https://ntrs.nasa.gov/search.jsp?R=19830011534 2020-03-21T04:08:45+00:00Z

83N19805

Large Space Structure Damping Design

1

Final Report

by

Walter D. Pilkey and J. Kenneth Haviland

NASA Grant NAG-1-137-1 1/16/81 - 1/15/83

Department of Mechanical & Aerospace Engineering University of Virginia Charlottesville, Virginia 22901

LARGE SPACE STRUCTURE DAMPING DESIGN

Final Report

by

Walter Pilkey

and

J. Kenneth Haviland

NASA Grant NAG-1-137-1 1/16/81 - 1/15/83

Department of Mechanical & Aerospace Engineering University of Virginia Charlottesville, Virginia 22901

	AGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2.	JOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
UVA/5-28201/MAE 83/101		•
TITLE (and Subtitio)		5. TYPE OF REPORT & PERIOD COVERE
Large Space Structure Damping Desi	gn	1/16/81-1/15/83
· · ·		6. PERFORMING ORG. REPORT NUMBER
AUTHOR(4)		8. CONTRACT OR GRANT NUMBER(*)
W. D. Pilkey J. Kenneth Haviland		NASA Grant NAG-1-137-1
PERFORMING ORGANIZATION NAME AND ADDRESS University of Virginia Dept. of Mechanical Engineering		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Charlottesville, VA 22901		
. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE February 1983
		13. NUMBER OF PAGES
7		127
. MONITORING AGENCY NAME & ADDRESS(I different i	trom Controlling Office)	15. SECURITY CLASS. (of this report)
		154. DECLASSIFICATION/DOWNGRADING SCHEDULE
. DISTRIBUTION STATEMENT (of this Report)		
Unlimited		•
. DISTRIBUTION STATEMENT (of the abolisact entered in	Block 20, il different fra	a. Report)
Unlimited	- Block 20, Il different fra	a Report)
	Block 20, il different fre	m Report)
Unlimited	Block 20, 11 dillerent tra	ta Report)
Unlimited	Block 20, il different in	æ Report)
Unlimited		
Unlimited . SUPPLEMENTARY NOTES	identily by block number,	damper prototype
Unlimited SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary and Minimum Constrained Frequency Crit damped system eigenvalue problem	Identily by block number, cerion (MCFC)	

_

.

• .

ł

,

SECURITY CLASSIFICATION OF THIS PAGE (When Date Friend)

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

generalized control law is derived using reanalysis theory. This equation can be implemented in computer programs for efficient eigenvalue analysis or control gain synthesis. Methods to control vibrations in large space structures are reviewed and analyzed. The resulting prototype, using electromagnetic actuator, is described. •

Table of Contents

~

•

1.	Intr	oduction
11.	1. 2. 3. 4.	nical Developments
III.	Conc	lusion
IV.	Bibl	iography
Appe	ndice	s
	A1	Subroutine ASMD1
	A 2	Subroutine ASMD2
	A3	Subroutine SPSTGN Documentation
	A4	Program COPZ Documentation
	A 5	Program NORMAL Documentation
	A5,	l Gram-Schmidt Orthogonalization Prodecure
•	в	Active Damper Analysis-Linear
	с	Use of Piezoelectric Materials
	D	Simulation of NASA Tests
	E	Bounds on Transient Responses
	P	Formulation of Dynamical Matrix for LSS with General Control Law
	G	Proposed Approaches for Actuator Pailure

I. <u>Introduction</u>

It is expected that large space structures will be placed into orbit in the not-too-distant future. Such structures will lack the damping forces due to ground reactions or to hydraulic or aerodynamic forces available to earthbound structures, thus, if they are excited dynamically by docking maneuvers or by control reactions, they could be expected to continue vibrating for hours or even for days.

It is this problem which is addressed in this report. The work to be discussed divides roughly into two areas. In the first, the questions such as how much damping is required, how are the dampers to be located, and how their required performance can be specified are examined. In the second, the design of the dampers is investigated, and is supported by the demonstration of a prototype damper.

Work on damping requirements resulted in five computer programs and proofs of two criteria for the optimum location of dampers. Also, a method of minimizing "control spill over" by locating actuators was demonstrated, and the characteristic equation of an undamped system using reanalysis theory was derived.

Work on damper design included a review of possible systems. Since hydraulic and pneumatic systems were eliminated for poor reliability, only electromagnetic or piezo-electric systems were considered. Passive dampers were eliminated because they need very fine tuning. Thus, only linear or rotational dampers using active electromagnetic or piezoelectric drives were left. A prototype linear damper using a moving magnet and a fixed coil was built and demonstrated using a current feedback proportional to local structure velocity.

II. <u>Technical Developments</u>

1. Computer Programs

Several FORTRAN subroutines and programs were developed under this grant. These are documented in Appendix A. The capabilities of the programs are enumerated below.

Subroutines ASMD1 and ASMD2 compute the complex eigenvalues of a damped system using the undamped modes of the structure as the assumed modes (assumed mode method). In subroutine ASMD1, a diagonal damping matrix must be used, whereas in ASMD2, a general damping matrix may be used.

Subroutine SPSTGN solves the damped eigenvalue problem using a reanalysis approach. It assumes a diagonal damping matrix.

Program COPZ computes the optimal (i.e., minimum) gains of a diagonal damping matrix for specified damping ratios.

Program NORMAL is designed to rescale the mode shapes to unit generalized mass and to make the rigid bodies orthogonal to each other with respect to the mass matrix.

These programs are stored in the Langley computer.

2. Proof of Optimal Damper Location

In previous papers [Ref. 1 and 2] we have proposed two criteria for the optimal location of a damper. They are the Minimum Constrained Frequency Criterion (MCFC) for a single damper [Ref. 1] and the Maximum Frequency Separation Criterion (MFSC) for multiple dampers [Ref. 2]:

- MCFC: The optimal damper location is where the constrained frequency a, is a minimum.
- MFSC: The optimal locations of dampers are where the constrained frequency associated with the damper location has the largest separation from the corresponding undamped natural frequency of the system.

2

In Ref. 1 and 2, these criteria are demonstrated using the Langley beam and grillage models. These demonstrations show that in choosing between sets of positions of dampers, the one that gives the best results is the one that gives the greatest separation between the undamped natural frequency and the corresponding constrained frequency. In this section, an analytical proof of MCFC for a single damper will be presented. The proof of the more general MFSC is still under investigation.

Proof of MCFC

The proof of MCFC is based on the existence of <u>fixed</u> <u>points</u> in the frequency response curve when a single damper is introduced into an n-dof undamped system. This is an extension of the classical damped vibration absorber theory [Ref. 3], in which Den Hartog showed that when a damped vibration absorber is attached to a undamped SDOF main system, there are points on the frequency response curve which are independent of damping. These points are the <u>fixed points</u> [Ref. 3]. In this section, we will first show the existence of fixed points when a single damper is introduced into an undamped system. The responses at the fixed points can then be evaluated from the undamped equation of motion. The MCFC can then be proved using the characteristics of the resonance curve of the undamped system near resonance.

Consider the case of an n-dof undamped system under sinusoidal excitation

$$[M] \{x\} + [K]\{x\} = \{F\}e^{j\omega t}$$
(1)

where [M], [K] are mass and stiffness matrices and $\{x\}$ is the displacement vector and $\{P\}$ is the magnitude vector of the forcing function. When a single damper at dof J is introduced into this system, the equation of motion becomes

$$[M] \{x\} + [C] \{x\} + [K] \{x\} = \{F\} e^{j\omega t}$$
(2)

where

(

$$[C] = c\{e_{J}\}\{e_{J}\}^{T}$$
(3)
$$\{e_{J}\}^{T} = [0 \dots 0 \ 1 \ 0 \dots 0]$$

Let the steady state solution of (2) be

$$\{x\} = \{X\}e^{j\omega t}$$
 (4)

Then, use (3) and (4) the steady state response $\{X\}$ can be computed from

$$[Z(\omega)] \{X\} = \{F\} - c\omega j \{e_{J}\} \{e_{J}\}^{T} \{X\}$$
(5)

where

$$[Z(\omega)] = -\omega^2[M] + [K]$$

Define

$$[R(\omega)] = [Z(\omega)]^{-1}$$
(6)

and note that

$$\{e_{J}\}^{T}\{x\} = x_{J}$$
 (7)
[R] $\{e_{J}\} = \{R_{J}\}$

where $\{R_{J}\}$ is the Jth column of [R]. Premultiply (5) by [R] and use (7) to obtain

$$\{X\} = \{X_o\} -j\omega c R_J X_J$$
(8)

Note that

-

$${X_0} = [R(\omega)]{F}$$

= steady state solution of the undamped system.

 $\hat{}$

The Jth equation of (8) is

$$X_{J} = X_{OJ} - j\omega c R_{JJ} X_{J}$$

or

$$X_{J} = \frac{X_{OJ}}{1 + j\omega c R_{JJ}}$$
(9)

Equation (8) together with (9) are the general frequency response reanalysis equations when a damper c is introduced at dof J. It is interesting to note that at the frequency a_{μ} at which

$$R_{JJ}(a_{\underline{t}}) = 0 \tag{9a}$$

the response X_J is independent of damper gain c. Thus, we have shown the existence of fixed points for the response curve $X_J(\omega)$. Furthermore, those frequencies are the antiresonant frequencies for dof J. A typical frequency response curve for X_J (or $\omega^2 X_J$, the acceleration response) is shown in Fig. 2.1. In Fig. 2.1, point A is the fixed point corresponding to the smallest root of Eq. (9a). By definition of fixed point, all response curves pass through A

Fig. 2.1 Frequency Response Curve for $|X_J|$ Showing fixed point A. a₁ is the frequency corresponding to point A.

regardless of the damper gain c. Thus, it is obvious the optimal c (in terms of the smallest response) should produce a response curve that peaks at point A. In other words, the optimal response curve has a slope zero at the fixed point A.

From the above discussion, we know that once a damper location is selected, the minimum response X_J is determined by the undamped response at the fixed point frequency. Since near resonance, the undamped response is monotonically increasing as the frequency is approaching the undamped natural frequency from below, (see Fig. 2.2), we conclude that the optimal location for lowest amplification for a particular mode with undamped natural frequency ω_n is where $(\omega_n - a_n)$ is a maximum.

This proves MCFC for minimum frequency response. Our original MCFC pertains to the modal damping ratio. Since modal damping is closely related to the amplification factor we conclude that MCFC will produce a design with maximum damping ratio.

Discussion

- (1) In general, there are (n-1) fixed points for response X_J , where n is the number of elastic modes of the system.
- (2) The responses X_J (I \neq J) exhibits fixed points at frequencies where

$$|X_{I}|_{c=0} = |X_{I}|_{c=\infty}$$
(10)

or from (8) and (9), condition (10) becomes

$$|X_{0I}| = |X_{0I} - R_{IJ}(\omega)X_{0J}|$$
(11)

which corresponds to the following two equations

$$X_{OI} = X_{OI} - R_{IJ}(\omega) X_{OJ}$$
(12a)

and

$$X_{OI} = -X_{OI} + R_{IJ}(\omega)X_{OJ}$$
(12b)

- (3) Our proof only pertains to X_J , however, experience showed that once $X_J(\omega)$ is minimized, the other $X_J(\omega)$'s are almost optimal.
- (4) The proof cannot be extended to multiple dampers since no fixed points exist for the multiple damper case.

References

 B.P. Wang, and W.D. Pilkey, "Optimal Damper Location in the Vibration Control of Large Space Structure", Proceedings of the Third VPI&SU/AIAA Symposium on the Dynamics and Control of Large Plexible Spacecraft, pp. 379-392.

\$

- 2. B.P. Wang, G. Horner, and W.D. Pilkey, "Optimal Damping for the Vibration Control of A Two-Dimensional Structure," AIAA Paper No. 81-1845, presented at AIAA Guidance and Control Conference, August 1981.
- 3. J.P. DenHartog, <u>Mechanical Vibrations</u>, McGraw Hill Book Company, Inc., Fourth edition, 1956, pp. 93-106.

3. Locating Actuators for Minimum Spill-Over

A frequently discussed problem in the control of LSS is that of "control spill-over". A method of minimizing the effect of control spill-over is proposed in this section. It is shown that to control n_c modes using n_a actuators, the spill over effect can be minimized by insuring that n_s secondary modes are not excited. This requires $n_a > n_s$. The method described allows only $n' = n_a - n_s$ of the n_a actuators to be controlled independently. Conditions of actuator placement is also indicated.

Consider a proportionally damped system whose finite element model can be written as

$$\underline{M} \underline{x} + \underline{C} \underline{x} + \underline{K} \underline{x} = \underline{B} \underline{u}$$
(13)

where <u>M</u>, <u>C</u>, and <u>K</u> are mass, damping, and stiffness matrices of the system respectively, and <u>x</u> is the system displacement vector, u is the control vector and <u>B</u> is the actuator influence matrix.

In modal coordinates, (13) becomes

where Φ is the modal matrix and is the solution of the undamped eigenvalue problem

$$\omega_{i}^{2} M \rho_{i} = K \rho_{i}$$

$$E = \Phi^{T} C \Phi = \begin{bmatrix} \zeta_{1} & 0 \\ 0 & \zeta_{n} \end{bmatrix}$$

$$\omega_{i}^{2} = \begin{bmatrix} \omega_{1}^{2} & 0 \\ 0 & \zeta_{n} \end{bmatrix}$$

$$\omega_{i}^{2} = \begin{bmatrix} \omega_{1}^{2} & 0 \\ 0 & \zeta_{n} \end{bmatrix}$$

$$(15)$$

In general, only a few of the important modes are controlled. Designate these modes as \underline{q}_c and the remaining modes as \underline{q}_c , the residue modes. Then Eq. (14) can be written as

(16)
$$\ddot{q} + 2E \omega \dot{q} + \omega^2 q = \Phi^T B u$$

and

(17)
$$\ddot{q} + 2E \omega \dot{q} + \omega^2 q = \Phi^T B u$$
$$r r r r r r r$$

Now the physical response is given by

$$\underline{\mathbf{x}} = \Phi_{\mathbf{C}}\mathbf{q}_{\mathbf{C}} + \Phi_{\mathbf{r}}\mathbf{q}_{\mathbf{r}}$$
(18)

Hence, if $q \neq 0$, the physical response is influenced by the uncontrolled mode. This effect is called <u>control spill-over</u>. Examination of (17) shows that $q_r \neq 0$ if Φ_1^T B u $\neq 0$.

It would appear then if we choose B such that

$$\Phi_{\mathbf{r}} \mathbf{B} = \mathbf{0} \tag{19}$$

the control spill over problem is solved. Unfortunately, condition (19) can not be met in general.

In the following, a simple technique of reducing the control spill-over effect is described. Partition the residue modes into a set of secondary modes ρ and higher modes, with the higher modes having negligible effects on the system. In this way, we have

$$\underline{\mathbf{x}} = \Phi_{\mathbf{C}} \mathbf{q}_{\mathbf{C}} + \Phi_{\mathbf{S}} \mathbf{q}_{\mathbf{S}}$$
(20)

Now, to minimize control spill-over, minimize \underline{q}_{g} , or ultimately make $\underline{q}_{g} = 0$. The response q_{g} can be solved from

$$\dot{q}_{g} + 2E_{s}\omega\dot{q}_{g} + \omega^{2}_{s}q_{g} = \Phi^{T}_{g}Bu \qquad (21)$$

Now if

$$\Phi_{\rm s}^{\rm T} B u = 0 \tag{22}$$

then

Rewrite (22) as

$$\underline{A} \underline{u} = 0 \text{ where } A = \Phi_8^T B \qquad (23)$$

Assume $n_s < n_a$, then partition <u>A</u> and <u>u</u> into

$$\underline{A} = [\underline{A}_{i} : \underline{A}_{d}], \text{ with } \underline{A}_{d} \text{ nonsingular}$$

$$\underline{\mathbf{u}} = \begin{bmatrix} \mathbf{u}_{\mathbf{i}} \\ \mathbf{u}_{\mathbf{d}} \end{bmatrix}$$
(24)

Using (24), (23) becomes

$$\mathbf{A}_{i}\mathbf{u}_{i} + \mathbf{A}_{d}\mathbf{u}_{d} = 0 \tag{25}$$

From (25), solve for

$$\underline{\mathbf{u}}_{\mathbf{d}} = -\underline{\mathbf{A}}_{\mathbf{d}} - \underline{\mathbf{A}}_{\mathbf{i}} - \underline{\mathbf{u}}_{\mathbf{i}}$$
(26)

Thus, if

Then the condition (22) will be met. Check

$$\Phi_{\mathbf{g}}^{\mathbf{T}} \underline{\mathbf{B}} \ \underline{\mathbf{u}} = \underline{\mathbf{A}} \ \underline{\mathbf{u}} = [\mathbf{A}_{\mathbf{i}} \ \mathbf{A}_{\mathbf{d}}] \begin{bmatrix} \mathbf{I} \\ -\mathbf{A}_{\mathbf{d}}^{-1} \mathbf{A}_{\mathbf{i}} \end{bmatrix} \underline{\mathbf{u}}_{\mathbf{i}}$$
$$= (\mathbf{A}_{\mathbf{i}}^{-1} - \mathbf{A}_{\mathbf{i}}^{-1}) \mathbf{u}_{\mathbf{i}} = \mathbf{0}$$

Equation (25) implies that out of the n actuators, only $n' = n_a - n_s$ of them can be controlled independently. Define

$$\underline{\mathbf{D}} = \begin{bmatrix} \mathbf{I} \\ -\mathbf{A}_{\mathbf{d}}^{-1}\mathbf{A}_{\mathbf{i}} \end{bmatrix}$$
(28)

then

$$\underline{\mathbf{u}} = \underline{\mathbf{D}} \ \underline{\mathbf{u}}_{\mathbf{i}} \tag{29}$$

-

-

10

Substitute (29) into (16) to get

$$\mathbf{q}_{c}^{T} + 2\mathbf{E}_{c}\omega_{c}\mathbf{q}_{c}^{T} + \omega_{c}^{2}\mathbf{q}_{c}^{T} - \mathbf{\Phi}_{c}^{T} - \mathbf{B} - \mathbf{D} - \mathbf{u}_{i}$$
(30)
$$\mathbf{n}_{c}\mathbf{x}\mathbf{n} \mathbf{n}\mathbf{x}\mathbf{n}_{a} \mathbf{n}_{a}\mathbf{x}\mathbf{n}' \mathbf{n}'\mathbf{x}\mathbf{l}$$

The design problem is then to choose \underline{u}_i to control \underline{q}_c in

$$\mathbf{q}_{c} + 2\mathbf{E}_{c}\omega_{c}\dot{\mathbf{q}}_{c} + \omega_{c}^{2}\mathbf{q}_{c} = \mathbf{\Phi}_{c}^{T} \mathbf{\underline{B}'} \mathbf{\underline{u}'}$$
(31)

where

$$\underline{B}' = \underline{B} \ \underline{D} = \underline{B} \left[\begin{matrix} I \\ -A_{d}^{-1} A_{i} \end{matrix} \right]$$
$$\underline{u} = \underline{u}_{i}$$
$$\underline{A} = \left[\underline{\Phi}_{a}^{T} B \right]$$

Note that the placement on actuator should be such that one can find a non-singular $n_{s} x n_{s}$ matrix \underline{A}_{d} from the matrix \underline{A} .

4. Characteristic Equations for Undamped System with Generalized Control Law

The characteristic equation of an undamped system with a generalized control law is derived using reanalysis theory in this section. This equation can be implemented in the computer programs for efficient eigenvalue analysis or control gain synthesis.

