 2 deg 2 nd stage
- non cry for polar
- alternate first stage
- potentially best vehicle for
joilit wtr/etr application
- alternate ord stg, non cryo
LAUNCH VEHICLE
0-4-1-C-0



## $0-4(2)-2-51 \mathbb{D}$



D WOULD USE CENTAUR DIT FOE GEO SRB-X-116

| CODE |
| :--- |
| AI |
| AB |
| AA |
| AE |
| BI |
| BR |
| BS |
| BA |
| BE |


Table 3.4-7. Class B Vehicle and Stage Characteristics $\square$


The results for LEO, polar, and GEO missions are indicated in figures $3.4-1,-2$, and -3, respectively. The charts are formatted to indicate the performance if steel cases are used and the incremental increases in payloads should all STS SRM's within a vehicle use FWC's. From a performance standpoint, the assessment of these configurations is presented in table 3.4-8. Six configurations are judged to merit further examination.

The principal characteristics of these configurations are summarized in figure 3.4-4. The first configurakion listed under each vehicle is that used for polar; the second is for GEO mission. In all cases, the first two stages use SRB's. The third stage is the Titan core second stage (T2) in all configurations except B6. In this configuration, the third stage is similar to the MX first stage (S1). The A3 vehicle is a pure class A type vehicle. To satisfy the polar performance, a storable fourth stage was necessary in the form of the D2 (Delta core stage 2-a cluster of four units). The A4 configuration employs the use of two Titan 5-1/2 segment strapons. The B2 and B3 vehicles show the influence of different second stages; and B6, the impact of using a different third stage. Configuration B4 illustrates the height advantage resulting from using three-segment rather than four-segment first-stage SRB's. Fayioad capability for the vehicles when using steel cases is at least $30,000 \mathrm{lb}$ to polar and 9000 lb to GEO. A significant difference does exist in terms of height and GLOW. At this point, only the B4 configuration fits within the current STS facility constraints at WTR and ETR (hook height of 198 ft ), although B3 and B6 could be modified to be compatible. Key issues addressed in the third screening are also indicated.

### 3.5 THIRD SCREENING ANAL YSES

This section describes the analyses of the six configurations resulting from the second screening (see fig. 3.4-4) and concludes with the recommendation of a single concept. Analyses were performed only in those areas that would serve to establish technical feasibility of the concepts and/or indicate key differences between concepts that would contribute to the selection of the preferred concept. Technical areas analyzed and key issues are as follows:
a. Propulsion-SRM thrust tailoring and weight and performance update; improved liquid third stage.
b. Structures-Capability of existing systems to sustain SRB-X design conditions.
c. Performance-Update payload capability.
d. Flight control-Ability to follow flightpath and thrust vector control needs.
e. Facilities-STS versus Titan launch sites and extent of modification.
f. Cost-SRM and facility DDT\&E.


Figure 3.4-1. LEO Performance Comparison
$\cdots$

- 100 NM
- 100 NM CIRCULAR, SUN SYNC

$\begin{array}{cc}\text { ASSUMED } & \text { ASSUMED } \\ \text { 1987-1990 } & 1991-1995\end{array}$
(


Figure 3.4-3. GEO Performance Comparison
Table 3.4-8. Perfarmance Assessment

$$
\boldsymbol{E}_{0}
$$ - desirable goal

- LEO AND POLAR WITH 3 STAGE SATISFY ASSUMED 1987-90\% SATISEY ASSUMED $1987-90$,
REQ'T
SRB-X-113
327/327


The following sections summarize the technical areas and assess the configurations leading to a preferred concept.

### 3.5.1 Propulsion Characterization

### 3.5.1.1 SRM Analysis

The configurations investigated during the third screening included the basic STS four-segment SRM and derivatives involving one, two, three, and four segments. One configuration also involved the use of an MX first-stage SRM derivative. A summary of their characteristics is presented in the following paragraph. Further description of each SRM in terms of trades, design concept, and performance features and parametrics is presented in subsequent paragraphs.

Summary. Characteristics of SRM's used in the third screening analysis are summarized in table 3.5.1-1. In most cases, inert weights of the motor cases have been revised from the data available early in the study as a result of further design analysis performed by Thiokol. All derivative SRM's had the goal of maximum use of existing hardware. Specific impulses were also improved for several SRM's as a result of more detailed ballistics analysis and higher expansion ratios. Expansion ratios indicated for one- and two-segment motors were the result of the nozzle being restricted in exit diameter so it would have sufficient clearance within a 146 -in-diameter interstage. The expansion ratios for the three-segment SRM operating as a first stage and the foursegment SRM as a second stage were kept the same as the standard four-segment SRM in order to minimize development cost at the expense of a performance penalty. The characteristics of the Sl motor reflect use of the MX first-stage case; however, expansion ratio and grain design are all new.

One-Segment SRM. One-segment SRM designs were analyzed as upper stages. The data that follow relate specifically to configuration A4; however, within indicated constraints, they are applicable to any other SRB-X configuration previously discussed.

The major constraints included (1) restricting the nozzle to a 132 -in diameter since it would be enclosed within a 146 -in-diameter interstage and (2) a thrust-time profile that would not result in any more than 3.5 g 's for the vehicle.

Two motor designs were analyzed for the one-segment motor, both meeting the design constraints previously discussed. A comparison of the characteristics is shown in table 3.5.1-2. In each design, the burn rate was lowered as much as possible by tailoring the existing SRM propellant. With burn times of 215 and 185 sec for the two designs, the
Table 3.5.1-1. SRM Mass and Performance Summary

| SRM | APPLICATION | INERT MASS (K LBS) |  | PROPELLANT (K L.BS) | Isp-VAC (SEC) | BURN TIME (SEC) | $\varepsilon_{\text {Initial }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | LW STEEL | FWC $\square$ |  |  |  |  |
| 1 SEGMENT | 2ND STAGE | 51 * | 40* | 320 | $294 *$ | 185 * | 36 |
| 2 SEGMENT | 2ND STAGE | 78 * | 61 * | 610 | 286 * | 186* | 17.6* |
| 3 SEGMENT | 1St StAGE | 118 * | 92* | 835 | 267 | 130 * | 7.72 |
| 4 SEGMENT | 1ST StAGE | 146* | 108* | 1107 | 267 | 125 | 7.72 |
| 4 SEGMENT | 2ND StAGE | 146* | 108* | 1107 | 267 | 155 | 7.72 |
| S1 (MX TYPE) | 3RD STAGE | DNA | 13* 2 | 196 * | 304 * | 112* | 50 |

NOTE: NUMBERS HAVE BEEN FIOUNDED OFF
D REFLECT 0.6 INCH LONGITUDINAL EXPANSION FOR 4 SEGMENT MOTOR AND STEEL DOMES - MASS BASED ON THIOKOL FEASIBILITY STUDIES
2 KEVLAR CASES AND INCLUDES SUBSYSTEMS

* REFLECTS UPDATED VALUES FOR THIRD SCREENING
Table 3.5.1-2. SRB-X One-Segment SRM Comparisons

| Configuration A | Feature |
| :---: | :---: |
| Higher propellant loading (higher web fraction) | - Grain design |
| Allows simplifted grain tooling when casting in two half-segments |  |
| New Nozzle | . Nozzle |
| $\begin{aligned} & \text { - throat sized for } \\ & \text { MEOP } 1,016\left(D_{t}=20.9 \mathrm{in}\right) \end{aligned}$ |  |
| Expansion Ratio 39.9 | . Exnansion Ratio |
| 294.1 | - Performance Isn (lbf-s |
|  | 1 lm |
| 215 | Burn time (se |

motor impulse is delivered without exceeding 3.0g's. Higher performance potential is inherent in the A configuration because of higher propellant loading and delivered Isp. Nevertheless, configuration B was chosen for trajectory work because its propellant grain design is closer to that of the STS SRM.

The configuration B one-segment SRM design is shown in figure 3.5.1-1. This approach uses the forward casting segment case sections and the aft dome from the STS SRM. The new nozzle design has a $D_{t}=22.0$ in and a $D_{\text {NEP }}=132 \mathrm{in}$, resulting in an initial expansion ratio of 36. Propellant grain casting will load the forward segment with similar tooling to the present STS SRM. The number of slots is reduced to five for this design and the slot length is reduced by 101 in . The aft dome will be cast separately. Pressure-time and thrust-time histories are shown for the configuration $B$ one-segment motor in figure 3.5.1-2. These data satisfy limits on MEOP and keep vehicle acceleration substantially below 3.0g's. Better performance was potentially available by optimizing the thrust profile.

Two-Segment SRM. Several promisiry SRB-X designs used two-segment SRM's for the vehicle's second stage, including configurations A3, B3, B4, and B6. The constraints were the same as for the one-segment SRM regarding $g$ level and nozzle diameter. A larger nozzle diameter is possible for the $B$ configuration since it is not surrounded by an interstage; however, this investigation was delayed until a later date.

The two-segment SRM concept shown in figure 3.5.1-3 uses case sections from a forward segment, a center segment, and the aft dome of the STG SRM. For a nonrecoverable stage, the heavier stiffener case sections of an aft segment are not required since water impact is not a design factor, and the external tank (ET) attach section is not needed for the strut arrangement of configurations B3 and B6. Thrust tailoring was defined to keep vehicle accelerations below 3.0g's. Propellant burn rate was reduced to $0.28 \mathrm{in} / \mathrm{sec}$ resulting in a motor burn time of 186 sec . Propellant grain design is similar to that for the STS SRM, but the length of the elevon slots in the forward segment is reduced by 101 in and inhibitors are removed from the ends of the grain.

Baseline performance for this motor was based on an initial expansion ratio of 18 which was established because of a 132 -in-diameter limit for the exit cone. Ťhrust and pressure time history for the SRM is presented in figure 3.5.1-4.

Three-Segment SRM. The three-segment SRM was used as a first stage for configuration B4. The basic configuration was obtained by removing one of the center segments from the standard four-segment SRM. Several options were considered
ORIGINAL PAGE IS
OF POOR QUALTYY
 $\boldsymbol{\chi}$.



relative to performance characteristics. A comparison of these options is shown in table 3.5.1-3. A burn time of 130 sec was selected because of low cost and acceptable performance. The $110-\mathrm{sec}$ burn option had a higher thrust and, thus, less gravity loss but also had dynamic pressures of approximately 1000 psf and, consequently, was not selected. The key features of the selected three-segment SRM are shown in figure 3.5.1-5 with the thrust history shown in figure 3.5.1-6.

Four-Segment SRM-Stage 1. The four-segment SRM for stage 1 application was used in configurations A3, B2, B3, and B6. The SRM is by definition the same as that used for the shuttle. No additional performance or weight data are provided beyond those previously shown in table 3.5.1-1. The common elements between steel and filament wound cases are shown in figure 3.5.1-7.

Four-Segment SRM-Stage 2. The four-segment SRM as a sascond stage had application only with the B 2 vehicle concept. Three options were considered to provide a vehicle acceleration level of 3.5 g or less. The comparison of the options is shown in table 3.5.1-4. Option A reduced burn rate and maintained the same nozzle as the highperformance motor (HPM); option B removed inhibitors from the end segments and reduced burn rate; and option $C$ lowered the burn rate and reduced the nozzle throat. Option B was judged to offer the best overall characteristics. The characteristics of the selected motor are provided in table 3.5.1-5 and figure 3.5.1-8. Parametrics dealing with the sensitivity of Isp and nozzle length and weight versus expansion ratio are presented in figures 3.5.1-9, -10 , and -11 . Vehicle level performance trades have indicated that although higher Isp's are possible, the additional nozzle weight eliminates most of its benefit.

MX-Type First Stage (S1)-Stage 3. A derivative of the MX first stage was defined for application as an SRB-X third stage in the B6 configuration (4(2)-2-S1). The basic MX first-stage SRM is shown in figure 3.5.1-12. The SRM uses a filament wound case and TP-H1202 propellant. Thrust and pressure time histories are shown in figure 3.5.1-13. The greatest challenge in the use of this SRM was tailoring the thrust profile to provide a vehicle acceleration level no greater than 3.5 g 's. Several nozzle expansion ratios were investigated and are compared in table 3.5.1-6. Because this option was being considered as an alternative to the Titan second (T2) stage, it was decided the lengths of these two candidates should be the same. Accordingly, an expansion ratio of 50 was found to provide a length comparable to the stretch version of the Titan second stage, which is described in the next paragraph.
Table 3.5.1-3. SRB-X Three-Segment SRM Comparisons

$\mathrm{R}_{\text {II }}$ Decrease
Increased
132
0.423
2.3
271.8
Medium
응 을
4
4
4
Reference
$\stackrel{M}{\underline{\sim}} \underset{\sim}{\sim}$
267.2
Minimol
Parameter
Inert Welg̣ht
Burn Time
Burn Rate alo00 psia
Max F/W
Ispv
Cost Impact
REMOVE CENTE S SMENT \& INCAEASE R RO TO MATCH 1.30 SEC


# 0.451 pss 61000 ps 1 $130 \mathrm{sec}:$ 

*Welght for FWC
$120,435(92,134) * \mathrm{lbm}$
Figure 3.5.1-5. SRB-X Three-Segment SRM Recommended Configuration


Figure 3.5.1-6. SRB-X Three-Segment SRM Pressure and Thrust Time Histories



> ORIGINAL PAGE IS OE POOR QUALTİ


OF POOR QUALITY.
gistay savirime.


Table 3.5.1-4. SRB-X Four-Segment Second-Stage SRM Option Comparisons


Reduced $\mathrm{R}_{\mathrm{bo}}$
Same
200
.310
3.3
266.8
.
LOW

Table 3.5.1-5. SRB-X Four-Segment Second-Stage SRM Performance Summary

$$
\begin{array}{r}
0.37 \\
155 \\
878 \\
-- \\
1,914,932 \\
267.5 \\
483 \\
296,232,210 \\
1,107,450 \\
3.5
\end{array}
$$Burn Rate

Burn Time (sec)
MEOP
Exit Plane Diameter
Ave Vac Thrust
Delivered Isp Vac
Ave Chamber Pressure
Total Impulse Delivered
Propellant
Thrust Weight
Inert Welght
Inert Welght

Information on this page was prepared to support an oral presentation and cannot be considered complete without the oral discussion.
ORIGINAL PAGE IS
OF POOR QUALTTY


## ORIGINAL PAGE Is OF POOR QUALTTY

QRIGINAL PAGE IS OF POOR QUALTTY


(2000
Table 3.5.1-6. SRB-X Upper Stage (S-1) Motor Performance Summary

|  | NOZZLE EXPANSION RATIO |  |  |
| :--- | ---: | ---: | ---: |
|  | $\mathrm{E}=30$ | $\mathrm{E}=50$ | $\mathrm{E}=100$ |
|  |  | 0.30 | 0.30 |
| BURN RATE (IN/SEC) | 111.60 | 111.60 | 0.30 |
| BURN TIME (SEC) | $1,856.00$ | 111.60 |  |
| MEOP (PSIA) | $65,000.00$ | 83.00 | $1,856.00$ |
| EXIT PLANE DIAMETER (IN) | $255,607.00$ | $262,359.00$ | $269,977.00$ |
| AVE VAC THRUST (LBF) | 296.40 | 304.20 | 313.00 |
| DELIVERED ISP VAC (SEC) | $1,098.00$ | $1,098.00$ | $1,093.00$ |
| AVE CHAMBER PRESSURE (PSIA) | $28,512,960.00$ | $29,266,115.00$ | $30,115,934.00$ |
| TOTAL IMPULSE DELIVERED (LBF-SEC) | $96,203.00$ | $96,203.00$ | $96,203.00$ |
| PROPELLANT EXPELLED (LBM) | 3.10 | 3.20 | 3.30 |
| THRUST WEIGHT | $11,070.00$ | $11,355.00$ | $11,870.00$ |
| INERT WEIGHT |  |  |  |

### 3.5.1.2 Liquid Stages

The first screening analysis of some of the final six configurations (A3 and B4) indicated a LEO and polar performance deficiency when using only three stages. During the second screening analysis, a storable fourth stage was added to these configurations in the form of a cluster of four Delte care stage 2 's. A more effective means of providing approximately the same total impuíse was employed for the third screening by using a stretch version of the Titan core stage II (called T2S), involving an increase of $41,000 \mathrm{lb}$ in propellant loading. Primary benefits were shorter length, less inert weight, and less integration complexity. Characteristics follow.
Characteristic
$W_{p}(1000 \mathrm{lb})$
$I_{\mathrm{sp}}(\mathrm{sec})$
Inerts 1000 lb$)$
Delta L $(\mathrm{ft})$-beyond basic T2
Diameter $(\mathrm{ft})$
Issues

| (4) Delta stage 2 | $\underline{\text { T2S }}$ |
| :--- | :--- |
| 51,500 | 107,400 |
| 319 | 318 |
| 7000 | 8300 |
| +20 | +7 |
| 15 | 10 |
| Integration complexity | Minimum |
| Control/avionics |  |

### 3.5.2 Structural Analysis

A preliminary loads and structures assessment was performed on typical class A and $B$ vehicles considered during the third screening. The investigated vehicles are those designated as A3, B3, and B4. Key characteristics for the vehicles are shown in figure 3.5.2-1. These vehicles were analyzed for axial load and bending moment effects on stage 1 and 2 SRM's and on upper stage structures. In addition, preliminary weight differences concerning the payload shroud for these configurations were identified.

### 3.5.2.1 Design Load

Axial load factors for the three typical vehicles are presented in table 3.5.2-1. Operation of stages 1,3 , and 4 shows relatively low factors. The axial load factor shown for stage 2 operation reflects the use of a square thrust trace, which was all that was available at the time. Use of a square thrust trace resulted in an axial load factor in excess of 6 g 's and indicated a requirement for a substantially regressed thrust trace. Since thrust regression yields decreased performance, the degree of thrust regression was subsequently targeted to be no larger than that necessary to ensure that payloads would experience acceleration levels equivalent to those provided by the shuttle. The


* REF GEO P/L WEIGHT = 8,000 LB

SRB-X load factors that would yield the same acceleration levels are indicated in table $3.5 .2-2$. Shuttie payloads are designed for an axial load factor of 4.5 g ultimate $(3.2 \mathrm{~g}$ limit times 1.4 UFS) for both liftoff transient and boost conditions. This ultimate load factor limitation applies to SRB-X. However, because SRB-X is an unmanned system for which UFS $=1.25$ applies, it is possible to allow SRB-X to be subjected to an axial load factor greater' than the shuttle's 3.2 g limit. If the SRB-X axial load factor is restrained to 3.6 g limit ( $3.2 \mathrm{~g} \times \frac{1.40 \text { UFS }}{1.25 \text { UFS }}$ ), $100 \%$ shuttle payload compatibility is ensured. A factor of 4.5 g is possible but is peculiar to payload design.

The key trajectory parameters leading to the structural design max q -alpha value are shown in table 3.5.2-3. Liftoff steady state thrust-to-weight ( $T / W$ ) ratios for vehicles A3, B3, and B4 are $1.26,1.55$, and 1.64 , respectively. These variations in liftoff T/W result in considerable variations in both maximum dynamic pressure (max $q$ ) and in the flight parameters and conditions at which $\max q$ occurs. Structural design max q -alpha values were obtained by assuming that the vehicle angle of attack (alpha) at max q can be approximated by applying a $180-\mathrm{ft} / \mathrm{sec}$ velocity vector at a right angle to the vehicle relative velocity. The resulting structural design $\max \mathrm{q}$-alpha values ( $\mathrm{lb} / \mathrm{ft}^{2}$-deg) for vehicles A3, B3, and B4 are 3640, 6020, and 6700, respectively.

The distribution of bending moment resulting from the max $q$-alpha condition is indicated in figure 3.5.2-2 for vehicles A3, B3, and B4. Maximum bending moment values and locations are as follows:
a. A3 vehicle: $43 \times 10^{6} \mathrm{in}-\mathrm{lb}$ at aft end of stage 2 SRM (SRM unpressurized).
b. B3 vehicle: $47 \times 10^{6} \mathrm{in}-\mathrm{lb}$ near center of stage 3 ( T 2 stage).
c. B 4 vehicle: $56 \times 10^{6} \mathrm{in}-\mathrm{lb}$ near center of stage 3 (T2 stage).

### 3.5.2.2 SRM. Structural Assessment

The structural capability of an SRM is generally expressed in terms of pure axial load and pure bending moment, where tension/tension side capability is governed by segment joint strength and compression/compression side capability is governed by case buckling. The capability of a shuttle SRM lightweight steel case to carry ultimate externally applied loads (pure axial load, pure bending moment) is indicated in table 3.5.2-4 for the unpressurized condition and for a typical pressurized condition of 660 psi for vehicles A3, B3, and B4. A comparison of maximum applied loads to applied load capability of the SRM's is in figure 3.5.2-3. As indicated, the applied loads capability of a shuttle SRM lightweight steel case is several orders of magnitude greater than the worst case externally applied loads.
Table 3.5.2-2. Maximum Axial Load Factors and Shuttle Payload Compatibility

## SHUTTLE PAYLOADS

## - ULTIMATE FACTOR OF SAFETY $=1.40$ <br> - LAUNCH LOAD FȦCTORS (JSC 0770, VOL X(Y) $\begin{aligned} & N Y= \pm 1.4 \\ & \text { NZ }= \pm 2.5 \\ & \text { BOOST: } \\ & \text { NX }=3.17 \\ & \text { NY }=0 \\ & N Z=-0.6\end{aligned} \quad \begin{aligned} & \\ & \end{aligned} \quad \begin{aligned} & \text { LIMIT LOAD FACTORS } \\ & \text { TOBE CONSIDERED IN }\end{aligned}$ <br> SRE-X PAYLOADS <br> - LIFTOFF: <br>  <br> $N X=-0.2 /-3.2$

\section*{- ULTIMATE FACTOR OF SAFETY $=1.25$

## $\mathbf{N X}=\mathbf{N X}_{\text {SHUTTLE }} \mathbf{X} \mathbf{k}_{\text {UFS }} \mathbf{X} \mathbf{k}_{\text {LATERAL }}$ LOADS

$=-3.2 \times \frac{1.40}{1.25} \times(1 \rightarrow 1.25)$

 $=\left\{\begin{aligned} &-3.6 \text { : } 100 \% \text { STS PAYLOAD COMPATIBILITY } \\ & \text {-4.5 } ; \text { STS PAYLOAD COMPATIILITY IS DEPENDENT } \\ & \text { ONPERCULUARITIES OF PAYYOAD STRUCTURAL } \\ & \text { SYSTEM. REQUIRESTHAT STRUCTURALMEMBERS } \\ & \text { WHICH CARRY AXIAL LOAD ALSO BE PRIME } \\ & \text { MEMSERS IN CARRYING LATERAL LOADS. } \\ & \text { (i.e. CANTILEVERED PAYISADS) }\end{aligned}\right.$ $=\left\{\begin{aligned} &-3.6 \text { : } 100 \% \text { STS PAYLOAD COMPATIBILITY } \\ & \text {-4.5 } ; \text { STS PAYLOAD COMPATIILITY IS DEPENDENT } \\ & \text { ONPERCULUARITIES OF PAYYOAD STRUCTURAL } \\ & \text { SYSTEM. REQUIRESTHAT STRUCTURALMEMBERS } \\ & \text { WHICH CARRY AXIAL LOAD ALSO BE PRIME } \\ & \text { MEMSERS IN CARRYING LATERAL LOADS. } \\ & \text { (i.e. CANTILEVERED PAYISADS) }\end{aligned}\right.$ $=\left\{\begin{array}{c}-3.6 ; 100 \% \text { STS PAYLOAD COMPATIBILITY } \\ \text {-4.5 }: \\ \text { STS PAYLOAD COMPATIBILITY IS DEPENDENT } \\ \text { ONPERCULUARITIES OF PAYLOAD STRUCTURAL } \\ \text { SYSTEM. REQUIRES THATSTRUCTURAL MEMBERS } \\ \text { WHICH CARRY AXIAL LOAD ALSO BE PRIME } \\ \text { MEMSERS IN CARRYING LATERAAL LOADS. } \\ \text { (i.e. CANTILEVERED PAYIOIDS) }\end{array}\right.$ $=\left\{\begin{array}{c}-3.6 ; 100 \% \text { STS PAYLOAD COMPATIBILITY } \\ \text {-4.5 }: \\ \text { STS PAYLOAD COMPATIBILITY IS DEPENDENT } \\ \text { ONPERCULUARITIES OF PAYLOAD STRUCTURAL } \\ \text { SYSTEM. REQUIRES THATSTRUCTURAL MEMBERS } \\ \text { WHICH CARRY AXIAL LOAD ALSO BE PRIME } \\ \text { MEMSERS IN CARRYING LATERAAL LOADS. } \\ \text { (i.e. CANTILEVERED PAYIOIDS) }\end{array}\right.$

## - AXIAL LOAD FACTOR LIMITATION:

## - AXIAL LOAD FACTOR LIMITATION:


Table 3.5.2-3. Structural Design Maximum Q-Alpha Conditions


B- $\alpha 0=$ ARC TAN $\frac{180}{\text { REL VEL }}$

- LIGHTWEIGHT STEEL CASES
- MEOP $=1016$ PSIA
- UFS $=1.40$ (STS), 1.25 (SRB-X) PRESSURIZED



## $11.9 \times 10^{6}$ <br> $24.5 \times 10^{6}$

$890 \times 10^{6}$

(2) CRITICAL SIDE


U
$T\left(10^{6} \mathrm{LB}\right)$


$$
\begin{aligned}
& \text { ULTIMATE EXTERNALLY APPLIED } \\
& \text { LOADS FOR STRUCTURALDESGN } \\
& \text { MAX qa CONDITION (WORST CASES) }
\end{aligned}
$$



### 3.5.2.3 Structural Integration-Payload/Upper Stages/Shroud

The second structural area of investigation was that of establishing a concept for sustaining bending rnoment, axial load, and lateral load in the upper portion of the
 shroud. The analyses were performed for a GEO mission with the indicated payload characteristics and a center of gravity (CG) $40 \%$ above the truss adapter. The selected concept is shown in figure 3.5.2-4 and includes a 16.7 -ft-diameter shroud, approxirnately 122 ft in length. Utilization of existing upper stages requires that the aerodynamic bending moment be load shared between the upper stages and shroud by means of a standard forward bearing reaction (FBR) system. The FBR also minimizes the diameter of the shroud for a given payload diameter as it reduces the amount of relative motion between shroud and payload. Shrouding of the Centaur was the result of thermal considerations. The Titan core stage II is included within the shroud because it did not have sufficient strength to sustain the maximum bending moment. Data supporting the selected concept are presented in subsequent paragraphs.

Centaur D-IT Assessment. Principal areas concerning the use of the Centaur D-IT involved the applicability of its FBR system, truss adapter, and strength of the fuel tank to sustain the expected loads.

The key features of the FBR, as used with Centaur within a 14 -ft-diameter Centaur standard shroud, are shown in figure 3.5.2-5. The FBR consists of a lateral system of struts (plus installation and separation provisions) which attaches to the Centaur stage stub adapter forward ring. The FBR provides interactive load support during launch transient conditions and prevents excessive relative deflection of shroud to payload during maximum aerodynamic loading. Additionally, its use allows shroud diameter to be minimized. The existing system is designed to an omnidirectional shear plane limit load of $20,000 \mathrm{lb}$ and $20,000 \mathrm{lb} / \mathrm{in}$ spring constant. In the event that excessive shroud aerodynamic load is to be imposed on Centaur, the stiffness of the system can be lowered to avoid Centaur redesign. SRB-X utilization of the existing Centaur FBR struts is an assessment issue.

The constraints of the existing D-IT truss adapter relative to the anticipated GEO payloads for SRB-X are shown in figure 3.5.2-6. The GEO payload weight range of interest varies from a minimum of 8000 lb (first quarter design goal) to a maximum of $12,000 \mathrm{lb}$ (A4 configuration). The existing D-IT truss adapter was designed to accommodate an $8000-\mathrm{lb}$ payload having its CG located 170 in about the truss adapter. If this is reduced to 125 in , payload weight capability increases to $12,000 \mathrm{lb}$. Relative to

ORIGINAL PACE IS OF POOR QUALTTY


ORIGINAL PAGE IS
OF POOR QUNLTYY

- LATERAL SYSTEM OF STRUTS INTERCONNECTING SHROUD AND CENTAUR STAGE STUB ADAPTER FORWARD RING
- PROVIDES interactive load support during launch transient condition PREVENTS EXCESSIVE RELATIVE DEFLECTION OF SHROUD TO PAYLOAD DURING MAXIMUM AERODYNAMIC LOADING
- CHARACTERISTICS OF SYSTEM INSTALLED ON CENTAUR STANDARD SHROUD:
- LIMIT DESIGN LATERAL FORCE $=20,000$ LBF (OMNI-DIRECTIONAL)
- SPRING CONSTANT $=20,000$ LBF/IN.

Figure 3.5.2-5. Forward Bearing Reaction System Existing Design

Figure 3.5.2-6. D-IT Truss Adapter Payload Constraints
a 42 -ft payload, the foregoing distances range from adequate ( 190 in ) to marginally acceptable ( 125 in ). The use of an FBR at the upper edge of the Centaur stage stub adapter is required to obtain the foregoing payload capabilities.

The airload normal to the shroud versus the allowable FBR limit design load based on the existing FBR design, D-IT strength capability, and T2 strength capability is shown in figure 3.5.2-7. Because an FBR is designed to transfer a sizeable fraction of the airload normal to the shroud, it follows that use of the existing FBR design appears adequate at max $q$-alpha values under 5000 psf-deg (the probable range of interest for the next level of analysis) but marginal at higher values. (It will be marginal at the higher $q$-alpha values only if the shroud weight is adversely affected.)

