https://ntrs.nasa.gov/search.jsp?R=19830011534 2020-03-21T04:08:45+00:00Z

$$
83 N / 9805
$$

Large Space Structure Damping Design

Final Report

by
Walter D. Pilkey
and
J. Kenneth Haviland

NASA Grant NAG-1-137-1
1/16/81 - 1/15/83

Department of Mechanical \& Aerospace Engineering University of Virginia Charlottesville. Virginia 22901

Large Space Structure Damping Design

Final Report
by

Walter Pilkey
and
J. Kenneth Haviland

NASA Grant NAG-1-137-1
 1/16/81 - 1/15/83

Department of Mechanical \& Aerospace Engineering
 University of Virginia

Charlottesville. Virginia 22901
gECUATY CLASSIPICATION OF THIS PAGE (Whin Date Enterod)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT MUMEER UVA/5-28201/MAE 83/101 \quad 2. SOVT ACGESSION NO.	3. RECIPIEN T'S CATALOG NUMBER
4. TITLE (Dod Subetife) Large Space Structure Damping Design	5. TYPE OF REPORT © PERIOD COVERED $1 / 16 / 81-1 / 15 / 83$
	6. PERFORMING ORG. REPORT NUMBER
7. MUTHOR(0) W. D. Pilkey J. Kenneth Haviland*	8. CONTAACT OR GRANT NUMBER(A) NASA Grant NAG-1-137-1
9. PERFORMLNG ORGANIZATION NAME AND ADORESS University of Virginia Dept. of Mechanical Engineering Charlottesville, VA 22901	10. PROGRAM ELEMENT. PROJECT, TASK AREA \& WORK UNIT NUMEERS
19. CONTROLUING OFFICE NAME AND AODRESS	12. REPORT DATE February 1983
	13. NUMBER OF PAGES 127 !
T3. MONITORIMG AGENCY MAME a ADDRESSfil diforent lroe Controllina Offics)	15. SECURITY CLASS. (ol imie roport)
	TSA OECT ASSIFICATION/DOWNGRADING SCHEOULE
16. DASTRIEUTION STATEMENT (OL thiQ Ropart) Unlimited	
-	

Unlimited
18. SUPPLEMENTARY NOTES
19. KEY WOMDS (Conflnue on severse elde if neceeent and ldentify by bloch muonber)

Minimum Constrained Frequency Criterion (MCFC) damper prototype damped system eigenvalue problem spil1-over
20. ABSTRACT (Conlinue on reverae alde if neceoemy and identify by olock number)

Several FORTRAN subroutines and programs were developed which compute complex eigenvalues of a damped system using different approaches, and which rescale mode shapes to unit generalized mass and make rigid bodies orthogonal to each other. An analytical proof of a Minimum Constrained Frequency Criterion (MCFC) for a single damper is presented. A method to minimize the effect of control spill-over for large space structures is proposed. The characteristic equation of an undamped system with a
generalized control law is derived using reanalysis theory. This equation can be implemented in computer programs for efficient eigenvalue analysis or control gain synthesis. Methods to control vibrations in large space structures are reviewied and analyzed. The resulting prototype, using electromagnetic actuator, is described.
.: © $11 . .$. .

Table of Contents

I. Introduction 1
II. Technical Developments 2

1. Computer Programs 2
2. Proof of Optimal Damper Location 2
3. Locating Actuators for Minimum Spill-Over 8
4. Characteristic Equations for Undamped System with Generalized Control Law 11
5. Damper Design 16
III. Conclusion 38
IV. Bibliography 39
Appendices 41
A-1 Subroutine ASMD1 43
A-2 Subroutine ASMD2 53
A-3 Subroutine SPSTGN Documentation 64
A-4 Program COPZ Documentation 84
A-5 Program NORMAU Documentation 103
A-5.1 Gram-Schmidt Orthogonalization Prodecure 106
B Active Damper Analysis-Linear 107
C Use of Piezoelectric Materials 113
D Simulation of NASA Tests 116
E Bounds on Transient Responses 118
Time Domain Optimal Design
F Formulation of Dynamical Matrix for LSS with General Control Law 122
G Proposed Approaches for Actuator Failure 124

I. Introduction

It is expected that large space structures will be placed into orbit in the not-too-distant future. Such structures will lack the damping forces due to ground reactions or to hydraulic or aerodynamic forces available to earthbound structures, thus, if they are excited dynamically by docking maneuvers or by control reactions, they could be expected to continue vibrating for hours or even for days.