Consider an undamped n-dof system with n -actuators, the equation of motion can be written as

$$\underline{M} \underline{x} + \underline{K} \underline{x} = \underline{B} \underline{u}$$
(32)

where <u>M</u>. <u>K</u> are the nxn mass and stiffness matrices respectively, <u>u</u> is a n_{a} xl vector, i.e.,

$$\underline{\mathbf{u}} = \begin{bmatrix} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_n \\ \mathbf{a} \end{bmatrix}$$

<u>B</u> is the nxn Boolean distribution matrix with n nonzero rows. We will designate X_{a} and X_{s} as the dof locations for actuator and sensors respectively. Now define

then we conclude that

$$\underline{\mathbf{B}} = \underline{\mathbf{B}}_{\mathbf{a}} \tag{34}$$

Furthermore, assume \underline{X}_a is contained in \underline{X}_s , and partition \underline{X}_s as

$$\frac{\mathbf{x}}{\mathbf{s}} = \begin{bmatrix} \frac{\mathbf{x}}{\mathbf{a}} \\ \\ \\ \frac{\mathbf{x}}{\mathbf{r}} \end{bmatrix}$$
(35)

Now, the system dof can be partitioned either as

$$\underline{x} = \left[\begin{array}{c} \underline{x} \\ -\underline{a} \\ \underline{x} \\ \underline{r} \end{array} \right] \quad \text{or} \quad \underline{x} = \left[\begin{array}{c} \underline{x} \\ -\underline{a} \\ \underline{x} \\ \underline{b} \\ \underline{x} \\ \underline{c} \end{array} \right]$$

Note that

$$\frac{\mathbf{x}}{\mathbf{r}} = \left\{ \begin{array}{c} \mathbf{x} \\ -\mathbf{b} \\ \mathbf{x} \\ \mathbf{r} \\ \mathbf{c} \end{array} \right\}$$

Also note that

$$n = n + n = n + n + n$$

Now, express

$$x = B_{a}x + B_{b}x$$
 (36)

Assume the control law is

$$\underline{u} = -(\underline{c}_{a}\underline{x}_{a} + \underline{c}_{b}\underline{x}_{b} + \underline{k}_{a}\underline{x}_{a} + \underline{k}_{b}\underline{x}_{b})$$
(37)

Substitute (6) into (1), so that for the closed loop system

$$\underline{M} \underline{x} + \underline{K} \underline{x} = -\underline{B}_{a} (\underline{c}_{a} \underline{x}_{a} + \underline{c}_{b} \underline{x}_{b} + \underline{k}_{a} \underline{x} + \underline{k}_{b} \underline{x}_{b}) (38)$$

$$nxn_{a} n_{a}xn_{b} n_{a}xn_{b} n_{a}xn_{b} n_{a}xn_{b}$$

or, assuming

$$\underline{x} = \underline{X}e^{st}$$
(39)

and letting $\underline{R} = (s^2 M + K)^{-1}$ equation (38) becomes:

$$\underline{x} = -\underline{R} \underline{B}_{a} (\underline{sc}_{a} \underline{x}_{a} + \underline{sc}_{b} \underline{x}_{b} + \underline{k}_{a} \underline{x}_{a} + \underline{k}_{b} \underline{x}_{b})$$

$$\underline{\mathbf{x}} = -\underline{\mathbf{R}} \ \underline{\mathbf{B}}_{a} [(\underline{\mathbf{sc}}_{a} + \underline{\mathbf{k}}_{a})\underline{\mathbf{x}}_{a} + (\underline{\mathbf{sc}}_{b} + \underline{\mathbf{k}}_{b})\underline{\mathbf{x}}_{b}]$$
(40)

and finally

$$\underline{x} = -\underline{R} \ \underline{B}_{a}[(\underline{s}\underline{c}_{a} + \underline{k}_{a}) (\underline{s}\underline{c}_{b} + \underline{k}_{b})] \left\{ \begin{array}{c} \underline{x}_{a} \\ \underline{x}_{b} \end{array} \right\}$$

Now, premultiply (40) by \underline{B}_{a}^{T} to produce (41) and premultiply (40) by \underline{B}_{b}^{T} to produce (42).

$$\underline{B}_{a}^{T}\underline{x} = -\underline{B}_{a}^{T}\underline{R} \underline{B}_{a} \begin{bmatrix} \underline{H}_{a} & \underline{H}_{b} \end{bmatrix} \begin{bmatrix} \underline{x}_{a} \\ \underline{x}_{b} \end{bmatrix}$$
(41)

$$\underline{B}_{b}^{T} \underline{x} = -\underline{B}_{b}^{T} \underline{R} \underline{B}_{a} [\underline{H}_{a} \quad \underline{H}_{b}] \begin{bmatrix} \underline{x}_{a} \\ \underline{x}_{b} \end{bmatrix}$$
(42)

Use the definition

$$\frac{\mathbf{x}}{\mathbf{a}} = \frac{\mathbf{B}}{\mathbf{a}} \frac{\mathbf{T}}{\mathbf{x}}$$
$$\frac{\mathbf{x}}{\mathbf{b}} = \frac{\mathbf{B}}{\mathbf{b}} \frac{\mathbf{T}}{\mathbf{x}}$$

$$\underline{H} = [\underline{H}_{a} \quad \underline{H}_{c}] = [\underline{sc}_{a} + \underline{k}_{a} \quad \underline{sc}_{B} + \underline{k}_{b}]$$

$$\hat{\underline{x}} = \begin{bmatrix} \underline{x}_{a} \\ \underline{x}_{b} \end{bmatrix}$$

Equations (41) and (42) become

$$\underline{x}_{a} = -\underline{R}_{ac} \quad \underline{H} \quad \hat{\underline{x}}$$

$$n_{a} x 1 \quad n_{a} x n_{a} \quad n_{a} x n' \quad n' x 1 \qquad n' = n_{a} + n_{b}$$

$$(43)$$

$$\underline{x}_{b} = -\underline{R}_{bc} \quad \underline{H} \quad \hat{\underline{x}}$$

$$n_{b} x 1 \quad n_{b} x n_{b} \quad n_{b} x n' \quad n' x 1$$

-

where

$$\frac{\mathbf{R}}{\mathbf{a}\mathbf{a}} = \text{portions of } \frac{\mathbf{R}}{\mathbf{R}} \text{ associated with } \frac{\mathbf{x}}{\mathbf{a}} \text{ only}$$

$$\frac{\mathbf{R}}{\mathbf{b}\mathbf{a}} = \text{portion of } \frac{\mathbf{R}}{\mathbf{a}} \text{ associated with the coupling}$$

$$\frac{\mathbf{R}}{\mathbf{b}\mathbf{a}} = \frac{\mathbf{p}}{\mathbf{a}\mathbf{b}\mathbf{c}} \frac{\mathbf{x}}{\mathbf{a}\mathbf{b}\mathbf{c}}$$

Rewrite (43) as

 $\left[\begin{array}{c} x_{a} \\ x_{b} \end{array}\right] = \left[\begin{array}{c} -R_{a} H \\ -R_{b} H \end{array}\right] \stackrel{\wedge}{=}$

$$\hat{\underline{\mathbf{x}}} = \begin{bmatrix} -\mathbf{R}_{\mathbf{a}\mathbf{a}} & \mathbf{H} \\ -\mathbf{R}_{\mathbf{b}\mathbf{a}} & \mathbf{H} \end{bmatrix} \hat{\underline{\mathbf{x}}}$$
$$\det[\mathbf{I} + \begin{bmatrix} \mathbf{R}_{\mathbf{a}\mathbf{a}} & \mathbf{H} \\ \mathbf{R}_{\mathbf{b}\mathbf{b}} & \mathbf{H} \end{bmatrix}] = 0$$

thus

$$det \begin{bmatrix} I + R_{aa} + H_{a} & R_{aa} + H_{b} \\ R_{ba} + A_{a} & [I + R_{ba} + H_{b}] \end{bmatrix} = 0$$
(44)

 $\underline{H}_{a} = \underline{sc}_{a} + \underline{k}_{a} \qquad \underline{H}_{b} = \underline{sc}_{B} + \underline{k}_{b}$

Example

For the 2-dof system shown in Figure (4.1)

$$u_{1} = -(c_{a}\dot{x}_{1} + c_{b}\dot{x}_{2})$$

 $H_{a} = sc_{a}$ $H_{b} = sc_{b}$ $\dot{x}_{a} = x_{1}$ $\dot{x}_{b} = x_{2}$
 $R_{aa} = R_{11}$ $R_{bb} = R_{22}$ $R_{ba} = R_{21}$

Thus, Eq. (14) becomes

$$det \begin{bmatrix} 1 + sc_{a} R_{11} & sc_{b} R_{11} \\ sc_{a} R_{21} & sc_{b} R_{21} \end{bmatrix} = 0$$

Fig. 4.1

Possible methods of controlling vibrations on large space structures have been reviewed. Two basic approaches are identified:

- 1. Modification of the control system so that the poles are well damped. This approach is based on the assumption that the major, if not only, cause of vibrations is the control system itself.
- Addition of a separate damping system, which might be:
 2.1 Passive damping
 2.2 Active damping

The working medium of a ground based damper of either kind might be electromagnetic, but it would more probably be hydraulic or pneumatic, or, in the case of passive systems, magnetic or frictional. For space applications, hydraulic, pneumatic, and frictional systems must be ruled out as too unreliable in the space environment when little or no maintenance is possible. This leaves electromagnetic, magnetic, and possibly new systems based on the piezoelectric or other effects.

A list of possible systems is given in Table 5.1. The active damping systems using electromagnetics are assumed to incorporate coils moving in the fields of permanent magnets. The current in a coil would be provided by an electrical circuit in response to the output from one or more sensors. For the purpose of this study, such a circuit is assumed to introduce a negligible weight penalty, whereas the permanent magnet is considered to be a significant weight item. Similarly, the permanent magnet in the eddy current damper of a passive system is also considered to be a significant weight item. For systems which require a moving mass, such as the seismic mass of a passive system, or the mass in an active inertial system, it would therefore seem to be advantageous to combine the roles of moving mass and magnet in order to save weight. On this basis, the gyro concept might have a considerable weight disadvantage, because it would be impossible to combine the magnet and the flywheel.

Table 5.1. Possible Damping Systems

1.0	Modification of Control System			
2.0	Damping System			
	2.1	Passive Damping: Magnet and conductive strip		
		2.1.1	Seismic mass with stationary magnet	
		2.1.2	Magnet as seismic mass	
		2.1.3	Gyro	
		2.1.4	Two-force member	
	2.2	Active	Damping: Electromagnetic	
		2.2.1	Separate mass and magnet	
			2.2.1.1 Linear	
			2.2.1.2 Rotating (inertia wheel)	
		2.2.2	Moving magnet	
			2.2.2.1 Linkage system	
			2.2.2.2 Rack and pinion	
		2.2.3	Gyro	
		2.2.4	Two-force member	
	2.3	Active	Damping: Piezoelectric	

In comparing active against passive damping, the relative disadvantage of requiring an electrical system for the former must be weighed against the need to tune the seismic mass to a given frequency, so that the latter is essentially a narrow band device, whereas the active damper is relatively broadband.

The systems mentioned in Table 5.1 are discussed in more detail below.

Modification of Control System (1.0)

Modern control theory prescribes methods for designing control circuits having poles in any desired location, thus active damping can be achieved directly at the major source of disturbances. A very simple example is illustrated in Figure (5.1) which shows a one-dimensional system consisting of two masses connected by a spring, having one rigid-body translational mode, and one vibrational mode. Suppose that the impulse from a thruster is applied at one of the two masses. The vibrational mode will be excited and the system will move off with one mass coming to rest every half cycle. Now suppose that there are two thruster impulses applied one half-period apart, then the system will move without any internal vibration after the first half-period. Applied on a very much larger and more complex scale, such an approach could be used to maneuver a large space structure without any residual vibrations of serious amplitude.

Passive Damping (2.1)

The only reliable method of passive damping appears to be through the use of a magnet and a conductive strip. When the strip is passed between the poles of a magnet, eddy currents are induced in a direction normal to the velocity and to the magnetic field, and the effectiveness of such a damper is directly proportional to the product of electrical conductivity, magnetic field strength, and pole area. Unfortunately, the damping forces so produced are relatively small at frequencies of interest.

Pour possible systems are shown in Figures (5.2) to (5.5). The first, system 2.1.1 in Figure (5.2), is a seismic damper, while for system 2.1.2 in Figure (5.3) the magnet doubles as the seismic mass. For system 2.1.3 in Figure (5.4), the magnetic damper is used in conjunction with a gyro to provide damping against angular motion of the structure. Finally, for system 2.1.4 in Figure (5.5), the magnetic damper is used in a two-force member spanning part of the large structure.

Active Damping: Electromagnetic (2.2)

In the active damping system, energy is removed from the structure by the action of an electromagnetic actuator or an electric motor. For the purpose of illustration, a voice-coil shaker of the type used for vibration testing has been assumed for the analyses of the active systems in the appendices. Such shakers are relatively heavy, because they contain powerful permanent magnets, although careful redesign for space applications might result in considerable

DOUBLE IMPULSE, 2nd IMPULSE APPLIED ONE HALF PERIOD AFTER 1st IMPULSE

Fig. (5.1) 1.0 Modification of Control System

18

2 . "F*-" Figs. (5.2)-(5.5) Passive Damping Systems

۰ _

282777

Fig. (5.4) Gyro System

Fig. (5.5) (2.1.4) Two-Force Member

weight reductions. However, the weight penalty is directly proportional to the maximum energy which can be removed per cycle, as is shown in Appendix B. The design problem with a damper of this kind is that of ensuring that this maximum energy reduction per cycle is in fact available.

The system would be driven through a current amplifier from the difference between two integrated accelerometer signals, one from the structure, and one from the moving mass. Thus a force would be applied to the structure which would be directly proportional to the local velocity of the structure.

The major problem to be faced is how to provide an appropriate reaction on the structure so that as much energy is removed per cycle as is possible. One approach, shown as system 2.2.1.1 in Figure (5.6), employs a moving mass. As is shown in Appendix B, this system can be designed for peak performance at a given frequency. Above this frequency, performance is limited by the maximum available shaker force, while below this frequency, performance is limited by the maximum displacement available. An analogous rotarysystem, 2.2.1.2, shown in Figure (5.7) uses an electric motor driving an inertia wheel.

System 2.2.2.1 in Figure (5.8) is an improvement on the previous system, in which the shaker magnet doubles as the moving mass. A second version is shown in Figure (5.9). In Figure (5.8), the actuator motion is amplified by a "lazy tong" linkage. Such a linkage would not be practical, but could be used in a laboratory demonstration. In the second system, 2.2.2.2., Figure (5.9). the shaker is replaced by an electric motor which drives itself up and down a shaft with a rack-and-pinion gear.

System 2.2.3 shown in Figure (5.10) is similar to system 2.1.3 shown in Figure (5.4) except that the passive damper has been replaced by an active electromagnetic damper, while system 2.2.4 shown in Figure (5.11) is a two force member corresponding in a similar way with system 2.1.4 in Figure (5.5).

Active Damping: Piezoelectric (2.3)

Acoustical transducers have been made from polyvinylidene fluoride (PVF_2) sheet, aluminized on both sides. The sheet is polarized. so that when a voltage differential is applied between the aluminized coatings, the material strains in one direction. Conversely, when it is strained, a voltage differential is induced. If the material is bonded to the surface of a structural element, a surface shearing force can be induced which will load the structure, and, if properly controlled, is capable of introducing damping. Proper use of such a material evidently depends on new approaches to structural dynamic analysis, but is certainly worthy of consideration.

Electronics

The active systems would be driven by feedback circuits. Such a circuit is shown in Figure (5.12), which repeats system 2.2,1.2 of Figure (5.8) with the addition of a circuit which compares md y/dt and

Fig. (5.6) System (2.2.1) Active Damper

Fig. (5.7) Inertia Wheel System 2.2.1.2

i

ţ

ł

a de resta Mary (n. 2011)

Fig. (5.8) System 2.2.2.1 Active Damper

ري در الأم^ا در الم

Page intentionally left blank

۰.

Page intentionally left blank

Fig. (5.10) System 2.2.3 Actively Damped Inertia Wheel

*

Fig. (5.11) System 2.2.4 Two Force Member Active Damper

13

.

FIG. 12 SYSTEM 2.2.2.1 <u>ACTIVE DAMPER</u> Showing possible control loop added to system to yield desired characteristics

.

cdx/dt as derived from two accelerometers, the difference being used to drive the voice-coil current through a amplifier.

Comparative Performance

For a preliminary comparison of performance capability, two figures of merit can be considered.

- Energy removed per cycle per unit mass at design frequency, W /m D T
- 2. Bandwidth

In Appendix B, the value for W_D^m achieved with system 2.2.2.1 in Figure (5.8) under design conditions is shown to be .0619 J/kg. which is 79% of the maximum possible capability of a voice coil shaker. This was twice as good as the best system 2.2.1 arrangement of Figure (5.6). Therefore, it is tentatively concluded that other active damping systems, such as the inertia wheel, in Fig. (5.7), or the two force member, in Fig. (5.11), cannot be much better if they are based on electromagnetic action. Passive systems, being based on magnets, are probably no better, although this has not been investigated.

Performance of the active system, based on rate of energy removal, is constant above the design frequency, but rolls off below it. In contrast, the passive system is narrow-band and has to be tuned to a given frequency.

It is shown in Appendix C that the PVF, piezo-electric material has the potential for work per cycle of as much as 4 J/kg, which is more than 30 times that of the voice-coil shaker. On the other hand, using the minimum property values available, the work per cycle could be as low as .005 J/kg, which is less than one tenth as good as a voice-coil shaker. One of the most critical properties is the dielectric field strength, E_{M} . Since a dielectric breakdown causes an explosive failure, it might be necessary to allow quite a large safety margin, so that PVF might prove no better than voice-coil shakers.

Conclusion of Review

It is concluded from this series that an electromagnetic actuator, suspended in such a way that the magnet forms part of the moving mass, is the most promising approach for immediate application.

Design of Experimental Damper

It was decided, as a result of the review. that an electromagnetic damper should be investigated experimentally, and that one should be developed for use on the scale model grillage at the NASA Langley Laboratory. The following design criteria were used initially

> Maximum Force = 1 lbf = 4.45 N Design Amplitude = 0.5 in. = 0.0127 m. Design Frequency = 0.36 Hz

Accelerometer on moving mass - NASA supplied Accelerometer on grillage - NASA supplied Electronics - off grillage - NASA supplied

A design which meets these requirements is shown in Fig. (5.13).

Description of Damper

The magnetic flux is supplied by the two toroidal samariumcobalt magnets. The remainder of the magnetic circuit is temporarily completed with mild steel, which has a high saturation flux, and can therefore be designed for minimum weight. However, pure iron will be substituted when it becomes available. The annular gap is large to accomodate the windings of the fixed coil, this dictates a design which minimizes flux leakage at the gap. For example, two magnets are used where one would suffice if the gap were small, also, the internal diameter is larger than is required merely for clearance.

The entire magnet assembly moves along a hardened steel shaft on linear bearings, with one inch of useful travel. An accelerometer is attached to the moving magnet to feed back the acceleration of its mass, which is directly proportional to the damping force. The fixed coil has a Delrin core, and is designed to take ten layers of 26 gage magnet wire.

An outer case of polycarbonate tubing is used to keep the linear bearings clean. It also holds a track in which a small ball race moves to prevent the magnet from turning and thereby twisting the leads to the accelerometer. The end cap of the cover is removable so that the accelerometer leads can be connected to terminals.

Magnet Analysis

The samarium cobalt magnets have the following specifications:

Outside Diameter = 0.75 in. Inside Diameter = 0.43 in. Magnetic Induction = 8000 Gauss = 0.8 Tesla

The following is calculated:

Magnetic Flux = 153 micromaxwells

The remaining circuit is designed so that the magnetic flux density in the mild steel does not exceed 66% of the 2.1 Tesla saturation flux density.

For the purpose of the subsequent analyses, the total 153 uM flux is assumed to cut the coil windings.

Analysis of Coil

It is assumed that each of the ten layers of 26 gage wire contains 67 turns, based on the following analysis

Spool length = 1.25 in. Diameter of bare wire = 0.015945 ins Diameter of enamelled wire (measured) = 0.01772 ins Winding efficiency = 67 x 0.01772/1.25 = 0.95 = 95% Turns per meter = 10 x 67 x $39.37/1.25 = 21100 \text{ m}^{-1}$

The relationship between the force acting, F, the flux Φ , the turns per meter, n, and the coil current A is developed as follows. Assume an effective coil diameter D, and a gap width w, then the flux in the gap is

 $\begin{array}{c} B = \Phi/\pi \ D \ w \\ (5.1) \\ gap \\ gap$

The length of wire immersed in the gap is

 $L = \pi D n w$ (5.2) gap g

and the force acting between the coil and the magnet is

 $F = I B L = \Phi n I$ (5.3) gap gap

For a force of one lbf, or 4.45 N

$$I = F/n \Phi = (4.45)/(21100)(153 \times 10^{-6}) = 1.38 A$$

In operation, this would be a peak value, the actual DC current recommended for 26 gage wire is 0.51 A, based on 254 circular mils (in^2) at 500 per A. Thus a damper operating continuously at maximum amplitude would be limited to a maximum force of

 $F_{max} = \sqrt{2} (0.51/1.38) = 0.52 \text{ lb}$

However, during tests, peak amplitude will vary, so that the damping constant can be set to correspond to a much higher maximum force without causing excessive heating in the coil. The resistance of the coil, based on 0.0410 Ohms/ft., and a mean diameter of 1.2 ins, is

 $R = (0.0410)(10)(67)(1.2)\pi/(12) = 8.63$ Ohms

Other estimates, based on different values for resistivity, have been as high as 23 Ohms. Based on 8.63 Ohms, the peak voltage is

Analysis of Damping Constants

If we redefine K so that it is the ratio of structural amplitude $|x_{o}|$ to damper amplitude, D_{w} , i.e.,

$$K = |X_0| / D_m$$
(5.4)

then, from Eq. (B.2) of Appendix B

$$1/K^{2} = 1 + c^{2}/\omega^{2}m_{2}^{2}$$
 (5.5)

also, with the linkage ratio R set to unity, Eq. (B.1) can be written as

$$F/F_{m} = \omega c D_{m} K/F_{m}$$
(5.6)

For the present design, the following values are anticipated

$$m_2 = 0.428 \text{ kg}$$

 $D_m = 1/2 \text{ inch} = 0.0127 \text{ m}$
 $F_m = 1 \text{ lbf} = 4.45 \text{ N}$

From Eq. (5.5), we can construct the following table for the damping constants, c.