The D-IT fuel tank structural compatibility is shown in figure 3.5.2-8 by indicating, as a function of ultimate equivalent axial load (compression), the pressure differential required across the fuel tank sidewall (lower end). Pressure differential requirements for A3, B3, and B4 vehicle applications, for the structural design max $q$-alpha condition with FBR $=20,000 \mathrm{lbf}$, are $17.0,15.9$, and 14.9 psia, respectively. These pressure requirements are achievable within the capability of the current ullage lockup pressure. The ullage lockup pressure required for the D-IT fuel tank is presented in table 3.5.2-5. The.ullage lockup pressure requirement derives from the pressure differential required across the fuel tank sidewall (lower end), fuel head pressure, and shroud internal pressure. Ullage lockup pressure requirements for A3, B3, and B4 vehicle applications are 19.1, 20.1, and 20.9 psia, respectively. These pressure requirements are less than the current lockup pressure capability of 23.1 psia.

Titan Stage II (SRB-X Stage 3) Assessment. Structural compatibility of the Titan stage II (T2) for SRB-X application is shown in figure 3.5.2-9. For comparison purposes, the load-carrying requirements at the forward and aft interfaces, for the structural design max $q$-alpha condition with $F B R=20,000 \mathrm{lbf}$, are presented for the conditions of an unshrouded stage and a shrouded stage. As indicated, the T2 stage requires shrouding for A3, B3, and B4 vehicle applications to restrict applied loads to acceptable values. (In addition, for B 3 and B 4 vehicle applications, the $T 2$ stage requires shrouding to effect nearly $100 \%$ jettisoning of stage 1 forward cluster structure.)

### 3.5.2.4 Payload Shroud Weights

Shroud weight data are presented in figure 3.5.2-10. Shroud weights shown for vehicle configurations A3, A4, and B2 reflect a Centaur standard shroud data base, as do the forward shroud sections for vehicle configurations B3, B4, and B6. Aft shroud

Figure 3.5.2-7. FBR Limit Design Load Considerations

Table 3.5.2-5. D-IT Fuel Tank Ullage Lockup Pressure Requirement
ULLAGE LOCKUP PRESS = PRESS DIFFERERYㅋTIAL REQUIRED ACROSS SIDEWALL-HEAD FRESS (REQUIREMENT) + SHROUD INJERNAL PRESS

|  | A3 | B3 | B4 |
| :---: | :---: | :---: | :---: |
| PRESSURE DIFFERENTIAL REQUIRED ACROSS LOWER END OF SIDEWALL (PSID) | 17.0 | 15.9 | 14.5 |
| LESS HEAD PRESSURE (PSIG) | -1.1 | - 1.0 | -0.9 |
| PLUS SHRCUD INTERNAL | +3.2 | +5.2 | +7.3 |
| ULLAGE LOCKUP PRESSURE REQUIRED (PSIA) [D | 19.1 | 20.1 | 20.9 |
|  | OMPA RESS | TH CU ABIL | $\begin{gathered} \text { LOCK } \\ 23.1 \mathrm{P} \end{gathered}$ |

(1) ESTIMATED AT 1.0 PSIA ABOVE ATMOSPHERIC PRESSURE


section weights for configurations B3, B4, and B6 are estimated weights reflecting the "interstage" function of the structure.

### 3.5.3 Performance

Payload capability of the final six concepts was updated to reflect revisions made during the third screening regarding stage performance, weight characteristics, and trajectory parameters such as ideal velocity requirements. Payload capability was determined for LEO, and GEO destimations.

### 3.5.3.1 Stage and Trajectory Characteristics

The basic ground rules used in the third screening performance analysis are shown in table 3.5.3-1. The ideal velocities associated with each of the concepts are presented in table 3.5.3-2. The variations between concepts for a given destination are the result of differences in thrust-to-weight ratios, particularly for the first stage and the resulting effect on gravity losses.

Table 3.5.3-2. Mission Ideal Velocities

|  | Mission destination(103 fps$)$ |  |  |
| :---: | :---: | :---: | :---: |
| Concept | LEO | $\frac{\text { Polar }}{}$ | GEO |
|  | 29.6 | 31.3 | 44.2 |
| A4 | 29.0 | 30.5 | 43.5 |
| B2 | 29.8 | 31.1 | 44.3 |
| B3 | 29.5 | 30.8 | 43.5 |
| B4 | 29.5 | 31.1 | 44.0 |
| B6 | 29.5 | 31.0 | 44.0 |

Performance and weight characteristics for the stages and vehicle elements are presented in table 3.5.3-3. Relative to charcteristics presented for previous screenings, the indicated characteristics reflect a more accurate definition of the systems in addition to several changes in format. One change is that the interstage between stages 1 and 2 is now shown assigned against the stage 1 interstage rather than as part of the inerts. The second change is the method of calculating the shroud weights, with differences reflecting destination as well as type of vehicle.

Table 3.5.3-1. Performance Ground Rules

## - reference parking orbit

1. 100 NMI CIRCULAR

## 4. WTR LAUNCH AT 190.5 AZIMUTH (SUN SYNCHRONOUS)

- GEO SYNCHRONOUS ORBIT

FROM 100 NMI ETR REFERENCE ORBIT
(INCLUDES RESERVES \& TRIM)


## ATMOSPHERE

1. 1,962 U.S. STANDARD ATMOSPHERE
2. 

ZERO WINDS

1. EXPENDABLE INERTS DROPPED WITH STAGE
2. SHROUD JETISONED AT 1 PSF (REF. SHROUD WT $-10,000$ LE)
3. NO COAST PHASES

PROPULSION

1. ACTUAL THRUST TRACE USED ON FIRST STAGE AND COMMON
2. INITIAL UPPER STAGES USED SQUARE THRUST TRACE, ACTUAL traces are currently in use on ba.
Table 3.5.3-3. Vehicle and Stage Characteristics

IS 5 FOR AB, A4, B2 VEHICLES; 10 FOR B3, B4, 86 VEHICLES
(1) 9.1 FOR A3, A4, B2 VEHICLES; 14.2 FOR BS, B4, B6 VEHICLES
$D$ INERTS REFLECT STEEL CASE SRM

### 3.5.3.2 Payload Capability

LEO performance capability is shown in figure 3.5.3-1. The requirements for this mission are judged to be the least definitive of the three destinations investigated. There does appear to be some merit, however, in the ability to launch IUS-class payloads since this upper stage will be used at least: up through the late 1980's. Growth versions of the IUS which could place 7000 lb in GEO from LEO would require a delivery capability to LEO of approximately $45,000 \mathrm{lb}$. Should the same system be delivered by an STS, the launch weight would be approximately $51,000 \mathrm{lb}$ with the difference being in the airborne support equipment (ASE). Performance capabilities for the three-stage configuration options are presented for both steel and filament wound case motors. Several vehicles (B3, B4 with T2S, and B6) satisfy the early IUS requirements even when using steel cases. Essentially all concepts satisfy the growth IUS when FWC's are used. Also indicated is the payload capability of the B3 using four stages. Operating in this mode and with FWC's, the B3 could deliver approximately $62,000 \mathrm{lb}$ to LEO.

Polar capability comparisons are shown in figure 3.5.3-2. It should also be noted that the indicated capability is for Sun synchronous orbit rather than polar at $i=90$ deg. Accordingly, for $\mathrm{i}=90 \mathrm{deg}$, add 1500 lb to the indicated payload. The assumed 1987-90 payload requirement of $30,000 \mathrm{lb}$ is judged to provide the same effective payload as the STS $32,000-\mathrm{lb}$ requirement with the difference associated with the ASE. The additional 5000 lb for the 1991-95 time period was judgmental. Again, it should be noted that the A3 and B4 configurations require a stretch T2 in order to be competitive. Several configurations ( $\mathrm{B} 3, \mathrm{~B} 4, \mathrm{~B} 6$ ) can nearly satisfy the far-term requirement using steel cases; and with FWC, they can approach $40,000 \mathrm{lb}$ into a polar orbit.

GEO performance capability is shown in figure 3.5.3-3. All performance assumes a standard Centaur D-IT ( $W_{p}=30,000 \mathrm{lb}$ ) as thtu fourth stage. It should also be noted, the indicated capability does not reflect performance optimization for any stage in the vehicle but does include a trajectory for each configuration which has reasonable gravity losses and maximum dynamic pressure characteristics. The early time frame performance goal is greater than that assumed for the growth IUS and the 1990-95 value corresponds to STS/Centaur capability.

All options evaluated exceed the 1987-90 performance goals even when using steel SRM cases. Several options (B3, B4, B6), when using FWC SRM's, exceed the later time frame performance goals and approach a GEO delivery capability of $13,000 \mathrm{lb}$. Further performance optimization, particularly in the area of second-stage optimization, is expected to increase the value to nearly $15,000 \mathrm{lb}$.

Figure 3.5.3-1. LEO Performance Comparison

Figure 3.5.3-2. Polar Performance Comparison
SRB-X-168
STS /IUS

1987-90 ASSUMED GOALS
8
8
8
8

${ }^{12}$

पाता
VITMINA





| 0 |
| :--- |
| $\frac{3}{3}$ |
| I |


2

$\%$

## 32 4(2)-4-T2-C


4(2)-2-T2-C

## \&

甲
Figure 3.5.3-3. GEO Performance Comparison

### 3.5.4 Stability and Control

The stability and control analyses investigated several areas: (1) static stability in pitch and yaw, (2) dynamic rigid stability in pitch, and (3) need for load alleviation. For the most part, these assessments were made against the A3, B3, and B4 configurations as they were judged to be the most challenging from a stability and control standpoint.

### 3.5.4.1 Static Stability

Static stability was measured by the margin or ratio of the torque capability from the thrust vector control (TVC) to the torque caused by wind disturbances. Cumparison of the pitch static stability of the configurations is shown in table 3.5.4-1. The B4 configuration margin falls below the preliminary target because of it/ short thrust vector moment arm. The yaw static stability comparison is shown in table 3.5.4-2 for the class B vehicles, Values for class A vehicles are the same as for pitch since they involve a single booster for the first stage. The data indicate that yaw margin appears marginally acceptable for the B configurations; but it should be noted that the pitch and yaw assessment at this time does not include any load alleviation, which would considerably reduce the dynamic pressure.

### 3.5.4.2 Rigid Body Dynamic Simulation

The rigid body dynamic simulation assessed, in a real-time sense, whether the control system can follow the commanded flightpath angle and overcome the disturbance. Comparison of the three vehicles is presented in table 3.5.4-3, while figure 3.5.4-1 shows the time simulation history of the A3 and B3 vehicles. Assuming a factor of 4 between the first mode bending frequency and the control frequency indicates the A3 configuration shows significant flightpath errors because of the low bending frequency and resulting slow responsiveness of the control system.

TVC requirements for the B4 are more demanding because of its relatively short moment arm. Figure 3.5.4-2 indicates over 60\% of the gimbal capability must be used to provide the necessary control, whereas $50 \%$ was the desired goal.

### 3.5.4.3 Other Observations

Although a flexible body analysis has not been performed, an observation can be made relative to vehicles with high length-to-diameter ratios. Historically, the vehicles tend to present significant challenges because their control systems have to provide active damping rather than the structures providing passive damping from their own stiffness. Accordingly, the class $A$ vehicles are viewed as undesirable from a stability and control standpoint.
Table 3.5.4-1. Pitch Static Stability Assessment

$\boldsymbol{\delta}=$ GIMBAL ANGLE 0 0
0
WIND DATA $95 \%$ WITH GUST. OF 50 ERS
1
1.
$-\quad-\quad$

## ORIGINAL PAGE IS OF POOR QUNLTV.

Table 3.5.4-2. Class B Yaw Stability


* data taken at max 0
WIND DATA 95\% WITH GUSTS OF 50 FPS
*     * 

Table 3.5.4-3. Rigid Body Trim Condition Summary

|  | AB | $\mathrm{B3}$ | BA |
| :--- | :---: | :---: | :---: |
| DAMPING RATIO | 0.77 | 0.77 | 0.77 |
| CONTROL FREQUENCY (HZ) | 0.15 | 0.80 | 0.86 |
| MAX $q$ - $\alpha$ (PSF-DEG) | 3,672 | 8,600 | 7,286 |
| MAXIMUM FLIGHT PATH ERROR | $-4.15^{\circ}$ | $-1.5^{\circ}$ | $-2.28^{\circ}$ |
| GIMBAL FREEDOM REQUIRED * | $1.72^{\circ}$ | $1.71^{\circ}$ | $2.93^{\circ}$ |
| GIMBAL RATE REQUIRED * | $0.62^{\circ} / \mathrm{s}$ | $-1.50^{\circ} / \mathrm{s}$ | $-1.35^{\circ} / \mathrm{s}$ |

* TVC CAPABILITY $=4.75^{\circ}$ AND $3.0^{\circ} / \mathrm{SEC}$
SIMULATION PROVIDES INSIGHT INTO SRE-X PITCH CONTROL REQUIREMENTS



Figure 3.5.4-1. Rigid Body Dynamic Simulation Results


## AVAILABLE GIMBAL RATE $=3$ DEG/SEG

Figure 3.5.4-2. TVC Requirements and Capability

### 3.5.5 Facilities Analysis

The facility analysis up through the third screening had three major objectives: to (1) identify the facility requirements associated with each of the final six configurations, (2) assess the applicability of candidate launch facilities, and (3) assess the impact of each configuration at the selacted launch facility.

### 3.5.5.1 Requirements

The types of facility requirements identified for each configuration are indicated in figure 3.5.5-1. Propellant umbilicals are required for stage $3\left(\mathrm{~N}_{2} \mathrm{O}_{4} /\right.$ Aero-50) and stage $4\left(\mathrm{LO}_{2} / \mathrm{LH}_{2}\right)$. All stage elements require electrical and data interfaces with the facilities. Integration of the payload with shroud and attaciment to the launch vehicle presents a requirement considerably different from the STS. Changeout or removal of the payload at the pad is aiso viewed as a desirable feature. The height of the vehicle and its various elements influences the servicing platforms used during assembly and at the launch pad. The GLOW of each vehicle is used to assess the ground transportation system used to move the vehicle from an assembly area to launch pad.

### 3.5.5.2 Facility Selection

The second facility task was to assess the applicability of Titan, STS, or other facilities for use by the SRB-X beginning in 1987-88. A summary assessment of the facility options, as well as major needs imposed by the configurations, is presented in table 3.5.5-1. The Titan facilities at WTR were found unacceptable due to scheduling constraints, while those at ETR were severely limited in terms of capability and provisions. In summary, use of Titan facilities at ETR and WTR does not appear to be compatible with the $S R B \cdot X$ requirements.

Use of STS facilities appears to be the most promising. At WTR, use of SLC-6 also presents some rigid schedule constraints in terms of not jeopardizing the first STS launch. Several configurations, (B4, B3, and B6) do have height characteristics that would allow use of existing servicing and assembly facilities. The other configurations required more extensive modifications. STS facilities at ETR offer more flexibility because of the availability of a second launch pad (LC-39B). All configurations could be accommodated with varying degrees of modification to the fixed service structure (FSS).

Other facilities considered were those associated with Saturn I and IB launches. At this time, all that would be useful is the land, so these were ruled out from further consideration.
OPTIMAL PACE IS
OF POOR QUALITY


Table 3.5.5-1. Ground Facility Assessment


- 18 MONTH GAP'BETWEEN 1STAND 2ND LAUNCHES - B4 FITS. 83 AND B6 OKAY WITH MINOR VEHICLE MODIFICATION OR NOSE CONE INSTALIL WITH AUX. CRANE
A3, A4 \& B2 REQUIAE NEW MST \& EXCAVATIO
A3, A4 \& B2 REQUIRE NEW MST \& EXCAVATION AND A4 ALSO A
NEW LAUNCH MOUNT - MID 1986 IOC FOR 39B CANNOT BE JEOPARDIZED
B2, B3, B4 AND B6 ARE FSS COMPATIBLE ALTHOUGH A NEW 50 TON CRANE IS REQUIRED FOR PAYLOAD CHANGEOUT - VAB.CELL (1) AND MLP REQUIRE MINOR MODIF.
- ONLY LAND.IS AVEILABLE
NOT NECESSARY UMLESS BACKUP SITE IS NECESSARY OR
SCHEDULE BECOMES A PROBLEM
$\sqrt{\text { SELECTED APPROACH }}$


## TITAN FACILITIES

# STS FACILITIES 



- WTR
(SLC-6)
OTHER
OR ALL NEW
$>$
SRB-X-179


### 3.54.3. Facilities Impact Assessment

YMA) discưsston of the impact of each of the six configurations on STS facilities at KSC and VAFB follows.

KSC Facilities. The principal facilities investigated for impact were the vehicle assembly building (VAB), mobile launcher platform (MLP), and the pad,

It has been assumed that VAB high bay (HB)-4 would become available for SRB-X stacking. ET processing would be done in $\mathrm{HB}-2$ and STS processing in $\mathrm{HB}-1$ and $\mathrm{HB}-3$. The primary difference between the six configurations in this area is that of the access platforms required to complete assembly and checkout, as indicated in figure 3.5.5-2. Due to their height, configurations A3 and A4 are the most demanding.

The MLP supports the vehicle from the time of assembly start until launch. The impact of the configurations on the MLP is presented in table 3.5.5-2. All configurations require new umbilical provisions. Because the A4 has three SRM's burning at liftoff, a new flame hole will be required. The outside SRM's for A4 (strapons) as well as the parallel burn motors for the $B$ configurations are located in the same position as for the shuttle. All B configurations will require a pedestal to allow the stacking of the core.

Launch complex (LC) 39B has been assumed to support SRB-X. as well as the STS. The goal was not to have any modifications to preclude the IOC of 1986 for this LC. The facilities of concern at the pad include the FSS and rotating service structure (RSS). Comparison of configurations for impact on these facilities is shown in table 3.5.5-3. Again, vehicle height becomes the key factor in differences regarding increases in the height of the FSS. Vehicle height also contributed to differences between vehicles regarding the location of umbilicals for payload access and hypergol servicing. Common features that are variations from the current facilities include the need for a new crane and umbilicals for servicing the payload and Centaur.

VAFB Facilities. The launch complex to be used is SLC-6, which is the same as that used by the STS. Principal facilities considered at this launch site included the mobile service tower (MST), launch mount (LM), and access tower (AT). The comparison of configurations for their impact on these facilities is presented in table 3.5.5-4. Again, vehicle height is the main factor, which results in differences in the degree of impact. In this case, the problem is so severe that configurations A3, A4, and B2 are rejected because of constraints imposed by the MST in terms of height modifications. These modifications are viewed as impossible due to scheduling conflicts with the STS operations. Due to cost, a new MST also appears to be out of the question.
SKB-X-1LC

Figure 3.5.5-2. Access Platform Usage

## $\begin{array}{ll}\text { Z } 3 . & n \\ \text { na }\end{array}$

> - REINFORCE MLP COMPARTMENT 38 STRUCTURE AREA TO SUPPORT STACK OF
CORE VEHICLE
> - ADD CORE RB SUPPORT PEDESTAL AT INDICATED HEIGHT ABOVE MLP DECK
(INCHES)
> - ADD TO UMBILICAL RECEPTACLE AT C CORE STAGE AFT SKIRT
> (INCHES)

AB:

- ADD T-O UMBILICAL RECEPTACLE AT CORE AFT SKIRT (11.363" ABOVE MLP DECK)
B2, BS, BA, B6:
• ADD T-O UMBILICAL RECEPTACLE AT CORE AFT SKIRT (11.363" ABOVE MLP DECK)
B2, BS, BA, B6:
- REINFORCE SRA SUPPORT HAUNCHES TO HANDLE INCREASED MOMENTS FROM
WIND LOADS
- ADD T-O UMBILICAL RECEPTACLE AT AFT SKIRT (11.363" ABOVE MLP DECK)
AA:
- FLAME HOLE MODIFICATIONS SIMILAR TO THOSE FOR SHUTTLE ENHANCEMENT
OPTION 4 EXCEPT FOR CENTER SB SUPPORTS FOR CORE STAGE AND RELOCATED
STRARFON SUPPORT POINTS


## AA:

- 

| $B 3$ | $B 2$ | $B 4$ |
| :---: | :---: | :---: |
| 324.05 | 79.73 | 95.37 |

Table 3.5.5-2. MLP Impact
Table 3.5.5-3. FSS and RSS Impact Comparison

| IMPACT AREA | A3 | A4 | 82 | B3/B6 | B4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FSS TOWER HEIGHT INCR (FT) | $\begin{aligned} & 60^{\prime} \\ & \text { (3 BAYS) } \end{aligned}$ | $\begin{aligned} & 40^{\prime} \\ & \text { (2 BAYS) } \end{aligned}$ | NONE | NONE | NONE |
| FSS TOWER HAMMERHEAD HOIST CFANE TO 50 TON CAPACITY | X | X | X | X | X |
| INCREASE TOWER STRENGTH TO ACCOMMODATE UPRATED CRANE AND INCREASED HEIGHT (IF REQUIRED) | $x$ | X | X | X | X |
| ADD CENTAUR SERVICING TO FSS | X | X | x | X | X |
| ADD CENTAUR T-O UMBILICAL(S) TO FSS | $x$ | X | X | X | X |
| ADD PAYLOAD SERVICE UMBILICAL TO FSS (T-O) | X | X | X | X | X |
| ADD PAYLOAD ACCESS ARM |  |  |  |  |  |
| FSS | x | X |  |  |  |
| RSS |  |  | X | X | X |
| ADD HYPERGOL UMBILICAL FOR高部TAGE |  |  |  |  |  |
| FSS | x | X |  |  |  |
| RSS |  |  | X | $x$ | X |




Table 3.5.5-4. WTR STS Facilities (SLC-6) Assessment

Configurations B3 and B6 are taller than the current capabilities of the MST; but both are judged to have the potential for reduction by approximately 10 ft , thus becoming compatible.

Access platiorms and umbilical needs are similar to those required at KSC. These provisions would be incorporated in the MST and AT.

In summary, facilities are a differentiator for SRB-X at WTR-to the extent that concepts A3, A4, and B2 are not compatible. Remaining concepts B3, B4, and B6 can be accommodated at both KSC and VAFB with straightforward modifications of existirg STS facilities on a noninterference basis with STS operation.

### 3.5.6 ROM Cost

Although a complete estimate of development cost for each configuration was not scheduled for the first quarter, a preliminary estimate was made in terms of differences concerning the SRM's and facilities. The following paragraphs present the cost data concerning each area, as well as total impact on each vehicle.

### 3.5.6.1 SRM Cost

To support identification of concept differences, preliminary estimates were made for each SRM in terms of DDT\&E and unit cost, with the results shown in table 3.5.6-1. The DDT\&E cost is strongly influenced by the number of qualification firings required to verify performance and the amount of propellant required for each firing. Those SRM's indicated as requiring three firings have different burn times and/or a different operating environment relative to the standard SRM. Five firings are suggested for motors that also incorporate new nozzles. The other aspect of the DDT\&E cost is that associated with the basic design and analytical effort required for each SRM. A summary of the basic design effort and/or extent of modifications or new hardware is presented in table 3.5.6-2.

Unit cost reflects the time period of 1988, when approximately 100 STS will have been flown, which means approximately 200 four-segment SRM's have been loaded and up to 30 hardware units have been produced. The S1 unit cost assumes the MX is in fullscale production.

### 3.5.6.2 Facility Modification Cost

KSC facility modification costs for all six configurations are compared in table. 3.5.6-3. The impact of the additional height of the $A 3$ and A4 configurations is the major contributor to their greater cost. Facility coste associated with VAFB are shown


Table 3.5.6-1. SRM ROM Cost Trends

## - IN MILLIONS (1982 DOLLARS)


SRB-X-187

| IMPACT AREA | VEHICLE CONFIGURATION |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A3 | A4 | B2 | B3 | B4 | B6 |
| VAB | 22.0 | 22.5 | 18.0 | 16.0 | 16.0 | 16.0 |
| CRAWLER | 2.0 | - | - | - | - | - |
| MLP | 10.0 | 11.7 | 4.0 | 3.0 | 3.0 | 3.0 |
| FSS | 43.5 | 42.5 | 35.5 | 35.5 | 35.5 | 35.5 |
| RSS | 1.0 | 1.0 | 7.0 | 7.5 | 7.0 | 2.5 |
| TOTAL | 78.5 | 77.7 | 64.5 | 62.0 | 61.5 | 57.0 |

[^1]Table 3.5.6-3. KSC STS Facility Impact Cost Assessment
in table 3.5.6-4. As indicated earlier, three of the six configurations were judged unacceptable. No appreciable differences are seen among the remaining configurations.

### 3.5.6.3 Vehicle Level Cost

The combination of the SRM and facility cost, as applied to each of the six final configurations, is presented in table 3.5.6-5. The A4 vehicle indicates the least cost in terms of stage differences because only one motor requires development. The most expensive vehicle to develop is the B4 because it has one new SRM and two modified stages.

STS facility costs incicate a minimum of differences at ETR. At WTR, if the A3, A4, and B2 configurations were provided with the necessary facilities, all would require a new mobile service tower; in addition, the A4 would require a new launch mount, so these concepts are somewhat more expensive. The three preferred configurations (B3, B4, B6) would each have a total facility cost of approximately $\$ 200$ million. In terms of total differences between thic concepts, there is only a spread of approximately $\$ 60$ million out of a total program development cost estimated to be $\$ 500$ to $\$ 700$ million. Therefore, differences in front-end costs between the final six configurations cannot be considered a key discriminator. Schedule implications associated with facility modifications may have a more significant impact, with those associated with the class A and B2 configurations being the worst.

### 3.5.7 Summary

A summary of the findings concerning discrimination between the six final configurations is indicated in table 3.5.7-1. No significant differences were found in the areas of SRM design complexity. Class B vehicles with the first-stage SRB's spread apart from the core present a more difficult structural design and analysis task than class A vehicles. All configurations except A3 were acceptable in performance. Class A vehicles were less desirable in stability and control. Facility requirements were more difficult to accommodate with the class A vehicles and B2. Only A4 had a front-end cost that was significantly higher and required additional time.

Disposition and rationale assessments are presented in table 3.5.7-2. Three configurations (B3, B4, B6) are indicated for further consideration; a brief description of these follows.

The general arrangement and mass summaries for the B3 and B6 configurations are presented in figure 3.5.7-1. The most significant differences between these configurations is the use of the Titan core stage II for the third stage in B3, while the B6 uses a
ORIGINAL PAGE IS
Table 3.5.6-4. SLC-6 Impact Assessment-B3, B4, B6
OF POOR QUALITY
EXISTING FACILITIES:

SRB-X-194

MOBILE SERVICE

LAUNCH MOUNT
 ROM $\operatorname{COST}(M)$

$$
\begin{aligned}
& 24.0 \\
& 12.0 \\
& 11.0 \\
& \frac{5.0}{52.0}
\end{aligned}
$$

## LPS

rotal


- SRB ACCESS PLATFORMS
- PAYLOAD "WHITE ROOM"
- HYPERGOL SERVICING
- TITAN 2ND
- SRB'S

-PAYLOAD T-O UMBILICAL

$$
\begin{aligned}
& \text { NOTE: } 1) \text { FOR B-6 SUBTRACT 7.2M } \\
& \text { 2) NO CENTAUR CAPABLLITY } \\
& \text { 3) PAYLOAD ENCAPSULATION IN MST } \\
& \text { CLEAN ROOM }
\end{aligned}
$$

SRB-X-173
Table 3.5.7-1. Summary of Key Discriminators
COMMENT

- ALL REQUIRED MOTORS CAN BE TAILORED FOR ACCEPTABLE
TRAJECTORY CHARACTERISTICS
- CLASS B CONFIG. HAVE A MORE DIFFICULT STAGE I/2 INTERSTAGE
- AZ MARGINALLY ACCEPTABLE ANEAR TERMS) WITH FWC
- OTHER OPTIONS SATISFY FAR TERM REQUIREMENTS WITH FWD
- RIGID BODY DYNAMIC ASSESSMENT AND HISTORICAL FLEX BODY
TRENDS DISCOURAGE USE OF CLASS A VEHICLES
- BS AND BE PROVIDE GREATER MARGINS THAN BA
- BB, BA, BE MINIMUM AT BOTH ETA \& WTR
- BR MINIMUM AND AB MODERATE AT ETA BUT EXTREME AT TR
- AA MODERATE AT ETR BUT VERY EXTREME AT WTR
- TOTAL INDICATES NO SIGNIFICANT DIFFERENCES EXCEPT
FORA FACILITY MODIFICATIONS
(DIFFICULTY \& SCHEDULE)
DEVELOPMENT COST
(FACILITY AND SRM'S)


## - STABILITY/CONTROL

## - PERFORMANCE

- STRUCTURES


## - SRA DESIGN COMPLEXITY <br> CONSIDERATION <br> CONSIDERATION

SRB-X-180
-
TOTAL INDICATES NO SIGNIFICANT DIFFERENCES EXCEPT
FORA
Table 3.5.7-2. Configuration and Concept Assessment
.SRB-X-171

| COMMENT |
| :--- |
| STABILITY CONGEARS, FACILITY SCHEDULE |
| AND MARGINAL PERFORM. |
| NOT PRATICALAT WTR |
| W/O NEW LAUNCH MOUNT, MST ETC |
| OTHER CONCEPTS HAVE COMPARABLE PERFORM. |
| WIH LESS GLOW AND FACILITY IMPACT |
| USE AS REFERENCE SYSTEM |
| PROVIDES IST STAGE ALTERNATIVE |
| PROVIDES SRD STAGE ALTERNATIVE. COULD |
| ALSO BE USED WITH B4 INSTEAD OF $T$ 2S. |

D D-IT CENTAUR ADDED TO ALL CONFIGURATIONS FOR GEO MISSIONS



ALL DIMENSIONS IN FEET
modified version of the MX first stage ( Sl ) for its third stage. The overall height of the two configurations is essentially the same because the Titan core stage II and S1 have nearly the same length. Spacing of the first-stage SRB's is identical with that of the STS. The height ( 216 ft ) of the GEO mission configuration can be accommodated with the 50 t boom crane that is used for payload changeout at the pad. A height reduction of approximately 8 ft is necessary on the polar configuration to make it compatible with WTR facility constraints (MST). The GLOW for these vehicles is a little over 3,400,000 lb . Payload capabilities for LEO, Sun synchronou* and GEO are, respectively, 42,000, 34,000 and $11,700 \mathrm{lb}$ when using steel case SRM's، Use of FWC's would add 6000 lb for the LEO type missions and 1000 lb for a GEO mission.