It is this problem which is addressed in this report. The work to be discussed divides roughly into two areas. In the first, the questions such as how much damping is required, how are the dampers to be located, and how their required performance can be specified are examined. In the second, the design of the dampers is investigated, and is supported by the demonstration of a prototype damper.

Work on damping requirements resulted in five computer programs and proofs of two criteria for the optimum location of dampers. Also, a method of minimizing "control spill over" by locating actuators was demonstrated, and the characteristic equation of an undamped system using reanalysis theory was derived.

Work on damper design included a review of possible systems. Since hydraulic and pneumatic systems were eliminated for poor reliability, only electromagnetic or piezo-electric systems were considered. Passive dampers were eliminated because they need very fine tuning. Thus, only linear or rotational dampers using active electromagnetic or piezoelectric drives were left. A prototype linear damper using a moving magnet and a fixed coil was built and demonstrated using a current feedback proportional to local structure velocity.

II. Technical Developments

1. Computer Programs

Several FORTRAN subroutines and programs were developed under this grant. These are documented in Appendix A. The capabilities of the programs are enumerated below.

Subroutines ASMDl and ASMD2 compute the complex eigenvalues of a damped system using the undamped modes of the structure as the assumed modes (assumed mode method). In subroutine ASMDl, a diagonal damping matrix must be used, whereas in ASMD2, a general damping matrix may be used.

Subroutine SPSTGN solves the damped eigenvalue problem using a reanalysis approach. It assumes a diagonal damping matrix.

Program COPZ computes the optimal (i.e.. minimum) gains of a diagonal damping matrix for specified damping ratios.

Program NORMAL is designed to rescale the mode shapes to unit generalized mass and to make the rigid bodies orthogonal to each other with respect to the mass matrix.

These programs are stored in the Langley computer.

2. Proof of Optimal Damper Location

In previous papers [Ref. 1 and 2] we have proposed two criteria for the optimal location of a damper. They are the Minimum Constrained Frequency Criterion (MCFC) for a single damper [Ref. l] and the Maximum Frequency Separation Criterion (MFSC) for multiple dampers [Ref. 2]:

MCFC: The optimal damper location is where the constrained frequency a, is a minimum.
MFSC: The optimal locations of dampers are where the constrained frequency associated with the damper location has the largest separation from the corresponding undamped natural frequency of the system.

In Ref. 1 and 2. these criteria are demonstrated using the Langley beam and grillage models. These demonstrations show that in choosing between sets of positions of dampers, the one that gives the best results is the one that gives the greatest separation between the undamped natural frequency and the corresponding constrained frequency. In this section, an analytical proof of MCFC for a single damper will be presented. The proof of the more general MFSC is still under investigation.

Proof of MCFC

The proof of MCFC is based on the existence of fixed points in the frequency response curve when a single damper is introduced into an n-dof undamped system. This is an extension of the classical damped vibration absorber theory [Ref. 3], in which Den Hartog showed that when a damped vibration absorber is attached to a undamped SDOF main system. there are points on the frequency response curve which are independent of damping. These points are the fixed points [Ref. 3]. In this section, we will first show the existence of fixed points when a single damper is introduced into an undamped system. The responses at the fixed points can then be evaluated from the undamped equation of motion. The MCFC can then be proved using the characteristics of the resonance curve of the undamped system near resonance.

Consider the case of an n-dof undamped system under sinusoidal excitation

$$
\begin{equation*}
[M]\{x\}+[K]\{x\}=\{F\} e^{j \omega t} \tag{1}
\end{equation*}
$$

where [M], [K] are mass and stiffness matrices and \{X\} is the displacement vector and (F) is the magnitude vector of the forcing function. When a single damper at dof J is introduced into this system, the equation of motion becomes

$$
\begin{equation*}
[M]\{x\}+[C]\{\dot{x}\}+[K]\{x\}=\{F\} e^{j \omega t} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& {[c]=c\left\{e_{J}\right\}\left\{e_{J}\right\}^{T}} \tag{3}\\
& \left\{e_{J}\right\}^{T}=\left[\begin{array}{lllllll}
0 & \ldots & 0 & 1 & 0 & \ldots & 0
\end{array}\right] \\
& \\
& \text { 今̂th component }
\end{align*}
$$