				C (NS/m)	
ĸ	x (m)	c/ω (kg)	f = .35Hz	f = 1 Hz	f = 3.5Hz
. 8	.0102	.321	.7059	2.017	7.059
.5	.0064	.7413	1.630	4.658	16.3
.3	.0038	1.361	2.993	8.551	29.93
.1	.0013	4.259	9.37	26.76	93.7

Table 5.2 Values of Damping Constants

and from Eq. (5.6) we can construct the following table for the corresponding force ratios, $F/F_{\rm W}$.

Table 5.3 Force Ratios

K (x_ (m)	f = .35Hz	$\frac{F/F}{M}$ f = 1 Hz	f = 3.5Hz
. 8	.0102	.00354	.0289	.354
.5	.0064	.00511	.0418	.511
. 3	.0038	.00563	.046	.563
.1	.0013	.00588	.0480	.588

Note that the full force capability of the actuator is not required until the frequency exceeds 3.5 Hz.

In the proposed design, the damping constant c will be set by the electronic circuit. Suppose we pick a value of 2 Ns/m and examine the corresponding values for K and F/F_{M} as given by Eqs. (5.5) and (5.6). Note that a value for K of unity could correspond to a peak-to-peak structural amplitude of one inch while a value for F/F_{M} of unity would correspond to a maximum force of one lbf, the design value. The results are given in Table 5.4.

 f(Hz)	ĸ	F/F _M .00048
.1	.133	.00048
,2	.261	.00185
.3	.374	.00403
. 35	. 426	.00535
. 4	.474	.00678
.5	.558	.01006
. 8	.732	.0210
1.0	.802	.0288
1.5	.899	0.0484
2.0	.937	.0672
2.5	.958	.0859
3.0	.971	.1045
5.0	.989	.1773

Table 5.4 Values for K and F/F_{μ} when C = 2 Ns/m, (Eqns. 2 and 3)

Note that the maximum force is not approached even at 5 Hz. Had a larger damping constant been used, these forces would have been larger, but the value for K would have been smaller. For example, Table 5.5 shows how K varies with c at frequencies of 0.35, 1.0 and 3.5 Hz.

Table 5.5 K vs. c (Eqn. 2)

С		ĸ	
Ns/m	0.35 Hz	1.0 Hz	3.5 Hz
0.1	. 994	.999	1.000
0.2	.978	.997	1.000
0.3	.953	.994	1.000
0.4	.920	.989	. 999
0.6	.843	.976	.998
0.8	.762	.958	.996
1.0	.685	.937	.994
1.5	.532	.873	.988
2.0	. 426	.802	.978
2.5	.352	.732	.966
3.0	.299	.607	.953
5.0	.185	.474	.883
10.0	.094	.260	.685

None of the examples shown in Table 5.5 correspond to a value for F/F exceeding unity. Thus, the present design, if achieved, should be adequate for all of the cases shown, provided that c is set at 2 Ns/m or less.

Preliminary Tests

A prototype unit was built from the design shown in Figure 5.13. a photograph of this unit is shown in Figure 5.14, while the analog circuit used in an initial test of the unit attached to the NASA grillage is shown in Figure 5.15.

Because of the possibility of hitting the stops when the moving mass is not centralized, a spring was added to the system which gave it a natural frequency of about 2 Hz. Using switch no. 2, the system was excited at a natural frequency close to 4 Hz., then it was switched to feedback control, and the resulting damping was observed. Through switch no. 1, the inner feedback loop incorporating the accelerometer mounted on the moving mass could be included at will. When it was excluded, rapid damping of the 4 Hz. mode was observed, but when the inner loop was included, the system at first damped, and then went unstable at a frequency lower than 2 Hz.

It was concluded that the accelerometer on the inner loop could be discarded, but that an inner loop should be incorporated which included an LVDT to measure position. This way, a very low natural frequency could be simulated for the system, while a bias voltage could be applied to offset gravitational effects. At the same time, studies should continue on a system which incorporates an inner loop accelerometer.

Conclusions

An experimental damper has been designed in which a mass of .428 kg (.95 lbm) moves over a peak-to-peak amplitude of one inch under a programmed force which can be as much as one lbf. The design includes an accelerometer attached to the mass.

Fig. 5.14 Prototype Damper

The programmed force is to be produced from the generation of a current in an amplifier driven by the difference between a signal proportional to the structural velocity and one proportional to the acceleration of the mass. Thus a damping force c will be generated on the structure.

Tentatively, the following design values are suggested

Damping constant = 2 Newton sec/meter Design frequency = 0.35 Hz Structural Amplitude = .43 inches peak-to-peak

From early experience with the prototype, it is concluded that the inner-loop accelerometer should be replaced by an LVDT if an early working system is required. However, research should continue into the use of the inner accelerometer, and an alternative to the LVDT should be found if dampers with longer strokes are found to be desirable.

III. <u>CONCLUSIONS</u>

In conclusion, this work has covered two aspects of the problems involved in damping large space structures. On the one hand, the analytical problem of locating dampers has been investigated, while on the other, the problems of damper design have been reviewed. These considerations are summarized below

(1) Five computer programs have been developed. They are

(i) ASMD1 - Assumed mode method with diagonal damping matrix

(ii) ASMD2 - Assumed mode method with full damping matrix

(iii) SPSTGN - Damped eigenvalues using reanalysis

(iv) COPZ - Optimization of damper gain

(v) NORMAL - Orthonormatization of mode shapes

(2) Proof has been presented for two criteria for the optimal location of dampers. They are:

- (i) MCFC That the optimal single damper location is where the constrained frequency is a minimum
- (ii) MFSC That the optimal locations of several dampers are where the constrained frequency associated with the damper location has the largest separation from the corresponding undamped natural frequency of the system.

(3) A method of minimizing the effect of control "spill-over" has been proposed and demonstrated.

(4) The characteristic equation of an undamped system with a generalized control law has been derived using reanalysis theory.

(5) A review of possible damper designs has been conducted. It was concluded that the most promising designs are active systems, using electromagnetic or piezoelectric actuators with linear or rotational motion.

(6) A prototype linear electromagnetic damper was built and demonstrated using a moving permanent magnet. The damper is driven by feedback from an accelerometer, mounted in the structure, and integrated to provide a feedback force proportional to structural velocity. It was found necessary to incorporate a centering spring which will be replaced in future designs by a position feedback from an LVDT or other device.

IV. <u>Bibliography of Papers Published</u> <u>under this Contract</u>

Optimal Damping for the Vibration Control of a Two-Dimensional Structure B.P. Wang, W.D. Pilkey, G. Horner AIAA Paper No. 81-1845

Optimal Damper Location in the Vibration Control of Large Space Structures B.P. Wang, W.D. Pilkey, presented at the Third VPI/AIAA Symposium on Dynamics and Control of Large Flexible Spacecraft.

39 [†]

ì . -. . . -40

APPENDICES -

•

~

-

.

42

.

÷

.

ŗ

.

Subroutine ASMD1

Assumed Mode Method - Diagonal Damping Matrix

I. INTRODUCTION

ASMD1 is a FORTRAN subroutine, based on the assumed mode method, that can be used to compute the eigenvalues of a damped system. The eigenvectors of the undamped system are used as the assumed modes. When all modes of the undamped system are used, the method is equivalent to a direct solution. Experience shows that retaining 1/3 to 1/2 of the modes of the original system in the assumed mode method usually leads to accurate eigenvalues while providing considerable savings in computer time.

II. ASSUMED MODE FORMULATION

Let the free vibration of a damped system be described by

$$[m]{\dot{x}} + [c]{\dot{x}} + [k]{x} = \{0\}$$
 (A1.1)

where [c] is a diagonal damping matrix. Let $\{\rho_i\}, \omega_i$ be the solution of the corresponding undamped problem

$$\omega^{2}[m]\{\varphi\} = [k]\{\varphi\}$$
 (A1.2)

Furthermore, assume the mode shapes are normalized to unit generalized mass, i.e.,

$$\{\rho_i\}^{\mathrm{T}}[m]\{\rho_i\} = 1.0$$
 (A1.3)

Define

$$\{x\} = \sum_{\substack{\ell=1 \\ \ell \neq \ell}}^{L} \{\rho\} q = [\Phi] \{q\}$$
(A1.4)
nxl nxL Lxl

where L is the number of modes used. Substitute (Al.4) into (Al.1) and premultiply $[\Phi]^T$ to get

$$[I]{q} + [\bar{c}]{\dot{q}} + [\Lambda]{q} = \{0\}$$
(A1.5)

where

[I] = LxL identity matrix
[
$$\Lambda$$
] = [ω_{l}^{2}] = LxL diagonal matrix
[c] = [Φ]^T[c][Φ] = LxL full matrix

Set

•

$$\{z\} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} \dot{q} \\ q \end{bmatrix}$$
(A1.6)
2Lx1

,

Then, (A1.5) becomes

$$\{\dot{z}_1\} = -[\bar{c}]\{z_1\} - [\Lambda]\{z_2\}$$
 (A1.7a)

By definition (Al.6)

$$\{\dot{z}_2\} = \{z_1\}$$
 (A1.7b)

Place (Al.7a), (Al.7b) together

$$\{\dot{z}\} = [A]\{z\}$$
 (A1.8)

where

.

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} -[c] & -[A] \\ & & \\ [I] & [0] \end{bmatrix} = \begin{bmatrix} -[\Phi]^{T}[c][\Phi] & -[\omega_{g}^{2}] \\ & & \\ [I] & [0] \end{bmatrix}$$

A standard eigenvalue problem can be formulated from (8) and solved using the routine RESV in the NASA Langley library.

III. INPUT PARAMETERS

III.1 Formal Parameters

Description of the 6 formal parameters

N: number of DOF's of the original system NC: number of dampers IPRT: Dynamical matrix ([A] in (8)) printing flag, = 0 no printing = 1 print

III.2 Common Blocks

In addition to the formal parameters, the following variables enter the subroutine ASMD through the common block set contained in file COMASMD. This file must be placed in the main program.

IV. OTHER SUBROUTINES USED

ASMD calls NASA Library routine RESV to compute the eigenvalues of the dynamical matrix [A]. The computed complex eigenvalues are stored in array ER(I) and EI(I), which are the real and imaginary part of the Ith eigenvalue of matrix [A].

V. USING SUBROUTINE ASMD

The following is a sample program that calls routine ASMD1.

-

	PROGRAM TESTASI(INPUT,OUTPUT,TAPE12)
C	
Ĉ	
-	DIMENSION G(80)
	COMMON / DATA1 /C(50)
	COMMON / DATA2 / FHI(99,99), WN(99)
	COMMON / DATA3 / EIGDATA(40,20,4),DAMP(40)
	COMMON / DATA4 / NTITLE(80),JC(50)
	COMMON / DATAS / NM
	COMMON / DATA6 / NDP
	COMMON /DATA7/ER(99) /EI(99)
С	
C	
	DO 1 I=1,50
1	C(I)=0.0
С	
C	INPUT SECTION
Ĉ	
-	READ 10,(NTITLE(I),I=1,80)
	PRINT 10, (NTITLE(I), I=1,80)
10	FORMAT(80A1)
10	READ \$ININT NC
	PRINT *, N, NM, NC
	DO 20 I=1,NC
	READ #;JC(I);C(I)
	PRINT *, JC(I), C(I)
20	CONTINUE
	READ ##IPRT
	PRINT * , IPRT
C	
	DO 5010 I =1,NM
	READ*, WN(I),G(I)
	PRINT*, WN(I), G(I)
	READ*, (PHI(J,I),J=1,N)
	PRINT*, (PHI(J,I), J=1,N)
F A11	FORMAT(5E16.7)
5011	
5010	CONTINUE
	PRINT*, "N WN G"
	DO 99 I=1:N
99	PRINT * ,I,WN(I),G(I)
	PRINT#, "PHI"
	DO 599 J=1,N
999	PRINT#;(PHI(J;I);I=1;N)
C	
č	
C	
C	
	CALL ACKDI/ALNO TOOTA
~	CALL ASMD1(N,NC,IPRT)
C	
C	END
	46

VI. PROGRAM LISTING

L D	SUBROUTINE ASMD1(N,NC,IFRT)
0000000	THIS PROGRAM USES THE ASSUMED MODE METHOD TO COMPUTE COMPLEX EIGENVALUES OF A DAMPLD SYSTEM. DIAGONAL DAMPING MATRIX. THE PROGRAM IS A MODIFICATION OF PROORAM CEIG 4/13/82.
с c	COMFLEX CNCUEIG COMMON / DATA1 /C(50) COMMON / DATA2 / FHI(99,99),WN(99) COMMON / DATA3 / EIGDAIA(40,20,4),DAMP(40) COMMON / DATA3 / NTITLE(80),JC(50) COMMON / DATA5 / NM COMMON / DATA5 / NDP COMMON / DATA7/ER(79),EI(99)
	DIMENSION DYEXAC(99,99),V(99,5),WK(270)
C C	MAX-99 NMD=2*NM N=NND
C C	FORM DYNAMICAL MATRIX
C	NN=2*NM DO 100 I=1,NN DD 100 J=1,NN
100	<pre>DYEXAC(I,J)=0.0 BD 200 I=1.NM IN=I+NM DYEXAC(I,IN)=-WN(I)*WN(I) DYEXAC(IN,I):1.0 DD 200 J=1.NM DD 200 L=1.NC K=JC(L) DYEXAC(I,J)=DYEXAC(I,J)-C(L)*PHI(K,I)*FHI(K,J)</pre>
200 C	CONTINUE PRINT*,***********************************
	PRINT 11 PRINT 10,(NTITLE(I),I-1,80)
10 11	FORMAT(80A1) FORMAT(//) IF(IFRT.EQ.0) GO TO 210
С	PRINT 201
201	FORMAT(1H1,///,* DYNAMICAL MATRIX IS %///) DO 202 I=1,NN
202 205 210	PRINT 205; (DYEXAC(1;J);J=1;NN) Format(/;5x;5E15.6) Call Resv(max;N;Dyexac;er;E1;0;0;V;WK;1ERR)

C	
	PRINT 1020,NM
С	
-	PRINT## ***** DAMPERS ******
	PRINT*, PLACEMENT(DOF) VALUE
	DO 666 I=1,NC
666	PRINT*,* *,JC(I),* *,C(X)
1020	FORMAT(/,10X,* ASSUMED MODE METHUM, USE *,15,,* MODES#/)
	PRINT 11
~	PRINT#, THE DAMPED EIGENVALUES: *
С	
	DO 333 II=1,NMD
333	PRINT*,II,ER(II),*+*,EI(II),*J*
	PRINT 11
	PRINT 11
9999	CONTINUE
	END

J

VII NUMERICAL EXAMPLE

• •

To illustrate the use of ASMD1, the 2 dof system of Fig. (A1.1) is used. A damper of c = 2.3 is attached todof 2. The input data and control cards for this sample problem are shown in Table 1. The output is given in Table 2.

.

Fig. Al.1 A Damped 2-dof system

.

.

50

Table 1 Control Cards and Input Data for Sample Problem

The test program TESTAS1 can be run through the use of the following job file:

/JOB 1273b UVA BFW,CM300000,T1000. USER, 677121E. CHARGE, 102428, LRC. DELIVER. 1293B D UVA ATTACH, FINMLIB/UN=LIBRARY. GET, TESTAS1. MAP(OFF). FTN, I=TESTAS1, L=0, OPT=1, B=F. LDSET, LIB=FINMLIB. F. REWIND, OUTPUT. COPYEI, OUTPUT, OTTAS1. REPLACE, DTTAS1. DAYFILE,L=DATAS1. REPLACE, DATAS1. EXIT. REWIND, OUTPUT. COPYEI, OUTPUT, XOTTAS1. REPLACE, XOTTAS1. DAYFILE, L=XDATAS1. PACK, XDATAS1. REPLACE, XDATAS1. /EOR - 2 DOT, 2 MODES USED, I DAMPER TEST: 2-DOF FREE SYSTEM, TEST ASHD1 2, 2,14------ DANFER: DOF 2 C: 2.3 2,2.34------- DYN. MAT. NOT PRINTED 0 4 - -----0,1 4..... · 4:0, G=1 0.577, 0.577 -----Ŷ, - wz = 1.2247, Gz = 1 1.2247,1 -0.316,-0.408 - 4 EDI ENCOUNTERED. 1

.

Table 2 Output of Sample Problem

TEST: 2-DOF FREE SYSTEM, TEST ASHD1

ASSUMED MODE METHOD, USE 2 MODES

•••

	*****	I) AM	IPERS	****	(
	PLAC	EME	TME	(DOF)	VA	LUE
				2		2.3
-	-	• •			-	

THE DAMPED EIGENVALUES:

1 0.+0.J

2 -.8999940753023+0.J

3 -.1243049123488+1.122804973927J **4** -.1243049123488+-1.122804973927J

Appendix A-2

Subroutine ASMD2

Assumed Mode Method - Full Damping Matrix

I. INTRODUCTION

ASMD2 is a FORTRAN subroutine, based on the assumed mode method, that can be used to compute the eigenvalues of a damped system. The eigenvectors of the undamped system are used as the assumed modes. When all modes of the undamped system are used, the method is equivalent to a direct solution. Experience shows that retaining 1/3to 1/2 of the modes of the original system in the assumed mode method usually leads to accurate eigenvalues while providing considerable savings in computer time. ASMD2 allows a full damping matrix to be used.

II. ASSUMED MODE FORMULATION

..

..

Let the free vibration of a damped system be described by

$$[m] \{x\} + [c] \{x\} + [k] \{x\} = \{0\}$$
(A2.1)

where [c] is a diagonal damping matrix. Let $\{\rho_i\}, \omega_i$ be the solution of the corresponding undamped problem

$$\omega^{2}[m]\{\rho\} = [k]\{\rho\}$$
 (A2.2)

Furthermore, assume the mode shapes are normalized to unit generalized mass, i.e.,

$$\{\rho_i\}^{\mathrm{T}}[m]\{\rho_i\} = 1.0$$
 (A2.3)

Define

$$\{x\} = \sum_{\ell=1}^{L} \{\rho\} q = [\Phi] \{q\}$$

$$nxl$$

$$nxL Lxl$$

$$(A2.4)$$

where L is the number of modes used. Substitute (A2.4) into (A2.1) and premultiply by $[\Phi]^T$ to get

$$[I] \{q\} + [\bar{c}] \{\dot{q}\} + [\Lambda] \{q\} = \{0\}$$
 (A2.5)

where

[I] = LxL identity matrix
[
$$\Lambda$$
] = [ω_l^2] = LxL diagonal matrix
[c] = [Φ]^T[c][Φ] = LxL full matrix

Set

$$\{z\} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} \dot{q} \\ q \end{bmatrix}$$
(A2.6)
2Lx1

Then, (A2.5) becomes

$$\{\dot{z}_1\} = -[\bar{c}]\{z_1\} - [\Lambda]\{z_2\}$$
 (A2.7a)

By definition (A2.6)

$$\{\dot{z}_2\} = \{z_1\}$$
 (A2.7b)

Place (7a), (7b) together

$$\{\dot{z}\} = [A]\{z\}$$
 (A2.8)

where

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} -[c] & -[A] \\ & & \\ [I] & [0] \end{bmatrix} = \begin{bmatrix} -[\Phi]^{T}[c][\Phi] & -[\omega_{\ell}^{2}] \\ & & \\ [I] & [0] \end{bmatrix}$$

A standard eigenvalue problem can be formulated from (A2.8) and solved using the routine RESV in the NASA Langley library.