The B4 configuration and characteristics are shown in figure 3.5.7-2. The firststage SRB's of this concept are made up of three rather than four segments, as in B3 and B6. This configuration also requires use of a stretch Titan core stage II (an additional $41,000 \mathrm{lb}$ of propellant-delta $L=7 \mathrm{ft}$ ) in order to achieve payloads of the same magnitude as B3 and B6. The GLOW for the B4, however, is approximately $600,000 \mathrm{lb}$ less. The resuit of the shorter first stage is that it allows the core (second, third, fourth stages and payload) to be lower and, thus, it has a total height that can be accommodated at WTR without any vehicle height reduction. The 50 t crane is still required at ETR, however, for payload changeout.

### 3.5.8 Recommended Concept

As indicated from the foregoing descriptions, three configurations had similar characteristics for the system elements employed. The recommended concept, however, is the B3, based on the following rationale. Although the F 4 had similar performance, it was helped considerably by use of a stretch T2 (T2S) rather than standard T2. Should the T2S be used with the B3, its performance should be somewhat better than B4. The B6 also had comparable payload as the B3, but the S1 used for the third stage has nearly reached its limit in terms of performance. Again, the B3 could employ a stretch version of the T2 as well as an improved nozzle, offering considerable improvement.

Consequently, the B3 concept was judged to offer the best overall characteristics and was used to obtain a more complete definition as the SRB-X configuration in section 4.0.



ALL DIMENSIONS IN FEET

### 4.0 CONCEPT DEVELOPMENT

This section provides further analysis of the basic concept in terms of alternatives to improve vehicle performance and additional subsystem definition tha\% will provide characteristics fc: the final configuration.

### 4.1 PERFORMANCE IMPROVEMENT OPTIONS

The basic concept resulting from the screening analysis consisted of a first stage with two standard STS four-segment steel case SRB's, a nonoptimized two-segment steel case SRB for the second stage, and a standard Titan core stage II serving as the third stage.

Although the GEO payload capability of the selected vehicle was considerable at $11,700 \mathrm{lb}$, there appeared to be an increasing need to satisfy a $15,000 \ldots \mathrm{lb}$ requirement expected during the 1990's. As a result, potential improvements were identified and are indicated in figure 4.1-1. Key features of these improvements, relative to the basic vehicle, are summarized below.
a. Stage 1-Basic: two STS four-segment SRB's with steel case SRM's. Improvements: (1) filament wound case to reduce inert weight and (2) higher operating pressure for increased thrust and reduced gravity losses-same basic case but safety factor for unmanned vehicle ( 1.25 versus 1.4 ) allows a higher maximum expected operating pressure (MEOP).
b. Stage 2-Basic: two-segment JRB with steel case SRM. Improvements: (1) filament wound case for reduced inert weight, (2) higher operating pressure for higher thrust and less gravity loss, and (3) optimized expansion ratio for improved specific impulse.
c. Stage 3-Basic: standard Tiran core stage II. Improvements: (1) increased propellant load by $50 \%$ and (2) expansion ratio changed from 49 to 66 for 3 -sec improvement in specific impulse.
d. Stage 4-Basic: standard Centaur D-IT. Improvement: advanced cryogenic stage such as HEUS, with more propellant and better mass fraction.

### 4.2 SUBSYSTEM ANALYSIS

The analysis was focused to support the investigation of the performance improvement options as well as to provide a more complete definition of the vehicle. Those areas analyzed included propulsion systems, new structural elements, avionics for vehicle control, and additional stability and control analysis.
ORIGINAL PAGE IS
GF POOR QUALTY

Figuĩe 4.1-1. Configuration Performance Improvement Options

### 4.2.1 Propulsion Systems

The propulsion analysis at this point was focused primarily on further definition of the SRM's, although some effort was devoted to the liquid third and fourth stages.

### 4.2.1.1 SRM Definition

Further definition was performed on a four-segment and a two-segment SRM. The design constraints used in the analysis were as follows:
a. Maximum thrust to weight: 3.6 g 's.
b. MEOP consistent with design factor of safety of 1.25.
c. Maximize use of current SRM hardware and propellant formulation.
d. Maintain size and weight to conform with existing processing and launch facilities.
e. Configurations to allow substitution of filament wound case (FWC) components.
f. Configurations satisfy stage-to-stage interfaces for SRB-X.

Four-Segment High-MEOP SRM. The high-MEOP SRM was used to investigate a higher thrust first stage that could reduce gravity losses and thus improve payioad capability. An unmanned vehicle generally allows a 1.25 safety factor rather than 1.4 for manned and thus provides the opportunity to increase the MEOP from 1007 psia to 1128 psia. The higher MEOP corresponds to the proof pressure used in the basic STS SRM and therefore does not present a completely new environment.

To achieve the higher pressure an increase in burn rate would also be necessary, but this increase must remain within the limits of the standard propellant, TP-H1148.

The resultant motor performance and thrust history are summarized in table 4.2.1-1 and figure 4.2.1-1, respectively, and are compared with a standard HPM. A maximum thrust of $4,050,000 \mathrm{lbf}$ and an Isp of 267.8 sec are provided by the high-MEOP SRM versus the HPM characteristics of $3,175,000 \mathrm{lbf}$ and Isp of 267.2 sec . Notice the burn rate increase from 0.42 to 0.48 ips at 1000 psia and the attendant decrease in burn time. All other components are standard HPM hardware.

Two-Segment SRM. The stage 2 SRM resulting from the concept and configuration trades (sec. 3.0) consisted of a basic two-segment SRM that had not been optimized. Areas for optimization included the thrust profile to minimize g losses and expansion ratio for higher Isp, as well as reexamination of the propellant loading and utilization of the 1.25 safety factor that allows a higher MEOP. In addition to those indicated previously, the primary design consideration was continued use of the STS SRM propellant; however, a new grain design was acceptable.

6
(
Figure 4.2.1-1. Thrust-Time History

Optimization Options. The variations of this motor characterized to assess sensitivity of thrust level, Isp, and inert weight in terms of vehicle payload capability are summarized in table 4.2.1-2. Ballistics data for each motor also were developed. Configuration 1 is the SRM resulting from section 3.0. A similar SRM but with higher expansion ratio is indicated by la. Motor configurations 2,3 , and 4 were defined to show the impact on Isp and nozzle weight when a constant $g$ level was provided. Configuration 5 relates to a motor that attempts to obtain the high thrust profile that includes a lower maximum value and, thus, less nozzle weight. Configuration 6 is similar to 5 except consideration was given to manufacturing limitations (wrapping and autoclave). As a result, the largest nozzle exit diameter which appears possible is 166 in .

Comparison of Options. An overview of the options and comparison of several propellant loadings are presented in figure 4.2.1-2. The indicated conditions for performing the propellant loading trades are typical of the parameters investigated. As indicated, the two-segment loaded results in a small payload loss. The advantage, versus the other loadings, however, is that it is easily adaptable to filament wound cases whereas a 2-1/2 segment is not. Compared with a three-segment SRM, it requires less thrust and tailoring to satisfy g constraints.

The influence of g level (thrust profile), expansion ratio (Isp), and MEOP in terms of vehicle LEO capability is shown in figure 4.2.1-3. All options are keyed to the reference system from section 3.0. The three constant g cases (options 2, 3, and 4) indicate that a benefit occurs with lower $g$ because a lower thrust is necessary, which allows a higher expansion ratio (more Isp) and less inert weight. Option 5 provides the maximum capability for the options investigated by a variable g profile with a relatively low initial $g$ that again allows a more optimum nozzle. Unfortunately, the 197-indiameter nozzle was found to be too large for the known manufacturing capabilities. The selected SRM, therefore, had the variable g profile but with the nozzle diameter restricted to 166 in (the STS HPM is 149). As such, the selected design provided a $2000-\mathrm{lb}$ payload gain over the reference design.

Final Design Features. The final definition of the two-segment SRM occurred as a result of interaction with the vehicle configuration design activity. As a result, it was determined that a more desirable structural interface would occur between first and second-stages if the second-stage SRM consisted of forward and aft segments from the STS SRM rather than forward and center segments. With this design, the ET attachment section of the aft segment can be used to connect the aft struts coming from the stage 1 SRB's. Accordingly, the propellant and inert weight were adjusted.
Table 4.2.1-2. Two-Se
Table 4.2.1-2. Two-Segment SRM Optimization Options

|  | NFIGURATION | $\varepsilon_{\text {in }}$ | ISP | $\mathrm{R}_{\mathrm{b}} \mathrm{IN} / \mathrm{SEC}$ | TBURN SEC | NOZZLE * <br> WT LBM | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | REFERENCE | 17.9 | 285.12 | 0.28 | 186 | 13,168 | MEOP-1016 <br> NOZZLE DIA $=132.0 \mathrm{~N}$ <br> NOZZLE FS $=1.25$ |
| 1A | REFERENCE | 40.0 | 295.3 | 0.28 | 186 | 17,800 | MEOP-1016 <br> NOZZLE DIA $=196.5$ |
| 2 | 3.6G CONSTANT | 18.3 | 285.87 | 0.54 | 100 | 18,128 | $\begin{aligned} & M E O P-1128 \\ & D_{E}=196.5 \end{aligned}$ |
| 3 | -3.0G CONSTANT | 22.3 | 288.88 | 0.44 | 124 | 17,591 | $\begin{aligned} & \text { MEOP-1128 } \\ & D_{E}=196.5 \end{aligned}$ |
| 4 | 2.4G CONSTANT | 28.4 | 292,33 | 0.36 | 153 | 17.045 | $\begin{aligned} & \text { MEOP- } 1128 \\ & D_{E}=196.5 \end{aligned}$ |
| 5 | VARIABLE G | 39.5 | 296.27 | 0.32 | 151 | 16,096 | $\begin{aligned} & \text { MEOP-1128 } \\ & D_{E}=196.5 \\ & M A X G=3.6 \end{aligned}$ |
|  | VARIABLE G | 27.2 | 291.57 | 0.32 | 151 | 14,459 | $\begin{aligned} & \text { MEOP- } 1128 \\ & D_{E}=166 \\ & \text { MAX } G=3.6 \end{aligned}$ |

[^2] SIZING AS THE MOVABLE NOZZLE INERTIA INCREASES PROPELLANT LOADING SELECTION - CONT G = 3.0

- COST G = 3.0
- MEOP = 1016
- EXP RATIO = 40
- COST MASS FRA
- STD STG 1 AND 3

REQUIRES LESS THRUST \& TAILORING MORE ADAPTABLE WITH FWD

| OPTIONS |
| :--- |
| $2,2.5,3$ |
| $\quad$. |
| VARIABLE |
| MAX $=3.6$ |
| CONSTANT |
| 3.6, 3.0, 2.4 |
| UP TO 40 |
| 1128 |


1016
PARAMETERS

- PROP. LOAD
(NO. OF SEGMENTS)
- G LEVEL (VEHICLE)
- EXP. RATIO
- MEOP (PSIA)
Figure 4.2.1-2. Stage 2 Performance Trades

Figure 4.2.1-3. Stage 2 Performance Comparison

SRB-X-296

The basic motor layout is shown in figure 4.2.1-4. All aft segment components are standard, but the stacking order is changed. The two stiffener segments are at the forward end and the ET attach segment is last, allowing alignment of the 1-2 interstage structure. The grain design is new but designed for minimum tooling costs. The forward segment web is 44 in (same as STS), but the 11 fins are repositioned at the aft of the casting segment. Since the fins are shorter than the standard HPM, this change permits cheaper noncollapsing fin core tooling. The grain design objective was to match, as closely as possible, the idealized optimized trace from the ADFO model. A comparison between ideal and designed thrust traces in figure 4.2.1-5 shows a good match. Performance data are summarized in table 4.2.1-3 for both actual grain design and idealized optimums. Although the $157-\mathrm{sec}$ burn time is longer than standard STS motors, a reduction in insulation safety factors is expected to reduce the case internal insulation requirement. This results from the decreased safety factor for a non-man-rated system and from considering that the second stage is too high and fast at burnout to recover for reuse.

### 4.2.1.2 Liquid Systems

Stage 3 Revisions. Interaction with the configuration activity also resulted in a revision of the stretch Titan stage II being used as the third stage for SRB-X. In this case, limitations on the vehicle height, when launched at VAFB, required a $1-\mathrm{ft}$ reduction in the length relative to that used for the third screening. The final performance characteristics assumed for the stage are as follows:
a. Propellant: $101,380 \mathrm{lb}$.
b. Inerts: 9455 lb .
c. Isp: 319 sec .

Stage 4 Revisions. Midway through the study, considerable effort was put forth by both NASA and the Air Force on an advanced cryogenic upper stage designated as HEUS. HEUS was to provide the capability to deliver approximately $16,000 \mathrm{lb}$ to GEO when launched from the shuttle. Because SRB-X was to be capable of launching, shuttle payloads, the launching of HEUS and its payload was an assumed requirement. Primary performance characteristics assumed for HEUS are as follows:
a. Propellant: $38,000 \mathrm{lb}$.
b. Inerts: 6000 lb .
c. Isp: 445 sec at mixture ratio of 5.5:1.
$\mathrm{m}^{2 \mathrm{cog}} 2 \mathrm{coc}$


ORICIMAL PACE BB
OF POOR QUALITY

Figure 4.2.1-4. Two-Segment Second-Stage SRB-X Motor
ORIGINAL PAGE IS
OF POOR QUALTK

Figure 4.2.1-5. Ideal Versus Designed Thrust Trace Comparison
( $\quad$ ORIGMAL PACE LS

### 4.2.2 Structural Analysis

$$
\begin{aligned}
& \text { 47unt fatmer }
\end{aligned}
$$

This section provides a preliminary structures definition of the basic B3 vehicle in the following areas: interstage 1-2 struts, payload shroud, stage 2 forward skirt, and assessithent of stage $l$ and 2 SRM stiffness. The payload shroud analyzed was made up of three sections: the payload/Centaur D-IT section, the ring section (reacts loads from forward lateral struts), and the section surrounding the third stage ( $T 2$ section). The final structural definition in section 5.0 had the ring section and T2 section combined with the forward strut system to form the stage 1-2 forward interstage structure.

### 4.2.2.1 Interstage 1-2 Struts

Design Concept and Approach. The structural concept of the interstage $1-2$ struts is shown in figure 4.2.2-1. The approach used in designing the struts is summarized in table 4.2.2-1. Major emphasis was placed on the interplay between strength requirements and stiffness requirements with regard to defining the strut basic tube sections. A conservative but practical engineering approach was used to define strut end fitting and separation bolts.

Design Considerations. The considerations used in designing the struts were the axial loading condition and stiffness characteristics. The axial load impact on the drag strut at liftoff is shown in table 4.2.2-2. A dynamic magnification factor was deveted from the STS data base and applied to the SRB-X baseline vehicle. The result is an estimated axial load transfer between stage 1 SRB and core vehicle (stages 2, 3, 4 and payload) of 1513 kips. The comparable STS load between SRB and ET is 1363 kips. (The maximum STS load occurs at SRB max $g$ and is 1672 kips.)

The axial load transfer via the drag strut during stage 1 flight is presented in figure 4.2.2-2. As indicated, the load ranges from a minimum of 661 kips at liftoff steady-state onset to a maximum of 1240 kips at stage 1 max $g$. Note that this inflight maximum load is considerably less than the liftoff transient load of 1513 kips.

Assessment of the drag struts for stifiness verification is presented in figure 4.2.2-3. This assessment involved sizing the drag struts for strength and incorporating their characteristics into a simplified dynamics model. The first flexible body mode resulting from the dynamics analysis is an asymmetrical longitudinal translation of stage 1 SRB's. As such, the mode is a primary indicator of the dynamic response of the drag struts. The mode frequency is 2.3 Hz . (It is a design goal that lower mode frequencies be greater than 2 Hz in order to provide at least four times the flight control system

Figure 4.2.2-1. Interstage $1-2$ Struts


- DEFINE LCIAD REQUIREMENTS
- LIFTOFF TRANSIENT COND
MAX a $/ 5000$ PSF-DEG SEL
- MAX g $(2.82$ MAX DURING S


| - DEFINE LCAAD REQUIREMENTS <br> - LIFTOFF TRANSIENT CONDITION <br> - MAX $a \circ$ (5000 PSF-DEG SELECTED FOR STRUCTURAL DESIGN) <br> - MAX g (2.82 MAX DURING STAGE 1 OPERATION) |
| :---: |
| DEFINE STIFFNESS REQUIREMENTS <br> - WANT VEHICLE LOWER MODE FREQUENCIES TO BE GREATER THAN 2 HZ (i..., AT LEAST 4 TIMES FLIGHT CONTROL SYSTEM FREQUENCY OF APPROXIMATELY 0.5 HZ ) |
| - USE HIGH STRENGTH STEEL (220 KSI) FOR STRUT TUBE SECTIONS |
| - FOR STIFFNESS CRITICAL STRUTS USE END FITTINGS AND SEPARA TION BOLTS WITH A TENSION LOAD CAPABILITY NO LESE THAN THAT OF THE TUBE SECTIONS (i.o, GONSERVATIVE APPROACH WHICH |
| - USE THE STS SRB/ET STRUTS AS A DATA BASE FOR DEFINITION OF STRUT COMPONENTS OTHER THAN THE TUBE SECTIONS |
| TO THE MAXIMUM EXTENT PRACTICAL (WEIGHT/COST), USE COMMON ALITY OF END FITTINGS AND SEPARATION BOLTS. |

 SRB-X APPLICATION

> AT LIFTOFF (VEHICLE TN $=1.00$ ):
> TSRBx $1^{=1,722,000}$ LBF
> W SRBx $1=1,291,000$ LB
> DURING LIFTOFF TRANSIENT:
$P_{X_{\text {MAX }}}=3.51(1,722,000-1,291,000)=1,513,000$ LBF $D$
D APPROX 90\% OF STS LIMIT DESIGN LOAD OF 1,672,000 LBF (MAX g CONDITION)
(LIFTOFF TRANSIENT) 1.513 (LAGERATION

- FIRST FLEXIBLE BODY MODE IS ASYMMETRIC LONGITUDINAL TRANSLATION OF STAGE 1 SRBTS
- FIRST FLEXIBLE BODY MODE IS ASYMMETRIC LONGITUDINAL TRANSLATION OF STAGE 1 SRB'S
ORIGINAL PAGE IS
OF POOR QUALITY.

Figure 4.2.2-3. Drag Strut Stiffness Verification
frequency of approximately 0.5 Hz .) It is anticipated that the use of a complex dynamics model based on strength requirements is regarded as marginal with respect to stiffness considerations.

Stiffness verification of the lateral struts is shown in figure 4.2,2-4. Sizing of lateral struts (both forward and aft) is derived from stiffness considerations. Preliminary sizing of the struts occurred prior to the use of a dynamics model. The effort defined a relative stiffness requirement between forward and aft lateral struts and provided an approximation to strut stiffness. Final sizing of the struts was accomplished via the simplified dynamics model. The result is a second flexible body mode, which is an asymmetrical combined translation/rotation (in pitch plane) of stage 1 SRB's. As such, the mode is a primary indicator of the dynamic response of the lateral struts. The mode frequency is 2.4 Hz .

Design Features and Characteristics. Characteristics of the strut tubes, based on combined load and stiffness considerations for the drag struts and on stiffness consideratrons only for the lateral struts, are presented in table 4.2.2-3. Selected tube section reference diameters were 12 in for the drag strut and the aft lateral center strut and 10 in for the forward and aft lateral upper and lower struts. Ultimate tension and compression load-carrying capabilities of the tube sections are indicated. It should be noted that the weights data do not include provisions for end fittings, etc., which are discussed in subsequent paragraphs.

The weight estimate for the SRB-X strut end fittings, separation bolts, etc., relied heavily on the data base provided by the shuttle (STS), which is indicated in table 4.2.2-4. For the STS, the SRB external tank aft structural interface consists of three struts (lower, upper, and center) of identical design. All are 34 in long (pin-to-pin) and are designed for $-299 /+393$ kips limit load ( $-419 /+550$ kips ultimate load). All struts use common components, but only the upper strut incorporates umbilical provisions. Component weights are indicated.

The weight data for strut clevis fittings, separation bolts, etc., at a design tension load of 550 kips ultimate are indicated in table 4.2.2-5. The data derive directly from STS strut data. SRB-X application of these data assumes that weight is directly proportional to ultimate design load.

The total weight and load capability for the forward strut system is shown in table 4.2.2-6. With respect to tension load capability, the data summarize, for each lateral strut and for the drag strut, the ultimate load capability of tube section, end (clevis)

- SECOND FLEXIBLE BODY MODE IS ASYMMETRIC COMBINED TRANSLATION/
ROTATION (IN PITCH PLANE) OF STAGE 1 SRB'S

MODE IS PRIMAARY INDICATOR OF DYNAMIC RESPONSE OF
LATERAL STRUTS (i.e., SRB'S ACTING AS RIGID BODIES)
MODE FREQUENCY IS 2.4 HZ
Figure 4.2.2-4. Lateral Strut Stiffness Verification




[^3]Table 4.2.2-4. Reference STS Strut Data

- ALL STRUTS (LOWER, UPPER, CENTER) AHE 34 INCH LONG (PIN-TO-PIN), AND ARE
- ALL STRUTS USE COMMON COMPONENTS, BUT ONLY THE UPPER STRUT INCORPORATES SRB SIDE ETSIDE TOTAL

 UMBILICAL PROVISIONS
SRB-X-324
design tension load of 550 Kips ultimate


Table 4.2.2-6. Forward Strut System Load Capability and Weight

|  | ULT TENSION LOAD CAPABILITY~KIPS |  |  |
| :--- | :---: | :---: | :---: |
|  | TUBE SECTION | END FTG | SEP BOLT |
| LATERAL STRUTS (10-IN DIA) | 691 | $864^{*}$ | $864^{*}$ |
| DRAG STRUT (12-IN DIA) | 2075 | 2075 | 2075 |

-USING AFT UPR/LWR STRUT COMPONENTS

|  | - . WEIGHT PER SIDE ~ LB |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | STAGE 1 RETAINED | JETTTISONED | CORE VEHICLE RETAINED | TOTAL |
| -THRUST FITTING <br> THRUST FITTING BALL, SEP BOLT, ETC. | 160* | 600 40 | - | 600 200 |
| DRAG STRUT TUBE SECTION | - | 895 | 80 | 970 |
| DRAG STRUT END FTGS, SEP BOLT, ETC. | - | 540 | 270 | 810 |
| LATERAL UPR STRUT TUBE SECTION | - | 110 | 40 | 150 |
| LATERAL UPR STRUT END FTGS, SEP BOLT, ETC. | - | 230 | 115 | 345 |
| LATERAL LWR STRUT TUBE SECTION | - | 110 | 40 | 150 |
| LATERAL LWR STRUT END FTGS, SEP BOLT, ETC. | - | 230 | 115 | - 345 |
| ALLOWANCE FOR TPS, ELECTRICAL | 20 | 80 | 30 | 130 |
| TOTAL | 180 | 2830 | 690 | 3700 |

-STS HARDWARE
DRAG STRUT (12-INDIA)
fittings, and separation bolts. To reduce from four to two the total number of end fittings and separation bolts to be designed, the forward lateral strut ( 10 -in diameter) uses end fittings and separation bolts sized for the aft upper and lower lateral struts (also 10 -in diameter). The weights data include those for the tube sections with provisions for end fittings, as well as the required end fittings. Each side of the forward strut system weighs 3700 lb , resulting in 7400 lb for the complete system.

The load capability and weights for the aft strut system are presented in table 4.2.2-7. In keeping with the goal of reducing from four to two the total number of end fittings and separation bolts to be designed, the aft center strut (12-in diameter) uses end fittings and separation bolts sized for the drag strut (also 12-in diameter). Each side of the aft strut system has a weight of 3300 lb , resulting in a total weight of 6600 lb .

### 4.2.2.2 Payload Shroud

Design Concept and Approach. The structural analysis described in section 3.5.2 indicated that stage 3, stage 4, and the payload would all be enclosed within a shroud. The configuration concept for the shroud is shown in figure 4.2.2-5. For analysis purposes, the shroud has been divided into the three indicated sections. Payload axial loads are transmitted via the upper stages to the second stage. Shroud axial loads are transmitted via the shroud to the second stage. A fixed portion of the shroud lateral load ( $20,000 \mathrm{lbf}$ ) is transferred to the upper stages via the FBR ( 753 in aft of nose). The forward component of the stage 1 force couple, which provides the necessary aerobalance, is transferred to the core vehicle and shroud via the forward interconnecting lateral struts (1132 in aft of nose). The forward force component is of $38,000 \mathrm{lbf}$ magnitude.

The approach used to analyze the shroud is indicated in table 4.2.2-8. Key features include:
a. $\quad$ Max $q$-alpha $=5000$ psf-deg.
b. Incorporation of Centaur FBir.
c. Use of Lockheed's Titan/Centaur shroud as data base for structures design (skin panels) and weights.

Design Considerations. Design considerations associated with the shroud analysis included upper stage bending characteristics, shroud loads, and deflections. Bending characteristics of the upper stages are indicated in figure 4.2.2-6. The quasi-steady-state bending moment applied to the upper stages results from the FBR of $20,000 \mathrm{lbf}$, with minor load relief provided by the lateral load factor of 0.12 g . The maximum moment is
Table 4.2.2-7. Aft Strut System Load Capability and Weight

| -USING DRAG STRUT COMPONENTS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | WEIGHT (PER SIDE) ~1. ${ }^{\text {P }}$ |  |  |  |
|  | STAGE 1 RETAINED | JETTISONED | CORE VEHICLE RETAINED | TOTAL |
| LOWER STRUT TUBE SECTION LOWER STRUT END FTGS, SEP BOLTS, ETC | $\begin{array}{r} 45 \\ 230 \end{array}$ | $\begin{aligned} & 130 \\ & 135 \end{aligned}$ | $\begin{array}{r} 45 \\ 115 \end{array}$ | $\begin{aligned} & 220 \\ & 480 \end{aligned}$ |
| UPPER STRUT TUBE SECTION <br> UPPER STRUT END FTG, SEP BOLTS, ETC. | $\left.\begin{array}{r} 70 \\ 250 \end{array}\right\}$ | $\left.\begin{array}{c} 180 \\ 155 \end{array}\right\}:$ | $\left.\begin{array}{r}70 \\ 136\end{array}\right\}$. | 320 540 |
| CENTER STRUT TUBE SECTION | 80 | 290 | $80$ | 450 |
| CENTER STRUT END FTGS, SEP BOLTS, ETC | 840 | 320 | $270$ | $1130$ |
| ALLOW FOR TPS, ELECTRICAL | 25 | 110 | 25 | 180 |
| TOTAL | 1240 | 1320 | 740 | 3300 |
| -DELTA WEIGHT RELATIVE TO LOWER STRUT REFLECTS STRUCTURAL MODS TO ACCOMMODATE STAGE 1 UMBILICAL |  |  |  |  |

TOTAL SYSTEM WEIGHT $\mathbf{= 6 6 0 0}$ LB

-USING DRAG STRUT COMPONENTS
WEIGHT (PER SIDE)~1.B
-DELTA WEIGHT RELATIVE TO LOWER STRUT REFLECTS STRUCTURAL MODS TO ACCOMMODATE STAGE 1 UMBILICAL

|  | ULT. TENSION LOAD CAPABILITY~ KIPS |  |  |
| :--- | :---: | :---: | :---: |
|  | TUBE SECTION | END FTG | SEP BOLTS |
| UPR/LWR STRUIS (1Q-IN DIA) | 864 | 864 | 864 |
| CENTER STRUT (12.IN DIA) | 1560 | $2075 *$ | $2076^{\circ}$ |

- 
- 

> ORIGINAL PAGE IS "OF POOR QUALITY

Figure 4.2.2-5. Shroud Configuration

ORIGINAL PACE IS
OF POOR QUALIT



$8.1 \times 10^{6} \mathrm{in}-\mathrm{lb}$ and occurs at the base of the stage 2-3 interstage (1397 in aft of nose). The bending stiffaess of the D-IT and T2 stages is as indicated, where the T2 stage stiffness is a simplified approximation of a more complex distribution provided by Martin Marietta.

The quasi-steady-state loads (axial load, shear, and bending moment) applied to the shroud are indicated in figure 4.2.2-7. Bending is the primary load condition and results from the aerolift on the nose of $39,000 \mathrm{lbf}$, with substantial load relief provided by the FBR of $20,000 \mathrm{lbf}$ and the stage 1 forward lateral force component of $38,000 \mathrm{lbf}$, and with minor load relief provided by the lateral load factor of 0.12 g . The maximum moment is $35 \times 10^{6}$ in-lb and occurs at the location of the stage 1 forward lateral force component (1132 in aft of nose).

The final design consideration was the deflections occurring in the shroud sections surrounding the T2 and D-IT. These data are presented in figure 4.2.2-8. The maximum allowable shroud deflection at the FBR is 2.5 in and results from the upper stages deflection (at the FBR) of 1.5 in , combined with a 1.0 -in deflection lag across the FBR (due to its spring constant of $20,000 \mathrm{lbf} / \mathrm{in}$ ). This deflection limit can be satisfied by various distributions of skin panel $\overline{\mathrm{t}}$ 's aft of the FBR. A practical design approach was adopted in which the D-IT section and the T2 section skin panel $\overline{\mathrm{T}}$ 's were held constant within each section. Using this approach, minimum total skin panel weight is obtained with a D-IT section $\bar{t}$ of 0.74 in and a $T 2$ section $\bar{t}$ of 0.17 in . (Skin panels located forward of the FBR have a $\bar{t}$ of 0.059 in , based on minimum gage requirements.)