Let the steady state solution of (2) be

$$
\begin{equation*}
\{x\}=\{X\} e^{j \omega t} \tag{4}
\end{equation*}
$$

Then, use (3) and (4) the steady state response $\{X\}$ can be computed from

$$
\begin{equation*}
[Z(\omega)]\{X\}=\{F\}-\operatorname{c\omega j}\left\{e_{J}\right\}\left\{e_{J}\right\}^{T}\{X\} \tag{5}
\end{equation*}
$$

where

$$
[Z(\omega)]=-\omega^{2}[M]+[K]
$$

Define

$$
\begin{equation*}
[R(\omega)]=[Z(\omega)]^{-1} \tag{6}
\end{equation*}
$$

and note that

$$
\begin{align*}
& \left\{e_{J}\right\}^{T}\{x\}=x_{J} \tag{7}\\
& {[R]\left\{e_{J}\right\}=\left\{R_{J}\right\}}
\end{align*}
$$

where $\left\{R_{J}\right\}$ is the Jth column of [R]. Premultiply (5) by [R] and use (7) to obtain

$$
\begin{equation*}
\{X\}=\left\{X_{0}\right\}-j \omega c R_{J} X_{J} \tag{8}
\end{equation*}
$$

Note that

$$
\begin{aligned}
\left\{X_{0}\right\} & =[R(\omega)]\{F\} \\
& =\text { steady state solution of the undamped system. }
\end{aligned}
$$

The Jth equation of (8) is

$$
X_{J}=X_{O J}-j \omega c R_{J J} X_{J}
$$

or

$$
\begin{equation*}
x_{J}=\frac{x_{O J}}{1+j \omega c R_{J J}} \tag{9}
\end{equation*}
$$

Equation (8) todether with (9) are the general frequency response reanalysis equations when a damper c is introduced at dof J. It is interesting to note that at the frequency at which

$$
\begin{equation*}
R_{J J}\left(a_{l}\right)=0 \tag{9a}
\end{equation*}
$$

the response X_{J} is independent of damper gain c. Thus. we have shown the existence of fixed points for the response curve $X_{J}(\omega)$. Furthermore, those frequencies are the antiresonant frequencies for dof J. A typical frequency response curve for X_{J} (or $\omega^{2} X_{J}$. the acceleration response) is shown in Fig. 2.1. In Fig. 2.1, point A is the fixed point corresponding to the smallest root of Eq. (9a). By definition of fixed point, all response curves pass through A

ω
Fig. 2.1 Frequency Response Curve for $\left|X_{J}\right|$ Showing fixed point A. a_{1} is the frequency corresponding to point A.
regardless of the damper gain C. Thus, it is obvious the optimal c (in terms of the smallest response) should produce a response curve that peaks at point A. In other words, the optimal response curve has a slope zero at the fixed point A.

From the above discussion, we know that once a damper location is selected, the minimum response X_{J} is determined by the undamped response at the fixed point frequency. Since near resonance, the undamped response is monotonically increasing as the frequency is approaching the undamped natural frequency from below, (see Fig. 2.2). we conclude that the optimal location for lowest amplification for a particular mode with undamped natural frequency ω_{n} is where ($\omega_{n}{ }^{-a}$) is a maximum.

This proves MCFC for minimum frequency response. Our original MCFC pertains to the modal damping ratio. Since modal damping is closely related to the amplification factor we conclude that MCFC will produce a design with maximum damping ratio.

Discussion

(1) In general, there are ($n-1$) fixed points for response X_{J}. where n is the number of elastic modes of the system.
(2) The responses $X_{J}(I \neq J)$ exhibits fixed points at frequencies where

$$
\begin{equation*}
I_{I} X_{c=0}=X_{I} X_{c=\infty} \tag{10}
\end{equation*}
$$

or from (8) and (9), condition (10) becomes

$$
\begin{equation*}
\left|X_{O I}\right|=\left|X_{O I}-R_{I J}(\omega) X_{O J}\right| \tag{11}
\end{equation*}
$$

which corresponds to the following two equations

$$
\begin{equation*}
X_{O I}=X_{O I}-R_{I J}(\omega) X_{O J} \tag{12a}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{O I}=-X_{O I}+R_{I J}(\omega) X_{O J} \tag{12b}
\end{equation*}
$$

(3) Our proof only pertains to X_{J}. however, experience showed that once $X_{J}(\omega)$ is minimized, the other $X_{I}(\omega)$'s are almost optimal. (4) The proof cannot be extended to multiple dampers since no fixed points exist for the multiple damper case.