III. FORMAL PARAMETERS AND CALLING ASMD2

The subroutine ASMD2 is called with the statement:

CALL ASND2(N,NN,NROWC,C,FHI,WN,ER,EI,NTITLE,IPRT)

The formal parameters are defined as follows:

N= N.D.O.F. IN THE SYSTEM NM= NO. MODES USED IN THE ASSUMED MODE CALC. NROWC= NO. OF ROWS IN THE DIN. STATEMENT FOR C;PH1;WN;ER;EI IN THE CALLING PROGRAM C= THE DAMPING MATRIX FHI= THE MODAL MATRIX-EIGENVECTORS NORMALIZED TO UNIT MASS. WN= VECTOR OF UNDAMPED EIGENVALUES. ER;EI= VECTORS CONTAINING THE REAL AND IMAG. FARTS OF THE EIGEN OF THE DAMPED SYSTEM. NTITLE= A VECTOR(DIM=80) CONTAINING THE TITLE OF THE RUN. IPRT= A FLAG TO ALLOW PRINTING THE DYNAMICAL MAT.(1-PRINT, 0-NO

IV. OTHER SUBROUTINES USED

ASMD2 calls NASA Library routine RESV to compute the eigenvalues of the dynamical matrix [A]. The computed complex eigenvalues are stored in array ER(I) and EI(I), which are the real and imaginary part of the Ith eigenvalue of matrix [A].

.

С C С

С

С

С C

С С С

С

L,

ſ ſ

ί.

ŧ,

Ľ С

L С

C

С

С С

С

С С

С С

С

C C

13 12

```
SUBROUTINE ASMD2(N,NM,NROWC,C,FH1,WN,ER,E1,NT(TLE,IFRT)
         THIS PROGRAM USES THE ASSUMED MODE NETHOD TO COMPUTE
          CONFLEX EIGENVALUES OF A DAMPED SYSIEM.
          A FULL DAMPING MATRIX MAY BE USED.
          THE PROGRAM IS A NUDIFICATION OF PROGRAM CEIG 4/13/82.
         FORMAL PARAMETERS:
         N= N.D.O.F. IN THE SYSTEM
         GH- NO. HODES USED IN THE ASSUMED HODE CALC.
         PROVES NO. OF ROWS IN THE DIM. STATEMENT FOR C, PHI, WR, ER, EI
                 IN THE CALLING PROGRAM
         L= THE DAMPING MATRIX
         PHI= THE MODAL MATRIX-EIGENVECTORS NORMALIZED TO UNIT MASS.
         WH= VECTOR OF UNDAMPED EIGENVALUES.
         ERILLE VECTORS CONTAINING THE REAL AND IMAG. PARTS OF THE EIGENVALUE
                 OF THE DAMPED SYSTEM.
         NTITLES A VECTUR (DIM: 80) CONTAINING THE TITLE OF THE RUN.
          IPRE A FLAG TO ALLOW PRINTING THE UYNAUICAL UAT.(1"PRINT# 0 NO PRINT
         UINENGION C(NROWC,1), PHI(NROWC,1), WN(NROWC), ER(NROWC),
             F1(NROWE) + N111LE(80)
     DIMLASION DYEXAC(99,99), V(99,5), WK(270), A(99,99)
         MAX -99
          HI0F = N
          NMD · 2%NM
         FORM DYNAMICAL NATRIX
       11N-2X NM
        DO 100 I=1,NN
        100 100 J=1,NN
          A(I,J) = 0.0
100
            DYEXAC(I,J)=0.0
          DO 200 I=1.NM
          IN=I+NM
          DYEXAC(I,IN) = -WN(I) * WN(I)
          DYEXAC(IN,I)=1.0
200
        CONTINUE
          DO 12 J=1,NDOF
          10 12 L=1,NM
          DO 13 K=1,NDOF
            A(J,L)=A(J,L)+C(J,K)*PHI(K,L)
          CONTINUE
```

С	
	DO 14 K=1,NM
	DO 14 L=1,NM
	DO 15 J=1,NDOF
15	DYEXAC(K,L) = DYEXAC(K,L) - PHI(J,K) * A(J,L)
14	CONTINUE
C	. ,
	PRINT*, ***********************************
	PRINT 11
	PRINT 10,(NTITLE(I),I=1,80)
10	FORMAT(BOA1)
1	TRINT 11
11	FURMAT(//)
	IF (IFRT.EQ.0) 60 TO 210
ι.	
	PRINT 201
201	FORMAT(1H1;///;* DYNAMICAL MATRIX IS #///)
	DO 202 [=1,NN
202	PRINT 205, (DYEXAC(1,J),J=1,NH)
205	FORMAT(/,5X,5E15.6)
210	CALL RESV(MAX,NHD,UYEXAC,ER,EI,0,0,V,WK,IERR)
C	
	PRINT 1020,NM
	PRININ, "THE DAMPING MATRIX 15:"
	10 656 I=1,NDOF
666	- PRIVIX+(C(I+J)+J=1+NDOF)
i	
10.20	FORMAT(7,10X,* ASSUMED MODE METHOD, USE *,15,,* (000010*/)
	PRIMI 11
	PRINT#, THE DAMPED EIGENVALUES: *
<i>i;</i>	
	00 333 II=1,NNU
333	PRINI#; II; ER(1I); * + * ; EI(11); * J*
	PRINI 11
	FRINT 11
2.48.8 2.48.8	CONTINUE
11	

í

VI. CONTROL CARDS AND TEST PROGRAM

.

The test program TESTAS4 can be run through the use of the job file of Table 1. Table 2 is a listing of the test program TESTAS4.

-

Table 1 Control Cards and Input Data for Sample Problem

/JOB 1293B UVA BFW, CM300000, T1000. USEK, 697121E. CHARGE, 102428, LRC. DELIVER. 1293B D UVA ATTACH, FINMLIB/UN=LIBRARY. GET, TESTAS4. MAP(OFF). FTN, I=TESTAS4, L=0, OPT=1, B=F. LDSET, LIB=FTNMLIB. F. REWIND, OUTPUT. COPYEI, OUTPUT, OTTAS4. REPLACE, OTTAS4. DAYFILE, L=DATAS4. REFLACE, DATAS4. EXIT. REWIND, OUTPUT. COPYEI, OUTPUT, XOTTAS4. REFLACE, X011AS4, DAYFILE, L=XDATAS4. PACK, XDATAS4. REFLACE, XDATAS4. TEST: 2-DOF FREE SYSTEM 4 Title 2. 2 Title 1.3,-.5,0,0 4 DoF, 2 modes used in C2lc. 0.4 No printing of Dyn, matrix $\begin{bmatrix} 1.3 & -0.5 \\ 0 & 0 \end{bmatrix}$ 0.1 4 $\omega_i : 0, G_i = 10$ 0.577, 0.577 - P. W2 = 1.2247, G2 = 1 1.2247.14 0.815,-0.408 -0 EOI ENCOUNTERED. 1

59[†]

Table 2 Listing of program TESTAS4 P* PROGRAM TESTAS4(INPUT, OUTPUT) С Ċ DIMENSION G(88),C(99,99),PHI(99,99),WN(99),ER(99),EI(99) DINENSION NTITLE(80) С С DO 1 I=1,50 DO 1 J=1,50 C(I,J) = 0.01 С С INFUT SECTION С 10, (NTITLE(I), I=1,80) READ PRINT 10, (NTITLE(I), I=1,80) 10 FORMAT(80A1) 599 READ *, N, NM PRINT * N NM С DO 20 I=1,N READ*, (C(I,J), J=1,N) PRINT**(C(I))*J=1*N)20 READ *, IPRT PRINT *, IPRT C С DO 5010 I =1,NM READ*, WN(I),G(I) PRINT*, WN(I), G(I) READ*, (PHI(J,I),J=1,N) FRINT*,(FHI(J,I),J=1,N) 5010 CONTINUE PRINT*, "N WN G. DO 99 I=1,N 99 PRINT*, I, WN(I), G(I) PRINT*, PHI* 10 999 J=1+N 999 PRINT*, (PHI(J,I),I=1,N) С С CALL ASHD2(N, NM, 99, C, PHI, WN, ER, E1, NTITLE, IPRT) PRINT*, "1=REPEAT, 0=STOP* READ*, ITEST IF (1TEST.E0.1) GD TO 599 С C С END С

60

Fig. A2.1 Actively Controlled 2-dof system

VII SAMPLE PROBLEM

Figure (A2.1) shows an actively controlled 2-dof free-free system. The contorl law is

```
u_1 = -1.3 \dot{x}_1 + 0.5 \dot{x}_2
```

The input data to test program TESTAS4 is shown in Table 1. Table 3 shows the output.

.

.

.

Table 3 Output of Sample Problem

TEST: 2-DOF FREE SYSTEM

ASSUMED MODE METHON, USE 2 MODES

THE DAMPING MATRIX IS: 1.3 -.5 0. 0.

-

THE DAMPED EIGENVALUES: 1 0.+0.J 2 -.3403281689367+0.J 3 -.4790459155316+.971771301425J 4 -.4790459155316+-.971771301425J

Appendix A-3

Subroutine SPSTGN Documentation

Damped Eigenvalues Using Reanalysis

I. Introduction

SPSTGN is a FORTRAN subroutine that can be used to compute the damped eigenvalues when damping is introduced into an originally undamped system through the introduction of a diagonal viscous damping matrix. Based on the modal data of the undamped structure, the damped eigenvalues are computed using an efficient reanalysis formulation. It is the purpose of this document to summarize the formulation and usage of the subroutine SPSTGN.

II. Summary of the Reanalysis Formulation of the Damped Eigenvalue Problem

Given an undamped system described by the following normalized modal data

$$\omega_i$$
, $\{\rho_1\}$, $i = 1$ to $L \leq Number DOF = NELEM$

where

The normalization requirements are

$$\{\boldsymbol{\rho}_{i}\}^{\mathrm{T}}[\mathrm{M}]\{\boldsymbol{\rho}_{j}\} = \left\{ \begin{array}{ccc} 0 & \mathrm{if} & \mathrm{i} \neq \mathrm{j} \\ 1 & \mathrm{if} & \mathrm{i} = \mathrm{j} \end{array} \right\}$$

where [M] is the system mass matrix.

With the introduction of n damper at dof J_1, J_2, \dots, J_n , the damped eigenvalue problem can be formulated as the solution of the characteristic equation:

$$det(I + \hat{R}(s)\hat{C}) = 0$$
 (A3.1)

where

 $\{\hat{R}\} = n_c \times n_c$ condensed receptance matrix

64

with elements

$$\hat{R}_{ij} = R_{J_i J_j} \qquad \text{for } i = 1, n_c$$
for $j = 1, n_c$

The element R_{ij} are computing using

$$R_{ij} = \sum_{l=1}^{L} \frac{\rho_{il}}{2}$$
(A3.2)

$$R_{ij} = \sum_{l=1}^{L} \frac{2}{2} + \omega_{l}$$

The following nomenclature is helpful in understanding the program

L = no. of modes used in the receptance calculation
 (< number of DOF's)
n_C = NSTAT = no. of dampers introduced
J_i = ISTATNO(i) = ith damper location (DOF in the model)
 for i = 1 to NSTAT

$$[\hat{c}] = \begin{bmatrix} \tilde{c_1} & & & \\ & c_2 & & 0 \\ & & \ddots & \\ & 0 & & \ddots & \\ & 0 & & & c_{n_c} \end{bmatrix}$$

= condensed diagonal damping matrix

c = CARRAY(I) = ith damper value, for i = 1 to n [located at J (or ISTATNO(i)]

Two types of variation of damping constants are allowed. For no variation, set NCD = 1, IDOPT = 0, and CDINC = 0.

- A. IDOPT = 0, all dampers vary at the same time. For this case the initial damper values are $c_1 = CARRAY(I)$. Then all the c_1 's are increased by CDINC after each pass through the code. There are a total of NCD increments as specified by the user.
- B. IDOPT = 1, only one damper value changes, all other values remain constant. The initial damper values are input through the array CARRAY(I), and the initial damper values are

c_i = CARRAY(i) for i = 1 to n_c. C_n will increase by CDINC each time the damper constants d are updated. C_n = CARRAY(n_d) + CDINC n_d n = NODEPL = the number of the particular damper in ISTATNO(I) being varied.

III Input Parameters

III.1 Pormal Parameters

Description of the 11 formal parameters:

```
NELEM: number of DOP's in the original system
NMOD : the number of modes requested for the printout \leq L RUNNO: your run number identifier IDOPT: 0 = all C values vary
                                         1 = only one value varies (see NODEPL)
EPS : convergence parameter (used in the test for convergence in
                                         the Muller's Method root finding routine)
NDAM : number of modified system modes desired (< L)
NUMITER: maximum number of iterations per eigenvalue
CDINIT: initial damper value (units should be consistent with
                                               mass and stiffness, e.g. lb sec/in)
CDINC : increment in damper vlaue
NCD
                          : total number of damper increments
NODEPL: the number of the varied damper in ISTATNO(1). NODEPL is an
                                               element of 1,2,...,NSTAT.
Note: if IDOPT = 0,
                                     c_i = c_{i0} + \Delta c for L = 1, 2, \dots, NSTAT
                                     if IDOPT = 1
                                     c_{i} = c_{i} \neq \text{NODEPL}
c_{i} = c_{i} + \Delta c, i = \text{NODEPL}
i = c_{i} + \Delta c, i = c_{i} + \Delta c, i = c_{i} + \Delta c, i = c_{i} + \Delta c_{i
```

III.2 Common Blocks

In addition to these variables, the following variables enter the subroutine through the common blocks and must be evaluated prior to calling SPSTGN. Also, the common block set contained in the file COMSPST must be placed in the main program.

NTITLE(I):	a holerith array with a title of the job
L:	the number of modes used in the receptance calculation
OMEGA(I):	a vector containing the L values of the original ω_{ℓ} a matrix whose L columns are the modeshapes of the
	original system (DIM: NELEM x L)
	Note: These modeshapes must be normalized to unit
	generalized mass.
NSTAT:	number of stations where dampers are placed
ISTATNO(I):	an array giving the location (DOF) of the attached
	dampers I = 1 to NSTAT
CARRAY(I):	an array containing the damper value for position
	ISTATNO(I), I = 1 to $NSTAT$

IV. Using Subroutine SPTGN

The data required are input through formal parameters (Section III.1) and through the common block set COMSPST, into SPSTGN (Section III.2). It should be noted that mode shapes have to be normalized to unit generalized mass. That is,

$$\{\varphi_{i}\}^{T}[M]\{\varphi_{i}\} = 1.0$$

V. SAMPLE PROBLEM

The Model is the NASA 88 D.C.F. grid. The model data is read from TAPE 12 is NASSAGG2, which contains data for all 88 modes, including 3 rigid body modes. Four dampers are placed at D.O.F. 1, 11, 77, 88. The initial damper values are 0.2. The approximate receptance elements are to be calculated on the basis of using L(= 30**) modes of the 88 modes. The first 2 modes are to be printed out (NMOD = 2). All the damper values are to vary (IDOPT = 0) with increments of CDINC = 0.1 for NCD 5 trials. The convergence criterion for eigenvalues is $|\det(A)| < \epsilon = 10^{-5}$. The test program TESTSP is designed to interactively accept the above data and then call subroutine SPSTGN to do the calculations and print out the results. The following input values were given (the remark number corresponds to the number in the following TESTSP printout). Remark 3 TEST SPST (title) 2 88, 2, 30, 1 (88 DOF, 2 modes to be printed, use $30 \mod s$, Run No. = 1) 3 0 (all damper values change) 4 The modal data was read from TAPE 12 NASAGG2 5 4, 1.E-S, 2, 50 (4 dampers ϵ (EPS) = 10 computes 2 damped eigenvalues, max 50 iterations) 6 1, 11, 77, 88 (damper locations) 7 0.2, 0.2, 0.2, 0.2 (initial damper values) 8 0.2, 0.1, 5, 1 (initial damper values, increment, 5 increments, all dampers vary)

**An arithmatic underflow condition will appear if a larger L is used. We have had such an experience by using L = 88. This is due to the formulation used in teh receptance calculation. It can be improved if so desired. Our experience indicates that using L = 30 provides very good results.

VI. Program Listing and Sample Run

The subroutine SPSTGN is listed in Table 1. Table 2 lists a sample main program TESTSP which calls SPSTGN. The output of the sample problem is given in Table 3. The control cards necessary to run this sample problem is shown in Table 4.

Table 1 Listing of Subroutine SPSTGN

SUBROUTINE SPSTGN(NELEM, NMOD, RUNNO, IDOPT, EPS, NDAM, NUMITER, CPINIT, CPINC, NCD, NODEPL) 2 SPETG URITTEN BY DR. A. FALAZZOLO AND DR. B. F. WANG MAY , 1981 COMPUTER CODE TO GENERATE THE COMPLEX EIGENVALUES USING REANALYSIS FORMULATION. INPUT CARD DESCRIPTION NELEM: NO. OF ELEMENTS MMOD: NO. OF MODES PEQUESTED FOR PRINTOUT AND DAMPER SENSITIVITY ANALYSIS AND PLOTTING 0 10 AND 0 L RUNNO: RUN NUMBER IDENTIFIER IDDPT: OFALL C VALUES VARY 17 ONLY ONE VALUE VARIES EPS: CONVERGENCE PARAMETER NDAM: NUMBER OF HODIFIED SYSTEM MODES DESIRED C L-2 AND 020 NUMITER: MAYIMUM NUMBER OF ITERATIONS PER EIGENVALUE ODIDIT: IDITIAL LAMPER VALUE FOR ROOT LOCUS PLOT LE. SEC./IN THIS VALUE WILL OVERIDE THE VALUE IN POSITION NOPERL 7 ENTERED INTO CARRAY CDINC: DAMPER INCREMENT FOR ROOT LOCUS PLOT LP.SEC./IN NCD: TUTAL NUMBER OF DAMPER INCREMENTS FOR ROOT LOCUS PLOT NODEFL: THE NUMPER OF THE VARIED DAMPER IN ISTATNO(I) I.E. NODEPL IS AN ELEMENT OF 1,2,...NSTAT. THIS TELLS WHETHER PODEPL IS FIRST - SECOND ETC. IN ISTATNO IN ADDITION THE FOLLOWING PARIABLES ENTER THE SUBROUTINE THROUGH THE COMMON BLOCK: L: UD. OF HODES FOR RECEPTANCE CALCULATION JELATIO(I+1 (HE VETAT DAMPER LOCATIONS (NODE DUBBERS) CAPPA('I): (HE DAMPER VALUES CORPESPONDING TO IS)ATNO(I) MSTAT: RUNPER OF STATIONS WHERE DAMPERS ARE ATTACHED PHICE/J.: AD ARRAY CONTAINING THE UNDAMPED SYSTEMS EIGENVECTORS NOPHALIZED TO UNIT GENERALIZED MASS OMEGA(I): A VECTOR CONTAINING THE FREQUENCIES OF THE UNDAMPED SYSTEM NTITLE: AN ALPHA ARPAY CONTAINING THE TITLE OF THE PROJECT HNIFGER ISTATHD DIMEMBICH lecu(ive)+TEMP(100) COMPLEX CIGEN, SLAMIN, VLAM, RLAM, COEIG, SLAMNXT, CMCDEIG, FII COMPLEX FHAT