Design Features and Characteristics. Based on considerations of manufacturing, handling, and accessibility to equipment within, the shroud was divided into sections as indicated in figure 4.2.2-9. The indicated GEO shroud accommodates a 42-ft payload and the LEO shroud, a $60-\mathrm{ft}$ payload, although other lengths are possible.

Skin thickness and weight data for the various shroud sections are presented in table 4.2.2-9. The thickness combinations for the basic skin and corrugation of sections B through $H$ derive from Lockheed skin panel design data. Sections $J$ and $K$ utilize stringerstiffened skin panels. The unit weights for "other structural assembly items" and thermal provisions derive from Lockheed's Titan/Centaur shroud. The unit weight for "other structural assembly items" considers the larger shroud diameter ( 16.7 ft comparea to 14.0 ft ), the use of three rather than two longitudinal separation joints in the payload/ D-IT sections, and other structural definition peculiarities. Design features of the ring assembly (shroud section I) are shown in figure 4.2.2-10 and discussed in the following
SRB-X-331


Figure 4.2.2-7. Shroud Loads

Figure 4.2.2-8. Selection of Shroud Skin Panel $\bar{t}$ 's
SRB-X-334

L

Figure 4.2.2-9. Shroud Sections
SRB-X-335

|  | (A) | (B) | (c) | (D) | (E) | (F) | (G) | (H) | (1) | (J) | (K) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SKIN THICKNESSES (INCH) BASIC SKIN CORRUGATION (TOTAL t) |  | $\begin{aligned} & 0.032 \\ & 0.020 \\ & \text { (0.059) } \end{aligned}$ | $\begin{gathered} 0.032 \\ 0.020 \\ (0.059) \end{gathered}$ | $\begin{gathered} 0.040 \\ 0.025 \\ (0.074) \end{gathered}$ | $\begin{aligned} & 0.040 \\ & 0.025 \\ & (0.074) \end{aligned}$ | $\begin{gathered} 0.040 \\ 0.025 \\ (0.074) \end{gathered}$ | $\begin{aligned} & 0.040 \\ & 0.025 \\ & (0.074) \end{aligned}$ | $\begin{aligned} & 0.040 \\ & 0.025 \\ & (0.074) \end{aligned}$ | . | (0.170) | (0.176) |
| UNITS WEIGHTS (LB/ET²) SKIN PANELS OTHER STRUCT ASSY ITEMS THERMAL PROVISIONSE WEIGHT MARGIN (TOTAL) | (3.2) | $\begin{aligned} & 0.85 \\ & 1.05 \\ & 0.20 \\ & 0.10 \\ & (2.2) \end{aligned}$ | $\begin{aligned} & 0.85 \\ & 1.05 \\ & 0.20 \\ & 0.10 \\ & (2.2) \end{aligned}$ | $\begin{aligned} & 1.07 \\ & 1.11 \\ & 0.20 \\ & 0.12 \\ & (25) \end{aligned}$ | $\begin{aligned} & 1.07 \\ & 1.05 \\ & 0.55 \\ & 0.13 \\ & (2.8) \end{aligned}$ | $\begin{aligned} & 1.07 \\ & 1.05 \\ & 0.55 \\ & 0.13 \\ & (2.8) \end{aligned}$ | $\begin{aligned} & 1.07 \\ & 1.11 \\ & 0.20 \\ & 0.12 \\ & (2.51 \end{aligned}$ | $\begin{aligned} & 1.07 \\ & 2.16 \\ & 0.20 \\ & 0.17 \\ & (3.6) \end{aligned}$ |  | $\begin{aligned} & 2.46 \\ & 1.55 \\ & 0.20 \\ & 0.20 \\ & (4.4) \end{aligned}$ | 2.45 3.40 0.20 0.25 (5.91 |
| SURFACE AREA (FT ${ }^{\mathbf{2}}$ ) | 625 | 628 | 314 | 240 | 628 | 314 | 480 | 170 | 70 | 056 | 102 |
| WEIGHT (LB) | 2000 | 1380 | 690 | 600 | 1760 | 880 | 1200 | 6104 | 2320 : | 3780 | $600 \pm$ |

D STABILITY RINGS, JOINTS (FIELD, PRODUCTION, SEPARATION), PYROTECHNICS, MECHANISMS, ACCESS PROVISIONS, UMBILICAL PLATES, ETC.
D THERMAL LINERS, BLANKETS
B INCLUDES KICK RING AT LOWER END ( 220 LB)
D NON-SEPARABLE WEIGHT APPROX. 250 LB (STRUCTURE \& MECHANISNS)
DESIGN FOR Y-DIRECTION COMPRESSIVE LOADS BASED ON MAXIMUM
COMPRESSION LOAD CAPABILITY' OF FORWARD LATERAL STRUTS.
paragraph. Total shroud weight is $18,560 \mathrm{lb}$ for the GEO mission ( $42-\mathrm{ft}$ payload) and $16,190 \mathrm{lb}$ for the LEO mission ( $60-\mathrm{ft}$ payload).

The shroud ring assembly is designed to carry (internally) Y-direction compressive loads defined by the maximum compression load capability of the forward lateral struts. The basic ring is a 26 -in-deep ring truss in which the outer chord is a 16 -in-wide plate, and the inner chord, posts, and diagonals are tubes. It is a welded assembly constructed of 2219 aluminum. The ring assembly incorporates pyrotechnics and mechanisms to effect a clamshell separation of the combined ring assembly and T2 shroud, plus external fittings for attachment of the forward lateral interconnecting struts. Total weight is 2320 lb , distributed as follows: basic ring truss at 1500 lb , pyrotechnics and mechanisms at 500 lb , and external fittings at 320 lb .

### 4.2.2.3 Stage 2 Forward Skirt Design Approach and Weight

The stage 2 forward skirt is a modified STS SRB forward skirt. A summary of the modifications and weight impact is shown in table 4.2.2-10. The most significant modifications include the addition of (1) a second thrust post and thrust post fitting (opposite the existing posi and fitting), (2) a new kick ring to react the leteral force component of the drag strut loads, and (3) new external fittings for drag strut attachment. Total weight of the modified skirt is 7800 lb -an increase of approximately 1540 lb .

### 4.2.2.4 Stage 1 and 2 SRin Stiffness

As noted in section 4.2.2.1, the first and second flexible body modes verified the stiffness of the drag struts and lateral struts, respectively. In these first two modes, both the stage 1 SRB's and the core vehicle acted as rigid bodies. The lowest mode in which stage 1 SRM sidewall bending stiffness is a dominant factor is the third flexible body mode. As indicated in figure 4.2.2-11, this mode is asymmetrical bending (in the pitch plane) of stage 1 SRB's. Mode frequency is 2.8 Hz with lightweight steel cases, which would be reduced to 2.5 Hz with filament wound cases. Frequency with either type of SRM case is above the goal of 2 Hz , which provided a factor of 4 relative to the flight control frequency.

In the first three flexible body modes, the core vehicle acted as a rigid body. However, the fourth flexible body mode is bending (in the pitch plane) of the core vehicle relative to translation of stage I SRB's, as shown in figure 4.2.2-12. This is the lowest mode in which stage 2 SRM sidewall bending stiffness is a dominant factor. Mode frequency is 3.3 Hz with lightweight steel cases, reducing to 2.9 Hz with filament wound cases. Again, the resulting frequencies are above the goal of 2 Hz .



## ORHINAL PACE is Of POOR QUALITY

SRB-X-320

- FOURTH FLEXIBLE BODY MODE IS BENDING (IN PITCH PLANE) OF CORE VEHICLE
RELATIVE TO TRANSLATION OF STAGE 1 SRB'S.

SECTION OF SHAOUD ICATOR OF DYNAMIC RESPONSE OF STAGE 2 SRB/TITAN
位
3.3 HZ ; LIGHTWEIGHT STEEL SIDEWALL
2.9 HZ; FILAMENT WOUND SIDEWALL
- MODE FREQUENCY IS
Figure 4.2.2-12. Stage 2 SRM Sidewall Bending Stiffness


### 4.2.3 Avionics Subsystem

The avionics subsystem for SRB-X is based on the maximum use of existing STS or other program hardware. It provides complete guidance and control for LEO delivery missions without an upper stage and accommodates guidance and control when furnished by an upper stage used for GEO missions. The avionics subsystem accomplishes the fcllowing functions:
a. Communications and tracking-provides the required radiofrequency (RF) link between the vehicle and other support elements; includes receiving rommands, transmitting telemetry data, and turnaround of ranging signals.
b. Flight control- determines and controls vehicle attitude, velocity, and position; maintains vehicle stability; provides vehicle flight event control.
c. Data management-provides vehicle computation capability; collects, formats, and processes status data and distributes the data required for command and control.
d. Instrumentation-provides for the sensing of vehicle status; provides for signal conditioning of the sensed data as required and provides it to data management.
e. Range safety-provides the capability for command destruct of the vehicle as required to satisfy the safety requirements of the range.

### 4.2.3.1 Avionics Subsystem Desígn Rationale

The SRB-X concept is derived from existing STS SRB hardware elements to the greatest extent possible in providing a launch vehicle that satisfies the study objectives. The selected vehicle concept uses solids for the first two stages and a Titan second stage for the third stage. In the development of an avionics subsystem for the SRB-X launch vehicle, the following criteria were used:
a. For the SRB's for stage 1, avionics changes would be minimized to maintain interchangeability with the existing STS launch system. In addition, the existing STS SRB avionics interfaces would be the same for both STS and SRB-X.
b. Since the existing SRB's are designed to interface with shuttle avionics, orbiter-type equipment on other vehicle elements would be used to the extent feasible.
c. Use of new hardware component design would be minimized through existing suitable STS hardware; where suitable STS hardware does not exist, existing hardware from other programs would be used.
d. An integrated avionics subsystem design would be provided to accommodate the requirements of the total SRB-X launch vehicle.
e. Two operational modes would be accommodated: (1) self-provided guidance and control for LEO delivery missions and (2) guidance and control provided by upper stage.
f. Recovery of only the first-stage SRB's would be accomplished.

### 4.2.3.2 Functional Description

An overall block diagram of the SRB-X avionics subsystem is shown in figure 4.2.3-1. A major portion of the avionics is accommodated in the vehicle's control module, located immediately above stage 3. The design accommodates all of the design rationale discussed in the previous section. The following paragraphs discuss the design approach for each major functional area.

Communications and Tracking. The communications and tracking portion of the SRB-X includes a signal processor, an STDN/TDRSS transponder, a 20W S-band power amplifier, a diplexer, an RF switch, two power dividers, and four antennas. The signal processor selects and processes telemetry data from the data bus master controllers prior to providing the data to the transmitter portion of the transponder. The transponder receives uplink signals, turns around the ranging signal, and transmits downlink data signals to the RF power amplifier, which amplifies the transmit signal to a minimum level of 20W. The diplexer provides simultaneous uplink and downlink RF signal paths between the transponder and RF amplifier and the antennas. The RF switch is used to select antennas located on either the control module or the second stage. The power divider provides equal power to the omniantennas located diametrically opposite from each other.

Flight Control. As was previously discussed, the SRB-X flight control uses different designs to provide the two flight control modes (with and without upper stage guidance). For the case without upper stage guidance, a redundant inertial measurement unit is installed in the SRB-X control module. The inertial measurement unit electronics provide conditioned power, thermal control, digital control, synchronization, and the interface between the launch vehicle computers and the inertial sensors. The flight program is executed by the computers and includes stability control of the vehicle. System gain values are changed and filtering is performed as required for the differing flight conditions, such as configuration changes that occur as elements are staged. Flight control events, such as spent vehicle and shroud staging, are also generated by the computers.

Figure 4.2.3-1. SRB-X Avionics Subsystem



For the case of upper-stage-provided guidance, the computers and inertial measurement unit are replaced by a digital autopilot in the control module. The autopilot provides stable venicle control in response to guidance commands provided by the upper stage. System gains in the autopilot are changed as required. The launch vehicle events (separation, inflight engine start commands, etc.) are provided by an event controller driven by upper-stage-provided discrete commands.

For both modes of flight control, control of the servoactuators for the launch vehicle is provided by the TVC controller mounted in the vehicle control module.

Data Management. The data management system consists of the data bus system, the two flight computers and computer interface units (when required for the case of selfprovided flight control), and the vehicle interface unit. The data bus system. is the primary mode for all data acquisition and for the transmission from the computers of onboard-generated commands to the vehicle elements.

On the existing STS, there are a large number of wiring connections across the orbiter-SRB interface. The majority of these connections go to multiplexer-demultiplexers (MDM) on the orbiter side of the interface. In order to maintain STS and SRB-X stage 1 SRB commonality, MDM's are installed on SRB-X stage 2 to accommodate these interfaces.

For the case with no upper stage guidance, the computers are functionally independent and each executes an entire flight program. On the basis of computer selftests, the computers provide OK status indications to the computer interface units. On initial power-up, one computer will be designated as prime and will control vehicle operations. The computer interface unit will control the redundancy management for the dual string operation. The computer that is in control will remain in control until the computer removes its status indication to the computer interface. Upon failure to receive correct status control indication from the computer in control, the computer interface unit will place the other channel in control.

In addition to the redundancy management function, the computer interface unit provides the interface electronics between all other vehicle elements (TVC controller, data bus, vehicle interface unit, transponder, spacecraft, etc.) and the computers.

The vehicle interface unit provides the interface between the data management portion of the SRB-X avionics and the other vehicle elements. It is used to provide discrete commands, such as separation and engine ignition, to other vehicle elements. The vehicle interface electronics unit is internally redundant.

Instrumentation. The instrumentation subsystem provides for the sensing of the state of vehicle subsystems and commands and for conditioning of the sensor outputs prior to the acquisition of the outputs by the data bus system.

Range Safety. The range safety system, in the event the vehicle deviates beyond prescribed limits of its flightpath or becomes a safety hazard to continue powered flight, provides a means for terminating the flight of the launch vehicle. The range safety system for each stage consists of a receiver decoder, antenna system, and ordnance.

### 4.2.3.3 Stage Avionics Description

A summary of the avionics associated with each stage is shown in figure 4.2.3-2 and discussed in the following paragraphs.

Stage 1. The avionics subsystern for stage 1 SRB's is unchanged from the design used on existing STS SRB's.

Stage 2. The avionics system for stage 2 consists of a single integrated electronics assembly to accomplish all avionics functions presently provided on the STS SRB's, with the exception of recovery. In addition, MDM's. are added to interface the stage 1 SRA's with the rest of the vehicle. Stage 2 avionics also include provisions for pyrotechnic initiators for stage 1 separation, stage 2 and stage 3 separation, and stage 2 retromotors. A range safety system is also included and is cross-strapped to the range safety systems of the stage 1 SRB's (as is presently done on the ET and SRB's on the STS). Diametrically installed antennas and a power divider are also installed in the forward skirt of stage 2 to provide an RF link while the payload shroud covers the antennas installed on the control module. After the shroud is jettisoned, these antennas are switched out and the vehicle RF link is through the control module antennas.

Stage 3. The stage 3 avionics system includes the basic Titan second-stage complement of hardware. Stage 3 avionics are connected into the data bus through MDM's. A range safety and inadvertent separation system is also installed.

Control Module. The control module (sometimes referred to as the instrument unit) contains the vehicle RF link, data bus master units, TVC controller, vehicle interface unit, computers and their interface units, and the inertial measurement unit (for selfprovided guidance) or vehicle autopilot (for upper-stage-provided guidance).
SRB-X-288

Figure 4.2.3-2. SRB-X Avionics Concept

### 4.2.3.4 Equipment Heritage and Weight

The avionics system design is based on the use of existing equipment to the extent possible in order to minimize front-end DDT\&E costs. The heritage and weight of the subsystem are shown in table 4.2.3-1. The majority of the equipment is instaited on the control module and is derived from either STS or IUS hardware. The MDM's used on all of the stages are derived from the STS program. The integrated electronics unit on the second stage combines the functions of the forward and aft assemblies used on the firststage SRB's, without the recovery system. For the third stage, there may be a requirement for a stage interface unit between the MDM's and the existing Titan secondstage avionics complement. This area was not fully explored during this study.

### 4.2.4 Stability and Control Analysis

A preliminary assessment of several SRB-X concepts was presented in section 3.5.4. The following material presents an overview of the scope of the effort and results concerning the selected SRB-X concept.

### 4.2.4.1 Overview

The control system studies of the SRB-X vehicle were conducted in three phases. The first consisted of static stability analysis of the vehicle in the pitch and yaw planes to establish the basic pararneters within which the control system would operate. The second phase consisted of computer-aided linear analyses of the vehicle dynamics with control system at selected time points. These linear analyses established appropriate control system gains. The third phase consisted of studies conducted with a three-degree-of-freedom pitch plane time simulation of vehicle flight during the atmospheric portion of its mission. These studies answered questions about the control system's ability to follow a specified trajectory, the level of structural loading, and the gimbal requirements imposed on the stage 1 TVC. These three phases are discussed in the following paragraphs, along with the basic control philosophy employed.

### 4.2.4.2 Pitch and Yaw Steric Stability

The pitch and yaw static stability of the basic SRB-X concept (B3) is shown below. These data indicate the vehicle had static stability with acceptable nozzle deflections at maximum dynamic pressure when subjected to an external wind disturbance.
SRB-X-289


| Parameter | Pitch | Yaw |
| :---: | :---: | :---: |
| Max dynamic pressure (psf)* | 800 | 800 |
| $V_{\text {WIND }}{ }^{(f t / s e c) *}$ | 260 | 260 |
| $V_{\text {VEHICLE }}$ | 1362 | 1362 |
| CP-CG (ft) | 33 | 66 |
| Gimbal piane - CG (ft) | 68 | 68 |
| Induced alpha (deg) | 10.08 | 10.08 |
| Margin TVC/wind torque | 3.04 | 2.34 |
| Gimbal angle to balance (deg)** | 1.56 | 2.02 |

*WTR winds (95\%) with gust of 50 fps .
**Maximum gimbal allowed $=4.75 \mathrm{deg}$.

### 4.2.4.3 Control System Concepts

A simplified block diagram of the control system is shown in figure 4.2.4-1. Three variations of the control system were simulated. The first combined a standard attitude/rate autopilot with a pitch program designed to fly a trajectory and assumes the wind profile is known. The second combined a standard attitude/rate autopilot with a pitch program designed to fly a trajectory without knowing the precise wind profile to be encountered. The third involved an autopilot that had an angle-of-attack feedback loop added to the attitude/rate loops and assumed there was no knowledge of the wind profile. This additional angle-of-attack feedback loop makes the control system more responsive to winds and helps reduce structural loading by acting to keep the angle of attack small during periods of high dynamic pressure. However, use of angle-of-attack feedback also causes some degradation in the control system's trajectory-following capabilities. Since the control system is designed to be sensitive to wind disturbances through the angle-ofattack feedback loop, the pitch program assuming no knowledge of winds was used.

Gains were set for several critical time points during atmospheric flight. These gains were established by doing linear analyses about the operating conditions at the various time points and using engineering judgment on good dynamic response. The gains for all three control system variations are shown in table 4.2.4-1. These gain schedules were not optimized and system performance could be improved with more comprehensive analysis.


Table 4.2.4-1. Control System Gains

GAIN SCHEDULE FOR NO WIND TRAJECTORY AND WIND BIASED TRAJECTORY

| TIME | $K_{A}$ | $K_{\theta}$ | $K_{R}$ | $K_{a}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 3.7 | 1 | .454 | 0 |
| 10 | 3.5 | 1 | .444 | 0 |
| 30 | 3.6 | 1 | .436 | 0 |
| 50 | 2.7 | 1 | .438 | 0 |
| 75 | 2.5 | 1 | .443 | 0 |
| 90 | 2.7 | 1 | .448 | 0 |
| 100 | 2.7 | 1 | .448 | 0 |

GAIN SCHEDULE FOR ANGLE OF ATTACK FEEDBACK

| TIME | $K_{A}$ | $K_{\theta}$ | $K_{R}$ | $K_{a}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 3.7 | 1 | . 454 | 0 |
| 3 | - | - | - | 2.1 |
| 10 | 3.5 | 1 | . 444 | - |
| 20 | - | - | -- | 3 |
| 30 | 3.6 | 1 | . 436 | 3 |
| 45 | - | - | - | 2.1 |
| 50 | 2.7 | 1 | . 438 | -- |
| 59 | - | - | - | 1.7 |
| 70 | - | - | -- | 0.8 |
| 75 | 2.5 | 1 | . 443 | - |
| 90 | 2.7 | 1 | . 448 | 0 |
| 100 | 2.7 | 1 | . 448 | 0 |

$K_{1}-0.5$, ALL TIMES
$K_{1}=$ INTEGRAL GAIN
$K_{A}=$ FORWARD LOOP PROPORTIONAL GAIN
$K_{R}=$ RATE FEEDBACK GAIN
$K_{\theta}=$ ATTITUDE FEEDBACK GAIN
$K_{a}=$ ANGLE OF ATTACK FEEDBACK GAIN

### 4.2.4.4 Results

Trajectory-Following Capability Versus Load Reduction. Figure 4.2.4-2 illustrates the basic tradeoff involved in selecting a control system for the SRB-X launch vehicle. On one hand, the ability to follow a trajortory that maximizes performance objectives versus the need to ensure that structural loading q -alpha remains below some design limit. The control system concept indicated as a "wind-knowledge" trajectory represents an idealized solution. The vehicle closely follows the trajectory with small structural loads as reflected in the $q$-alpha plot. Hcwever, assumption of advance knowledge of the exact wind profile is somewhat unrealistic. Without prior knowledge of the wind profile to be encountered, concept 1 employing an autopilot plus pitch program experiences a q-alpha of 4800. The addition of an angle-of-attack feedback loop, as defined by concept 3, reduces the $q$-alpha to 3700 . The flightpath angle difference plot reflects the deviation of the actual vehicle flightpath from the commanded vehicle flightpath. One can see that the angle-of-attack feedback concept results in noticeable deviations during the early portion of the first-stage burn; however, at the end point, the vehicle has returned to the commanded trajectory. Consequently, because a reasonable q-alpha is achievable and the commanded end point can be reached, the angle-of-attack feedback loop is selected as the control concept for the SRB-X launch vehicle.

Thrust Vector Control System Assessment. The first-stage TVC gimbal rate and angle required to fly the desired trajectory are shown in figure 4.2.4-3. The specified limits for the existing STS SRB TVC system are $\pm 4.75$ deg for gimbal angle and $\pm 3 \mathrm{deg} / \mathrm{sec}$ for gimbal rate. The no-wind-knowledge trajectory with autopilot only has gimbal requirements well within these capabilities. The spike in the gimbal angle and gimbal rate plots for the angle-of-attack feedback concept are due to the onset and removal of the assumed wind gust. A possible solution is the inclusion of some limits on angle-of-attack feedback. Further study is required on this problem but it should not present any insurmountable difficulties for the angle-of-attack feedback concept.

### 4.3 SYSTEM COMPARISON AND SELECTION

As previously indicated, a number of performance improvement options could be applied to the basic SRB-X concept. The primary purpose of the concept development effort was to identify which options were necessary to achieve a GEO payload capability of at least $15,000 \mathrm{lb}$. Performance estimates were based on the weight and propulsion characteristics described in section 4.2.

ORIGINAL PAGE is of POOR QUALTTY

ORIGINAL PAGE IS
OF POOR QUALTY.

Figure 4.2.4-3. TVC Assessnient

Comparison of the performance benefits and normalized cost associated with the improvements is presented in figure $4.3-1$. The stage improvement associated with each vehicle option has been boxed in. Incorporating only the suggested stage 2 improvements (options 1 and 2) would provide more than enough LEO capability to enable a Cinataur D-IT (stage 4) to deliver its full capability to GEO. Use of FWC SRM's in stage 1 increases the vehicle's LEO capability by 4000 lb compared to the vehicle with only stage 2 improvements.

The largest individual gain occurs with improvements to stage 3 , which includes increasing the propellant loading by $50 \%$ and increasing the engine expansion ratio for a 3 -sec gain in Isp. A vehicle incorporating these improvements, as well as the others indicated for option 4, allows delivery of a $16,000-\mathrm{lb}$ payload to GEO if HEUS (an advanced cryogenic upper stage) is used as stage 4. Almost the full capability associated with HEUS would be possible using vehicle option 5, which employs high-MEOP steel case SRM's in the first stage. The primary disadvantage of the high-MEOP improvement is that due to the increased thrust, a flight dynamic pressure of 1300 psf occurs, which would have an impact on the structure.

Based on the foregoing data, vehicle option 4 is judged to contain the improvements that would best satisfy the assumed performance requirements for SRB-X and to do so


Figure 4.3-1. Vehicle Comparison
(1) 2 REUSES OF STG 1
FWC = FILAMENT WOUND CASE

### 5.0 RECOMMENDED VEHICLE DESCRIPTION

This section describes the recommended SRB-X vehicle that is the result of all prio: analyses decribed in this document. Topics discussed include configuration charcteristics, flight operations, and performance capabilities.

### 5.1 CONFIGURATION CHARACTERISTICS

Characteristics of the selected vehicle, discussed in the following paragraphs, include configuration general arrangement, design features of each major element, and mass characteristics. The key subsystems for the selected vehicle are essentially the same as described in section 4.0.

### 5.1.1 General Arrangement

The general arrangement of the selected configuration for three- and four-stage vehicle applications is shown in figure 5.1.1-1. The first three stages are identical for both applications. Stage 1 SRB spacing is the same as for the shuttle because of constraints imposed by the launch mount at $\overline{\mathrm{V}} \overline{\mathrm{A} F B}$. The vehicle core (stages $\overline{2}$ and $\overline{3}$ and control module) relative to stage 1 is positioned as low as possible to minimize vehicle height. The limiting factor is the location of the kick ring for the forward struts so it does not interfere with access to the control module or reduce allowable payload diameter (see fig. 5.1.2-4 for additional detail). Stage 3 (Titan stage II) and the control module are enclosed within an interstage shell because they do not have sufficient strength to sustain bending loads occurring during flight. Payloads of $15-\mathrm{ft}$ diameter and $60-\mathrm{ft}$ length can be accommodated. This is accomplished at VAFB with a three-stage vehicle, employing a double taper nose cone and placing a portion of the payload within the nose cone. The four-stage vehicle reflects use of a standard Centaur D-IT as the upper stage and a 42-itlong payload. The 219 -ft height is accommodated at KSC through use of a new crane at the pad, which also allows removal of the payload and the fourth stage, should the need exist, rather than transporting the entire vehicle back to the vehicle assembly building (VAB). As a result, a $60-\mathrm{ft}$ payload is possible above the fourth stage. Use of HEUS would reduce vehicle height by approximately 10 ft .

### 5.1.2 Design Features

Stage 1 of the vehicle involves two reusable FWC SRB's, essentially the same as those for use by the shuttle. Characteristics of each SRB and modifications for the SRB-X are identified in figure 5.1.2-1. Each SRM has over 1,100,000 lb of propellant and
Original pack in
OF POOR QUALTY
SRB-X-410

| 3 STAGE |
| :--- |
| VEHICLE |
| - LEO |
| - POLAR |
| - GEO |
| TRANSFER |

4 STAGE
VEHICLE
$\angle$ FORWARD ATTACH CONTROL STRUTS





 SRB-X-384
NOSE CAPICHNTES

C
provides a thrust of $2,900,000 \mathrm{lb}$. The FWC SRM will continue to use steel components for the forward and aft domes and external tank attachment section. Cases associated with the four segments will use composite material; however, steel adapters are necessary at each end to allow segment attacimments. Composite stiffener rings are used instead of steel rings on the aft segment. Modification to the attachment ring is due to the higher anticipated loads. Avionics and recovery provisions located in the forward skirt and frustrum are identical to those used on shuttle SRB's. Thrust vector control is provided by actuators and gimbaled nozzle of the SRM. Both systems are identical to those used by the shuttle SRB's.

The principal features of stage 2 are shown in figure 5.1.2-2. The stage is not recovered for reuse. The two-segment SRM consists of the forward and aft segments from the four-segment STS SRM. The ET attachment section is moved to the aft end of the aft segment, however, to enable proper alignment for the aft lateral struts between stages 1 and 2. The propellant load is approximately $605,000 \mathrm{lb}$ and the thrust level is over $1_{s} 100,000 \mathrm{lb}$. For the desired acceleration profile and performance ${ }_{j j}$ a new grain design and nozzle are required with nozzle size being the largest possible with existing manufacturing facilities. A new aft skirt is incorporated to save approximately 8000 lb of inert weight. The forward skirt structure is similar to the existing shuttle SRB skirt although modifications are required to incorporate provisions for another thrust post to sustain loads from the forward drag struts and the associated kick ring. Pitch and yaw control during stage 2 burn is provided by gimbaling the SRM nozzle. Roll control during the second-stage burn is provided by thrusters in the forward skirt because those located on the control module are covered by the shroud for the first 65 sec of the stage 2 burn. The avionics system for stage 2 consists of a single integrated electronics assembly to accomplish all avionics functions presently provided on the STS SRB's, with the exception of recovery. In addition, multiplexer-demultiplexers are added to interface the stage 1 SRB's with the control module. Stage 2 avionics also include provisions for pyrotechnic initiators for stage 1 separation, stage $2 /$ stage 3 separation, and stage 2 retromotors. A range safety system is also included and is cross-strapped to the range safety systems of the stage 1 SRB's (as is presently done on the ET and SRB's on the STS). Diametrically installed antennas and a power divider are also installed in the forward skirt of stage 2 to provide an RF link while the payload shroud covers the antennas installed on the control module. After the shroud is jettisoned, these antennas are switched out and the vehicle RF link is through the control module antennas.

Design characteristics of stage 3, control module, and interstage 2-3 are shown in figure 5.1.2-3. Stage 3 is a modified Titan core stage II using $\mathrm{N}_{2} \mathrm{O}_{4}$ and Aero-50
STAGE CHARACTERISTICS
ORIGINAL PACE EB
OF POOR QUAUTY
SRB-X-354

$\frac{\text { MEW FORWARD SKIRT }}{\text { (STAGE 3) }}$

propellant. Principal modifications include increasing the propellant loading by 50\% to a total of $101,000 \mathrm{lb}$ and converting to a columbium engine skirt due to the longer burntime. The new engine skirt also has a larger expansion ratio giving a 3 -sec improvement in specific impulse. Engine thrust level is $100,000 \mathrm{lb}$. The engine is gimbaled for pitch and yaw control, and exhaust from its gas generator is supplied to a separate thruster for roll control. The stage 3 avionics system includes the basic Titan second-stage complement of hardware, which in turn is connected into the vehicle data bus through MDM's. A range safety/inadvertent separation system is also installed. The control module is a separate unit whose primary function is to accommodate vehicle guidance and control avionics and three-axis reaction control system ( RCS ) for the terminal phase of the flight. The avionics complement is influenced by whether or not a smart (e.g., inertial upper stage (IUS), Centaur, HEUS) upper stage is involved in the flight. If not, all avionics necessary for vehicle communication, data management, flight control, irstrumentation, and range safety are provided within the control module. However, if a smart upper stage is present, it provides computation and guidance capability for the flight to LEO. In this case, similar equipment in the control module is replaced with a redundant autopilot-a new element. Remaining equipment can be obtained directly or derived from IUS or the shuttle.

The vehicle element connecting stage 1 and the core is the interstage 1-2. Its configuration and characteristics are shown in figure 5.1.2-4. Major subelements include a forward strut system, shell section surrounding the third stage and control module, and an aft strut system. Stiffness criteria dictated by flight control considerations size all lateral struts. Liftoff loads size the drag struts. Because of the high loads transmitted through the struts, all use high-strength steel. In addition to sustaining the loads transmitted from the thrust of the first-stage SRB's, the shell also must be stiff enough to minimize shroud deflections.

Design features of the shroud are shown in figure 5.1.2-5. Major sections include the nose cone, payload section, and stage 4 section. The interstage $1-2$ shell and forward ring assembly are also shown because of their strong interaction in sizing the shroud elements. The shroud was sized to accommodate a 15 -ft-diarneter payload with length sufficient for a standard Centaur D-IT plus 42 -ft-long payload. Thermal considerations dictated design features of the nose cone. A Q-alpha value of 5000 psf-deg was used to size the cylindrical sections; however, the payload section still resulted in minimum gage. The stage 4 section was designed by stiffness for the deflections expected at the forward bearing reaction (FBR). The FBR, in turn, minimizes relative deflection between payload


Figure 5.1.2-4. Interstage 1-2 Design Features

Figure 5.1.2-5. Shroud Design Features

SRE-X-301

## 

and shroud. Separation, as well as shlpment of the large shroud, resulted in a design with three longitudinal sections-each divided into lengths to cover a wide range of payloads.

### 5.1.3 Mass Summary

The gross liftoff weight (GLOW) for the vehicle is approximately $3,400,000 \mathrm{lb}$. A breakdown by system element for both LEO and GEO missions is presented in table 5.1.3-1. The key difference between the two missions is the amount of payload and whether a fourth stage is present. A point of interest regarding GLOW is that it is nearly $1,000,000 \mathrm{lb}$ less than that of the shuttle for approximately the same net payload. A more detailed weight breakdown is presented in appendix $\mathbf{B}$.

### 5.2 PERFORMANCE

Vehicle flight characteristics and payload capabilities are described in the following paragraphs.

### 5.2.1 Flight Characteristics

The ovirall mission profile for the flight of the SRB-X is shown in figure 5.2.1-1. Key trajectory characteristics are shown in figure 5.2.1-2.

Liftoff occurs at 1.6 g and the maximum acceleration during stage 1 burn is 2.9 g . The maximum dynamic pressure of 780 psf is higher than for the shuttle primarily because of lower liftoff weights. Staging velocity of first-stage SRB's is also higher ( +1300 ) fps) than for the shuttle and results in water impact approximately 50 nmi further down range. No significant change in recovery operations is anticipated relative to those used for the shuttle. Separation of the shroud occurs when the dynamic pressure reaches 1 psf, and the interstage $1-2$ shell separates approximately 5 sec later. Additional details concerning separation of stage 1, interstage 1-2, and shroud are presented in figure 5.2.1-3.

The stage 2 burn has a duration of $150^{\circ} \mathrm{sec}$. Burnout results in a relative velocity of $15,700 \mathrm{fps}$ and a maximum inflight acceleration of 3.6 g . Water impact of stage 2 is estimated to be 1300 nmi down range from the launch site. Recovery of this stage was judged unfavorable because of (1) loss of payload that would result from the weight penalty associated with thermal protection and the recovery system and (2) the cost impact of the recovery provisions, longer recovery operations due to distance, and perhaps a different recovery ship. Stage 3 has a burn of approximately 320 sec . Payload injection into LEO occurs approximately 10 min after launch, with a burnout acceleration of $1.4 \mathrm{~g} ' \mathrm{~s}$.

YTuauo gooa 7n

Table 5.1.3-1. Vehicle Mass Summary
SRB-X-408

Figure 5.2.1-1. Mission Profile


(aNO)3S/1331 $\varepsilon^{0 t}$ ) 115073 A 3A1Vา3y



$$
\begin{aligned}
& \text { LEO MISSION (100 NM, } \\
& \text { 28.5 DEGREES) } \\
& \text { - NO WINDS }
\end{aligned}
$$







Figure 5.2.1-3. Shroud and Interstage 1-2 Seporation

#  <br> VTlase heor 30 

### 5.2.2 Payload Capabillities

Performance of the selected vehicle is shown in figure 5.2.2-1 in terms of three- and four-stage capabilities. Weight and propulsion data supporting the performance estimate are presented in appendix B. Net payload capability is essentially the same as the specification values for the shuttle at low altitudes. Polar capability of $49,000 \mathrm{lb}$ offers considerable growth beyond the current requirement of $32,000 \mathrm{lb}$. An attractive feature of the three-stage vehicle is that with restart of the third stage, $18,000 \mathrm{lb}$ can be placed into GEO transfer which, with the appropriate insertion propulsion, should result in nearly 9000 lb of payload at GEO. Restart of the third stage could also be used to dellver over 4000 lb of payload directily into GEO, which is comparable to the T34D/IUS. The LEO capability of this vehicle allows as much as $16,000 \mathrm{lb}$ to be placed into GEO with a shuttle-sized advanced cryogenic orbital transfer vehicle (OTV). The right-hand plot Illustrates the significant payload advantage (nearly two to one) of the SRB-X relative to the shuttle in terms of missions involving high orblts or inclinations. The indicated performance does not include the impact of winds. Preliminary estimates of the impact of winds are included in a $1.7 \%$ reduction in LEO payload capability.

Additional performance capability is also seen as a possibility. The improvement resulting from changes in stage 1 and 2 is shown in table 5.2.2-1. Stage 2 improvements include changing from PBAN to HTPB propellant. This provides higher Isp, as well as greater propellant density, giving more propellant for the same inert weight From a vehicle-integration standpoint, the stage 2 nozzle can be increased to at least a $197-\mathrm{in}$ diameter, for a higher expansion ratio and Isp. The composite material used in the SRM case could have a higher longltudinal expansion since this motor will not interface with the shuttle elements as do the stage 1 SRM's.

The stage 1 change viewed as most promising is that of increasing the SRM MEOP to obtain higher thrust and less gravity loss. A MEOP value that results in a dynamic pressure of approximately 1000 psf appears reasonable from a structural impact. Use of a shingle-top extendable exit cone (EEC) provides a good performance gain; however, it does involve considerable complexity relative to the other proposed changes.

In summary, the improvements suggested for stage 1 and 2 could provide a potential increase of $7000 \mathrm{lb}(11 \%)$ to LEO with a development cost impact of approximately $\$ 80$ million (12\%).

## ORICHNAL PACE is OF POOR QUALTTY.

16,000

60,700
49,000
18,100
4,200
000 Zl
ORICIMVL Ples in
Of POOR OUALITY
Table 5.2.2-1. Potential Performance Improvements
Table 5.2.2-1. Potential Performance Improvements

- CHANGES RELATIVE TO RECOMmENDED VEHICLE


### 6.0 LAUNCH SITE OPERATIONS AND FACILITIES

" 3 384 1 AL
This section describednatic majprygraund operations and facility requirements that occur with launch of the selected SRB-X vehicle from KSC and VAFB. In summary, the operations and requirements at both sites are similar to those of the shuttle.

### 6.1 KSC LAUNCH SITE

### 6.1.1 Operations

Key features of KSC ground operations are shown in figure 6.1.1-1. Vehicle elements are processed using both NASA and Air Force facilities. Payloads will still be processed in the vehicle processing facility (VPF); however, they will be transported to the launch vehicle within the payload shroud rather than the payload canister. This approach is used because the RSS payload changeout room (PCR) cannot be used due to the location of the payload on the launch vehicle. The major steps involved in the payload processing are shown in figure 6.1.1-2. All vehicle elements, including payloads, are brought to the VAB for final assembly. Following assembly, the vehicle is transported to the pad for final servicing. Contingency payload access is provided at the pad, as well as payload removal provisions, if needed, rather than returning the vehicle to the VAB for payload removal.

Mainline ground operations time for SRB-X was found to be 800 hr , or approximately 5\% less than required for the shuttle. A summary of the work hours required at each major facility is shown in table 6.1.1-1. VAB time for $S R B-X$ is greater due to additional stacking of the stage 2 SRB and payload installation. Less time is required on the pad because there is no orbiter or payload installation. In offline operations, more SRB-X effort is required in the SRB processing and storage facility (PSF), again because of processing two additional segments for stage 2.

The launch preparation timeline is presented in figure 6.1.1-3. Vehicle configuration at key points in the assembly is shown in figure 6.1.1-4. Stage 1 stacking, alignment, and system tunnel activities are the same as for the shuttle. Closeout operations include cable verification, tunnel cover installation, and insulation work. Because closeout operations tend to relate to the SRB system tunnels, which are on the outboard side, assembly of the vehicle core (stages 2, 3, 4 and control module) can be done in parallel. Interstage 1-2 closeout is similar to shuttle SRB/ET closeout operations and involves the electrical systems, ordnance, and insulation application. The time allocation for the integrated vehicle test is the same as for the shuttle. Servicing and countdown on the pad are less than for the shuttle, primarily because no manned orbiter is present.
SRB-X-382
ORIGINAL PAGE IS OF POOR QUALITY




##  <br>  <br>  <br>  <br>  <br> 

 -
STAGE 3 \& 4 PROCESSING



COMPLETE
0
릉ㅇ
3
0
0
2
2
a
Figure 6.1.1-1. KSC Ground Operations

Table 6.1.1-1. KSC Ground Operations Timeline Summary

- VERTICAL PAYLOAD installation MAIN LINE OPERATIONS (WORK HOURS) | $\begin{array}{cc}\text { FACILITY } & \text { STS } \\ \text { OPF } & 352\end{array}$ | SRB-X |  |
| :---: | :---: | :---: |
| VAB | 529 | 570 |
| PAD | 320 | 230 |
| TOTAL | 840 | 8 |
| KEY OFF-LINE OPERATIONS (WORK HOURS) |  |  |

NO PAYLOAD INSTALL
NO ORBITER SERVICING
2ND STG SRM PROCESSING
RECOVERED SYSTEMS IDENTICAL
2ND STG PEDESTAL REMOVAL/INSTALL/
REFURB DONE IN PARALLEL WITH REG.
REFURB AND NO ORBITER
DOES NOT include an alditional 130 hrs for et processing that is done
IN PARALLEL

124 STG 1 TUNNEL FLR \& CABLE INSTL
(1)

- core pedestal installation
- STAGE 1 STACKING

(4)

> - INTERSTAGE 1-2 AND CONTROL MODULE INSTALLATION

### 6.1.2 Facility Modifications

To perform required ground operations at KSC, some facility modifications are necessary, as indicated in figure 6.1.2-1. VAB modifications include assignment of highbay (HB)-4 for vehicle assembly. The shuttle would be assembled in HB-1 and HB-3 and the ET processed. in HB-2. New access platforms are necessary for servicing and assembling the vehicle core. The crawlerway extension amounts to a spur track leading from HB-4 to the main roadway. Modifications at the pad involve both the fixed service structure (FSS) and rotating service structure (RSS) in terms of payload access and servicing (umbilicals) provisions needed for the vehicle and payload. Removal of the payload and solid upper stage (if present) requires a new 50 t crane. Stacking of the core (stages 2 and 3) requires installation of a pedestal on the mobile launcher platform (MLP) and structural beefup beneath this area. Modification of the launch processing system (LPS) is necessary because of the new stages required relative to the shuttle. Additional provisions are also necessary at the SRB PSF due to two additional SRM segments associated with stage 2.

### 6.2 VAFB LAUNCH SITE

### 6.2.1 Operations

Ground operations at VAFB are illustrated in figure 6.2.1-1. Operations are similar to those used by the shuttle at SLC-6-the main difference being the method of transporting and installing payloads after processing within the payload preparation room (PPR). As at KSC, the RSS cannot be used to install payloads on the launch vehicle. Consequently, payloads will be encapsulated within their launch shrouds while in the PPR and will exit by way of the airlock rather than the payload changeout room. Key steps associated with payload preparation and encapsulation are shown in figure 6.2.1-2. Assembly of all elements occurs at the launch mount using equipment provided by the mobile service tower and shuttle assembly building. Installation of the payload is shown in figure 6.2.1-3. Both facilities are rolled back prior to launch.

### 6.2.2 Facility Modifications

Necessary SLC-6 modifications are indicated in figure 6.2.2-1. MST modifications include installation of access platforms and servicing provisions, again for the core of the vehicle. The launch mount, serving the same role as the MLP at KSC, must be provided with pedestal and servicing provisions for the vehilce core involving stages 2 and 3; and payload servicing provisions must be incorporated in the access tower. SRB processing is the same as for the shuttle except for additional provisions for stage 2. The LPS must have additions to satisfy requirements for stages 2 and 3.
ORIGINAL PAGE IS
OF POOR QUALITY

SUPPORT FLIGHT RATES
PAD 39B



- USE HB-4
- RELOCATE ET C/O CELL
- CRAWLERWAY EXTENSION
LAUNCH PROCESSING SYSTEM (LPS)
- FOR STG 2, 3, 4 AT PAD AND FIRING RM SRB PROCESSING \& STORAGE FACIL (PSF) - BUILD UP STANDS-STG 2
suondo!ฏpow Kn!
ORIGINAL PAGE is
OF POOR QUALTTY




SRB-X-291

ORIGINAL PAGE IS
OF POOR QUALTTY

| MST |
| :--- |
| SRB ACCESS PLATFORMS |
| - PAYLOAD ACCESS PLATFORMS |
| - HYPERGOL ZERVICING |
| -STAGE 2 |
| - SRB'S |
| LAUNCH MOUNT |
| - CORE SUPPORT PEDESTAL |
| - T-O UMBILICAL |
| ACCESS TOWERIAT) |
| - PAYLOAD T-OUMBILICAL |
| - PAYLOAD SERVICES |
| LPS |
| - STAGE 2 AND 3 |
| SRB REFURB AND SUBASSEMBLY FACILITY |
| STAGE 2 BUILDUPSTANDSAND |
| STORAGE |



### 7.0 IMPLEMENTATION PLAN * um.

This section presents the plans and schedules associated with the implementation of the selected SRB-X vehicle.

### 7.1 OVERVIEW

First flight of the SRB-X is estimated to occur 4.5 years after authorization of phase C/D go-ahead. This schedule assumes no preimplementation effort and a conservative test program. Key activities associated with the development program are shown in figure 7.1-1. The vehicle design effort would be completed within the first 2 years, followed by approximately 2 years of qualification and major ground tests. Facility modifications at KSC and VAFB would be completed within 3.5 years.

### 7.2 TEST PROGRAM

A key element of the implementation plan is the test program that is required. The following paragraphs discuss the major tests at the system level and those suggested for the integrated vehicle.

The major tests associated with individual systems are summarized in table 7.2-1. Major qualification tests include five static firings of the stage 2 SRM, stage 3 engine qualification, system integration and qualification test for the control module, and separation test for interstage 1-2 and shroud.

Integrated vehicle tests are defined as those involving all major system elements of the vehicle. The tests and vehicle elements required for each test are summarized in table 7.2-2. Three major ground tests have been assumed: (1) a structural test to verify primary loadpaths, (2) a ground vibration test to verify the coupled dynamic math model of the integrated vehicle, and (3) facilities pathfinder to verify interfaces that occur between modified facilities, equipment, and a configuration that differs from that of the shuttle. Where possible, use would be made of shuttle test hardware existing at the time of SRB-X testing. This hardware is expected to include two four-segment steel case SRB's and three four-segment FWC SRM's. One four-segment FWC SRM will be divided to provide the two segments required by each stage 2 for the structural test article (STA) and ground vehicle test article (GVTA) tests. The other two four-segment FWC SRM's will be used for the first stage in the GVTA. The two steel case SRM's that have been used with shuttle pathfinder vehicles at KSC and VAFB are suggested for pathfinder application for SRB-X. No flight test has been assumed because of the extensive
SRB-X-378

Figure 7.1-1. SRB-X Program Summary Schedule
Table 7.2-1. Major System-Level Test

# SRB-X-370 <br> STRUT <br> SASEAS <br> AIRFRAME-PRESSURE, MODAL AND STRENGTH <br> - STAGE 1 <br> w <br> 5 STATIC FIRINGS USING 2 SRM'S <br> REFURB FOR OPERATIONAL FLIGHTS <br> INCLUDED AS PART OF VEHICLE STA TEST <br> BREADBOARD AND/OR LIFE TEST <br> NONE, OFF-THE-SHELF <br> SYS. INTEG.LAR (SIL) UNIT AND DUAL TEST UNIT included as part of vehicle sta test DUAL. TEST UNIT <br> SEPARATION AND STRENGTH <br> included as part of vehicle sta test <br> SEPARATION AND STRENGTH <br> <br> \section*{$\varepsilon$ 30V15 -} <br> <br> \section*{$\varepsilon$ 30V15 -} <br> <br> \section*{ENGINE-LIFE AND RESTART} <br> <br> \section*{ENGINE-LIFE AND RESTART} <br> <br> \section*{NONE, OFF-THE-SHELF} <br> <br> \section*{NONE, OFF-THE-SHELF} <br> <br> \section*{- CONT. MODULE <br> <br> \section*{- CONT. MODULE <br> <br> <br> - STAGE 4 <br> <br> <br> - STAGE 4 <br> <br> <br> } <br> <br> <br> } <br>  <br>  

Table 7.2-2. Major Integrated Vehicle Level Test
SRB-X-371
STRUCTURAL TEST
ARTICLE (STA)
LINO LSEL OMG SLS
FWD \& AFT SKIRTS NONE

## STRUCT ONLY

STRUCT ONLY
STRUET ONLY
NONE, BY SUBCONT.

STS FWC TEST UNIT
WITH NEW ETA SECT.
FWD AND AFT SKIRTS
MASS SIMUL
STRUCT WITH MASS
SIMUL OF SUBSYS
MASS SIMUL
MASS SIMUL
STRUCT ONLY
人7NO 'I03s $\dagger$ OLS
QUAL MOTOR NO. 2
FWD \& AFT SKIRT
OPERATIONAL
OPERATIONAL
omsinal
PACE
LIT
FACILITIES PATHFINDER
ARTICLE (FPA) D
STS PATHFINDER SRB'S
OF POOR
ouncity
20
qualification and vehicle grofinde test program employed. In addition, many of the elements are modifications of existing systems.is
7.3 DEVELOPMENT SCHEDULE

The schedule for each major element of the vehicle, vehicle level ground tests, and other key activities supporting the first launch is shown in figure 7.3-1. As indicated earlier, the first flight is scheduled 4.5 years after go-ahead.

No development effort is required for stage 1 ; however, at least 33 months are required for long lead on the steel elements associated with the SRM's. The time period required to develop and deliver stage 2 is driven by the five SRM static firings judged necessary to verify performance and reliability. Further discussion regarding this SRM is provided at the end of this section. Although engine qualification contributes to the stage 3 duration, $30+$ months are necessary for long-lead stage structural elements. The schedule for the control module primarily reflects the avionics suite with the duration being similar to that involved with the IUS avionics. Development time for the $16.7-\mathrm{ft}-$ diameter shroud was based on extrapolations from schedules associated with 14 - ftdiameter shrouds developed by Lockheed. Interstage 1-2, which involves a combination of strut systems and a shell that separates, was judged to have a schedule similar to that of the shroud. Vehicle ground tests are conducted in parallel to minimize the development time and, consequently, required dedicated hardware as previously indicated in section 7.2

The critical path in this schedule is that of having hardware available to begin the qualification and vehicle ground tests within 2.5 years after go-ahead. Of particular concern are interstage 1-2 and shroud elements since separation tests as well as modal survey and strength tests are required.

A more detailed breakdown of the stage 2 SRM development effort is provided in figure 7.3-2. A major portion of the activity relates to the development of a new nozzle. SRM case elements are not indicated for the test program since it was assumed they could be obtained from the shuttle program. The program would involve the construction of two complete SRMs, which would be refurbished and modified as necessary for a total of five test firings and then refurbished for operational flights.
7.4 FACILITY MODIFICATIOKS

Facility modifications can be accomplished within 4 years. Specific efforts required at KSC and VAFB are shown in figure 7.4-1. At KSC, only modifications at the pad have potential impact implications regarding shuttle operations. A shutdown of pad 39B for nearly 6 months in 1989 is assumed for installation of the new crane and umbilical
NOTE: ALL MILESTONES REFLECT COMPLETION

## ORIGINAL PAGE is OF POOR QUALITY

semansmase

DM - DEVELOPMENT MOTOR
Figure 7.3-2. Stage 2 SRM Development
SRE-X-379

equipment. Should pad installation activities be scheduled to occur between launches, the IOC would slide by another 6 months. Shutdown at that time, however, may not present a problem because each pad theoretically can handle up to 15 launches per year, which would mean a total capability of up to 22 launches even with one pad shut down for 6 months, and only 18 are scheduled. Three MLP's are to be available in the late 1980's, with each capable of supporting 7 flights per year, or a total of 17 or 18 even with one MLP shut down for 6 months of modification. At VFB, the limited number of scheduled STS launches allows time betwsen launches for necessary installations. Consequently, the installation durations reflect a period two times longer than if a dedicated installation operation were performed.

### 8.0 COST ANALYSIS

This section presents the results of the cost analysis conducted during the study. The overview identifies the approach and methodology and summarizes costs. Subsequent subsections present more detailed descriptions of the major cost categories.

### 8.1 OVERVIEW

### 8.1.1 Approach and Scope

The cost analysis had two basic objectives. The first was to provide preliminary data to support the selection of the preferred concept. For the most part, this consisted of data that emphasized differences between concepts (presented in sec. 3.6). The second objective was to develop cost data that would contribute to the assessment of the SRB-X and its comparison with other launch vehicle options. Accordingly, the cost categories judged most significant in satisfyilig this objective were the design, development, test, and evaluation (DDT\&E) cost and the cost per flight as a function of flight rate.

Although total life cycle cost could have been deterinined, it was judged not significant at this time for the following reasons: (1) a comparison of several SRB-X concepts was not being done in terms of detail cost, (2) uncertainty existed in the mission model for the post-1990 time frame, and (3) without a specific mission model, the number of missions to be flown by SRB-X could not be determined,

### 8.1.2 Methodology

Costs estimates were developed from a combination of throughput costs provided by NASA and other contractors and costs generated by the Boeing Parametric Cost Model (PCM). PCM estimates costs by using cost-estimating relationships (CER) derived from historical data and inputs of hardware characteristics, including physical description (mass, material), quantities, expressions of complexity and/or degree of modification, and programmatic factors such as schedules and labor rates. Once flight hardware costs are determined, costs for. support functions (such as program management, SE\&I, etc.) are determined. A detailed description of PCM can be found in reference 3.

### 8.1.3 Cost Summary

Costs for the SRB-X are summarized in table 8.1.3-1. The total development cost is estimated at $\$ 744$ million in 1982 dollars. Vehicle development contributes $\$ 631$ million and facility modifications, $\$ 113$ million.
D FOR ${ }^{6}$ SREX FLIGKTS/YEAR
COMPARABLE STS COST/FLIGHT ( $24 / \mathrm{YR}$ ) IS 580.4 m

Cost per flight i.s estimated at $\$ 101$ million based on six flights per year. Yehicle cost covering reusable and expendable hardware contributes $\$ 82$ million and flight and ground operations another $\$ 19$ million. The corresponding cost per flight for the shuttle during the 1990-1999 time frame is estimated at $\$ 80$ million.

Further discussion of these cost categories is presented in subsequent sections.

### 8.2 DDT\&E COST゙

The DDT\&E cost includes all effort associated with the design, development, test, and evaluation of the SRB-X haroware elements. Costs identified during this analysis include those for-
a. Flight hardware.
b. System engineering and integration.
c. Sof tware engiryeering.
d. System test, including hardware and operations.
e. Giround support equipment.
f. Tooling and special test equipment.
g. Spares.
h. Liaison engineering.
i. Data and documentation.
j. Program management.
k. Facilities.

### 3.2.1 Ground Rules and Assumptions

The following ground rules and assumptions were used to develop the DD'r\&E cost:
a. Costs in millions of 1982 dollars.
b. FCM used to estimate all Boeing-developed hardware.
c. Boeing-developed hardware to include all interstages, control module, stage $\mathbf{2}$ skirts.
d, Subcontractors to develop all hardware not included in item c.
e. Costs do not include fee.
f. Qualification and ground test hardware as defined in section 7.2 and summarized as follows:

|  |  |
| :--- | :--- |
|  |  |
| Element |  |
| Stage 1 | Number of equivalent units |
| Stage 2 | None |
| SR |  |
| $\quad$ Airframe | 2 with 5 firings |
| Stage 3 | 2.5 |
| Stage 4 | 2.5 |
| Control module | None |
| Interstages | 2.5 |
| $1-2,2-3$ | 3 each |
| $3-i 4$ | 2 |
| Shroud | 2 |

g. No flight test-use of existing, proven hardware and extensive ground test program eliminates need.
h. No class I changes-meaning revisions to requirements after authorization to proceed (ATP).
i. Schedule is nominal in duration.
j. Provide 2.5 sets of GSE.
k. Support effort (SE\&I, test, etc.) assumed to be of normal difficulty.

### 8.2.2 Cost Estimates

The total SRB-X DDT\&E cost is estimated at $\$ 744$ million.

Vehicle DDT\&E and First Flight Unit (FFU). The vehicle contribution to the DDT\&E cost is estimated at $\$ 631$ million. A breakdown of the cost is presented in table 8.2.2-1. Approximately $37 \%$ of the cost is associated with the flight hardware while $40 \%$ relates to the system test effort.

A further breakdown of DDT\&E flight hardware and first flight unit costs is presented in table 8.2.2-2, In terms of DDT\&E, stage 2 represents the largest contribution because it is essentially a new stage. A breakdown of the main elements of stage 2 design and development includes:
( $\begin{aligned} & \text { ORIGINAL PAGE IS } \\ & \text { OF. POOR QUARTS. }\end{aligned}$

MILLIONS OF 1982 DOLLARS

표 요N
24
31
20 - $\infty$ 52 5

Table 8.2.2-1. Vehicle DDT\&E Cost

## - SYSTEM ENGINEERINg \& INTEGRATION

 - SOftware engresering- SYSTEMGHT HARDWARE FLIGHT HARDWARE
$\cdot T E S T$ OPERATIONS
${ }_{27}^{223}$
- TOOLING AND SPECIAL TEST EQUIPMENT
- spares
- LIAISON ENGINEERING
-DATA/DOCUMENTATION
-PROGRAM MANAGEMENT


| Elemieit | \$ (millions) | Basis |
| :---: | :---: | :---: |
| Structures | 40 | Boeing PCM |
| SRM | 8 | Thiokol |
| TVC | 3 | Boeing PCM |
| Auxiliary propulsion | 3 | Boeing PCM |
| Electrical/instrumentation | 4 | Bring PCM |

Stage 3 costs, provided by Martin Marietta, reflect modifications for increasing tank length ( $\$ 15$ million) and longer engine burn time ( $\$ 10$ million). The control module design cost breakdown was estimated as follows:
$\$$ (millions)
Structures ..... 3
Propulsion ..... 3
Avionics ..... 37
Electrical/instrumentation ..... 3

Interstage 1-2, consisting of the large strut systems and shell, also contributed significantly to the cost. Shroud costs were provided by Lockheed Missile and Space Company.

The estimated first unit cost for the vehicle is $\$ 114$ million. Stage 1 cost reflects the average cost assumed for the STS SRB's. Stage 2, at $\$ 22$ million, is primarily made up of the SRM at $\$ 9.7$ million and the structure at $\$ 6$ million. Most of the control module costs involve the avionics ( $\$ 16$ million). Stage 3 and shroud estimates were provided by Martin Marietta and Lockheed, respectively.

Facility Cost. Total costs associated with facility modifications and new equipment were estimated at $\$ 113$ million, as indicated in table 8.2.2-3. The KSC contribution of \$63 million has as its major contribution the FSS modifications involving umbilical provisions, structural beefup, and new crane installation. VAB modification costs primarily involve the new access platforms required. Modifications at VAFB amount to $\$ 50$ inillion with umbilical provisions and access platforms within the MST, access tower, and at the launch mount being the major contributors.