C С C C C C 0 C C C C C С C r, С C Ü Ċ C С C С С С C ٢, C Ľ,

1, 1

1

ч С

٢,

Ç

LOGICAL TEST

```
Table 1 Continued
```

```
0
```

```
CCCAPCALARTY CONTRACTOR (200) ARE (200) ARE (200) ARE (200) ARE (200)
      CONMON / BEN2 / SK(1,1)
      COMMCN/BLK3/SSTR(88),SSROT(89)
      COMMON/BLK6/WR(28),Z(1,1),FHI(88,88),OMEGA(88),DYN(1,1),
     6 EM(1,1)
      COMMON/BLK7/VLAM(3), RLAM(3), CDEIG(20)
      COMMON/BLK8/L
      COMMON/BLN10/SMINV(1:1)
      COMMON/BLN12/WREX(105),WIEX(105)
      COMMON/REK13/CMCOEIG(105)
      COMMON/BLK14/SENSD(1,1)
      COMMUN/BLK15/A(1,1)
      COMMON/BLN16/PMR1
      CONMON/BLKCO/IAUTO,REMAX,AIMAX
      COMMON/BLN21/STOM(83)
      COMMON/BLL22/FACT
      COMMON/BLK23/ISTATNU(16),NSTAT,CARRAY(16)
      COMMON/BLE24/R1VEC(16)
      COMMON/BLL25/IME
      COMMON/BLN26/FHAT(10:10)
      COMMON / BLK27 / NTITLE(80)
£
          ******
r.
          ********
          CM=1+0
          PETA=1.0
          IDIAG=0
      READ *, NELEM, NMOD, NRIG, L, IFLAG, R, BETA, RUNNO
С
С
      PRINT 1, NELEM, NMOD, NRIG, L, IFLAG, R, BETA, RUNNO
C
    1 FORMAT(5110,3F10,3)
      N=NELEN
      秋村村=08上日村十十
ξ,
       READ PRIMOPT - LDOPT
ŗ
      PRIME 75, INCLE- LOOPT
       TECINOPT.EC.0; GO TO 140
1
C_{1}
       50 (0 250
1:10
          INMETIMUE.
r<sup>*</sup>
. •
       N) 3010 1 -1-L
f
       PEAB(12,601L) OMEGA(I), OH
        STOR(I) OMESA(I)
ŋ
       PEAD(12, 011) (PHI(J,I), J:1, 1)
5010
        SOUL LUDE
5011
       FURMAT(DE16.9)
5011
        FORMAT(5), DE16.9)
        50 (0 240
11.0
           JUNIINO /
      00 T I 17:896
E,
      FEAP ##SSTR(I)#SSROT(I)
0
      IMINT 4,5STR(I),SSROT(I)
С
    6 FORMAT(2F10.3)
С
    5 CONTINUE
n
      DO 10 I 1,NELEM
```

Table 1 Continued

```
C
      READ *,AEJ(I),ARLJ(I),ATJ(I),ARHJ(1),ARO(I)
      PRINT 15, AEJ(I), ARLJ(I), ATJ(I), ARHJ(I), ARO(I)
£
C - 15 FORMAT(SF10.3)
   10 CONTINUE
С
240
          CONTINUE
      READ $,NSTAT,EPS,NDAM,NUMITER, IDIAG
С
      PRINT 20,NSTAT-EPS,NDAM,NUMITER, IDIAG
0
   D0 F0RMAT(110,E10.3,3110)
0
0
      READ 115; TMDFLT
  115 FORMAT(I10)
C
С
      READ # (ISTAINO(I) , I=1, NSTAT)
      PRINT 75, (ISTATNO(I), I=1, NSTAT)
С
C
   25 FORMAT(1615)
0
      READ #, (CARRAY(I), I 1, NSTAT)
      PRINT 77; (CARRAY(I); I=1; NSTAT)
С
C
   77 FORMAT(3F10.3)
C
      READ *, CDINIT, CDINC, NCD, NODEPL
C
      PRINT 55, CDINIT, CDINC, NCD, NODEPL
C
   55 FORMAT(2F10,F,2I10)
C
   45 FORMA((2110,2F10.3)
£
C
      PPINT 101,T
  101 FORMAT(1H->10X>*TIME 1 - *>F10.3)
C
         ****
C
         *****
C
          REANALYSIS SECTION
C
         ****
С
      CARPAY(NODEPL)=CDINIT-CDINC
C
          CALL INPE2(L, EPS, NDAM)
      PO.30 IF1,NCD
£
      CAPEAY(NODEPL) CAPEAY(NODEFL++CD1+C
          CALL IMPP2(L,EPP+UUAM)
      DO CO LUDETO LUNDAM
      FACT-1.0
      CALL INTTIAL (SLAMIN, ENDE/G, PETA-I)
      NU 40 ITER+1-PUMITER
      CALL APPLIED(SLAMPYT)
      CALL PEPATE/SLAMPXI-TPPEIG+
      OALL CONVEHRITER, LPC-(EST)
      HME-TTER
      1F(16ST) 50 TO 70
   30 CONTINUE
   70 CALL EIGSTOR(INDEIG)
      CALL MEXMODE(CLAMIN, INDEIG)
   50 CONTINUS
      CALL APSISOT(PDAM)
      OALL APEIPPI((DAM)
      FRIMI 103,T
        LF(IPOPT.EQ.0) GO TO 1100
       CARRAY(NODEPL)=CARRAY(NODEPL)+CDINC
        CO TO 30
```

```
DO 1000 ID=1, NSTAT
1100
1000
             CARRAY(ID)=CARRAY(ID)+CDINC
  103 FORMAT(1H ,2X,*TIME 3 = *,F10.3)
   30 CONTINUE
               RETURN
      END
С
C
C
      SUBROUTINE INFR2(L, EPS, NDAH)
      INTEGER ISTATNO
      COMMON/BLK23/ISTATNO(16),NSTAT,CARRAY(16)
      PRINT 1
    1 FORMAT(1H ,40X,*BEGIN REANALYSIS PORTION OF CODE*)
      PRINT 20
   20 FORMAT(1H0,5%,*NODE*,10%,*DAMPER VALUE*)
      TO 30 I-1-NSTAT
      PRINT 35, ISTATNO(I) - CARPAY(I)
   35 FORMAT(1H0,6X,12,15%,E10,3)
   30 CONTINUE
      PRINT JALAEPS
    3 FORMAT(1H >10X**NO. OF MODES FOR RECEP, CALC++L = K,
     5 15-5Y-FEPS - #,E10.3)
      PRIJE 10-HDAM
   10 FORMATINE (14 )10 (* HUMPER OF HODIFIED BYSTEM MODES LESIRED (* *-IT)
      RETURN
      END
      SUBROUTINE INITIAL (SLAMIN-INDEIG, PETA, I)
C
         CALCULATE THREE STARTING VALUES FOR MULLER ITERATION
      INTEGER ISTATNO
      COMPLEX CIGEN, SLAMIN, VLAM, PLAM, COEIG, SLAM, RL · CMPLX, EE
      COMMON/PER/7/VEAM(3),SEAM(3),COEIS(20)
      20MM0072L137L
      COMMON (E) 1.21 (STON(32+
      *ORMOR (BLE22)/FACT
      ////MON/BLNPB/ISTATHO/15>/USTAT/PARRAY(14)
      DOMMOR TELLOS / LINE
          JPIG A
          11960 0
      ICE HUELO
      >> (#REF.L(c.1 + ICE INDEIG+1
      10/101A0.20.0 · 00 10 14
      PRINT 1,ICE
    I FORMAT(1H +40X+FITERATION FOR DIGENVALUE */ID)
   10 CONTIMUE
      VZ-STHM(15E)
      TE CMPLY(-0,5,ZZ)
      HE FERMERA
      TERIAL CLAMIN-EE
      /////E.1/ SLAMIN-COEIG(INDEIG)/BETA
      ULAM(3)=SLAMIN*(1.0;0.001)
      ULAM(2)-1.001*SLAMIN
      VLAM(1)=SLAMIN
      SEVW=AF(3)
      CALL POFLA(SLAM, RL, INDEIG)
```

72

· ··· ···

۰.

.

Table 1 Continued

```
RLAH(3)=RL
 SLAM=VLAM(2)
 CALL ROFLA(SLAM, RL, INDEIG)
 RLAM(2)-RL
 SLAM=VLAM(1)
 CALL ROFLA(SLAM, RL, INDEIG)
 RLAH(1)=RL
 AB=CADS(RLAM(1))
 T F' = L
 TP=1.0/TP
 CB=AB**TP
 FACT=1.0/CB
 RLAN(3)=RLAM(3)/AB
 RLAM(2)-RLAM(2)/AB
 RLAM(1)=RLAM(1)/AB
RETURN
 END
 SUBPOUTINE MULLER(SLAMNXT)
    CALCULATE NEXT EIGENVALUE GUESS BY MULLER METHOD
COMFLEX SLAMNXT, VLAM, RLAM, COEIG, CSQRT, FZJ3J2, FZJ1J2, FZJ1J3,
6 FU1U2U3,W,SQ,AC1,AC2,DEN
COMMON/BLK7/VLAM(3)+RLAM(3)+COEIG(20)
FZJ3J2=(RLAM(2)-RLAM(3))/(VLAM(2)-VLAM(2))
 FZU1U2=(PLAM(2)-PLAM(1))/(VLAM(2)-VLAM(1))
 F2J1J3-(FLAH(3)-FLAH(1))/(VLAH(3)-VLAH(1))
 FJ1J2J3-(FZJ3J2-FZJ1J2)/(VLAM(3)-VLAM(1))
 W = FZJ1J2 + FZJ1J3 - FZJ3J2
 SQ=U**2-4.0*FLAM(1)*FJ1J2J3
 SQ=CSQFT(SQ)
 AC1=W+S0
 AC2=0-S0
 T1=CARS(ACL)
 F1-0ARS(ACO)
 IF ( T1. GE, T2 ) DEN-AC1
 IF([2.GT.)1) DEN-602
SLANDYT ULAN(1)-0.0 MELAM(1)/DEN
FETURE
END
SHEROPITUE UPPATE(SLAMPXT.THUETO)
 1014年にHII-101161121。中国在台湾部長百倍。1019年16日。HII-
CONMON/PELC//ULAM(3) - FLAN(3) - COFIG(20)
   PPDATE THE LAMBDA (VLAM) AND P OF LAMPDA (RLAM) ARPAYS
PLAM(3)=PLAM(2)
リビご替(2)=リビAM(1)
14 AM(1)=0LAMNXT
CALL ROFLA(SLAMNYT, RL, INDEIG)
おしかみくごう おしかみてのき
でしたがくなり。民に合格くなど
民任百首(1)-民任
RETURE
C M III
SUBROUTINE CONVCHK(ITER, EPS, TEST)
LOGICAL TEST
COMPLEX VLAM, PLAM, COEIS, SLAM, TEST1, TEST2, TEST3, FII
```

C

Table 1 Continued

```
COMMON/BLK7/VLAM(3),RLAM(3),COEIG(20)
      COMMON'BLK25/IME
C
         TEST FOR CONVERGENCE IN MULLER METHOD
          IDIAG=0
      EPS2=0.01*EPS
      SLAM=VLAM(1)
      TEOT1=VLAM(1)-VLAM(2)
      TESI2-RLAM(1)
      TLS13=VLAM(3)-VLAM(1)
      CHECK1-CABS(TEST1)
      CHECK2=CABS(TEST2)
      CHECK3-CABS(TEST3)
      TEST=, FALSE,
      IF(CHECK1.LT.EPS.AND.CHECK2.LT.EPS) TEST=.TRUE.
      IF (CHECK1.LT.EPS2) TEST=.TRUE.
      IF(CHECK3.EQ.0.0) TEST=.TRUE.
      [F(IDIAG,EQ.0) GD 10 5
      PRINT 1, LTER, VLAM(1), RLAM(1), CHECK1-CHECK2, CHECK3
    1 FORMAT(1H +1X, 12, 1X, E12, 5, 1X, E12, 5, 3X, E12, 5, 1X, E12, 5, 3(5X, E12, 5))
    5 CONTINUE
      RETURN
      END
      SUBROUTINE EIGSTOR(INDEIG)
      COMPLEX VLAM, PLAM, COEIG
         STORE MODIFIED SYSTEM EIGENVALUE
....
      CONMON/BERD/VEAM(3), REAM(3), COEIG(20)
      COEIG(INDEIG)=VLAM(1)
      RETURN
      ENU
      SUPROUTINE NEXMODE(SLAMIN, INDEIG)
      COMPLEX SLAMIN, VLAM, PLAM, COEIG
                                             COMMON/FLK7/VLAM(3),RLAM(3),COEIG(
      COMMON/BLL25/INE
         THIS SUPPOUTIVE IS CUPRENTLY NOT FEING USED.
C
         SUFROUTIVE INITIAL IS NOW MANING THE INITIAL GUESS
0
      OJEGM1 EOI
          10156-0
          11110:0
      IF (PFEL.CO.1) ICE: ENUEIG+1
         CALUULATE INITIAL CENTRAL EIGENVALUE GUEES FOR NXI MODE
0
      SLAMIN-1.001*COE1G(INDE1G)
. `
      PRIMT SPICE, LHE
    U FORMAT(1H ,SOX,YEIGEDVALUE Y,I3,5X,*NO, OF ITERATIONS - *,I5)
      RE FURP
      END
      SPEROUTINE FORLATSLAM-FE-100EIG)
       ENTROPE ISTATAO
      COMPLE C SLAM-FL/ULAM-FLAM-LOEIG,FII-4, JONUG,FHAT-482(10,10)
         SUIFOUTIME TO EVALUATE THE ITERATED FUNCTION
12
0
      COMMON/BLNS (WR(28) - T(1;1) - PHI(88+98) - OMEGA(88) - DYN(1+1) -
      COMMON/BLN3/WR(28),Z(1,1),PHI(88,88),OMEGA(88),DYN(1,1),
     6 SM(1,1)
      COMMON/BLK7/VLAM(3),RLAM(3),COEIG(20)
      COMMON/PLN8/L
```

```
74
```

```
COMMON/BLN22/FACT
      COMMON/BLK23/ISTATNO(16),NSTAT,CARRAY(16)
      COMMON/BLK26/FHAT(10,10)
C
            PRINT 320, FACT
320
           FORMAT(10X, *FACT=*, 2E15.5)
С
           FRINT 100, SLAM
100
               FORMAT(10X; * SLAM + *,2E16.5/)
          NRIG=0
          BETA=1.0
      CALL RECEP(SLAM)
С
        PRINT 100.SLAM
      DO 20 I=1,NSTAT
      DO 30 J=1,NSTAT
   30 BDC(I;J)=FHAT(I;J)%CARRAY(I)%SLAM%BETA
      BDC(I,I)=BDC(I,I)+(1.0,0.0)
   20 CONTINUE
      ISTAT=NSTAT
      LF(NSTAT,EQ.1) G=BDC(1,1)
      1F(MSTAT.ER.1) GD TO 50
      CALL CDETER(ISTAT, BDC, G)
   U0 CONTINUE
C
           PRINT 100, SLAM
C
                 PPINT 310.G
310
                               1,2E16.5/)
             FORMAT (10X+Y G
      RL C
      IF(MRIG.EQ.1) RL-G/SLAM
С
          PRINT 310,G
С
        FRINT 330, BETA
330
               FORMAT(10X,*BETA=*,2E16.5)
      DO 1 I=1,L
              PRINT 340,I
C
310
              FOFMAT(10X; k I-*; I5)
    J RU-P1.2(3LAM222(BETA22)+OMEGA(I)222: *FACT
      1F(T)DE16,E0,L) 60 TO 10
      THI TRDEIG-1
      00 2 [-1-LNT
                 PFRMT 200, I, COELG(1)
C
260
            FORMAT(10%, FE, COULD(I)%, IS, CE14.()
      IL_PL/(OLAM-GOPTIG(E))
      MALLIMAG(COEIG(IN)
      TH/RA-EQ.0.00 90 TO 0
              PEINT 110,CONUS(CHEIG(I))
٢
           FORMAT(10X; #CONJG +*;2E16,5)
110
      PL -PL/(SLAM-CONJG(COEIG(I)))
    2 CONTINUE
   TO CONTINUE
      REPERM
      1.220
      SUBFOUTINE FECEP(SLAM)
         COMPUTE PECEPTANCES
0
C
         HOUED NORMALIZED TO UNIT MODAL MASS
      INTEGER ISTATNO
      COMPLEX SLAM, FII
      OOMPLEX DENFEHAT
```

. .

~ •

Table 1 Continued

```
£)
      COMMON/BLK6/WR(88),Z(1+1),PHI(88,28),OMEGA(88),DYN(1:1),
      COMMON/BLN6/WR(88);Z(1;1);PHI(88;88);OMEGA(88);PYN(1;1);
     6 Sh(1,1)
      COMMON/BLK8/L
      COMMON/BLK16/PMR1
      COMMON/PLF23/1STATNO:16/-NSTAT/CARRAY(16)
      COMMON/BLK26/FHAT(10,10)
          BETA-1.0
      DO 5 I=1,NSTAT
      TP=ISTATNO(1)
      DD 10 J=1,NSTAT
      FHAT(I,J)=(0.0,0.0)
      JP=ISTATNO(J)
      00 20 K=1,L
   20 FHAT(I,J)=FHAT(I,J)+PH1(IP)()*FHI(JP-%) (
     ¿ (SLAM##2#(BETA##2)+DMEGA(K)##2)
   10 CONTINUE
    S CONTINUE
      RETURN
      FNP
      SUBROUTINE APEISOT(NDAM)
      COMPLEX VLAM, PLAM, COEIG, DEN
      COMMON (RELTZ/VEAM(3)+REAM(3)+CDEIG(20)
         APRAMOE MODIFIED SYSTEM EIGENVALUES
                                                (APPE0/)
C
         ACCORDING TO INCREASING IMAG, PARTE, DEH TIME SCALE EIGENVALUES
          PETA=1.0
      DO 10 I=1,NDAM
   10 COEIG(I) -COEIG(I) *BETA
      NFC=NDAM-1
      DO 1 I-1,NFC
      VSTOR=0
      TMEN-100000.0
      191-1
      00 : J-IST/PAR
      AT ATMAG(COE16(J))
      AT A85(A1)
      IF ( ALLES THEP) THIN AL
      JE(ALLEL (MIN) USTOPED
    2.0000.000
      11)21401CH154
      UNFIS()) COEIC(JETOR)
      INDELGE JSTOR / PDEN
    1 000110UE
      REDEN
      十四日
      SUPPONITE APEIPRT(NDAM)
      COMPLEX VLAM+RLAH+COEIG
      COMMON/FEL 7/VEAM(3) - REAH(3 - CDEIG(20
         PRINT THE MODIFIED SYTEM APPPOY, EIGENVALUES
      PRINT L
    1 FOPMA1(1H >22X)*MODIFIED SYSTEM APPPOXIMATE EIGENVALUES?*12X;
     5 *ZETA*,13X,*OMEGAN SEC-1*)
          NRIG=0
      70 10 I-1+NDAM
      ICE-I
```

ſ

, **.**

1.5

.........

```
IF(NR1G.EQ.1) ICE=I+1
      ()MEGAN=CABS(COEIG(I))
      ZETA=-REAL(COEIS(I))/DMEGAN
     PRINT 20, ICE, COEIG(I), ZETA, OMEGAN
   20 FORMAT(1H ,104,15,10X,E12,5,3X,E12,5,13X,F13,4,11X,E12,5)
   10 CONTINUE
      RETURN
      END
      SUBROUTINE CDETER(NST+A+D)
1)
C
         DETERMINANT OF AN NST BY NST COMPLEX MATRIX WHERE NST:1
      COMFLEX A(10,10), D
      COMPLEX FMULT, BIG, DET, BG, TEMP
      NSIZ=NST
      ICOUNT 0
      NUMSYS=NSTZ-1
      DO 14 I=1.NUMSYS
C
C
          SCAN FIRST COLUMP OF CURRENT SYSTEM FOR LARGEST ELEMNT
ŋ
          CALL THE POW CONTAINING THIS ELEMENT, ROW NBURW
<u>e</u>
      NN=1+1
      RIG-6([*E)
      NRGPW E
      DO 5 J NN,NSIZ
      IF(CABS(BIG)-CABS(A(J,I))) 3,5,5
    6 BIG=A(J,I)
      NBGRW=J
    5 CONTINUE
      BG=1.0/BIG
0
0
       SWAP ROW'L WITH FOW MEGRU UNLESS I=NBGRW
      IF(DEGRW+NE,I) ICOUNT-ICOUNT+1
      IF(#BGRU-I) 7,10,7
Τ,
e
          SUAP A MATRIX ROUS
\epsilon
    / DD S J-T/DPI'
      TEMP-1 (NBGPU)J.
      石(月86を見えよ) 古(手えま)
    3 h(1+J)-TEMP
         CLIMINATE UNKNOWNS FROM FIRST COLUMN OF CURRENT SYSTEM
C
   10 BO 13 N ND-NSI7
15
٢,
           COMPUTE PIVOTAL HULLIPLIER
      FMULT=-A(k,1)*RG
С
         AFFLY FMULT TO ALL COLUMNS OF THE CURRENT A MARRIX ROW
      DO 11 J=NN,NSIZ
   11 A(F,J) - PHULT*A(T,J)+A(F,J)
   13 CONTINUE
```

```
Table 1 Continued
   14 CONTINUE
      D = (1.0.0.0)
      DO 100 I=1,NSIZ
  100 D=D*A(I+I)
      JCOUNT-(ICOUNT/2)*2
      IF(JCOUNT,NE,ICOUNT) D=-D
      RETURN
      END
      SUBROUFINE HEADNG
      INTEGER ISTATNO
      COMMON/BLK23/ISTATNO(16), NSTAT, CARRAY(15)
      PRINT 1
    1 FORMAT(1H1,40X, *EISPACK(EXACT) SOLUTION OF THE MODIFIED SYSTEM*)
      FRINT 20
   20 FORMAT(JH0,5X,*NODE*,10X,*DAMPER VALUE*)
      DO 30 I=1,NSTAT
      PRINT 35, ISTATNO(I), CARRAY(I)
   35 FORMAT(1H0,6X,12,16X,E10.3)
   30 CONTINUE
      RETURN
      ENH
      PUBPOUTINE LABRT(ISU,LHQL,INX)
      DIMENSION LHOL(5)
      LUGICAL PS.IS
      IF((ISW.EQ.O).OR.(ISW.GT.J))RETURN
       GO TO (1,2,3,4,5) ISW
      DATA NP/10/, PS/.TRUE./, TS/.FALSE./
      IF(PS.AND.(NP.GT.O)) PRINT 27-LHOL/1NX
-1
FORMAT(1H0,9%, 5A10, 3%, 06)
      NP=HP-1
      JE(13) CALL EYI)
      十层(明)中
      PS-JEALCE,
      RETURN
ĩ
      十名 (尺甲匠,
      NH - 1117
      RETURN
h
      ាង ក្រុមអ្ន
      计自己的时间
      19 .FALSE.
                            26
      与上于归民制
        1111
```