### 8.3 COST PER FLIGHT

The cost-per-flight estimate includes the following factors:
a. Production of expendable hardware.
b. Production and refurbishment of reusable hardware.
c. Propellant cost.
d. Launch operations including vehicle processing, assembly, and checkout; ground systems and operations; cargo checkout; and sustaining and logistics support.
e. Flight operations including mission operations, program management, program support, and payload integration.
f. Network support.

### 8.3.1 Ground Rules and Assumptions

The following ground rules and assumptions were used to develop the cost-per-flight estimate:
a. Items a. through e., as specified for DDT\&E in section 8.2.1.
b. 10-year operational program-1990 through 1999.
c. STS cost base: NASA assessment case for STS pricing (1982) assuming 24 flights per year.
d. STS cost to reflect FY 1990 values for the. assessment case-no significant learning thereafter. Costs presented in section 8.3.2 will indicate these values.
e. SRB-X flight rate of 2,6 , or 10 per year. Several rates are considered because mission models, STS flight capability, and rates through the year 2000 are only in preliminary phases of planning. Preliminary capture studies, however, have indicated that up to $25 \%$ of future missions could be performed with an unmanned launch vehicle. The assumed distribution of SRB-X and STS flights for two considered flight rates follows:

|  | 24 flights per year |  |  |
| :---: | :---: | :---: | :---: |
|  | KSC | VAFB | Total |
| STS | 14 | 4 | 18 |
| SRB-X | 4 | 2 | 6 |
|  | 18 | 6 | 24 |
|  | 40 flights per year |  |  |
|  | KSC | VAFB | Total |
| STS | 24 | 6 | 30 |
| SRB-X | 6 | 4 | 10 |
|  | 30 | 10 | 40 |

f. Stage 1

1. Same SRB's as for STS.
2. Use FY 1990 values but with adjustment for FWC. The cost impact for FWC is estimated at less than $\$ 1$ million based on 2 reuses of the composite elements and 19 reuses of steel elements. The key to low delta cost is recovery and reuse of the steel components. Further details concerning FWC cost are presented in table 8.3.1-1.
g. Stage 2
3. Total production run (new stage).
4. SRM learning, $96 \%$.
5. Structure learning, $90 \%$.
6. Subsystems learning, $92 \%$.
h. Stage 3-annual production rate. A significant number of Titan second stages have been produced; therefore, no further learning is assumed. A variation in production rate will influence the unit cost.
i. Control module
7. Total production run (new element).
8. Average learning, $92 \%$.
j. Interstages
9. Total production run (new elements).
10. Average learning, $90 \%$.
k. Shroud
11. Total production run (new element).
12. Average learning, $92 \%$.
13. Launch and flight operations-use STS FY 1990 values with appropriate adjustments for vehicle differences.

### 8.3.2 Cost Estimate

SRB-X cost per flight is estimated at $\$ 101$ million versus $\$ 80$ million for the shuttle during the 1990 to 1999 time period. Table 8.3.2-1 shows a breakdown of the cost and SRB-X sensitivity to flight rate. It should be noted that values for R\&PM, GSE spares, and contract administration are not included. Higher SRB-X vehicle costs are primarily because of the lower annual flight rate ( 6 versus 24 ) and more expendable hardware (only stage 1 is reusable). Operations costs are lower, however, because the relatively complex manned orbiter is not present, which simplifies vehicle processing, mission planning, and crew training. A breakdown of the operations is presented in table 8.3.2-2. The SRB-X
Table 8.3.1-1. FWC SRM Relative Cost

- 4 SEGMENT SRM
- PRELIMINARY FWC ESTIMATE
UNIT COST


## SRB-X-409

Table 8.3.2-1. Cost Per Flight



- 10 YEAR PROGRAM - 1990 THROUGH 1899
MILLIONS OF 1982 DOLLARS
LEO DESTINATION

ID EACH ITEM INCLUDES $13 \%$ FOR PROGRAM MANAGEMENT, LIAISON, SPARES
(2) NOT ASSESSED: R\&PM, GSE SPARES AMD CONT. ADMIN.
(3) POTENTIALLY COULD BE RECOVERĖD
FOR GEO TRANSFER PAYLOAD
SRB-X NO EXTRA COST
STG 15-20M EXTRA FOE EQUIVALENT CAPABILITY

Table 8.3.2-2. Operations Cost Breakdown

FLIGHT OPERATIONS (\$M 1982 DOLLARS)

|  | STS | SRB-X | SRB-X RATIONALE |
| :---: | :---: | :---: | :---: |
| MISSION OPERATIONS | 4.2 | 3.2 | NO REENTRY/RECOVERY/ABORT |
| CREW OPERATIONS | 1.5 | 0 | NO FLIGHT CREW |
| PAYLOAD INTEGRATION | 0.6 | 0.4 | NO CREW INTERFACES |
| ENGINEERING SUPPORT | 1.5 | 0.8 | NO LIFE SCIENCE SUPPORT |
| PROGRAM MANAGEMENT | 2.9 | 2.3 | LESS COMPUTATION; LESS COMPLEXITY |
| PROGRAM SUPPORT | 1.0 | 0.6 | LESS COMPUTATION; FEWER JSC INTERFACES |
| PROGRAM ADJUSTMENT | 1.5 | 1.5 |  |
| TOTAL | 13.2 | 8.8 |  |

LAUNCH OPERATIONS (\$M 1982 DOLLARS)

|  | STS | SRB-X |
| :--- | :---: | :---: |
|  |  |  |
| VEHICLE PROCESSING | $(8.0)$ | $(2.7)$ |
| ORBITER | 6.0 | 0 |
| EXTERNAL TANK | 0.8 | 0 |
| SRB (STAGE 1) | 1.2 | 1.2 |
| STAGE 2 | - | 0.2 |
| STAGE 3 AND INTERSTAGE | - | 0.9 |
| CONTROL MODULE | - | 0.3 |
| SHROUD | - | 0.1 |
| GROUND SYSTEM AND OPERATIONS | $(5.1)$ | $(5.1)$ |
| SUSTAINING ENGINEERING | $(0.6)$ | $(0.4)$ |
| LOGISTICS SUPPORT | $(0.4)$ | $(0.3)$ |
| CARGO CHECKOUT | $(1.0)$ | $(1.0)$ |
| OTHER | $(0.8)$ | $(0.5)$ |
| TOTAL | 15.9 | 10.0 |
|  |  | 1 |

(1) LESS DUE TO LESS VEHICLE PROCESSING
may be less expensive, however, on those flights involving high orbits or inclinations or GEO transfer because the basic vehicle can perform these missions; while the shuttle would require an additional transportation element.

SRB-X cost per flight could reach as low as $\$ 90$ million if there are 10 flights per year. The relatively small sensitivity to flight rate ociurs primarily because two cost elements (stage 1 and operations) that comprise nearly $40 \%$ of the basic cost are essentially the sarne as for the shuttle, and no significant reductions are expected after 1990.

### 9.0 PROGRAM RISK

Program risks were assessed in four areas: technical, schedule, cost, and programmatics. The overall assessment is that SRB-X would be a low-risk program primarily because of its extensive use of existing or modified systems and operations. No new technology development areas were identified.

No significant technical risk is foreseen. Modifications suggested for the stage 2 SRM and for stage 3 are within state-of-the-art capability; major new hardware consists only of structural shrouds, iriterstages, or skirts; the control module uses IUS or shutrle hardware; and flight and ground operations are similar to those for the shuttle.

The primary risk in the suggested schedule concerns the availability of appropriate hardware in 2 to $21 / 2$ years to begin integrated vehicle testing. No allowance was made for failure in any major test. Such a situation, however, is unlikely because of the extensive data base available. Inclusion of the facility pathfinder vehicle should improve the likelihood of an on-schedule first launch.

Developmental cost risk has been minimized by extensive use of existing systems, subsystems, and facilities and by availability of separate hardware for each major system test. Recurring costs, however, could be influenced by low production rates and their subsequent impact on lot charges or loss of qualified suppliers. Uncertainty in the number of stage 1 FWC SRB reuses is not an issue because only two reuses are assumed. It is important, however, that SRB's always be recovered so their expensive steel elements can be reused. The mixed-fleet concept, itself, presents an uncertainty in the area of operation costs. The current estimate assumes $100 \%$ interchangeability between SRB--X and shuttle ground and flight operations personnel. If not the case, operation costs would increase.

Programmatic risk deals with aspects beyond the control of the SRB-X program. A major impact could be the availability of Titan stage II (SRB-X stage 3) because final production is scheduled for 1985-1986 and SRB-X IOC is not until 1990. Reactivation of the production line after several years has been estimated at $\$ 30$ to $\$ 40$ million. An alternative is an MX-type first stage; however, as previously mentioned, there would be an approximate 7000 -lb reduction in LEO payload capability. Several factors significantly influence SRB-X effectiveness in terms of number of flights flown and impact on recurring costs. These factors include mission model and payload characteristics and STS flight rate capability as influenced by fleet size, turnaround time, and the availability of facilities.

## * 10.0 LAUNCH VEHICLE ASSESSMENT

The space transportation system may be most effective when use is made of the shuttle and an unmanned launch vehicle. Previous investigations (ref. 4) have considered several non-SDV's for the unmanned vehicle role. These include growth Atlas with improved booster and strapons, growth Titan with stretch core and seven-segment SRM's, and Ariane 5. Payload capability, cost, and schedule characteristics of these candidates, SRB-X, and the shuttle are presented in table 10.0-1.

Table 10.0-2 is an assessment of the SRB-X in relation to the shuttle and to nonSDV's. Compared to the latter, the SRB-X offers considerable advantages in payload capability, recurring costs, and flexibility for alternative missions. A disadvantage is that higher development costs would also occur. IOC may not be significantly different if ATP is the same for all candidates. Relative to the shuttle, SRB-X can provide increased capability in payload envelope and better performance to high orbits or inclinations without an upper stage. The unmanned launch, however, does not allow hands-on, on-orbit checkout or immediate recovery of payload, should the need arise.
为




- 9 -
ARIAN 5

응
$\underset{0}{\mathbf{N}}$
0 $8 \%$
 TITAN 34D7 $\begin{array}{lll} & & A \\ \boldsymbol{m} & \text { ल } & \text { R }\end{array}$ 9
$\mathbf{1 5 5}$
80 8 ATLAS II (SSM) 3
 32
28
14
67

$$
155
$$

5.3
11.6
宦


$\qquad$ $3-1-1$ 14 A


6.5
10.5 8.



ALL OPTIONS USE CENTAUR D-IT EXCEPT ARIAN FOR GEO
AAAAAAA PAYLOAD (K POUNDS) 100 NM/28.5 DEG 100 NM/POLAR
GEO TRANSFER
GEO INJECTION D
NONRECURRING (SM) COST/FLT-(SM) D 1.4
11.2
1988 IF APPROPRIATE UPPER STG AVAIL
5 SPEC VALUE
5 CAPABLE OF 16K
S 4 FLT/YR EXCEPT AS NOTED
SRB-X-410

### 11.0 SUPPORTING RESEARCH AND TECHNOLOGY

A guiding philosophy during the performance of the SRB-X study was that, if at all possible, the vehicle should use existing technology. The study results indicate a vehicle could be developed that would satisfy performance requirements without the need for any new technology.

## 12．0 REFERENCES

1．Boeing Aerospace Company，＂Shuttle Derived Cargo 解ich Vehicle Concept＂ Evaluation Study，＂Final Report dated September 1982，N＇SA Contract NAS8－ 34599.

2．Martin Marietta Corporation，＂Shuttle Derived（SDV）Technology Requirements Study，＂Phase II Final Report dated May 1982，NASA Contract NAS8－34183．

3．Boeing Aerospace Company，＂Orbit Transfer Vehicle Concept Definition Study，＂ Final Report，Volume 6，Boeing document D180－26090－6，NASA Contract NAS8－ 33532， 1980.

4．The Aerospace Corporation，＂Systems Analysis of National Space Launch Possibilities，＂report by Dr．B．P．Leonard，June 1982.

## APPENDIX A-FIRST SCREENING RESULTS

Page
A1-Class A LEO Capability ..... 252
A2-Class A GEO Capability ..... 257
A3-Class B LEO Capability ..... 260
A4-Class B GEO Capability ..... 261

## Appendix A－1 Class A LEO Capability（Sheet 1）

|  | DE | STRAP－ON | STAGE 1 | GE |
| :---: | :---: | :---: | :---: | :---: |
|  |  | งsas 412 | （1） | sas |
|  | 22 | 43Nd 4xi | 73 164 53 | 5 s 318 |
|  | 225 | tsus +11 | 43 1：4 5） | 524 |
|  | 225 | 4SR3 3x1 F | 23 | 323 |
|  | 22 | 458 ari | 39314 |  |
|  | 225 | 45 | Hy 189 53 | As |
|  | 225 | $45^{1 / 3}$ | $1{ }^{1}$ | － |
|  | 215 | 4320 | （1） $1 \times 4$ | 23 |
|  | 213 | 4528 4x1 F3 | 503 144 | d |
|  | 223 | 4tit3 3f4 | 503 164 | 3 |
|  | 215 | 453＋4 418 | Sas 1（4）5） | 19＋141 |
|  | 223 | ＋itr3 ATh | ［23 1x4 b） | $3{ }^{\text {3，}}$ |
|  | 273 | 3523 4 11 F |  | $3{ }^{31} 1 \times 2$ |
|  | $2)$ | 3524－${ }^{\text {c }}$ | 114 | 14 |
|  | $2) 5$ | 3523 4：1 | －9 14＊ | 500 |
|  | 2.24 | $1525+81$ | 1：\％ | 3 |
|  | 225 | 45तd 211 | 14 | 3 |
|  | 215 | 15＊3 $3 \times 1$ | $1 \times$ | ＊ |
|  | 223 | 45 | SH3（16 5） | 313 14 |
|  | 225 | 4523 241 | 11 | 23 $1 \times$ |
|  | 213 | 4533 341 | 14 | 3ay 18 |
|  | 215 | ＊SAN 3x1 | $1{ }^{\prime}$ | $3{ }^{3}$ |
|  | $2 ? 3$ | 3525 3：1 | 1 | $3{ }^{3}$ |
|  | 215 | $4 \mathrm{HTH}^{\text {d }}$ | ＋3 1＇，S | 5き |
|  | 225 | 4525 | $1 '$ |  |
|  | 22 3 | 35\％3al | $1 \cdot$ |  |
|  | 213 | 453 4\％ | ，16 | 5． |
|  | 213 | 13tr 21. | ＋1\％ | ${ }^{3}$ |
|  | 225 | $55^{\circ} \mathrm{C}$ | $1 \cdot$ | 24 |
|  | 215 | 1115 |  | 13 |
|  | 22 | 4504 | ， |  |
|  | 273 | A113／1 | $1 / 1$ | $1{ }^{3}$ |
|  | 215 | 3 ydy | 14＊ | S3 |
|  | 225 | 3 ［1I3 dry | ＋14\％ | จa |
|  | 223 | $55904 \times 1$ | $0{ }^{511}$ | ＋d |
|  | 225 | 558 | 1＇t | ds |
|  | 225 | 3 ［1I3 of | $1{ }^{1} 4$ | － |
|  | 211 | ASR3 4x1 | $1 \%$ |  |
|  | 215 | 35R |  | 5as |
|  | 22 | 4tIT3 ort | 3）148 | $5{ }^{5}$ |
|  | 222 | 15w3 4x1 | ＋ |  |
|  | 222 | $25 \times 3$ 4 $\times 1$ |  |  |
|  | 215 | 1523 211 |  |  |
|  | 213 | 1320 2.1 |  |  |
|  | 22 | 3500411 F, |  |  |
|  | 215 | 4SR9 211 | S4， 164 | なd |
|  | 222 | \％SR3 4x1 | 3 CH 14 |  |
|  | 223 | 3sab ${ }^{\text {y }}$（ | 3nt 114 | 5 ¢0 |
|  | 223 | $33882 \times 1$ Fo | SA3 1＊9 S | 5スa |
|  | 21 | 3508381 P3 | SA3 14ts 5 | $5+3$ |
|  | 215 | $35983 \times 1 \mathrm{Fe}$ | 323 1x4 5 | Sto |
| ， | 225 | 55ad 3x1 Fy | Sas 1xts） | $5+8$ |
| 1 | 225 | 3SRe 211 ch | 523 ixt 5） | 374 |
|  | 22 | 4shd $2 \times 1$ | SRS $1 \times 4$ 5） | 520 |
|  | 21 | ESRH $3 \times 1$ fa | Sas 104 S） | 520 |
|  | 22 | 35日B 3x1 F3 | 5m，1483） | 3ad |
|  | 225 | 5390．36t F | Sas 1104 5） | 575 |
|  | 215 | 3SR 3 al | Sing its | 573 |
|  | 213 | stirs | ins 184 |  |
|  | 275 | ¢t |  |  |


| STAISE 3 | STAGE 4 | PAYLOAD | \％PAYLOAD |
| :---: | :---: | :---: | :---: |
| SR8 $1 \times 1$ | eevr ${ }^{3}$ | Pe5s75．0 |  |
| 11734）2vD | EEvt ab | 78253．3 | 2.13 |
| 5－1 | Evif ed | 73：12．1 | 2.1 |
| SPa $1 \times 1$ | eevt dy | 73987.4 | 2.86 |
| 113342 240 | EEvP 43 | 72865.9 | 2.21 |
| $5-1$ | EEvF ${ }^{\text {d }}$ | 72729.8 | 2.17 |
| Sas $1 \times 1$ | exvi ${ }^{\text {a }}$ | 72647.9 | 2.1 |
| $5881 \times 1$ | eevt ab | 72444.3 | 1.71 |
| rir34） 210 | Esir ${ }^{\text {a }}$ | 71572.3 | 2.12 |
| 11734） 215 | EE4P AB | 71352.8 | 2.26 |
| S－1 | ezur ds | 71257.2 | 2.85 |
| S－1 | Ezat did | \％1249．2 | 2．2？ |
| T15343 2v9 | Ezvr 01－t | 2．1891．9 | 1．71 |
| ＜－1 |  | 71639.6 | 1.48 |
| Sス3 1\％1 |  | P．134．7 | 1.11 |
| 5－2 | EEvf ${ }^{\text {a }}$ | b7432 | 1．t |
| S20 $1 \times 1$ | Esvt do | pas5y．s | 2.12 |
| Sp $\mathrm{S}_{1 \times 1}$ | EEvT 3 | 7147.1 | 2.04 |
| ［1134） $2 \times 0$ | EEvi ${ }^{\text {ds }}$ | 7073．3 | 2.31 |
| S－1 | EEvt As | 6749.5 | 2.23 |
| t1r343 2N0 | Eesp as | 6554 | 2.23 |
| S－1 | CEvT－3 | －87．${ }^{\text {a }}$ | 2.13 |
| T1r340 2vo | EENT 91－T | 53 ＇0．8 | 2.31 |
| Sas $1 \times 1$ | EEvt di | 5053．0． | 2.87 |
| 5－1 | こごT J1－T | ¢355．5 | $1.7 \%$ |
| Sus $1 \times 1$ | こEtr $31-\mathrm{r}$ | 61925.5 | 1．di |
| 11546） $2 \cdot 7$ | Ez，r T －r | 64141.5 | 1．73 |
| 11134） 207 | －541 4 | $6.1 . \% .4$ | 2.27 |
| Sta 1／1 | S－3 | 6130．0 | 1.58 |
| S－1 | EEvr as | 5－4．．．5 | 2.23 |
| 5－2 | Ez．1 4 | 6： $3-4.1$ | 1．t－ |
| 11514） 8.0 | ごif 910 ¢ | 6.354 .4 | 2.85 |
| $5-1$ | EET ग1－T | 51243．3 | 1.7 |
| S－1 | EEx P 21－7 | 6.437 | 2.83 |
| r1r34）2v） | 3－3 | 6383.0 | 1．74 |
| S－1 | 5－3 | 63641.6 | 1.12 |
| SR3 $1 \times 1$ | EEVT 01－T | \＄361\％． 2 | 1.85 |
| $5-2$ | EEvt ${ }^{\text {at }}$ | 03521.4 | 1.7 |
| $5231 \times 1$ | こEvr ）－ | 634.30 .6 | 1.73 |
| S－4 | EEwT 3 | $02 \times 55.2$ | 2.82 |
| CEiof da | Tif3 Paty | $6237 \%$ ．0 | 1.17 |
| CE\％＊d | IJS 25raje | 62371.3 | 1.72 |
| sas 141 | EEtr ${ }^{\text {a }}$ | 01467.0 | 2.12 |
| 4153）200 | EEv 43 | 01854.5 | 2.35 |
| $5-2$ | EEvt $71-\mathrm{r}$ | 61231.3 | 1.69 |
| S－1 | EE．9 ${ }^{3}$ | 6.748 .6 | 2.31 |
| CĖvf 40 | －vucl arto | 68572.9 | 1.67 |
| f1r343 200 | EExT 01－r | $6 \times 352.6$ | 2.8 |
| S－1 | EEnT 01－Rim | 63113.4 | 2.27 |
| 715345 200 | EEvP $01-2$ | 64373.1 | 2.83 |
| S－1 | Esuf 31－7 | 59571.4 | 1.99 |
| SAB $1 \times 1$ | S－3 3 | 59331.3 | 1.65 |
| Sn3 $1 \times 1$ | EEvf $31-\mathrm{t}$ | 59296.7 | 1.87 |
| S－2 | Exvf ${ }^{\text {ces }}$ | 59223.1 | 2.86 |
| S－2 | eEvr 48 | $5 \mathrm{SHB5} .2$ | 1.79 |
| T1T343 200 | S－3 | ＋1811．\％ | 1.17 |
| S－1 | 5－3 | \＄8021．3 | 1.17 |
| sad $1 \times 1$ | EEvF $31-\mathrm{t}$ | 58304.1 | 1.17 |
| （1734）20） | EvV 78 －t | 1040．8 | 2.85 |
| Sta 14i | 5－3 | Sasmo． 7 | 1．6\％ |


|  | CODE | STRAP－ON |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| $2$ | 215 | 9 HIt | ${ }^{+1}$ |
|  | 213 | s5as | 418 |
|  | 272 | 152. | $3{ }^{1 / 8}$ |
|  | 22 | fitt | \％${ }^{\text {a }}$ |
|  | 222 | 2520 | $3 \times 1 \%$ |
|  | 213 | $35 *$ | 4418 |
|  | 225 | $5 \mathrm{Itr}^{3}$ | 95 |
|  | 21 | oft！ | $4{ }_{4} 4$ |
| $2$ | 215 | 3ftr3 | ${ }^{+5}{ }^{4}$ |
| $4$ | 212 | 1523 | 41 |
|  | 212 | 259． | $4{ }^{1} 1$ |
|  | 223 | 2523 | 411 |
|  | 22 | 1593 | $3 \times 1$ |
|  | 223 | 1529 | 41 |
|  | 223 | 2583 | $4{ }^{1} 18$ |
|  | 222 | IIt ${ }^{\text {a }}$ |  |
|  | $22)$ | $2 f 15$ |  |
|  | 211 | 354 |  |
|  | 222 | ASAy | 341 |
|  | 212 | dsas | 41 |
|  | 225 | 15ing | ＊ 1 |
|  | 221 | 3579 | ＋${ }^{1} 1$ |
| 2 | 22 | 3115 |  |
| $\mathbf{i}$ | 213 | 3SR3 | 2 L |
|  | 221 | 2393 | $4 \times 1$ |
|  | 222 | 3rtis | $i t^{*}$ |
|  | 215 | 35R3 | 21 |
|  | 221 | 1523 | 311 |
|  | 225 | 5SR 3 | ＂1 |
|  | 21 | 452 | 1 |
|  | 225 | 252： | 4 L |
|  | 22 | 552， | 2 |
|  | 22 | $55^{2}=$ | $2 \cdot 1$ |
|  | 21 | 35.3 | 21 |
|  | 21 | 5523 | 31 |
|  | 215 | $55^{\circ} \mathrm{3}$ | 341 |
|  | 215 | 5Sa＝ | 341 |
|  | 225 | 1523 | 4＇1 |
|  | 212 | 1523 | $3 \times 1$ |
|  | 222 | 15Ra | 241 |
|  | 212 | 25R3 | $3 \times 1$ |
|  | 222 | 2SR3 | $2 \times 1$ |
|  | 223 | dSRa | － 11 |
|  | 223 | 2509 | 911 |
|  | 21 | 3583 | $3{ }^{1} 1$ |
|  | 215 | 57183 | 14 |
|  | 212 | dSR， | $3 \times 1$ |
|  | 22 | 1583 | $3 \times 1$ |
|  | 22 | 3SRd | 2x1 |
| 2 | 213 | $581{ }^{\text {ch }}$ | 14 |
|  | 2 | 2597 |  |
|  | 1.23 | 60NJ |  |
|  | 25 | 4－WSLL |  |
|  | 1 | 57173 | DrM |
|  | 225 | 1528 | $3 \times 1$ |
|  | 213 | 250a | $4 \times 1$ |
|  | 225 | 3323 | 4x1 |
|  | 22 | 2328 | $2 \times 1$ Ps |
|  | 213 | 1320 | $4 \times 1$ Ps |
|  | 224 | 5sat |  |

## STAGE 1

S23 1445） 523 184 33 $5 \% 1$ 1t 53 K27 15453 573 1＊4 5） 52315453 523 1K4 53 523 $1 \times 4$ 5） SR3 1 （4 5） se3 114 53 $5 \times 314457$ $5231845)$ SP3 $1 \times 4$ 5） $5231(45)$ s2，1xts） $\begin{array}{lll}523 & 114 & 57 \\ 543 & 1 \times 4 & 5)\end{array}$

$2 k 8$ i $8+3)$

$$
5+3 i(45)
$$

$5 \times 315+3)$ 523 18．53 $5251 \times 45)$ 525 1（\％5 5 S23 ift 53 $5231445 \%$ jas 154 3） $5: 31$（4 5$)$ $5-418+5)$ $5 \sim 11+57$
Sis 1＇＊ 37
$5241(5)$
： 511 （3）
$\because 2+1(23)$
5it 1ís）
S\＆， $1(4)$ ह）
30；1at 5）
5a，144 3）
$5 \geqslant 31 \times 4$ 5）
573154 53
3n5 $1 \times 455$
STS 1x4 5s
$\begin{array}{llll}521 & 144 & 5 y \\ 32 & 164 & 59\end{array}$
$\left.3^{2}, 18+3\right)$
54，4i：5J
3ks 14435
5：3 1：4 59
Saj 114 sj
SRy 14453
$5231 \times 453$
sad 174 53
5月3 144
sR9 ixt
$\begin{array}{llll}\text { SR3 } & 1 \times 4 & 39 \\ 3 R 3 & 1 \times 4 & 53\end{array}$
SR 318453
$\begin{array}{llll}5 R d & 184 & 5 j \\ 5 R S & 184 & 5 j\end{array}$
$\begin{array}{lll}\text { 3Rs } & 1 \times 4 & 55 \\ \text { sen } & 1 \times 4 & 53\end{array}$


| STAGE 3 | STAGE 4 | PAYLOAD | \％PAYLOAD |
| :---: | :---: | :---: | :---: |
| S＋3 1 12 | S－3 | 57842．3 | 1.5 |
| S－1 | EEvP $21-\mathrm{r}$ | $5745 \%$ ． | 2.3 |
| tII34）2v0 | S－3 | 57064.5 | 1.1 |
| CEvt 43 | 11t3 PRCN | 57415.3 | 1.7 |
| （173＊） 2 －0 | 3－3 | \＄1390．＊ | 1．d |
| C\％ir 49 | t＇IS 25rase | 57371.3 | 1.7 |
| S－1 | S－3 | \＄1290．4 | 1.6 |
| $5-1$ | S－3 | \＄7237．3 | 1.8 |
| 5－2 | EEtt 18 | \＄71．17．4 | 2.8 |
| $5231 \times 1$ | Evt $91-2$ | 56971 | 1.32 |
| ceat as | fit3 PRAM | 56832.3 | 1.7 |
| CEvT 43 | 115 2STA6E | 56710.1 | 1.7 |
| T1134） 2 v0 | lJS 25tage | 564，99． 4 | 1.5 |
| S－2 |  | 5 6384.8 | 1.7 |
| ［1534）2 d | Itt3 PRAN | 58156．6 | 1.5 |
| S－1 | 115 2SPASE． | 36816.4 | 1.5 |
| Czir 4 | ttr PRA， | i5969． 1 | 1.3 |
| SE．P－ | IJS 2spaje | 35719．${ }^{\text {i }}$ | 1.3 |
| S－2 | ごけt 31 － F | $25 \pm 39.0$ | 1.0 |
| Ezvr ${ }^{\text {c }}$ | －vjlth 4rifo | 55－45．1 | 1.1 |
| EEAP4 |  | 55625．7 | 1，6 |
| 5－1 | CIT3 PRA＊ | 25714．8 | 1.5 |
| S－8 | 5－3 | 55247．9 | 1.5 |
| s－2 | EEvt J1－I | 55228．81 | 1.1 |
| ［1734） 2 is | EETT 31－T | 56937.7 | 2.1 |
| EET J \％ | $1 J 525 T 4 E E$ | 34516 | 1.51 |
| SEvT 43 | －Vubl 4ra－ | 34440.5 | 1.7 |
| S－1 | 23\％ 71 － 1 | 34438 | 4.27 |
| E\％：i 31－i | flt 3 PRAN | ，4248 | 1.51 |
| 32，101 | S－3 | 5383\％．2 | 1．b |
| $3-6$ | EEv $n$ 3 | 5319．3 | 2.1 |
| 5－4 15． | 1J5 25rase． | 23642.5 | 1.3 |
| （1）3＊）2＊） | s－3 | ．3437．5 | 1.0 |
| $5-1$ | S－3 | ，3253．2 | 1.0 |
| 523 111 | ここけr $71-\mathrm{t}$ | i3355．0 | 1.0 |
| 11134） 200 | j－3 | 53820．0 | 1.7 |
| 5241×1 | $5-3$ | 22989．5 | 1.5 |
| S－1 | S－3 | \＄264． 3 | 1.1 |
| $5 \mathrm{st1} 1$ | flt3 PRA4 | \＄2556．3 | 1.3 |
| CEdt ab | Itis ras． | i2255．7 | 1.7 |
| CE．TT 3 | fif3 YRAN | 52184 | 1.83 |
| cedt ${ }^{\text {cos }}$ | tis LSTAGE | 32.998 | 1.17 |
| CETr ${ }^{\text {ct }}$ | $1 J 325 R 4 G E$ | 3282 c 2 | 1.1 |
| （1534） 2 V1 | －VJLL 8P4－ | 31721．0 | 1.4 |
| （1534） 210 | lJS 25TAGE | 51047.4 | 1.5 |
| S－2 | EEvP J1－r | 31633．1 | 1.1 |
| SAS 1 \％ | S－3 | 31015.3 | 1.1 |
| CEvP4 | －VJL6 4PN－ | 51477.7 | 1．． |
| ［15345 2vo | PIP3 PRAM | 51429 | 1.59 |
| S－2 | EEM P 01－8 | 51424.6 | 1.6 |
| T1734）2ND | S－3 | 31331.1 | 1.1 |
| S－1 | 13525846 | 51247.2 | 1．： |
| 217340 290 | EExT | 51323.1 | 2.4 |
| S－1 | EEvT | 51330.8 | 2.0 |
| $2-1$ | S－3 | 53983.1 | 1. |
| $8-1$ | 1153 tray | 53975.5 | 1.1 |
| 717340 2：0 | IfS 23tace | 58888.2 | 1. |
| S－1 | －4JL6 4FH－ | 50116.2 | 1. |
| EExT As | －vJんL 4FH＊ | 59794．2 | 1.1 |
| 115342 250 | TIT3 PRAN | 50738.8 | 1. |
| 3－2． | S－3 | 50653．3 | 1. |

## PAYLOAD \％PAYLOAD

## Appendix A－1 Class A LEO Capability（Sheet 3）

CONFIG

|  |  |  | STRAP－ON |  |  | STAGE 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 21 | 2 | Iftrs iri | S23 | 1845） | S2． 18 |
|  | 2 ？ | 1 | A54n 4al Fi | an | $15+5)$ | spe $1 \times$ |
| 2 | 2 | 2 | 21ft3 Afi | 594 | $1445)$ | 520 |
| 2 | $? 2$ | 1 | arirs＊rat | 503 | 164 \＄） | 344 |
| 4 | 21 | 5 | $2595+41$ f4 | SN3 | $1 \mathrm{x}, ~ 3)$ | S43 |
| 2 | 2 | 3 | It13 ArM | $5{ }^{3} 3$ | 14453 | Sts |
| 4 | 21 | 5 | ISdd ext F3 | 5A3 | $14 \pm 53$ | 54d |
| 2 | 21 | 1 | 3 1t3 484 | SR3 | 14439 | 598 |
| 4 | 21 | 1 | 552 d 41 F | S23 | $1 \times 453$ | 598 |
| 2 | 22 | 5 |  | SN3 | 1x＋5） | H |
|  | 22 | 1 | $25^{2+3} 3.1$ Fs | SR 3 | $14+53$ | 3 |
| 2 | 21 | 2 | 2ftrs Ift | S43 | $1 \times 4$ 5） | マ＊ |
|  | 21 | 1 | $25+3+1{ }^{2}$ | 59 | $1 \times 4 \leq$ | 329 |
|  | 22 | 1 | ISRA 301 Fi | 52 | $1 x+35$ | 3R4 |
| 2 | ） 2 | 5 | 11ti3 ：14 | Cat | 1＊45 | $52-$ |
|  | 21 | 1 | 1524441 | ＋14 | 14431 | 44 |
|  | 22 | 1 | 5 f163 | S2 | 1 （4）5） | 13 |
| 3 | ？ | 5 | 450， | 574 | $14+3)$ | 37. |
| 2 | 2 | 1 | 211t3 $\mathrm{Of}^{\text {cha }}$ | S．4 | $14+5)$ | $3+3$ |
| 2 |  | 1 | Iftis＊ 1 ＋ | 5 | 5） | 73 |
| 1 | ） | 3 | $5 \sin 32=1$ | 5 | 144 3） | マข |
|  | 21 | 5 | 3523 ＜11 | 5 Sa | 1x：53 | 573 |
|  | 21 | 5 | 5s23 261 | 59 | $1 \times 453$ | マง |
|  | 2 | 5 | 1523 4：1 | Sマ | 14453 | 5 |
|  | 21 | 5 | citr3 1P7 | S ${ }^{\text {2 }}$ | 1＊957 | 32． |
| 3 | 22 | 3 | \％sais 3．1 | S | 1.457 | 30 |
|  | 21 | 2 | 1343 《1 | 5. | 14.3 ？ |  |
| 4 | 2 | 1 | 15，3－11 | $\bigcirc$ | 3） | 13 |
|  | 21 | ， | 2343－ 2 |  | s） | 3 is 1s |
| 1 | 21 | ？ | ）3？A M | ミ」， | $\checkmark 7$ | $52 \rightarrow$ |
|  | ， | － | 211 |  | S | ， |
|  | 21 | 1 | 2 | \％＊ | S | 5゙， |
|  | 1 | ？ | 411 | 32 | 3） | $5{ }^{51} 1^{61}$ |
|  | 2 | 3 | $2 \cdot 1$ | 3 | 14．5） | $\pm$ |
| 3 | 21 | 3 | 2519 361 | $3 *$ | $1 \times+3)$ | 590 |
|  | 21 | 3 | 152y 3 （1 | 52 | 1145） | 34 |
|  | 22 | 3 | 15 NH ＜11 |  | 14．37 | － |
| 2 | 22 | 5 | ITIT3 0 （4 | SQ | 184 53 | ล及 |
| 1 | 22 | 5 | 2soy 2＜1 | S23 | 1445 ？ | \％2\％ |
| 3 | 2 | 5 | －¢จ3 341 | 5 | ＊5） | 2） |
| 3 | 22 | 1 | －3ts 341 | 51 | $1 \times 45$ | Sto |
| 4 | I | 5 |  | 503 | $1 \times 457$ | 324 |
| 2 | $?$ | 3 | ＊T13 IT： | 323 | $1 \times 45$ | 2 |
| 1 | 2 | 5 | 15232.1 F | 53. | 14，5） | 2： |
|  | 22 | ， | 2503 11 P | 5＊， |  | ＊ |
|  | 11 | ？ |  | 5 － | $1{ }^{1}$ | a， |
| 3 | 2 | 5 | 2593 3n1 P3 | $5{ }^{\text {S }} 3$ | $1 \times 45$ | Snd |
| 1 | 2 | 4 | 3543＜11 | SR 5 | 18457 | $5+3$ |
| 3 | 2 | ） | $55 \times 3$ 3\％1 F9， | 5 S 3 | 1545 | 5＊ |
| 3 | 21 | 5 | 15Ra 2A1 F3 | 583 | $1 \times 453$ | 328 |
| 4 | 21 | 5 | 3sha 4x1 pa | SPs | $1 \times 453$ | SRS |
| 3 | 21 | 1 | 25A3 3x1 F3 | SR | $1 \times 453$ | ＊3 |
| 3 | 21 | 1 | 15Ry 3x1 F3 | SR3 | $1 \times 453$ | 5月a |
| 3 | 12 | 3 | 304JしL of．1＊ | 593 | 184 | 528142 |
| ＊ | 2 | 5 | 15P3 4it Fs | S93 | $1 \times 4$ | 588 |
| J | 12 | 5 | 30nJ6L at | SA3 | 184 | SRa |
| 2 | 11 | ） | ＋＊＊UGL AT | SR3 | 1 1 | 328 |
|  | 11 | 5 |  | S23 | 1 $\mathrm{K}_{1}$ | 5 Sd |
|  | 2 | 1 | 259s 2x1 Fa | S23 | $1 \times 459$ | 528 |
|  | 21 | 3 | 2IIT3 AT4 | SQ3 | $1 \times 45$ | 523 |
|  | 22 | 5 | AITI3 ory | S23 | $1<45$ | ） |


| STAGE 3 | STAGE 4 | 9AYLOAD | \％PAYLOAD |
| :---: | :---: | :---: | :---: |
| Ce．t Ab | frim fas | \＄4457．7 | 1. |
| CEIT $\mathrm{H}=\mathrm{r}$ | －tubl itio | P8369．3 | 1. |
| CEIT As | IJS 25tase | 58298.8 | 1. |
| TIT34 215 | lis 25tise | p3277．2 | 1. |
| S－1 | iJs 25raze | 33184.1 | 1. |
| 11（36） 215 | TIP3 「さ」 | $54 \% 64.7$ | 1. |
| S－1 | tif3 rasa | 47359.2 | 1. |
| S－2 | EE4T J1－t | 49347.2 | 1. |
| S－2 | S－3 | 19945.6 | 1. |
| S－1 | lus 25rast | 19y＊＊．5 | 1. |
| CEvf Ji－t | LJS 25taje | 39098． 4 | 1. |
| CETf 3 | －VJL6 9 FH－ | 191．37．7 | 1. |
| C\％．t 3－t | IJS 25Paje | 5＋075．3 | 1. |
| CE－t ） | rit3 Tax | 17571．2 | 1. |
| 3－1 | （11）Pry | －9636．7 | 1. |
| C\％et 3 －t | ［1t3 raty | 43n4． 1 | 1. |
| $5-2$ | S－3 | ＋320．8 | 1. |
| 50，171 | tis 25taje | －514．3 | 1. |
| C\％tr 31－f | tJs 45803E | 1525.1 | 1. |
| CEVt Jiot | cit3 rata | P316．3 | 1. |
| 51533） 210 | $5-3$ | 1756.7 | 1. |
| S90 141 | S－3 | 1784.2 | 1. |
| S－1 | S－3 | 7598.8 | 1. |
| ST3 171 | ctr3 rany | 1537．6 | 1. |
|  | fJS 25745E | 7305.6 | 1. |
| （1534）2．） | －Vubl ario | 7346．${ }^{\text {c }}$ | 1. |
|  | TIf3 14＊ | 1264.7 | 1. |
| ［1434）$\ldots$ | －－J6L itto | 1742.3 | 1. |
| ¢is 1（1） | 1 Is 65 ［aje | 1775.4 | 1. |
|  | us 235amo | 61.71 .6 | 1. |
| S－2 |  | －798 | 1.85 |
|  | －Jい6し「4－ | 1－01d．1 | 1. |
| ご．＂，${ }^{\text {¢ }}$ | －．J66 ars－ | 4．137．7 | 1. |
| 1163， 24 | 1 IS 635138 | 17578．7 | 1. |
| 1［130）20） | tus＜5taje． |  | 1. |
| T1534） 260 | cIts Pas． | 46393 | 1.58 |
| （1i3i） 205 | flry fata | 4．390．7 | 1. |
| 525 1／1 | ［1ts fank | 45317．8 | 1. |
| 3－1 | IJS 25rafe | 42172 | 1.5 |
| S－1 | －1J6L 4ra－ | 45152.4 | 1. |
| Cぢャ\％31－r | －vJL6 4tMo | 65097．${ }^{\text {c }}$ | 1. |
| くご价 | f63 raay | 47894.5 | 1. |
| （1134）2．） | －リ小6＋rt＊ | 4599. | 1．07 |
| 5－1 | ［113 Pady | 45333.8 | 1. |
| $3-4$ | 1JS 25 I4JE | 45970.8 | 1. |
| 593 $1 \times 1$ | EEvt is | 45050.6 | 2. |
| $5-1$ | 135 25 tase | 45794.8 | 1.1 |
| $5-2$ | S－3 | 45753.4 | 1.1 |
| S－2 | S－3 | 45719.8 | 1.1 |
| S－1 | ［153 rans | \＄5638． 7 | 1.0 |
| $5-1$ | － 4 U6L 4 FH | 15479．8 | 1. |
| Cest ） | IJS 25rase | 5451.3 | 1.1 |
| E¢at J－7 | tif3 trax | 5304.1 | 1.1 |
| T15343 215 | EEvP 91－T | 5359.3 | 2．： |
| S－2 | tit3 PRAN | 15228．6 | 1. |
| S－1 | EExT Ji－t | 45199.4 | 2.1 |
| 115343 240 | EEvt as | 45184.6 | 2.1 |
| S－1 | EENP ${ }^{\text {a }}$ | 44988.3 | 2. |
| CEvP 3i－r | LJS 257AEb． | 44761.3 | 1.1 |
| ［134）203 | 1JS 25rase | 44.25 .1 | 1.1 |
| $5-1$ | －ปubl 41 T＊ | 44630．5 | 1. |

ORIGINAL PAGE IS
OF POOR QUALITY
Appendix A－1 Class A LEO Capability（Sheet 4）

|  | ONFIG CODE | STRAP－ON | STAGE 1 |
| :---: | :---: | :---: | :---: |
| ？ | 1 | 2rif3 ：i， | S64 1／4 a） |
| 1 | 1 | 1503 $2 \times 1$ | S－3 14t S） |
| 2 | 3 | Iriti Jr | S4a 144 5） |
| $\wedge$ | 136 |  | 3iti＇6 |
| $\pm$ | 124 | －：こんL wt | 5if 114 |
| $2$ | 215 | 21113 | 573 1（4 S） |
| $2$ | 21 | St173 | （3）14t 53 |
| $2$ | 5 | 11t3 | 5in $1 \times 4$ 53 |
| $2$ | 1 | 2 tr 3 | 573 184 5） |
| 2 | 211 | 1rits Ar | （2）ixt 3） |
| $i$ | s | 25402.1 | S93 14． 5 ） |
| $3$ | 3 | $352+3 \cdot 1$ | Set 14，53 |
| $3$ | 1 | 1544 361 | 30，150 3） |
| 3 | ， | ग52，3i1 | S－3 1／4 5） |
| 1 | 3 | 5： $2 \cdot 1$ |  |
| $i$ | 225 | 15．9＜．1 | 3＊，1＇6き |
| $i$ | 213 | 15n， 81 | 5－1 $1 \times 430$ |
| $1$ | 3 | 1573 201 | 323（164） |
| $3$ | 223 | 1SN3 sil | sas Axt ss |
| $1$ | 221 | ，ise $3 \cdot 1$ | SR3 1，\＄5） |
| 4 | 21 | 2585 | 523 1xt 53 |
| $3$ | 5 | $1 \mathrm{ISRa}_{3 \times 1} 6$ | ST3 14453 |
| $2$ | 3 | Jtirs at | Say ixt S） |
| $2$ | 1 | 7 Pris | ， 1 （4 5） |
| $2$ | ， | ）tr3 | ca，lit 5 |
| 1 | 211 | jsad | a，14ts） |
| 1 | ， | 25sa | 11． 5 |
| 3 | 1 | 1520 | 1．15 |
| 4 | － | 15.3 | く，195 |
| 1 | ； | 1575 | 116 |
| 1 | 211 | 18．5 | ¢－11． 1 |
| 1 | 211 | ！${ }^{\text {a }}$ | \％414 5 |
| 2 | ， | 114 | 3－t 104（） |
| 3 | 11. | 40．1） | ；${ }^{\text {a }} 16$ ， |
| 2 | 21 ， | Iftr3 1！ | S43 174 5） |
| $2$ | 22 | 1513 ${ }^{1}$ | 524 14， 31 |
| 2 | 5 | y－i」it－10 | 34，104 |
| J | 4 | 1－dうLL | SR3 $1 \times 4$ |
| 3 | ， | 50 －1） | \＄3， $1 \times 4$ |
| 3 | 5 | 5－0．J1／2 | Ses $1 \times 4$ |
| 1 | 1 | asis ${ }^{\prime \prime}$ | Sis 16t |
| 3 | 5 | 30－3iol | 人3） 14 ＋ |
| 1 | ， |  | sta 14.4 |
| $\cdots$ | 2 |  | Spat 16 |
| 3 | 1 | 2543 311 | Sat 10，53 |
| 1 | 5 | 2523211 | Sa3 14t5） |
| d | 2 | 1－VJLL atro | Sns 144 |
| ， | 2 | 2－vulb ér．so | 393 124 |
| 3 | ， | 1593 3x1 Fs | 5nt 14t 33 |
| 1 | ＋ | 25R3 $2 \times 1$ Fs | 523 $1 \times 453$ |
| 4 | 5 | 2580 ＋61 F3 | Say 154 53 |
| 3 | 3 | J－4uk6 124＊ | Sa3 1x4 |
|  | 4 | 3SRa $4 \times 1$ FS | SA3 $1 \times 453$ |
| 1 | 22 | 1509 2xi F3 | S2， $1 \times 4$ S3 |
| 1 | 5 |  | S93 144 3） |
| 2 | 21 | 27173 drs | $5{ }^{5} 31 \times 453$ |
| 2 | 21 | ITIT3 3T4 | 52316453 |
|  | － 1 | 4548 4x1 7 | S23 114 53 |
| 3 | 5 | 504JLL Afte | 527 144 |
|  | 11 | 3－＊ULL if | 32，14t |
|  | $1 i 3$ | S－vJle aPM |  |

STAGE 1
s．t 114 a） $5+41145$
3＋t11\％
3in 114
St，14t 53
$\begin{array}{lll}543 \\ 573 & 1 \times 4 & 53 \\ 57 & 1 \times 4 & 5)\end{array}$
（2，18：3）
Se4（14 5）
$\begin{array}{llll}3.3 & 118 & 3) \\ 5.3 & 1 / 4 & 5)\end{array}$
（1） $1: 4$
$\begin{array}{lll}32 & 110 \\ 5 i n & 104\end{array}$
sas（164 5 ）
SR3 1．t S）
$52+1 \times 453$
STi 14t 53
S． 3 i（4 s）
Sa，lía $S$ y
sa，lit
ct in s
强保
ज1164
if114 51
ats 16.
524164 （s）
54，144
$351 \times 4$

$\begin{array}{ll}\mathrm{SNO} \\ \mathrm{sen} & \text { ift } \\ \text { ist }\end{array}$
Sat 1 it
sab 1（a s）
SNE 144
43 1 14
323 $1 \times 4$ 35
Sat 114 53
$5831 \times 453$
SPy $1 \times 453$
$5231 \times 45$
594.184 s？

Sas 14t
Sス3 17

|  |
| :---: |
| Sa－ 116 |
| say 116 |
| 593 111 |
| 52， 118 |
| $52+162$ |
| $3^{3}+1 \times 1$ |
| S23 141 |
| 348 111 |
| 523 101 |
| 52.4181 |
| spe 1／8 |
| $52=141$ |
|  |
| 53－19 |
| 14 |
| د＂ 112 |
| 5．1＇1 |
| 573111 |
| 547114 |
| 53， 162 |
| 5id 111 |
| 573121 |
| 52a 181 |
| 319 11 |
| 32－111 |
| \＄く，1：1 |
| ，．1 |
| ＋1＇1 |
| 3．11：1 |
| ， |
| P1 |
| ふく14 |
| ；3，14， |
| 533 if1 |
| 5231 |
| 314182 |
| 57 A 11 |
| $5031 \times 1$ |
| S．${ }^{\text {a }} 118$ |
| 529182 |
| S43 $1 \times 1$ |
|  |
| S2？ 11 |
| $52=1 \times 4$ |
| Sさ＝141 |
| 529 1×1 |
| 573 182 |
| Sas 12 |
| 523 1111 |
| 3ad 152 |
| 3as 112 |
| SPn 112 |
| 59d $1 \times 2$ |
| 5R3 $1 \times 2$ |
| 593 1x1 |
| 520 1／1 |
| 5ab 1x1 |
| 543 141 |
| 523111 |
| 1x |
| as 1 |

STAGE 2 $57+14$ 594 111 $5031(2$ 524142 SRy $1 \times 1$ 348 111
 s？ $51 / 2$
\$23 19
31.4
$د=1.2$
53, il
547 112
$\begin{array}{ll}324 & 182 \\ \text { 3ing } & 111\end{array}$
$5731 \times 1$
524181
$5+4161$
3271
27* 111
5二 1
っか

| $: 1: 1$ |
| :--- | :--- | :--- |
| $: 1: 1$ |

な, ic

1. 1
$\begin{array}{ll}53 \\ 3 & 1 \times 1\end{array}$
$3141 \times 2$
2. $1 / 1$
S. 9112
$5=112$

$52=1 \times 4$
$52=1 \times 1$

Sas $1 \times 2$
$\begin{array}{lll}523 & 141 \\ 32 a & 112\end{array}$
$\begin{array}{lll}593 & 112 \\ 59 n & 112\end{array}$
3. $1 \times 2$
$5291 \times 2$
520 141
543 141
$5201 \times 1$

| STAGE 3 | STAGE 4 |
| :---: | :---: |
| E\％リ） 1 －r | －VULL 4ite |
| EEV） 1 －t | ［1t］rama |
| r（134） $2 \times 0$ | titz PRAN |
| $3+3141$ | EEvf 01－7 |
| 5－2 | Eevt ${ }^{\text {a }}$ |
| S－1 | IJS 25rase |
| S－2 | S－3 |
| $5-1$ | tit3 than |
| EEvt $31-\mathrm{t}$ | iJ3 257age |
| EEIT 1 －t | ［t］fram |
| S7s 1\％1 | tis 25tage |
| 11154） 200 | －＋JLL 4Fit＊ |
| \％ 217101 | －v دtict 4 \％ |
| 529181 | IJS 25TAEE |
| （1，14） 2.4 | －Uuich fra＊ |
| 53181 | tits reay |
| （1154）2v5 | 1JS CSTAJE |
| 「134）＜v？ | ftr3 PAA4 |
| S－6 | 1J5 25raje |
| Cぎった101 |  |
| $5-2$ | $13525 r a s ̃ e$ |
| 57s $1 \times 1$ | TII3 PRAM |
| 11134） 200 | －SuLl 4TH＊ |
| Czッ\％ 1 － | －＊J6L Bra＊ |
| 5．0 141 | ijs 25maje |
| S－2 | S－3 |
| －-1 | t15 2Stsie |
| $5-6$ | 114 124．1 |
| 5－6 | Ttis TiA． |
| SO1 | （1i3 1＊＊＊ |
| こ：－ $21-r$ | 1J5＜5rasm |
| $\because \cdot \%$ ）－r | ftes riatr |
| $0 \cdot 6$ | ijs 257aje |
| 11t5i） 2.5 | ご\％ H － |
| Sxa 1\％1 | ftr3 PRAV |
| s－2 | Ptis PRat |
| $5-1$ | EEtr 91－7 |
| 5－2 | EEvP ${ }^{\text {a }}$ |
| P！t34）2vo | Sol |
| S－1 | S－3 |
| SEvf ）t－r | －－3the 4 Fr－ |
| S53 141 | Ezvf ） |
| f1r3＊） 210 | －vubl 4 TH－ |
| S－2 | ExvP गi－f |
| $5-2$ | IJS 2stac： |
| 529178 | $1 J 5$ 2srage |
| CEvi 4 | tit3 tram |
| EEVP 13 | Ijs 257a6E |
| S－2 | 7173 frat |
| S－2 | IJS 2sfade |
| Sat 171 | －4UL6 CrM－ |
| cevt 48 | －Sull |
| 3－2 | －vijle 48N－ |
| 3－2 | rit3 panm |
| 520 171 | ［173 PRAN |
| S－2 | 138 23FAEE |
| S－2 | PIT3 PRAN |
| $5-2$ | －＊usb 4 TH－ |
| $5451 \times 1$ | S－3 |
| S－2 | EEvt 91－t |
| 71834） 215 | 2－3 |

PAYLOAD \％PAYLOAD

| $\begin{aligned} & 44416 \\ & 44194.5 \end{aligned}$ | 1.47 |
| :---: | :---: |
| 44712.8 | 1.5 |
| ＊4411．3 |  |
| 44275．） | 2. |
| 14：73．1 | 1. |
| ＋4392．3 | 1.5 |
| 43982.1 |  |
| 43745.2 |  |
| 43645.7 | 1.3 |
| 43359.3 |  |
| 42944．4 |  |
| ＋2079．4 |  |
| 42521.7 |  |
| 12473 | 1. |
| 2283．6 | 1. |
| 11750.3 | 1. |
| ＋1079．4 | 1. |
| 11056． 2 | 1. |
| ＋1559．7 | 1. |
| 41541.0 | 1. |
| ＋1459．5 | ． |
| 11294.8 | 1. |
| 11253 | 5 |
| ＋1187． 2 | 1. |
| 11138.2 | 1.3 |
| ＋1847．3 | 1. |
| 41830.5 | 1. |
| 11031.3 | 1. |
| 40.95 .4 | 1. |
| 4.103 n .1 | 1. |
| 12072.1 |  |
| 1．14？${ }^{\text {a }} 1$ |  |
| 18163．3 |  |
| 18126.1 |  |
| 17798．2 | 1. |
| 39174.7 | 2.1 |
| 19192.4 | 2. |
| 58767.7 |  |
| 38598.1 | 1. |
| 38662.2 | 1. |
| 19581.2 |  |
| 38423.8 | 1.3 |
| 37490．5 |  |
| 37663.7 | ！ |
| 37616.8 | 1. |
| 37364．6 |  |
| 37367.6 | 1. |
| 37284.8 | ． |
| 1736．${ }^{\text {c }}$ | 4. |
| 32323.8 | ． 95 |
| 5986．7 | 1. |
| 359.9 | 1. |
| 671 | 1.3 |
| ${ }^{81} 3.3$ | 1. |
| 111.2 | 1.3 |
| 659．6 | 1.2 |
| 943.3 | 1. |
| 6761.3 | 1.3 |
| 33669.5 |  |
| 3547．5 |  |

# ORIGINAL PAGE IS OF POOR QUALTTY 

Appendix A1 Class A LEO Capability (Sheet 5)



| STAGE 1 |  | STAGE 2 |
| :---: | :---: | :---: |
| SR3 | 1745 | 5491.2 |
| SR3 | 1845 | 573 152 |
| 523 | 16453 | 578 142 |
| 543 | $1 \times 45$ | 548 161 |
| S83 | $1843)$ | 579162 |
| 593 | $1 \times 453$ | 378 162 |
| $5{ }^{\circ} 4$ | 18457 | 373142 |
| SR3 | 16453 | 54n 151 |
| 5จ3 | 18453 | 593 182 |
| S＊3 | 1x＋59 | 523 1／2 |
| Sp3 | 1（a）3） | 52， 168 |
| Sir 4 | 1（4 3） | 5．23 1：1 |
| S＊） | 14．5） | 520 142 |
| 54. | 1443） | 577162 |
| 573 | 16．5） | $5 \pm 3142$ |
|  | 1＊＊） | 3in 1＇1 |
| $5 \rightarrow 3$ | $1^{74} 3^{71}$ | 迤 111 |
| 5＜3 | 4．4．53 | $j^{2} 3146$ |
| $5 \geqslant 3$ | $1445)$ | 524184 |
| $5{ }^{\circ}+$ | $1 \times 453$ | 527112 |
| Sws | $1 \times 453$ | 529 111 |
| 523 | 8545 | 543 141 |
| 521 | 1845 | 57，141 |
| S23 | 1645） | $5 \pm \pm 1 \times 2$ |
| St3 | 1（1）4） | $5 \times 4182$ |
| S？ | 1143 | \＄3 181 |
| Sis， | ivas | 34.162 |
| 「．． | 1＊＊31 | $\cdots 11$ |
| 3 ， | $1643)$ | \％，1．， |
| $5-1$ | 1＊，5） | ；$\quad 21+1$ |
| Sts | 1＊¢ | ¢14 1．1 |
| Sts | 11，31 | 5＊）1＊2 |
| 321 | $1 x^{1}+3$ | ；2 141 |
| 34\％ | 16．31 | 3i，161 |
| S＊a | $14.3)$ | 52） 16 |
| 501 | 1： 33 | 579 172 |
| Sols | 1＇，31 | 520 141 |
| 59.5 | 1 （4）53 | 533 142 |
| SR3 | 14：53 | 5ay 121 |
| S ${ }^{5}$ | 1845 | $53+1{ }^{1} 1$ |
| ars | 14.57 | 51418 |
| 523 | 1＊＊ 3 | j2\％ 1 （1 |
| \％จ） | 1＊ 3 ） | 3？4 414 |
| 5 73 | $14+31$ | 512 118 |
| 543 | 1（4 3） | 53－181 |
| 4．4 | 14．5） | 529 148 |
| 523 | 1845 | 3a＋111 |
| 523 | 1（4）5 | its ${ }^{\text {d }} \mathrm{CL}$ |
| 503 | 1 （4）53 | 52，141 |
| SR3 | 1 （4）53 | 329 112 |
| 583 | $1 \times 45$ | 538 112 |
| 323 | $1443)$ | $5731 \times 1$ |
|  | $1 \times 45$ | 523 151 |
| \＄43 | $1 \times 53$ | 5A3 112 |
| SR4 | 14433 | Sas 1\％1 |
| 323 | $1 \times 4$ \＄） | 593 $1 \times 2$ |
| 5ג3 | $1 \times 4$ | 59． $1 \times 2$ |
| 593 | 11457 | $58+1 \times 2$ |
| S93 | 144 | S20 148 |
| 593 | 1433 | S23 172 |


| STAGE 3 | STAGE 4 | PAYLOAD | \％PAYLOAD |
| :---: | :---: | :---: | :---: |
| T1r34） 2 V0 | EEnT de | 15／53．2 | .43 |
| S－1 | cthr 43 | 15949．5 | .44 |
| 11134）210 | EENT 48 | 14633.5 | .45 |
| TTP34）2v0 | E2v 43 | 14471．5 | .43 |
| S－1 | Egat 48 | 14439.1 | .44 |
| 7153）210 | EEvT 48 | 14261．3 | ． 40 |
| S0is 1 1 l | EEvT 48 | 14178.7 | ． 33 |
| S－1 | Egvi ds | 14195 | 2 |
| S－1 | EEAP 48 | 14878.1 | .45 |
| 11t343 240 | EEv $31-\mathrm{F}$ | 13 ¢37 | 34 |
| S－1 | E．v $11-\mathrm{F}$ | 13575.3 | ． 31 |
| 114343 215 | EE．f 4 | 13380.7 | ． 45 |
| 11P3＊）2＊0 |  | 13534．3 | .17 |
| S－1 | Evir 43 | 13159.1 | .45 |
| S2t 1x1 | EEx 17 | 13123．3 | .31 |
| S＊I | Ezv 4 | 13142.7 | .44 |
| 11134）243 | こそう－3 | 17＊44．7 | ． 45 |
| $5 \cdot 4$ | EET 4 | 12875．7 | .36 |
| Sus 181 | EvVP 4s | 12855．5 | ． 38 |
| IIt34 200 | E24t $31-\mathrm{P}$ | 120A7．6 | ． 4 |
| S2y 181 | EExP 4s | 12834.5 | .35 |
| TIf34）200 | EEx P $01-8$ | 12787．8 | ． 33 |
| $5-1$ | EEst d3 | 12693.3 | .44 |
| $s-1$ | CEvP 31－t． | 12318.5 | .38 |
| ［1734） 243 |  | 12575 | $\cdots$ |
| S－1 | EEvT 11 －rí | 1234.4 | ． 31 |
| S－1 | EEif $) 1$－ | 12220．1 | ．3） |
| 1194）20） | E®v | 12158．） | .41 |
| 32.141 | ごtr－， | 11746 | .35 |
| s－2 | こ\％．1－ | 110.45 | ． 33 |
| S－1 | Ezir＊ | 11473．3 | ． 43 |
| $\mathrm{N}=2$ | Er．0 $\therefore$ ， | 11 तथ1．3 | .37 |
| 7113：3 20J | Etv 11 － | 1182t．0 | － 4 |
| ， 2 ，101 | Evir | 11710 | .36 |
| （f136） 200 | Ezv\％ | 11710.7 | ． 41 |
| $5<2$ | Exir ts | 11553.3 | ． 37 |
| Sad 1\％1 | EEst＜t | 11463 | .37 |
| S－1 | EEnf 1 － | 11437.4 | ． 4 |
| S－1 | E¢f ） | 11＊37 | 38 |
| 1（134）20） | Ezvi 31 － | 11434.7 | .71 |
| 52s 141 | こごr 31－P | 11848 | ． 23 |
| S－1 | EEvT $\sim_{\text {－}}$ | 11065.2 | ．3） |
| S－2 | EEvF－s | $13>26.1$ | .31 |
| 5－2 |  | 1.192 .3 | ． 3 |
| If 5 ＋）200 | Evt 1 － | 18755.9 | .42 |
| 5－2 | Ezvi－3 | 13746.7 | ． 33 |
| S＊3 1 1 1 | EEvP 3 | 1A035．3 | .31 |
| S－2 | EEPT ds ${ }^{\text {d }}$ | 13521.2 | ． 31 |
| S－1 | EEvP DI－P： | 12385.3 | － 4 |
| Sat 1\％1 | CEAT DLP | 10359.5 | ． 29 |
| SNe $1 \times 1$ | EEv P ofios | 18138.7 | －3 |
| SR3 1\％1 | EEv 08－7 | 17295．3 | ． 28 |
| 5－2 | Evvi 91－8i | 12381.3 | － 3 |
| S－2 | EvV $28-1 /$ | 7936．38 | ． 31 |
| S－2 | EEtr dit | ＋832．75 | －3） |
| S－2 | Es．7 01－PI | 9675.19 | ． 31 |
| 11134） 240 | EEIE do | 9675.38 | .45 |
| CEvP 13 | －JU66 4FH－ | 9623.15 | .27 |
| $5-1$ | －₹it 43 | 955＊． 39 | .45 |
| S23 141 |  | 9412.59 | ． 3 |