Table 2 Listing of Program TESTSP

PROSEAM TESTSP(INPUT, OUTPUT, TAPE12) C SPETG WRITTEN BY DR. A. PALAZZOLO AND DR. B. P. WANG MAY > 1981 COMPUTER CODE TO GENERALE ROOT LOCUS PLOTS FOR A EULER BERNOULLI BEAM С С MODEL WITH MULTIPLE DAMPERS-С THE BEAM IS SUFFORTED BY TRANSLATIONAL AND ROTATIONAL SPRINGS. C THIS CODE WAS DEVELOPED UNDER THE NASA LANGLEY SPACE STRUCTURE CONTRACT INTEGEP ISTATNO DIMENSION IROW(100), TEMP(100) COMPLEY CIGEN+SLAMIN;VLAM+RLAM+COEIG;SLAMNYT+CMCCEIC;FII COMPLEX FHAT LUCICAL TEST COMMON/FLR1/AEJ(50);ARLJ(50);ATJ(50);ARHJ(50);ARO(50) С COMMON/BLK2/Sk(88,88) COMMON / BLK2 / SK(1,1) COMMON/BLL3/SSTR(88), SSROT(88) COMMON/BLK6/WR(25),Z(1,1),FHI(28,98),OMEGA(89),DYN(1,1), C COMMON/BLR5/WR(88), <(1,1), PHI(88,88), OMEGA(88), DYN(1,1), 3 SH(1,1) COMMON/BLK7/VLAM(3),RLAM(3),CUEIG(20) COMMON/BLES/L COMMON/ELL(10/EMINV(1,1) COMMON/BLK12/WREX(105) .WIEX(105) COMMON/BLK13/CMCOEIG(105) COMMON/REN14/SEMBD(1+L) COMM09/5LK14/SEUSD(1+1) 0.96340(1/0L515/A(1,1) + UMm0.1/PLL16/PMP1 COMMON/BLN20/JAUTO, PEMAX, AIMAX COMMON/PLK21/STOM(33) COMMON/BLL22/FACT COMMON/BLN23/ISTATNO(16),NSTAT+CARRAY(16) COMMON/BLK24/R1VEC(16) COMMON/PLL25/IME COMMON/SELUCITIENT(10+10) LUMHON / BLL27 / MELTLE(E0) ***** 149 KINPUT DATA SECTION C ******************* PFA0 10+(PTI 1 E(1)+F-1+80) (1) PRINT AD, (NETTIE(L) - I=1+20) 20 EPPピる子 (主ぐ合生) 「「たんか」オ・パトレンパ・パパウカテレ・ビビヤタム TENTAL 1+ "AEFFEW*DECEPF*EADUAD : ...AEFEW*MMOD*F*EADAMO N DELEN 1 주석님 [미요 : [145] (3) STAD AFTDORT TTERT 25,TDOR1 FEAN MODAL DATA FROM TARE12 10 5010 I -17E READ(12,6011) OMEGA(I), GH 4 STOM(I)=OMEGA(I) READ(12+5011) (PHI(J,I),J=1+N) CONTINUE 5010 5011 FORMAT(SE16, ?) 5011V FORMAT(5(, CE16, P)

£

ı"

6

Table 2 Continued

ŧ THAD K-NSTAT-EPS, NDAM, NUMITER PRIMT F. NSTAT, EPS - NDAM, NUMITER : ", NSTAT, EPS, NDAM, NUMITER 20 FORMAT(I10-E10.3,3110) 115 FORMAT(I10) 6 HEAD ** (ISTATNO(I) · I-1 · NETAT) % PINT PS+(ISTATMO(I)+I+1;NETATM T FURMAT(1315) (1) (1) + (1) + (1) + 1 - 1 - PETATY PRENT TO- TOAPPAY(I) - I=1-NSTATY 7_ FORMAT(9510.3) PLEAD F-CDINIT-CDINC-NCD, NODEPL FRINE 05, COJHIT, CUIND, NCD, NOLEFL TU FORMAT(CF10.3,2110) AVE FORMATICITOSEFIC.E) £ ç s CALL OPSIGUATELEN, NMOD, FUNNO, IDOFT, EFS, NDAM, DUMITER, PDINIT-CRINC-RCD-RODERL + C ņ $-\overline{E}$ \overline{E} \overline{D} - -

Problem
Sample
of
Output
m
Table

0	NOUL	DAMPER VALUE - BEGIN REAMALYSIS PORTION OF COME	
00000			
		RECEF. CALC., D SYSTEN MODE	
		MUDIFIED SYSTEM APPROXIMATE ENGENVALUES ZETA .27372E-0715134E-078773 .200001 27	OMEGAN EEC-1 .315401 -07
	I EME C		
0	NOTIE	DAMPER	
0	 ,	L	
0 c	6 1 7 1		
0) 0) \ 0)		
		PR RECEP. CALC. L	
		OF HUDIPLEP SYSTEM HODES DESIRED - 2	
		NOUTHIED SYSTEM AFPROXIMATE FIGENVALUES ZETA 7 210675=201 10000000000000000000000000000000000	MEGAN SEC-1
		· 141388-07 • 160818-07 • 160818-07	
	TIME 3		
0	NOLE		
0	ب اسب ۲	, \$00E400	
ə <	11		
0	0 0		
		NO, OF MODES FOR RECEP. CALC. J. 30 EPS - 100E-04	
		UF NUMELTED STSTEM MUNES DESTREM - 2 Munited system suppoviente frogramments	
		active tear at a transmission of the statements	.15043E-07
		79000E-03	.149566-(1)
	TIME 3		
	n		

Table 3 Continued

Table 4 Control Cards for Using SPSTGN

.

,

NGDE - DOBARK YEU-CH300000-F1000. USEP-697121E. CHARGE, 102428 4 PC. CF1.chaley GET-INPEIR-NASAGED. CET-DATA-SPOD1. SFETCH(DATA). PENEND-DUTPPI. COPYEI, CUTPUT, SPOUT, PACL:SFOUL. REFUGCES SFOULT PAYFILE-L-SPPAN PEFI ACE - SPEAY EKIT. RELINGS(UTPOL) CITZELENHTPHTEN PONCE. TYTE SCHOUL, TER LERK (SPOUL) CAMERICAL SERVICE EII IMPONTANA

.

Appendix A-4

Program COPZ Documentation

Damper Gain Optimization with Fixed Modal Damping Ratios

I. INTRODUCTION

COPZ is a damping optimization program to compute minimum damping gains for specified modal damping ratios using a diagonal damping matrix. Subroutine COMMIN is used in the optimization process.

II. PROBLEM FORMULATIONS

When a diagonal damping matrix [C] is introduced into an originally undamped system, the damped eigenvalue can be found by solving

$$f(s) = det[I + [\hat{R}(s)][\hat{C}]] = 0$$
 (A4.1)

where

s = compelx eigenvalue of the damped system

$$[\hat{C}]$$
 = submatrix of [ΔC] that contains only the non-zero
terms of [ΔC]

$$[\hat{R}]$$
 = corresponding sub-matrix of the receptance matrix R

$$\hat{\mathbf{R}} = \mathbf{R} = \sum_{\substack{i=1\\j=1\\j}}^{n} \sum_{\substack{j=1\\i=1\\j=1}}^{p} \sum_{\substack{j=1\\j=1\\s}}^{p} \sum_{\substack{j=1\\j=1\\s}}^{p} \sum_{\substack{j=1\\j=1\\s}}^{p} \sum_{\substack{j=1\\j=1\\s}}^{p} \sum_{\substack{j=1\\j=1\\s}}^{p} \sum_{\substack{j=1\\j=1\\s}}^{p} \sum_{\substack{j=1\\j=1\\s}}^{p} \sum_{\substack{j=1\\j=1\\s}}^{p} \sum_{\substack{j=1\\j=1\\s}}^{p} \sum_{\substack{j=1\\s=1\\s}}^{p} \sum_{\substack{j=1\\s}}^{p} \sum_{\substack{j=1\\s=1\\s}}^{p} \sum_{\substack{j=1\\s}}^{p} \sum_{\substack{j=1\\s}}^{p$$

Let

$$[\hat{C}] = \begin{bmatrix} C_1 & 0 \\ \cdot & \cdot \\ 0 & \cdot C_{N_c} \end{bmatrix}$$

The optimization problem is:

find c_i , i = 1 to N_c

such that $J_1 = \sum_{i=1}^{N} is minimized subject to the constraint$

$$f(S_e) = 0$$
, $\ell = 1$ to N_F

where

$$S = -\zeta \omega \pm j\sqrt{1 - \zeta^2 \omega}$$

To convert the above constrained optimization problem into one without constraints, a penalty function approach is used. The problem solved by COPZ can then be rephrased as

find
$$C_i$$
, $i = 1$ to N_c

such that

$$J = \sum_{i=1}^{N} c + \sum_{i=1}^{N} W(f(S_i))$$

is minimized, where W is weighting function. Experience shows W = 1000 yields good results.

There are N_c + N_E unknowns in the optimized problems. The first N_E of the unknowns are the unknown $\overset{\omega}{n}$ in S₁ (with δ_{l} specified). The last N_c unknowns are the damper gains.

II. INPUT TO COPZ

A. Input from terminal (or input from TAPE 5). All are free format.

1. Title. One line description of the problem.

- 2. NDOF,NMODE,NE,NC
 NDOF = no. of system dof
 NMODE = no. of modes to be used
 NE = no. of specificied \(\zeta\)
 NC = no. of dampers.
- 3. JD(I),I = 1,NC)
 JD(I) = Ith damper location
- 4. X(I), I = 1,NC
- initial damper constant 5. NM(I), ETA(I), (I = 1 to NE)

```
NM(I) = mode no.
```

- ETA(I) = ζ_{i} = specified damping ratio
- 6. WEIGHT * W is objective function J = 1000 usually

B. Modal Data Needed: (same as routine SPSTGN)
Read from TAPE 12:
For I = 1 to NMODE
WN(I),GM (Format 5X,2E16.9)
(PHI(JJ,I),I=1,NDOF) (Format 5E16.9)
Note: WN(I) = ω_i, GM(noticed), PHI(J,I) = ρ_{j,i}

.

-

.

IV. SAMPLE RUN OF COPZ

..

Table 1 shows the job file to run COPZ, include data for a sample problem. For this sample problem, we place 6 dampers at dof 1, 11, 39, 50, 78, and 88 of the 88-dof grillage model. We specify the model dampings to be 0.7 and 0.6 respectively for mode 4 and 5 (the first vibration modes). The results are:

.

 $C_1 = 0.214$, $C_{11} = 0.268$, $C_{39} = 0.146$ $C_{50} = 0.146$, $C_{78} = 0.207$, $C_{88} = 0.267$

These results can be found in the end of Table 2.

```
COP. ICOPY
 - <u>1</u>(+,
 NPW-103000000, 10000.
USE5-697121E.
CHAPBE-102422 LPC,
BULDYER, JESSY T. UUA
 FILESH FILEN UNFILIEBURD
UED- PETC-MARABEL
1111-091MCON/PR-86231000.
SET-ENCHO/UN=)126864.
OFT-LOPZ.
FTN/(=COPI.PL=10000.P=F.
LNGET - LIR-FTMALIB.
1 UAT(F, PSIMCCM, PNEUC)
 LXEOUTI -
TERPHERSONLER.
 + OF FIROUTEVI-CICOPZ.
LARSADTCOME,
KFFLIPE, OBCHI
TAMILERE BARNEZ.
TERNALE, MACHEL.
エスエアン
、 町田 ごうちょうほでおして
 ров ыл сылғыл, саласыл
 HALL GREET.
 REFLUCE, MOTCOP2.
 THAYFILF, L=XDACOPZ.
REFLACE, XDACOPZ ,
 11 (1)
      WASA BRILLAGE HODEL PAMPING OFTIMIZATION-WARY PMODE
 09-1-22-5
 NUTRO TEDITORIE PUTEOLE
  · ,
 1. 71
 . . .
 12 61
 ICC SHORTFYED
```

ł

Table 1 CONTROL Cards for use of Program COPZ

Table 2 COPZ Sample Run Output

COMPLETED READ HOPAL DATA

1

¥	¥	*	ż	ť	ŗ	×	¥	ł	ķ	k	¥	¥	¥	4	ķ.	Å.	k	*	扌	¥	*	*	¥	ĸ	¥	*	¥	*
X																												*
¥											3	3 3	1 3	1 (C () }	ł											×
*																												.7
сь 1									5	ΞĘ	· 7 F	: Ab	ł	" F. ()@F	!.Ar	4 }	- ೧:	C.									4
ï																												;
•								':	51:	111	.17	11	Ξ.	Cí	577	117	! !	15.1	138	-								ł
7																												:
:	¥	ł	ŗ	٤	}	ř		ľ	ł	ķ	2	ł	ŀ	ł	ł	ř	÷	ţ	ķ	:	\$	ŧ	ł	ł	ļ	¥	ķ	1

TUTUE PARAMETERS

RUMPER OF DEEIGH VARIABLEB.	- 1111	3
NUMBER OF CONSTRAINTS,	NC9/ -	0
MAXIMUM ITERATIONS.	ITMA(=	80
781NT 2021841 -	IPPINT -	₩
LOALING FARAMETERS		1
CLAULDEEDACH CERTILAISA	DELENG	1000 /4 -0 3
NERVERGENCE NENERFLAN	か合理医院科	.10000E+0

- -----

.

7

	253	IGN VARIABLE	5
	LOWER	INITIAL	UPPER
	POUND	VALUE	EOUND
1	VLB(I)	X(I)	VUP(I)
د خ	.10000E-02	,13740E+02	-27509E+03
-	.10100E-02	<pre>、143695+02</pre>	-32771EF02
3	.10000E-02	,110005400	,10000E+05
ì	,10000E-02	,10^00E+00	,10000E+05
	.10000E-02	.10000E+00	.100002805
ć	,10000E-02	.10000E+00	.10000E+05
7	+10000E-02	.10000E+00	.10000E+05
0	.10000E-02	.10000E+00	.10000E+05

STORAGE PEOUIREHENTS FOR WORK ARRAYS

ARPAY	DIMENSJON	PECHIPED	USEP
ZE CELEN	3000	270	578
[및] (원[및])	200	4 ć	AT

		7 1 1	* * * *	1 1 1 1 1 × 1 1 1	n se	4. 4
	1. 			CONMIN		* *
	* *			FORTRAD FROGRAM H	FOR	*
	1 - -		CONSTRA	IPER FUNCTION AIM	'IMIIATIC'	-1. P
· • •	ψ 1	÷	10 10 10 10			ξ. ž. ψ. γ
137 ¥E / J 100 × E + 3			22441 18400	100028400 .10008400	,10001800	.1000E+^C
	1993 1993		1	20. 997 - ViséEktyc -	-,10339-11	
		1477 +1004	1E+02 DE+00	10005400 .10076500	.10045+04	,1000E(00
· _ e , coltara	CTAT. For		°5405143 2 •	30 NET1524E+00 -	- 30775-01	

90

.....

.

- -

-

CONSTRAIMED FUNCTION MINIMIZATION

CONTROL PARAMETERS

PP P100

CONTROL PARAMETERS

TERINT D	NDV B	ITMAX 20	600N 0	NSIPE 1	icheir S	NSCAL 9	NFDG 0	
LINDEJ 0	ITRM E	N1 10	N2 16	N3 17	N4 17	N5 34		
TC 0001	0E+00		MIN 20-200	СТ -+199	L 00E-01,		NIN 205-02	
5005.	ITA 105+01	PH 500،	-		LEAN 005-03		PFUN DOE-04	
FIC ,1000)4 10Ξ−02	FD .100	CHM 202-03		PHAX 996+93		DBU1 00E+00	
	,1000	00 0ECIPI 005-02 005-02	.100002-	-ba (16		.10000	-02	10000E-1.
UPPER 5 1; 7)	,275		DN VARIA .32771E+ .10000E+	-02 -10	B) 900E+00	.10000)	F +05	,10000E+05

INITINE FUNCTION INFORMATION

0b) (ED9181E400

HECIFICH VARIABLES (Y-JECIGE 1) JIEZACE-DC JIEEASKAND IOHOOFACD JIDOCDELOD JIOODOEAN 7. JICOCCEASO JIOOOCEAND

PEGIN ITERATION NUMBER 1

•

HEW BOYLING VECTOR (BOAL (187)E402 (1937E401 (1000E400 (1000F400 (10)0EF00 (10) 1000E401 (1000E401 Table 2 Continued

X(I)-.1375E+02 .1637E+02 .1000E+00 .1000E+00 .1000F+00 .1000F+00 .1000E+00 .1000E+00 ST-(-9.627771052219.9.822291127974) FOR II= 1 ,DET- .1668E+00 -.4041E-01 X(I)= .1375E+02 .1637E+02 .1000E+00 .1000E+00 .1000E+00 .1000E+00 .1000E+00 Gi · (-7,82150357471,13,09040516630) FOR II= 2 #0ET= ,1524E+00 -,3935E+01 X(I)= .143°E+02 .1000E+00 .1374E+02 .1000F+00 .1000E+00 .1000E100 .1000E+00 .1000E+00 SI--(-9.41915209932,9.012475449325) FOR 11- 1 ,DET- ,1668E+00 -,4044E-01 XIIY-.1371E+02 .1639E+02 .1000E+00 .1000E+00 .1000F+00 .1000E+00 .1000E+00 .1000E+00 21-(-0,231370428615,13,10200057149) FOP 11= 2 , DET .102 (E+00 -. E945E-01 X(1) -12745432 ,14375401 ,10016430 ,10008430 ,10008430 ,10006400 ,10006400 31-(-7,61515259932,9,912479649320) FOR JI = 1 , PET = , 1607E+00 - , 1043E-01 X(I)-.13715+02 ,1637E+02 ,1001E+00 .1000E+00 .10002+00 .L000F+00 +10005+00 /10105400 (<u>|</u> -1-9,00150397474,123,0951,0034470,0 - チャロ コー・ション テレビア ションビンション しょうき みどーった 1111-- 13ノ1に引いて、 ジェンジアドアで、 ジョアのルビョウの ジョンパイビディーの ションのパビデーの ショクロロティーで、 アウクロモディク ションのののデキクター 0.0 PRESENT DIALONGEN TERMINEN LEER 100 - 1047E-01 1.1. 13711+00 .1037E+01 .1000E+00 .1001E+00 .1000E+00 .1000E+00 .1000E+00 .1000E+00 21-7-9,901010000404,12,0904,2154200 - アクダード・デー・ ロー コン うわして コンジングビネクガート したくみとみない Sec. 1.2 - 2017 ほとうビー - 11075月00 - 11000日400 - 1000円400 - 1000日400 ションシントレビア - ションシンクビーシン - 1100日400 - ション・クロチョン .11 (GE+6) . . (-9.01815089932,7.812478849325) FOR II= 1 (DET= ,1665E+00 -,4014E-01

92

.

Table 2 Continued

((1))) 1379E+02 .1437E+02 .1000E+00 .1000E+00 .1001E+00 .1000E+00 .1000E+00 .1000F400 -> n10-.1000E+00 .1000E+00 .1000E+00 (-P,C2100387474,13,09540516632) FOR II- 2 -001- 1524E+00 -,3933E-01 /(1)-.1373E402 .1637E402 .1000E400 .1000E400 .1000E400 .1000E400 ,1000E+00 .1000E+00 31 < P.als10280930.0,9.812<78649320)</pre> FOR TIT 1 - DET= ,1668E+00 -,3044E-01 /(T) · \1374E+02 .14\7E402 .1000E+00
L0(1F+00 .1000E+00 .1000E+00 ,1000E+00 .1000E+v0 01 (9,50155387471,13,09510514530) - とり取ってたら、「ロージー」の第三アライにものないものであるもので、日本日本日本の人 YCER .1000E+00 .1000E+00 .1000E+00 ,1000F300 *1 いひつビナウウ 、1901E+00 _1000E+00 . [1 テージキャイエン とややらび、アメロは広急がなどが行ったが、 というという。 XKL SEV. +1374E+02 .1737E+00 .1000E+00 .1000E+00 .1000E+00 .1000E+00 .1000E+00 .1000E+00 21 -'-9,8215538''171-13,09510516432' FOP /I= 0 ,0ET= ,1503E+00 -,3433E-01 f <u>F</u>ij≡ オノタドモック ようさつをそうが、これのこともとうか、 しかたいきをひり、うないたドラいか、したのこともとうか。 コンジャンパンジャントロード、ウォロイン、キリ、アイン、 したり、オゴーン・キャー・ディアア・ションジャーションの日本・シーンパンプローバは ÷ : しますのAFI手を行っていた。 しまやく アンビー しまのでしアント・シート しまたし かたまやる しったので 気をかび したが、 パック・シート この たんやうがく しょう 手上 の 正知 うた The Constant of the State of th 1916 L1 -COLOR COEPARADO ECROPENSE THELE GER - ADDITUR DITE CONTINUEDTE TEACLED: CELOPER COSCENER STREET CEARER ATRECTEDAL & VESTER 1/ .37%01E460 .11015E+01 .9P5630400 .10000E461 .1060EE40 2) .99506E400 .99630E400 11 NHE-UIMENNIDHAL SEARCH HE FIAL FLARE = -, TOYPE+OF PROPOSED ALTHA = -, 1444E-01 93

PROPOSED DESIGN ∩LPHA = .46436E-01 - DEUTER 119912102 -15TCE+00 -1045E200 -1045E400 -1007E400 -1007E400 1([)-13786402 .14795402 0-1435401. .1045E+00 .1007E+00 .1007E+00 .1046E+00 +1046E+00 ΞI (-9.784974592703,9.982670818414) FOP 11= 1 .DET= .1504E+00 -.3630E-01 X(1) =,:AISE+02 .10465400 ,101-2400 .10072400 1319E+02 10466500 +1046E+00 10(78:00 er. · _ Pada Ti-· DET = .1349E400 -.3740E-01 orgenerittes FUO -- GERC PHILSPOLATION PROPOSED DESIGN - VECTOR .11970202 .1642E+00 1132E+00 .1232E+60 .1033E+00 .1033E+00 1(1)= 1 / 76402 , HOREEADA 110768400 18471302 ی میں میں میں ہے۔ ایک بار میں میں کا دیا 「お下ろ長子の石」 1511E-50A 17715460 51 (10) 000011(A) こくかく イムごうまださです。アイ たたり、「10」 - 本知知道。 1 - LEI (9455F-Č1 - 3051E-11 , 7 ,
 111
 11
 112162
 12102400

 1
 741400
 122142100
 110414100
 しょうひ ロミ ウク 1 : イリーング・チーアン くんち・ドアンド くうちきものたい 1.1.1.-55 T T115 17-, - -IEI- - CUBAE 05 - JELAAE-SE 11 A. 19 111 ٠.

* * * CUNSTRATHED DRE-DIMENSIONAL SEARCH INFORMATION * * *

. .

- - -

Y CENE .(709F400 1231E+02 .2:17E500 .2679E+00 .1457E+00 .1457E+00 .1457E+00 31 ---/~11, ?4126457956, 12, 20303272078) MAIN 1709E:00 /1631E+00 2133E+00 +2679E+00 ,1457E+00 .1150F+00 .2471E+00 .2141E+00 9 T --9.788474002277,13.0012987373) TOR /I= 2 #PET= -.2748E-05 -.9043E-06 PE1 = .20270E+01 THE-FOINT INTERFOLATION PROPOSED DESIGN AL. 対応 - 117001につき 1471E/AD /014EL+66 .0679E460 .1407E+AD .1409E400 1111 1/11:101 .1531E+00 .1140E+60 1150E+00 .1671E+00 -2141E+00 .14575+00 .14575+00 $\mathbb{C}\mathbb{I}$ '-11.9/137297082,12.2030412926) FOR IT= 1 ,DET= -,5981E-03 ,4968E-03 MITI-.1702E+02 ,16312402 .21455+00 /24TAE+00 14125444 ,23716490 .2111E+0^ キリアモアにのかというと思えた男人の思想の正年後から回した - 19月2日1日 - 一日 うちこだら ひるひマモージボー・ノラキア・ケット NIFED - PAT HIDDPOLYDIDD とたべいり たり い見がすない 1734 JOG1018-01 Y STRETCH .1:318+62 .21XEE+00 .2179E+00 1XC7F+00 .14EEE+00 • • • - 106040A 4 ···· + · · · · 161317401 - CYPY 1499 - 24777190 13715403 1111EF60 19.-4180417-45-10.2030*41734/

Table 2 Continued

 $\chi(T)$.1631E+02 .2115E+00 = 4 .2679E+00 = 4, .1457E+00 = 6, v1709E+02 .2101E+00 .1450E!^0 -2671E+00 = <50 = C74 = (0) -1C (--P.788516344956,12.05135E12-61) FOR II= 0 ,DET= -,2650E-05 -,9123E-06 OF2 = 100200EF61 * * * END OF ONE-DIMENSIONAL GENRON CALCULATED ALPHA = .33881E-20 OF1 - .2028972401 ID CHANGE UN UBJ (F. IGION PARIABLES (M-VECTOR) : : " \ .170882400 1:3105+00 ,21446E-00 02±794E+00 14565E+00 V04712E400 +21408E+00 ł 1 FINL OPETHIZATION THEORYMATEOR -the second s C_{11} C1 VECISION VARIABLES (X-VECTOR) 629 -17002E402 .14314E+02 .21446E+00 .24794E+00 .14565E+0 1.) .21403E+00 7 . -06712E+00 ^ت<ي 678

THERE AFT O ACTIVE SIDE CONSTRAINTS

V. Listing of Program COPZ

2007-200% FRODRAM COPFERINEST-DU.ROTHINESS-EUROFAREE-OUTPUR-, MRC.D. ί. MOTE: THEE IS A MODIFICATION OF COMM 7 1 1 1 1 1 4 COPY : NEU - EDH (NAMPING) + EDN (WEICHT * DEI) NO CONSTRAINTS e 8/14/01 3511 ○13日2月日日に、「月口ででもないまだ料をくまたいを見せるくすか。それできたい→小しくたかので、も見たくためで、 33/42). ID/200 LCMMCH /JATAL PHI/DEREE COMMON LATES TO A REPARTORS CAMER CRATAL STRUCT SEC. STATES PATA CLAR STREET 110.09 (0.53.52.00.4 6 BPD STALLS BALL 10 MOD 11 ATAZ (PH 2 4) ۰, ١. COMPLEX H s) TERES TELE MAR COTA ۰. 1:17 nn Maria (1997) (1997) (1994) (1997) Maria (1997) (1997) (1997) (1997) (1997) *`. '* in grade of a plant of a grade of the grade at STAR MALEY REALLY 1.1.97 11 FILMALLES COLVENTS COMPENNED RECORDS Marchael, Marchael Status ាយក្រយ នុរសរុទ្ធក្លា សំពេញសំ សំយន់ អា · · · · · · · こうていた下にしたく、「に時に」」となって主く、このの外でには色き -FAD(E++>(JD(I++I+1+)C) MRITE(6-X)(DI(E)) TO I-MON

••

```
...
                               NEIMI JO
FORMAT/10%, #ENFOR INITIAL DAMPER CONSTANTER)
m
`,
                                 -E1 YE41
                                VDV NE-NO
                            山口当時に回来に、「火く口ントローが目上を につい
                                 C
;
                                PHINT 10
 20
                                 TORMAT.12X, MINTY PAIRS OF: MOTE NO. - PERIRED LYDAY:
                                40 55 I-1+ME
                                BEAR(C) HABACIANECO(I
55
                                 「いわしてらくらっそうとかっていっとすからす
0
                                 4.5313 .C
 - -
                                PORNASCION REPERT DECERTI
                                NEAL EXTYRICS
WYDDD - FYRLIGY'
INPUT MODAL DATA
C
C_{1}
50 5010 I=1,0MOTE
                                 PEAD(10+2011)94(1++58
                                 「「日本教会との「「「ならら」」「からなく」」という。」とは10日、1日日1日日
 -----
···· · · · ·
                                 FURMAT/TELL F.
                                 中の時時からく アルビビン
 2 - - -
                                                        ALLA SET
 •••
                                                                                                EDENIAT A CELL AND
ار با
۱۹۹۰ - ۲۰۰۶ - ۲۰۰۶ - ۲۰۰۶ - ۲۰۰۶ - ۲۰۰۰ میلی و در این میلی و میرود و در در این میلیس مواد میلیس میلی از میل از
۱۹۹۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ میلیس این این این این این این این میلیس میلیس میلیس میلیس میلیس میلیس این این
 ..
                                    - 177 - 1177 E
- 122 - 133 - 1377 E
                                        医不可定 医静力不可定力
 1 ....
 ~
 ,
                                  in the property of the
'. "
                                 10 300 I-1, NE
                                  TI-NM(I)
                                                           2020(1) 00(77)
                                                  and the second sec
```

-

Progra	in Listing Continued
	-
100	VLE(I)=0.001
ì	<i>,</i>
	70 400 l·NE1,NDV
	VLB(I)-0.001
400	980 (T) -10000 /
17	
	IGMAX 0
	CALL SIMCON(NDV,X-VLE-JUE-IGAAX,30,5-1,0,0001+0,00001,FUP-UR)
•	
	STOP
	and a final fill of the fill o
	tom t N da
, , , , , , , , , , , , , , , , , , ,	
	NUEROUTINE RECEVEN
0	San an it af san a shi bar ti sa an s
	and the second
	COMPLE A PERESTA POLICIA SUBJECTS
	DEMMENT / DATAE/D/DEFEESED/D/CEEN
	DOGROPH (DRADA)/E - MARCHENE IERT
2	
2	
	DO 100 I-1-NC
	20 100 1×1.40
	11(I;J)=0.(
	TC 100 1. 1- 1072 E
-	
	アドロイ とうごう シンド 中に立ていた こうぞう いたくてんき 男子 しょくびょうほうしん
1.15	アルビジナダインション ジオアリアジア シンアイトワント シンアルシール ピーシン工程する オチモー ソア・ト
•	
	時を立える。 A PATE のよう A PATE たいたい たいてき こうたいてき
<i>,</i>	
	·
·· · · ·	持くてん とうでき持くてんごう 長び くばこう
-	
,	
	이 밖에서 있는 것 같은 것 같
,	
-	

-

.

	CUSPONITHE FON NEW-XANCONADETAG)
~	
~	
	COMPLEM SINCET/H
	COMMON /DATA2/F(30,88),WN(28)
	COMMON /DATAS/ETA(30)/HM(30)
	COMMON /DATA4/NE-NC-WEIGHT
	DINENSICH KERON
	DIMENSION O(1
	COMMON / DATAB/EPS
	CCMM211 (BATAT (H(3;6;
- -	
-	
	IGHO
21	じん- う
	NTT NOVME
	IO 1001 TI-17."
	APETA(II)
	TM NMCLIN
	211 (00PT(),A-AHA)/F/(IT)
	NETRIA AND AND AND AND AND AND AND AND AND AN
2.2	- 1977 - 1977
	VRITE/A:XX EI
	OALL SHOP(SIV)
()	
O EVALU.	ATE ODIFLEX DETERMINDAT
	الا السية - محالية - مستسبح - مستلك (معالية الله الله الله الله الله الله الله الل
• • 2	「ローTVF」(マーム+134) 「RTPF」(マーム+134) 「RTPF」(マーム+134)
· <u>·</u> · ·	(a) A second se second second se second second sec second second sec
	rojula i joka svoja eli pože natu o patero reno natvoja torno prestro
	d bringe control end of the bit of the bulk bulk the structure of the bulk by the
	n din olive do izvo estro na zavora postano de la composición de
· · · · · ·	
٩.	
	2月19日 - 1月18日 七
	7.6 1147 1 4E1-9EP
· · · · ·	122 / 122 (13 (12)

100

---- -

.- -- -

• •

```
SUBROUNDIE IBETIK/VSC-EN
ņ
          CERERHINANT OF AN HER EN HER CONFLEY MATHER WHATE DEDING
ц,
           COMMON DATALIA(1-1)
       CONFLET BACK
       COMPLEM PARLY, BIG-DET, DG, TEMP
       1212 -MET
<u>__</u>
        THE BOC ISINGT
0300
                 FREXE ESCHAALHUNEDHURDETN
2010
              デクトパムアイとない。それ、コービンド、メールビエン ワン
       Tecurr t
       CONSYS-RELE-1
       10 14 1 14PUMEYS
SCAN REPORT COLUMN OF CURRENT STATEN FOR LARRET TIENMT
٠,
-
           DALE THE ROW COMPANYING THIS FLEMENTS FOR MERRI
2
      114 _ 7 5 5
       112-141-5
       1. GPL = 1
                                    .
       end to an other t
     1 III - 1000 - 1000
1000 - 1000 - 1000
1011 - 1000
1010 - 1000
    ·-.- ·
...`
           ing high to grant an unday breads to states.
-
, ,
       IF/NEGEW.NE.IN ICOUNT LOOLNEH
       IF(NEGEW-I) 7,10-7
SWAP A MATRIX 1005
     A TV C 2 C METE
MEME AVVRGUBEN
      L Store Land
-
          -
                                                          7 1 Y 1 1 4 1 4 1 Y
            د سرم الماسين الي الما و و جزير السيسر و الا الا
الماد الماسيان
      HUEL T HY1 HIYEE
...
         in the world of white the weak the digged to a second and

    A Sector Sector
    A Sector Sector Sector Sector

    - , -- , . ,
     1)
7000
              PRINT 200+TRA(I-I -D
              T35MAT(20M+#I+A(I+I)+0 = 4+T5+4514)0
```

```
100 DEPERTING LED

MCOUNT =(leount/2)%2

IF/loount ne.icount) D==D

Peturn

ENS

EGI ENSCUNTERED,
```

•

-

. .

Appendix A-5

Program NORMAL Documentation

Mode Shape Ortho Normalization

I. INTRODUCTION

NORMAL is a FORTRAN program that can be used to orthonormalize the mode shapes computed by EISPACK routines (such as RESV). For zero-frequency rigid body modes, Gram-Schmidt orthogonalization procedure (see the Appendix A5.1) is used to make the rigid body modes orthogonal to each other with respect to the mass matrix. All modes are then normalized to unit generalized mass. Currently up to 3 rigid body modes can be accepted.

II. INPUT TO NORMAL

The following data is needed to use NORMAL:

1. Input N,NR,L where N = no. of dof of the system

NR = no. of rigid body
(<3) mode
L = number of elastic modes to be normalized</pre>

2. Read from TAPE 20

For I = 1 to L WN(I), (V(J,I),J = 1,N)

where

WN(I) = ω_{i} = natural frequency of the ith mode, rad/sec V(J,I) = $\dot{\phi}_{ji}$ = mode shape coefficient at dof j of ith mode

3. Read from TAPE 10

NJ,(AM(I), I = 1,NJ) NJ = no. of system dof

where

 $AM(I) = m_i = lumped mass of ith dof$

Note: Both TAPE 10 and TAPE 20 are created by unformatted WRITE in a prior analysis

III. PROGRAM LISTING

6 24 N	
C C	FROGRAM NORK(INFUT+OUTPUT+TAFE10+TAFE12+TAFE20)
с С	N=ND, OF THE EYETEMS D.D.F.(UNNORMALIZED), NR=ND, OF RIGID EDDY HODES((=3)
0	LENG. OF ELASTIC MODES TO BE NORMALIZED TO UNIT GEN. MARS RATURAL FREQ.(RAD./SEC.) AND MODE SHAPES ARE STORED ON TAPEID
C	(USE FREE FORMAT)
0000	DIAGONAL ELEMENTS OF THE MASE MATRIX ARE STORED ON TAFE10. The Normalized Nodal Matrix is written on tape12.
C	FIMENEION WN(E9);1(BB;88);Z(E8;3);AM(88);FHI(85;88);TT(88)
С С	
<u>.</u>	FEAT*+H+HE+L
300	PO 300 I=1;L PEAP(20) VN(I)+(V(J;I);J=1;N)
2	READ(10) RUF (AM(1)FI=1FNU)
-	
2 C C	NORMALIZE MODAL MATRIX
-	10 1000 1=1,N
	E2 = 0.0 DD 2000 L=17N
2.00	B2=B2 + V(J+I)+V(J+I)+AM(J) BM = BRRT(B2)
₹:00	NG 3000 J=1+N V(J+I) = V(J+I)/GM
1000 C	CONTINUE
C C	ORTHONCRMALIZE RIGID FODY MODES
C C	
	IF (NE.LE.1) GD TD 9999 - ND 4100 I=1,N
4100	$Z(I_{7}1) = V(I_{7}1)$ $f_{1} = 0$
4500	EG 4200 I=1+N
4200	$A = A - V(I_{1}1) + AH(I) + V(I_{1}2)$ $B2 = 0$ $T = 0$
	PD 4300 I=17N 2(I+2) = A*V(I+1) + V(I+2)
4300	G2 = G2 + Z(I+2) Z(I+2) AAH(I) GM = SQRT(G2)
	DO 4400 I=1+N

4400	V(1,2) = Z(1,2)/GM
	IF (NE.LT.3) GD TO 9999
	C2 = 0
	C1 = 0
	$BO_{5100} I=1,N$
	C1 = C1 - Z(I,1) *AM(I) *V(I,3)
3100	$C2 = C2 - Z(I_{1}2) * AM(I) * V(I_{1}3)$
	$\Theta_2 = 0$.
	PG 2200 I=1/N
	$Z(I_{1}3) = C1*Z(I_{1}) + C2*Z(I_{2}) + V(I_{2})$
5200	02 = 02 + Z(I;3)*Z(I;3)*AM(I)
	GM = SORT(62)
	HC 5300 I=1,N
0360	V(I,3) = Z(I,3)/GM
	FRINT * + WN(1)+(V(J+1)+J=1+N)
	GM = 1.0
	10 2000 I=1,N
	WRITE(12) WN(I), GM
2000	WRITE(12) (V(J,I),J=1,N)
5611	
	FORMAT(5X,2E16,9)
95 99	CCNTINUE
	STOP
	END

1

.

- .

-- - - -

105

APPENDIX A5.1

Gram-Schmidt Orthogonalization Prodecure

n independent vectors $\{v_i\}$ can be transformed into vectors $\{p_i\}$ orthogonal with respect to a matrix [m] using the following recursion equations:

where

$$\alpha_{ij} = - \frac{\{p\}_{j}^{T}[m]\{r\}_{i}}{\{p\}_{j}^{T}[m]\{r\}_{j}}$$

ţ

APPENDIX B

Active Damper Analysis - Linear

Figure (B.1) shows system 2.2.2.1, it is essentially the same as Figure (5.6) except that definitions of displacement coordinates have been added. Note that the concept is essentially different to that used in the prototype design, which uses a long-stroke actuator without a linkage.

Definitions

- C Damping constant
- D Voice coil, i.e., shaker, displacement
- £ - Frequency
- F - Shaker force
- ĸ - Ratio of maximum structural amplitude to maximum voice-coil amplitude at design conditions
- m shaker mass
- m¹ Moving mass P² Rate of energy absorption
- R Linkage ratio
- W Energy absorbed from structure
- x Displacement of structure
- y Displacement of m₂
- z Relative displacement
- ω Radial frequency

Subscripts

- AL Amplitude limited
- CH Characteristic
- C Per cycle
- D Design
- FL Frequency limited
- M Maximum
- 0 Complex amplitude
- Total T

Referring to Figure (B.1), the basic damping equation is

$$F/R = cdx/dt = m_2 d^2 y/dt^2 = m_2 (d^2 x/dt^2 + d^2 z/dt^2)$$
 (B.1)

and, assuming SHM with complex amplitudes of \mathbf{x}_{n} , \mathbf{z}_{n} , respectively

$$|z_0| = |x_0| \{1 + (C^2/\omega^2 m_2^2)\}^{1/2}$$
(B.2)

If motion is amplitude-limited. so that

. . . .

- ----

then

... . .