Appendix A－2 Class A GEO Capability（Sheet 2）


STAGE 1 STAGE 2

| SN3 | $1 \times 4$ | 59 | S |
| :---: | :---: | :---: | :---: |
| 523 | 114 | $5)$ | \＄28111 |
| 593 | 1 tit | 3） | 52d 1K1 |
| 523 | $1 \times 4$ | 53 | 923 1182 |
| sas | $1 \times 4$ | 83 | 598181 |
| 593 | $1 \times 4$ | $5)$ | $5231 \times 1$ |
| sas | $1 \times 4$ | 53 | SRy $1 \times 2$ |
| Say | $1 \times 4$ |  | 520 $1 \times 2$ |
| SR3 | 114 | 5） | $3781 \times 2$ |
| 543 | 184 |  | 526 $1 \times 2$ |
| SR3 | 184 | \＄3 | SRd 112 |
| SA3 | $1 \times 4$ |  | 523 1×1 |
| SR4 | $1 \times 4$ | S3 | 393181 |
| Saj | $1 \times 4$ | S） | 32411 |
| S＊） | 112 | 53 | 540 1／1 |
| St3 | $1{ }^{1} 4$ |  | 523 181 |
| Sti | 1 T | 5） | 323 152 |
| S3） | $14+$ | 5） | 5र． 151 |
| Sas | 10 | 5） | 520 151 |
| Sdi | 14. | $3)$ | 52， 112 |
| S43 | $1 \cdot 4$ | 5） | 523 182 |
| Sas | 114 | s） | 528152 |
| Sin | 144 |  | 5ad 111 |
| S93 | 114 |  | SRE $1 \times 2$ |
| \＄93 | 114 | 53 | 528 1\％1 |
| \＄？3 | $\mathrm{If}^{\text {f }}$ |  | Sos ixt |
| S23 | 1＇＊ | 5） | Sta 141 |
| St3 | 144 | 3 | 320 162 |
| S＋， | $1 \%$ | （） | Sta 141 |
| く2， | 1＇0． | ； | 5is 1／2 |
| ： 2 ） | 16 | い | 5ad 1．1 |
| ［3） | 1 ． | ； | Sta 1－2 |
| E3） | $1 \cdot$ |  | 5－1 128 |
| Sts | 16 | 3） | 32d 1：1 |
| Sel | 14. | 5） | Sto 141 |
| 323 | 1＇， | 5） | \＄25 112 |
| $3{ }^{2}$ | 14 | د） | 520 182 |
| 539 | 14 |  | 5931\％1 |
| Sut | 1 Ct | 5） | SRd $1 \times 2$ |
| SA3 | $1 \times 4$ |  | 5as $1 \times 2$ |
| Sas | 114 | 5） | S2d 141 |
| Sn ${ }^{\text {S }}$ | $1{ }^{\prime \prime}$ | 3） | 5＋5 101 |
| SN3 | 184 | 3） | $52+1 \mathrm{~F}_{1}$ |
| 5as | $1{ }^{1}$ | 5） | S＊0 112 |
| 543 | 14＊ | 5） | 52n 1\％2 |
| St3 | $1 \times 4$ | 3） | \＄2．41×1 |
| 543 | 1＇， | 5） | 324 $1 \times 1$ |
| S93 | 149 | 3） | 523 181 |
| SR 3 | 1 LC | 33 | 593112 |
| s23 | 144 | 33 | 528182 |
| St3 | $1 \times 4$ |  | SAB $1 \times 1$ |
| sta | $1 \times 4$ | 35 | sas 183 |
| Sta | $1 \times 4$ | 35 | 590112 |
| 583 | $1 \times 4$ |  | STB 141 |
| SR3 | $1 \times 4$ | 35 | Sne $1 \times 1$ |
| St3 | 114 | 53 | Sns $1 \times 2$ |
| Sas | $1 \times 4$ | 53 | Sas 118 |
| 383 | $1 \times 4$ | 33 | sas $1 \times 1$ |
| 523 | $1{ }^{184}$ | 53 | 593 162 |
| SR3 | $1 \times 4$ | 33 | SR8 $1 \times 1$ |
| SRS | $1 \times 4$ | 33 | SR8 812 |

## STAGE 3



| $\int_{-2} 1136$ |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

## SQd 141

## S－1


CEII do tITB TAA＊



## CRit 48

TrI34
$5 \rightarrow 2$
CEif is
Sat 1／1

C\％．t \＆
Czirns
CE，r $\rightarrow 1-r$
CE， r •

Czar is CEAT $11=\mathrm{i}$
TIf34）2：0
$5-2$
CENT A
S－2
EEvF $31-\mathrm{F}$
CEv 4
CEvP ab
（1r34） 215
CEtr $3 t-t$

TIT34）2Vo
CETE $31-\mathrm{F}$
TIT343 210
S月 18．
CEM2． 18
CEMF OI－P
Se2
CEMT OR－P
719343 210
CEWI JA－5
517340210.

F17345 250
CETF $01-\mathrm{F}$
CEMI 01－E

| STAGE 4 | PAYLOAD | \％PA |
| :---: | :---: | :---: |
| EEn F 21－t | 9283.33 | ． 3 |
|  | 9254.94 | ． 2 |
| －vull 4PH＊ | 7791.23 | 2 |
| EEx $31-8$ | \＃1466．98 | ． 3 |
| －Ex T $31-\mathrm{T}$ | 7832.55 | ． 2 |
| こ54t ）1－1 | 4912.34 | ． 3. |
| －vathe 4 PH－ | 3734.81 | 2 |
| Eext s3 | 8726.72 | ． 3 |
| Itr ramm | 468.17 | －2 |
| EEvF $01-\mathrm{t}$ | 1551．26 | .41 |
| －¢J6L 4TH－ | 8461.94 | － 2 ： |
| EEtt 4 | 8393.25 | ． 4. |
| こz＋1 $\boldsymbol{3 1}$ | 8146．60 | ． 3 |
| こEvf つt－r | －339 |  |
| －リ小し 4PM＊ | 5243 | 3 ． |
| Ezar 43 | －179．22 | －4： |
| （1） 25 P4ũ | $114{ }^{7}$ ．${ }^{\text {a }}$ | 2. |
| tII3 TAA＊ | 763 | 4. |
|  | 740 a，bo | ． 2 t |
| TIt3 reav | 7121.11 | ． 26 |
| －idul iri＊ | 7781．3y | － 26 |
| ItI PRAv | 1555．91 | .24 |
| EEvT DI－r | 7511.56 | ． 4 i |
| CEit ad | 7509.5 | 36 |
| lis 2Stase | .7389 .72 | ． 22 |
| EEv？40 | 737 C .75 | ． 36 |
| － 3 － 4 行 | 72＊3．5\％ | ． 2 \％ |
| IJ3 2514is＊ | 12＊＊．5\％ | ． 2 i |
| att3 TRa， | 1124.21 | .24 |
| IJS LST3j． | 715.20 | ． 22 |
| －VJG6＋ri＊ | $0+85.53$ | .21 |
| Ift3［RA． |  | .24 |
| ごvrn－1 | 5794.75 | .27 |
| Itr3 ras． |  | .24 |
| 1JS csiaj | 0556.34 | .22 |
| PIt3 PRa： | 5337． 26 | ．15 |
| Itis PRA． | 60527．56 | ． 18 |
| EETP ${ }^{\text {EJ }}$ | 588 A ． 54 | .37 |
| LJS 4 Stim | 6339．22 | .22 |
| EEft Di－r | 16326.33 | .31 |
| － 1366 4T＋0 | 20302．13 | .22 |
| TIT3 TRA． | 6n217．13 | .24 |
| 1JS 25rabe | 10237．59 | .22 |
| IJS 25TA\％\％ | 3154.5 | .17 |
| 135 23tag | 9.147 .75 | .17 |
| IIIJ TRA． | 9， 37.5 | .18 |
| －＊UL6 4TiN＊ | $5790.5 \%$ | .22 |
| PIP3 PRAN | 3335.53 | .17 |
| ［1I］PRAN | 3911.31 | .18 |
| ItI3 PRAA | 3739.17 | .18 |
| EEvt 01－ | 5725.34 | .23 |
| $1382814 C$ | 3637.44 | － 22 |
| FIT3 PRAM | 5586.34 | .18 |
| Esw ${ }^{\text {P }}$ 31－1 | 5567．31 | .32 |
| 1u3 257AGE | 5565． 37 | .17 |
| 1813 PRAA | 5564．03 | ． 18 |
| －成J6L 47M－ | 5530．53 | ． 22 |
| 1is 2s5ace | 543\％．78 | .15 |
| IJS 25PAEE | 543 \％ 78 | .16 |
| 1173 1RAA | 5356.94 | .18 |
| IJs 2stace | 5344．23 | .16 |

## ORIGINRL PAGE IS OF POOR QUALITY

Appendix A2 Class A GEO Capability (Sheet 3)

| CONFIG CODE | STRAP-ON | STAGE 1 | STAGE 2 | STAGE 3 | STAGE 4 | PAYLOAD | \% PAYLOAD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2223 | 21183 dra | 50317453 | 593 $1 \times 2$ | TIT343 240 | IJS 2s7aza | 5181.25 | -10 |
| 3213 | $15933 \times 1{ }^{59}$ | SA3 184 53 | $5931 \times 1$ | TIT34) 2 V | YtT3 TRAN- | 5133.31 | .11 |
| 2221 | 2rtis ${ }^{\text {ath }}$ | 32315453 | 523 142 | Exti 91-7 | tis 2stase | 5117.66 | .16 |
| 2211 | 185838 | 329 16453 | S2a 161 | CEnT 3i-r | (It) tran | 5ase.59 | .18 |
| 2221 | 1589 $2 \times 18$ | 38915435 | 523 $1 \times 2$ | CEVI $31-\mathrm{t}$ | [173 tran | 5323.56 | .18 |
| 122 | s=ヶJLL dP4. | 523 111 | 523 $1 \times 2$ | CEST ${ }^{\text {d }}$ | - vuble 8 PN- | 5314.77 | .25 |

# ORIGINAL PAGE IS OF POOR QUALTTY 

## Appendix A－3 Class B L．EO Capabilit，



| STAG | GE 1 | STAGE 2 | STAGE 3 | STAGE 4 | PAYLOX＇ | 1\％\％FAYLOAD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 503 |  | S＊a $1 \times 5$ | SR3 1x1 | CENT ${ }^{\text {d }}$ | S－3846．3 | i．es |
| SR3 | 215 | S20 112 | SN8 ixi | EExT AB | ［14367．5 | 1.86 |
|  |  | S26 154 | SAB ILI | cent de | 19713．6 | $1 \times 16$ |
| 523 | 214 | 3xic 185 | S－1 | cent AB | －18384．3 | 1.81 |
| 523 | 215 | $5881 \times 3$ | $5-1$ | EENT 48 | ：17578．3 | 1.8 |
| 323 | （\％） | S28 $1 \times 2$ | S－1 | EENT 48 | 17396.7 | 1.91 |
| 5as | $2 \times 5$ | 58d $1 \times 2$ | T1734）240 | cext dis | 15939.3 | 1.22 |
| 5 Sa | $2 \times 4$ | 528 $1 \times 5$ | TIT34）2v0 | CENT ${ }^{\text {d }}$ | 176834.1 | 1.1 |
| SR3 | $2 \times 5$ | 52d 153 | 717340 210 | CENT ${ }^{\text {a }}$ | 16779．5 | 1.19 |
| 523 | 214 | 523115 | sad 1x1 | EEvT 01－t | 75805.7 | 1.64 |
| 593 | 263 | 599155 | SR8 $1 \times 1$ | EETP＊ | 174752．8 | 1.87 |
| 535 | 284 | 523 114 | S－1 | EEvt ed | 13954．3 | 1.84 |
| 523 | 214 | 52d 183 | SRY $1 \times 1$ | EEvt 43 | 13742 | 1.84 ． |
| 523 | $254_{4}$ | $5+81 \times 4$ | T16347 280 | EEvt Am | 131333.3 | 1.33 |
| Si3 | 2＇， | 520 112 | Sa3 1x1 | EEvT ${ }^{\text {d }}$ | ，18724．4 | 1．31 |
| ；－4 | $2 \cdot 3$ | 5 Sa 142 | 543121 | EExT 3－t | 1：867．\％ | 1.25 |
| ，－， | $4{ }^{1}$ | 523 184 | San $\mathrm{EXP}_{1}$ | こEv 21 －t | 13133.3 | 1.54 |
| 5 s 3 | ［3 | دas 1＜4 | S＊s 1x1 | EETP＊ | 09730.3 | 1.88 |
| 543 | $2 \cdot 4$ | 5शa if ${ }^{\text {a }}$ | S－1 | EE4T 91－t | 59583．3 | 1.62 |
| S 23 | 265 | 543 113 | $\mathrm{s}-1$ | EEat 3－t | 69444．6 | 1.62 |
| Sat | $2 \times 5$ | S23 1x2 | $5-1$ |  | 99421．3 | 1.73 |
| 523 | 284 | Sab $1 \times 5$ | 590101 | $5-3$ | 99381．8 | 1.51 |
| 523 | 2 cs | S20 $1 \times 2$ | T15343 20 | EEVt 31－T | 23387．3 | 1.14 |
| $5{ }^{5} 3$ | 414 | S50 183 | S－1 | EETP der | －8878．8 | 1.85 |
| 543 | 215 | 520 143 | rit34）2v） | Exvt 3－t | p8657．7 | 1.01 |
| S23 | 213 | 548145 | S－1 | EETP 43 | 4，8529．4 | 1.84 |
| S7． | 2 Cl | $5781 \times 5$ | 11134）2v9 | ごャ 31－t | د8359．9 | 1．01 |
| 523 | 24 | 5ad 142 | $\mathrm{s}=1$ | E－4t es | －4152．7 | 1．t？ |
| j＊3 | 24 | jet 143 | （1134）？${ }^{1}$ | ごリア | ndsto．l | 1.84 |
| くi． | ${ }^{6} 16$ | 5 ¢0 1x4 | （1134）29， | EEvt 4 A | p1877．1 | 1.73 |
| －23 | 213 | S3 ${ }^{\text {a }} 112$ | $5-2$ | ここッ！ 4 | p7osb．y | 1.11 |
| Sat | 43 | ［2．15 | （1734） 26 | EEv？＊ | 67＋1t． 2 | 1.33 |
| －4． | ib | 3 P 213 | S－2 | Ezur－ | p6711．4 | 1.57 |
| s．${ }^{\text {a }}$ | ${ }^{1} 1$ | 52：145 | S－2 | ごャr •\％ | 60211．3 | 1.35 |
| 5＊ | 2. | j＋j 1 $\times 4$ | S－1 | ここと ）\％－t | psomd．t | 1.55 |
| 59. | 20 | 520 $1 \times 5$ | SRS $1 \times 1$ | EET $31-\mathrm{t}$ | $6536 \%$ ． 0 | 1.35 |
| 523 | 2.5 | 323 $1 \times 2$ | Sxy ixi | S－3 | 65338.1 | 1.52 |
| ST3 | 264 | 523114 | ［17343 2 vo | Esar 21－5 | \＄4798．4 | 1.64 |
| S2． | 24． | 578154 | 5ad $1 \times 1$ | $5-3$ | 64592．8 | 1.51 |
| $3+1$ | 2.3 | 533184 | S－1 | EEvf هod | 64525.8 | 1.39 |
| Sa， | 21. | $52 \rightarrow 1 \times 3$ | S＊d 1\％1 | EEvt 01－P | 64458.1 | 1.32 |
| 5 | 13 |  | SRy $1 \times 1$ | Ezvt 4s | 63758.3 | 1.49 |
| －$\cdot$ | 13 | $5{ }^{2} \mathrm{~d}$ 1x4 | ［1534） 215 | EEIf 43 | 63636．5 | 1.98 |
| 5 | 2.4 | 5at 1x3 | S－1 | $5 \cdot 3$ | 3340．9 | 1.77 |
| $5 \times 3$ | 64 | 573 104 | S－2 | EEvt ${ }^{\text {a }}$ | 63030.4 | 1.3 |
| $5+3$ | 215 | 529113 | $5 \cdot 1$ | S－3 | 62098.1 | 1．t5 |
| 523 | 485 | 398102 | $5-1$ | 5－3 | 52583 | 1.55 |
| sa3 | 25 | $5231 \times 2$ | （1134）2：0 | S－3 | 62650.8 | 1.55 |
| SR3 | 215 | 520153 | 117340 $2: 0$ | 5－3 | \＄2173．4 | 1.45 |
| eas | 214 | SRE $1 \times 5$ | 71834920 | －3－3 | 62134.6 | 1.45 |
| SA3 | 254 | SR3 182 | SnE． 184 | CENT 310 \％ | 61886．6 | 1.68 |
| SRS | $2 \times 4$ | 5a8 183 | S－1．－ | CENI 01－7 | 61222.6 | 1.65 |
| 583 | $2 \times 4$ | $5981 \times 2$ | 301 | CEst 01－\％ | \％1917．8 | 1.17 |
| 543 | $2 \times 3$ | 320 182 | sal $^{1 \times 1}$ | EENP ${ }^{\text {es }}$ | 1997．6 | 1.75 |
| SR3 | 254 | $5 \times 81 \times 2$ | PIT340 200 | EExt 0i－1 | （3939．3 | 1.8 |
| SAF | $2 \times 3$ | Sa3 $1 \times 5$ | S－1 | EEx ${ }^{\text {aser }}$ | 63725．${ }^{\text {a }}$ | 1.64 |
| Sat | 213 | Sas $1 \times 4$ | SAB 1 71 | CEII $01-\mathrm{E}$ | 3622.5 | 1.65 |
| SN3 | 214 | SR3 123 | T17340 230 | EENT $91-\mathrm{t}$ | 3587.1 | 1.55 |
| 5 Sa | 215 | 303 $1 \times 2$. | CEyT ${ }^{\text {ct }}$ | Ius 2stage | \＄394．4 | 1.53 |
| SR3 | 255 | S＊3 $1 \times 2$ | CEst ${ }^{\text {d }}$ | IIt 3 tram | $3341 . d$ | 1.53 |



R1 3 ant An mb: MAID TOME.

Appendix A4 Class B GEO Capability (Sheet 2)

c

## APPENDIX B-SUPPORTING WEIGHT DATA

Page
B1 -LEO Vehicle Weight Breakdown ..... 264
B2-GEO Vehicle Weight Breakdown ..... 265
B3 -Subsystem Weight Breakdown ..... 266
B4-FWC Four-Segment SRM Weights ..... 268
B5-FWC Two-Segment SRM Weights ..... 269
B6 -Control Module Weights ..... 2.70

ORIGINAL PACE IS OF POOR QUALITY

Appendix B-1 LEO Vehicle Weight Breakdown
WEIGHT REPORTING

$$
\begin{aligned}
& \text { PAYLOAD } \\
& \text { PAYLOAD ADAPTER } \\
& \text { STGE } 4 \text { (D-IT) } \\
& \text { PROPELLANT - INCL PR } \\
& \text { INERTS : } \\
& \text { TRUSS ADAPTER } \\
& \text { SHROUD } \\
& \text { NOSE CONE } \\
& \text { PAYLOAD SECTION } \\
& \text { STAGE } 4 \text { SECTION - LEIS BASE } \\
& \text { BASE ABOVE SEP JOLT } \\
& \text { BASE - BELOW SEP HINT } \\
& \text { FORWARD BEARING REACTION SYSTEM } \\
& \text { STAGE } 4 \text { RETAINED } \\
& \text { SHROU RETAINED } \\
& \text { INTERSTAGE 3-4 } \\
& \text { CONTROL MODULE } \\
& \text { AVION:CS/ELECT/STRUCT }
\end{aligned}
$$

1,800
400
101,380
7,920
605,140
60,190
18,700
ल్లి゙心

$2,215,100$
223,700
79,000
$(3,408,240)$

- AS ADJUSTED YO REFLECT REMOVAL OF STANDARD TRUSS ADAPTER (280 LB) AND RETAINED STANDARD FRB SYSTEM (30 L8)
- AS ADJUSTED TO REFLECT 35-INCH REDUCTION IN LENGTH OF FORWARD SKIRT (230 LB)

ORIGINAL PAGE Is.
OF POOR QUALITY.
Appendix B-2 GEO Vehicle Weight Broakdown

$\begin{array}{ll}\text { 윤 } & \text { 웅 } \\ \text { 요 } \\ 8088\end{array}$ 8 各 $(3,397,410)$ - AS ADJUSTED TO REFLECT REMOVAL OF STANIAARD TRUSS ADAPTER (290-LB) AND RETAINED STANDARD FRB SYSTEM (30 LB)
( 230 LB)

## ORIGINAL PAGE IS OF POOR QUALTTY

Appendix B-3 SRB Subsystems. Weight Breakdown (Sheet 1)

| GROUP/ITEM | sts $\square$ |  | SRB-X |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | STTG 14 SEG |  | STG 1 4-SEG |  | STG 2 2-SEG |  |
|  | WEIGHT | XCg Aft Of NOSE | WEIGHT | XCG AFT OF NOSE | WEGGHT | XCG AFT OF NOSE |
| BODY STRUCTURE <br> NOSE CAP <br> FRUSTRUM <br> SEPARATION RING <br> FORWARD SKIRT <br> BASIC SKIRT <br> THRUST POST AND FITTING <br> SRB/ET ATTACH HDW $B$ <br> EXTERNAL FITTINGS <br> AFT ATTACH RING <br> SRB/ET ATTACH STRUTS <br> AFT SKIRT <br> BASIC SKIRT <br> HOLDDOWN STRUCTURE <br> SEPARATION MOTOR MOUNTS <br> SYSTEMS TUNNEL <br> FORWARD SKIRT <br> MOTOR CASE <br> AFT ATTACH RING <br> AFT SKIRT <br> SPLICES/ASSEMBLY <br> INDUCED ENVIRON PROTECTION <br> THERMAL PROTECTION <br> NOSE CONE <br> FRUSTRUM <br> SEPARATION RING |  |  |  | . |  |  |

ID MASS PROPERTIES REPORT NO, 64 (3/26/82)
[] SRB SIDE OF SEPARATION PLANE


FORWARD SEGMENT
FORWARD DOME
COMPOSITE
FORWARD ATTACH RING
AFT ATTACH RING
PINS 437
INSULATION-LINER-INHIBITOR
IGNITER
4,520
SYSTEMS TUNNEL
EXTERNAL INSULATION
118
PROPELLANT 190

IGNITER PROPELLANT
FORWARD CENTER SEGMENT
COMPOSITE
288,346
FORWARD ATTACH RING
AFT ATTACH RING
PINS
INSULATION-LINER-INHIBITOR 3,494
SYSTEMic TUNNEL
EXTERNAL INSULATION
PROPELLANT
AFT CENTER SEGMENT
COMPOSITE
FORWARD ATTACH RING
AFT ATTACH RING
PINS
INSULATION-LINER-INHIBITOR
SYSTEMS TUNNEL
EXTERNAL INSULATION
1,060
1,000
366 110 190 271,957
288,478
9,969
1,060
1,200

PROPELLANT
366
3,494
110
322
271,957
AFT SEGMENT
AFT DOME
ATTACH SEGMENT
COMPOSITE
FORWARD ATTACH RING
AFT ATTACH RING
295,677
4,965
6,590
7,912
$\ldots \quad 1,200$
PINS
INSULATION-LINER-INHIBITOR
SYSTEMS TUNNEL
10,981
EXTERNAL INSULATION
PROPELLANT
FIELD JOINTS
261,995

NOZZLE
TOTAL. INERTS
23,304
TOTAL PROPELLANT
1,107,589
TOTAL MOTOR

## Appendix B-5 SRB-X FWC Two-Segment SRM Weighte

FORWARD SEGMENT ..... 20,937
FORWARD DOME ..... 3,669
COMPOSITE ..... 10,097
FORWARD ATTACH RING ..... 1,060
AFT ATTACH RING ..... 1,200
PINS ..... 437
INSULATION-LINER ..... 4,166
SYSTEMS TUNNEL ..... 118
EXTERNAL INSULATION ..... 190
AFT SEGMENT ..... 25,656
AFT DOME ..... 4,965
ATTACH SEGMENT ..... 6,590
COMPOSITE ..... 7,912
FORWARD ATTACH RING ..... 1,060
AFT ATTACH RING ..... 1,200
PINS ..... 508
INSULATION-LINER ..... 2,955
SYSTEMS TUNNEL. ..... 154
EXTERNAL INSULATION ..... 312
NOZZLE ..... 13,284
IGNITER ..... 240
FIELD JOINT ..... 72
TOTAL MOTCR INERTS ..... 60,189
PROPELLANT ..... 605,136
TOTAL MOTOR ..... 665,325

## Appendix B-6 Cöntrol Module Weights

|  | LEO | GEO |
| :---: | :---: | :---: |
| Structure | 400 | 400 |
| THERMAL CONTROL | 20 | 20 |
| AVIONICS | 590 | 360 |
| COMMUNICATION | 73 | 73 |
| DATA MANAGEMENT | 315 | 132 |
| FLIGHT CONT | 120 | 120 |
| INSTRUMENTATION | 82 | 35 |
| ELECTRICAL | 620 | 440 |
| POWER SOURCE | 210 | 30 |
| POWER DISTRIBUTION | 410 | 410 |
| PROPULSION | 380 | 380 |
| t'ANKS, THRUSTERS | 180 | 180 |
| PROPELLANT | 200 | 200 |
| MARGIN | 190 | 100 |
| TOTAL | 2,200 | 1,700 |


[^0]:    

[^1]:    - INCLUDES DESIGN COSTS; NO CONTINGENCY - COST IN M\$

[^2]:    * A WEIGHT INCREASE MAY be added to the stage inert weights to account for tva

[^3]:    D UNFACTORED TUBE WEIGHT (NO PROVISIONS FOR INSTALLING CLEVIS FITTINGS
    AND SEPARATION BOLTS).
    2 SELECTED SIZING OF LATERAL STRUT TUBES WHERE CROSS SECTION AREA DERIVES