. .

;

Fig. (B.1) System 2.2.1 Active Damper

...

108

$$|x_0|_{AL} = RD_M / \{1 + (C^2 / \omega^2 m_2^2)\}^{1/2}$$
 (B.4)

whereas, if the motion is force-limited, we get, from Bl

$$|\mathbf{x}_{0}|_{\mathrm{FL}} = \mathbf{F}_{\mathrm{M}}/\omega \mathrm{cR} \tag{B.5}$$

Defining design conditions as those for which amplitude limits and force limits coincide, so that

$$|x_0|_{AL} = |x_0|_{FL} = |x_0|_{D}$$
 (B.6)

and introducing the ratio

$$K = \frac{1}{2} x_0 \frac{1}{D} D_{M}$$
(B.7)

one can eliminate c from (B.4) and (B.5) to get the biguadratic equation

$$(R/K)^4 - (R/K)^2 - (f_{CH}/Kf_D)^4 = 0$$
 (B.8)

where f_{CH} is the characteristic frequency given by

$$f_{CH} = \frac{1}{2\pi} \left\{ F_{M} / m_{2} D_{M} \right\}^{1/2}$$
(B.9)

and f_{d} is the design frequency. Solving A8

$$(R/K)^2 = 1/2 + 1/2\{1 + 4(f_{CH}/Kf_D)^4\}^{1/2}$$
 (B.10)

thus, assuming that K, f_D, and f_{CH} are given, the linkage ratio R can be found, and the linkage can be designed. The damping constant c can be found by substituting back into (B.4) and assuming design conditions

$$C = 2\pi f_{D}m_{2} \{ (R^{2}/K^{2}) - 1 \}^{1/2}$$
(B.11)

Note that the electronic system is designed so that the damping constant c is a constant regardless of frequency. Thus, on rearranging (B.4), and substituting from (B.11)

$$\frac{|\mathbf{x}_0|^F \mathbf{L}}{|\mathbf{x}_0|} = \frac{R/K}{\{(R/K^2 - 1)(f_D^2/f^2) + 1\}^{1/2}}; f < f_D$$
(B.12)

Equation (B.12) defines the ratio of structural amplitude at frequency f to the design amplitude. It is less then unity. For frequencies above the design frequency, the structural amplitude is force limited, so that, according to (B.1)

$$\frac{|\mathbf{x}_0|_{FL}}{|\mathbf{x}_0|_{D}} = \frac{\mathbf{f}_D}{\mathbf{f}}; \quad \mathbf{f} > \mathbf{f}_D$$
(B.13)

The above two equations define structural amplitudes for which the damping system would remain linear under conditions of SHM. If the structure were to vibrate at a single frequency, they would constitute an envelope of permissible amplitudes. The situation with complicated structural responses would be much more difficult to analyze.

The energy removed from the structure per cycle is

$$W_{c} = \oint \dot{cx} dx = 2\pi^{2} f c |x_{0}|^{2}$$
(B.14)

thus, at design conditions

$$W_{\rm D} = 2\pi^2 f_{\rm D} c |x_{\rm o}|^2 D$$
 (B.15)

and, on substitution from (B.5) and (B.7)

$$W_{\rm D} = W_{\rm m}({\rm R/K}) \tag{B.16}$$

where

$$W_{\rm M} = \pi F_{\rm M} D_{\rm M} \tag{B.17}$$

is the maximum energy which can be removed by the shaker. Since R/K is always greater than unity, W_D is always less than W_M , the discrepancy being due to phase differences between the structural and damper motions.

From (B.14) and (B.15)

$$\frac{W}{W_{\rm D}} = \frac{f}{f_{\rm D}} - \frac{|x_{\rm O}|^2}{|x_{\rm O}|^2}$$

thus, for the amplitude limited case of (B.12)

$$\frac{W_{c}}{W_{D}} = \frac{(f/f_{D})(R^{2}/K^{2})}{(R^{2}/K^{2}-1)(f_{D}^{2}/f^{2}) + 1}; f \langle f_{D}$$
(B.19)

while for the force-limited case of (B.13)

$$\frac{w_{c}}{w_{D}} = \frac{f_{D}}{f}; f > f_{D}$$
(B.20)

The rate of removal of energy is given by

$$P = f W_{c}$$
(B.21)

thus, above the design frequency

$$\mathbf{P} = \mathbf{P}_{\mathrm{D}} = \mathbf{f}_{\mathrm{D}} \mathbf{W}_{\mathrm{D}}; \quad \mathbf{f} > \mathbf{f}_{\mathrm{D}}$$
(B.22)

while, below the design frequency, we have from (B.19)

$$P/P_{D} = \frac{(f^{2}/f_{D}^{2})(R^{2}/K^{2})}{(R^{2}/K^{2}-1)(f_{D}^{2}/f^{2}) + 1}$$
(B.23)

Taking the Goodman V102 shaker as representative of current practice, we use the following values as typical:

mass, $m_1 = 2 \ lb_m = 0.9072 \ kg$ maximum force, $F_M = 2 \ lb_f = 8.890 \ N$ P-P deflection, $2D_M = 0.2" = 0.00508 \ m$ Max work per cycle, W_M (from (B.17)) = 0.0709 Joules Max work per cycle per unit mass, $W_M/m = 0.0782 \ J/kg$

As an example, consider a design condition of one inch structural amplitude, $|\mathbf{x}_0|_D$, at a frequency f of one Hertz. Then from (B.7)

$$K = |x_0|_D / D_M = 10$$

The following three sets of calculations are for three values of the moving mass m_2

Case	1	2	3 Dimensi	ons
m ₂ 0.09072	0.9072	9,072	kg	
f' (from A9) = 31.26	9.886	3,126	Hz	
R/K (from AlO) 3.207	1.264	1,005		
c (from All) 1.737	4.407	5.707	Ns/m	
W _D (from A16) 0.0221	0.0561	0.0705	J	
$m_{T}^{D} = m_{1} + m_{2}$ 0.9979	1.8144	9,9792	кā	
$w_{\rm D}^{1}/m_{\rm T}^{1}$ 0.0221	0.0309	0.0071	J/kg	
P/m_{m}^{1} (from A22) 0.0221	0.0309	0,0071	W/kg	

It will be noted that case 2, for which the magnet and moving mass are equal, gives the best performance in terms of watts of energy removed per kg for frequencies above one Hz. The damping constant c achieved is also close to the maximum. If system 2.2.2.1 in Figure (5.7) were used instead, the total mass m_m would be 0.0972

kg, and the performance of the system would otherwise be identical to case 2 above. Thus, values for W_D/m_T and P/m_T would be 0.0619 J/kg and 0.619 w/kg respectively. This value for W_D/m_T is close to the maximum value of W_M/m obtainable with this voice-coil shaker.

- ·.... · · · ·

APPENDIX C

Use of Piezoelectric Materials

Polyvinylidene flouride (PVP₂) exhibits the following relationship between strain e₁, normal electric field, E₃, and stress σ_1 (see Figure (C.1))

$$\mathbf{e}_{1} = -\mathbf{d}_{31}\mathbf{E}_{3} + (1/\mathbf{C}_{11}^{\mathbf{E}})\sigma_{1}$$
 (C.1)

where d_{31} = transverse piezoeletric charge coefficient C_{1}^{E} = modulus of elasticity

Assuming SHM with maximum values of e,, E, and σ , such that e, and σ , are 90° out of phase with each other, and 45° out of phase with E₃.

$$\sigma_{\rm M} = d_{31} c_{11}^{\rm E} E_{\rm M} / \sqrt{2}$$
 (C.2)

$$e_{M} = d_{31} E_{M} / \sqrt{2}$$
 (C.3)

and the maximum energy absorbed per unit volume is

$$w_{M} = \pi \sigma_{M} e_{M} = \pi d_{31}^{2} C_{11}^{E} E_{M}^{2}/2$$
 (C.4)

while

$$W_{M}/m = w_{M}/\rho = \pi d_{31}^{2} c_{11}^{E} E_{M}^{2}/2\rho$$
 (C.5)

Typical values are

$$d_{31} = 5 \text{ to } 37 \text{ x } 10^{-12} \text{ m/V}$$

$$c_{11}^{E} = 1.6 \text{ to } 3.8 \text{ x } 10^{9} \text{ N/m}^{2}$$

$$E_{M} = 12 \text{ to } 30 \text{ x } 10^{6} \text{ V/m}$$

$$\rho = 1.8 \text{ x } 10^{3} \text{ kg/m}^{3}$$

which gives the following range of values

$$W_{M}/m = .005$$
 to 4.1 J/Kg

Fig. (C.1) Unit Cube of Polyvinylidene Flouride (PVF2) Piezoelectric Material

The most critical property is that of E_{M} . Unless a considerable safety margin is allowed, there is a severe danger of dielectric breakdown in a space application, particular after a micrometeorite has damaged the material.

APPENDIX D

Simulation of NASA Tests

To help the actuator hardware design, a model of the prototype actuators will be put on the finite element model to simulater a vibration control test. Initially, a linear simulation will be performed. The purpose is to determine the magnitude of the displacement and the actuator force under designed conditions. The assumptions of this simulation are

- (1) the system is linear
- (2) the FEM of the NASA grillage (or beam) will be used as the undamped structure
- (3) the actuator dynamics will be ignored. That is, the actuator will be assumed to be a perfect device capable of producing force f = cx under all conditions.
- (4) the weight of each damper will be included as a discrete mass added to the system
- (5) the excitation will be an initial displacement and/or initial velocity of the FEM.

Formulations

Let [M], [K] be the mass and stiffness of the undamped structure. Introducing n dampers at dof $J_1, \ldots J_n$, the damping matrix is

$$[c] = [B][\hat{c}][B]^{T}$$
 (D.1)

where

and

In expanded form,

The contribution to the mass matrix due to the mass of the damper is $f_{A}(x) = f_{A}(x) f_{A}(x) + T$

$$[\Delta M] = [B][\Delta M][B]$$

or

where we assume all dampers are identical and have a mass of $\Delta m.$

The equation of motion of the system is

$$[M]{x} + [c]{x} + [K]{x} = {0}$$
 (D.4)

where

$$[\overline{M}] = [M] + [\Delta M]$$

The initial conditions are

$$\{x(0)\} = \{x_0\}$$
(D.5)

$$\{\dot{x}(0)\} = \{\dot{x}_0\}$$

Equation (D.4) can be solved numerically using any of the numerical solution techniques, e.g. Wilson's θ method or Newmark β method. Alternatively, a modal solution of (4) can be obtained by using the complex mode of the system (see Hurty and Rubinstein (Ref. 1). Once the modes are known an analytical expression can be written for each mode in this approach.

REFERENCE

 W.C. Hurty and M.F. Rubenstein, <u>Dynamics of Structures</u>, Prentice-Hall, Inc. Englewood Cliffs, N.J. 1964 (ch. 9).

.

APPENDIX E

1. Bounds on Transient Responses

2. Time Domain Optimal Design

1. Bounds on Transient Responses

The disturbances acting on an Large Space Structure is mission dependent. However, one can say that these disturbances are usually of a transient type, e.g. firing of control thrusters for attitude control etc. The vibration control system must be designed to suppress these transient vibrations. One way of measuring the performance of a vibration control system is to evaluate how fast the control system can bring the <u>response</u> from some initial disturbed state to within an "acceptable" level. The response could be the displacement, velocity, or acceleration at certain "critical" locations of the LSS. For a large structure, it may not be easy to define which specific response is critical and the designer usually resorts to some aggregation of responses as the performance measure. One commonly used criterion is the minimization of

$$V(\{z\}) = \{z\}^{T}[P]\{z\}; \quad z = \begin{bmatrix} x \\ \vdots \\ x \end{bmatrix}$$
 (E.1)

where [P] is the weighting matrix. The estimation of transient behavior for the performance index can be derived according to Lyapunov's 2nd method, given a linear system governed by $\{z\} = [A]\{z\}$ with initial state $\{z\}$ at t = t and where $V(\{z\},t)$ is given, the system attains a value of v given by $V(\{z\},t) = V(\{z\},t_0)e^{-\eta(t-t)}$ in $t-t_0$ seconds using Lyapunov's second method (Ref. 1,2). The following is a description of the use of Lyapunov's second method in estimating transient responses (Ref. 6) and then indicate how it is applied to the control of LSS. Finally, some research issues will be raised.

Given initial states $\{z_0\}$ and the initial value V($\{z_0\}, t_0$), the system reaches the region

$$V(\{z\},t) = V(x_0,t_0)e^{-\eta(t-t_0)}$$
 (E.2)

in t-t seconds.

For a linear time invariant system governed by the following state equations

i

$$\{z\} = [A]\{z\}$$
 (E.3)

the parameter η in Eq. (E.2) is the minimum eigenvalue of the matrix [Q][P] where [P] and [Q] are related by

$$[A]^{1}[P] + [P][A] = -[Q]$$
 (E.4)

and [P] is the weighting matrix in the performance index, Eq. (E.1). Note that if $\{Q\}$ is symmetric, so will be [P].

The above results can be applied to the control of LSS by letting

£

$$[A] = \begin{bmatrix} 0 & I \\ ---- & ---- \\ -M^{-1}k & -M^{-1}c \end{bmatrix}$$
(E.5)

where [A] is the dynamical matrix of the <u>closed loop</u> system. That is, in Eq. (E.5) the mass matrix [M] include the mass of the control devices; [k] is the stiffness matrix of the system plus the control law that is proportion to the displacement ({x}) and [c] is the damping matrix which corresponds to the portion of control law that is proportional to rate ({ \dot{x} }), see Appendix F for detailed formulation.

It should be noted that the use of Lyapunov's second method requires that all the eigenvalues of the matrix [A] have negative real parts. For a free-free structure with no position feedback, the system matrix [A] has some zero eigenvalues. Thus, to use the above results directly we need to include positive feedback terms in the control law.

The Lyapunov's second method provides a sound basis for transient performance estimates. To apply it to the design of vibration control of LSS, the following research needs to be carried out.

(1) matrix [Q] must be positive definite, otherwise its
 eigenvalue could be zero or negative which renders the
 estimate (Eq. (E.2)) useless. This implies the performance
 index V({z},t) is restricted to quadratic form with
 weight matrix [P] that leads to a positive definite
 [Q]. Thus, [P] may not be specified arbitrarily. The
 question of how to pick matrix [P] needs further research.

- (2) Alternatively, we can specify a positive definite [Q] and solve for [P] by Eq. (E.4). This requires the solution of a set of n(n+1)/2 equation, where n is the order of matrix [A]. An efficient solution scheme of Eq. (E.4) needs to be develoepd (or found in the literature).
- (3) modify the formulation to allow it to accept LSS whose control law consists of rate feedback only. This may be achieved by formulating equations of motion for elastic modes only by filtering out the rigid body motion.
- (4) application of the formulation in a truncated modal space. This will reduce the computational burden drastically.
- (5) Formulate a synthesis procedure using the basic results. This may be achieved by iteractive methods or by a direct formulation. The results of the above researches can also be used in the next section.

2. Time Domain Optimal Design

Traditionally, time optimal design using optimal control theory with quadratic performance results in the solution of a higher order Riccatti equation, (Ref. 3). This will result in a control law with full state feedback which may be difficult to implement. For a vibration control system, it may be advisable to take another approach. That is one could fix the form of the control law then find the pairs that optimize some performance index. In general, nonlinear programming approaches can be used to find the optimal gains. This will be extremely costly since many transient responses are to be evaluated. If we limit ourself to a quadratic performance index, then the Lyapunov's second method can be used to evaluate the performance index when the system is driven by initial conditions. The general results (Ref. 6) will be stated first and then their application to LSS will be indicated.

Consider the system

$$\{z\} = [A]\{z\}$$
 (E.6)

C

where all eigenvalue sof [A] have negative real parts, or the original (0) is asympototically stable. The design problem is to adjust the elements in matrix [A] such that the performance index

$$J = \int_0^\infty \{z\}^T [Q] \{z\} dt$$

is minimized. It has been shown that

$$J = \int_{0}^{\infty} \{z\}^{T}[Q]\{z\}dt = \{z_{0}\}^{T}[P]\{z_{0}\}$$
(E.7)

where [P] is the solution of the equation

$$[A]^{T}[P] + [P][A] = -[Q]$$

Note that [P] is symmetrical. The significance of Eq. (E.7) is that to evaluate the performance index, no transient analysis has to be performed at all. Rather, we just solve a set of n(n+1)/2 linear Eqs. (E.8) and then perform matrix multiplication. Since the elements of [P] is an implicit function of matrix [A] through Eq. (3), the following optimal procedure can be proposed:

- (1) from trial value of design parameters, form matrix [A]
- (2) solve [P] using Eq. (E.8)
- (3) evaluate J using Eq. (E.7)
- (4) repeat the above process until J is minimized.

When applied to LSS, we simply use the dynamic [A] as defined in Appendix F. The results of the research is used in the previous section is applicable here also.

REFERENCES

- R.E. Kalman and J.E. Bertram, "Control System Analysis and Design Via the Second Method of Lyaponov", Trans. ASME J. of Basic Engineering, 80, June 1960, pp. 371-400.
- 2. K. Ogata, <u>Modern Control Engineering</u>, Prentice-Hall, Inc. Englewood Cliffs, New Jersey.
- 3. Brian D. Anderson and John B. Moore, Linear Optimal Control, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

ļ,

<u>_</u>-

APPENDIX F

Formulation of Dynamical Matrix for LSS with General Control Law

Consider the actively controlled LSS

$$[M][x] + [k_0]\{z\} = [B]\{u\}$$
(F.1)

where

- [k] is the stiffnes matrix of the uncontrolled structure (nxn) [M] is the mass matrix of the controlled system including the mass and inertia of the control devices (sensors and actuators, etc) (nxn) [B] is the control distribution matrix (NxN₁)
- {u} is the control input (N_nxl)

Let the control law be

$$\{u\} = -[\hat{\Delta}k]\{y\} - [\hat{\Delta}c]\{\dot{y}\}$$
 (F.2)

where

$$\{y\} = [B_{d}]\{x\} = \text{displacement measurement } (N_{d}x1)$$

$$\{\dot{y}\} = [B_{u}]\{\dot{x}\} = \text{velocity measurement } (N_{u}x1)$$

 $[\Delta K]$ = displacement gain matrix $(N_u x N_d)$

 $[\Delta c] = velocity gain matrix (N_u x N_u)$

 $[B_d] = displacement measurement matrix (N_d xN)$

 $[B_u] =$ velocity measurement matrix $(N_u x N)$

Substitute (F.3) into (F.2)

$$\{u\} = -[\hat{\Delta}k][B_{d}]\{x\} - [\hat{\Delta}c][B_{u}]\{\dot{x}\}$$
 (F.4)

Substitute (F.4) into (F.1)

$$[M]\{x\} + [K_0]\{x\} = -[B\hat{\Delta}kB_d]\{x\} - [B\hat{\Delta}c B_u]\{x\} \quad (F.5)$$

Equation (F.5) can be simplified to

$$[M]{x} + [c]{\dot{x}} + [k]{x} = \{0\}$$
 (F.6)

where

$$[c] = [B][\hat{\Delta}c][B_{v}]$$

[K] = [K_{o}] + [\Delta K] (F.7)
[\Delta K] = [B][\hat{\Delta}k][B_{d}]

Note that in general, matrix [K] and [C] are arbitrary matrices, they may not be symmetric.

Finally, we can put (F.6) in state space form as

.

$$\{z\} = [A]\{z\}$$
 (F.8)

-

where

$$[A] = \begin{bmatrix} 0 & | I \\ ----- & | ----- \\ -M^{-1}K & | -M^{-1}C \end{bmatrix}$$

$$(F.9)$$

$$\{z\} = \begin{bmatrix} x \\ \dot{x} \end{bmatrix}$$

Appendix G

Proposed Approaches for Actuator Failure

Detection

- The actuator failure modes can be classified as:
- (a) total failure: actuator does not produce a force in response to a command signal
- (b) random failure: actuator produces random force for a given input signal.

The total failure mode may be considered in the design of electronics for the actuator.

The random failure mode is more complex and may not be detected using hardware alone. In this case, a monitoring system to keep track of the performance of each actuator may be needed. Through the performance monitoring an adaptive control approach may be derived to detect andisolate failed actuators. Such an approach has been used in the detection of rate gyro failure in flight control systems [Ref. 1]. The feasibility of this approach to our problem is being investigated. Literature search will be made to look for other approaches.

References

 Wagdi, M.N., "An Adaptive Control Approach to Sensor Failure Detection and Isolation," Journal of Guidance and Control, Vol. 5, No. 2, pp. 118-123, 1982.