References

1. B.P. Wang, and W.D. Pilkey, "Optimal Damper Location in the Vibration Control of Large Space structure". Proceedings of the Third VPI\&SU/AIAA Symposium on the Dynamics and Control of Large Plexible Spacecraft, pp. 379-392.
2. B.P. Wang, G. Horner, and W.D. Pilkey, "Optimal Damping for the Vibration Control of A Two-Dimensional Structure," AIAA paper No. 81-1845, presented at AIAA Guidance and Control Conference, August 1981.
3. J.P. DenHartog, Mechanical Vibrations. McGraw Hill Book Company, Inc.. Fourth edition. 1956, pp. 93-106.

Fig. 2.2 Frequency response of undamped n-dof system.

$$
\left|x_{J}(\omega)\right| \text { increases monotonically as } \omega \rightarrow \omega_{n}
$$

3. Locating Actuators for Minimum Spill-Over

A frequently discussed problem in the control of LSS is that of "control spill-over". A method of minimizing the effect of control spill-over is proposed in this section. It is shown that to control n_{c} modes using n_{a} actuators, the spill over effect can be minimized by insuring that n_{s} secondary modes are not excited. This requires $n_{a}>n_{s}$. The method described allows only $n^{\prime}=n_{a}-n_{s}$ of the n_{a} actuators to be controlled independently. Conditions of actuator placement is also indicated.

Consider a proportionally damped system whose finite element model can be written as

$$
\underline{M} \underline{x}+\underline{C} \underline{\dot{x}}+\underline{K} \underline{x}=\underline{B} \underline{u}
$$

where M, C, and K are mass, damping, and stiffness matrices of the system respectively, and x is the system displacement vector, \underline{u} is the control vector and \underline{B} is the actuator influence matrix.

In modal coordinates, (13) becomes

$$
\begin{equation*}
\ddot{q}+2 \underline{E} \underline{\omega} \dot{q}+\underline{\omega} \underline{\underline{q}}=\underline{\underline{\Phi}} \underline{B} \underline{u} \tag{14}
\end{equation*}
$$

where Φ is the modal matrix and is the solution of the undamped eigenvalue problem

$$
\begin{equation*}
\omega_{i}{ }^{2} M \rho_{i}=K \rho_{i} \tag{15}
\end{equation*}
$$

In general, only a few of the important modes are controlled. Designate these modes as g_{c} and the remaining modes as q_{r}. the residue modes. Then Eq. (14) can be written as

$$
\begin{gather*}
\bar{q}+2 E \omega \dot{q}+\omega^{2} q=\Phi^{T} B u \tag{16}\\
c c c c c c c c
\end{gather*}
$$

and

$$
\begin{gather*}
9 \tag{17}\\
\mathbf{q}+2 E \omega \dot{q}+\omega^{2} q=\Phi^{T} B u \\
r
\end{gather*}
$$

Now the physical response is given by

$$
\begin{equation*}
\underline{x}=\Phi_{c} q_{c}+\Phi_{r} q_{r} \tag{18}
\end{equation*}
$$

Hence, if $q \neq 0$, the physical response is influenced by the uncontrolled mode. This effect is called control spill-over.
Examination of (17) shows that $q_{r} \neq 0$ if $\Phi_{1}^{T} B u \neq 0$.

It would appear then if we choose B such that

$$
\begin{equation*}
\Phi_{r} \underline{B}=\underline{0} \tag{19}
\end{equation*}
$$

the control spill over problem is solved. Unfortunately, condition (19) can not be met in general.

In the following, a simple technique of reducing the control spill-over effect is described. Partition the residue modes into a set of secondary modes ρ and higher modes, with the higher modes having negligible effects on the system. In this way, we have

$$
\begin{equation*}
\underline{x}=\Phi_{c} \underline{\underline{q}}_{c}+\Phi_{s} \underline{q}_{s} \tag{20}
\end{equation*}
$$

Now, to minimize control spill-over, minimize \underline{q}_{s}. or ultimately make $q_{s}=0$. The response q_{s} can be solved from

$$
\begin{equation*}
\ddot{q}_{s}+2 E_{s} \omega_{s} \dot{q}_{s}+\omega_{s}^{2} q_{s}=\Phi_{s}^{T} B u \tag{21}
\end{equation*}
$$

Now if

$$
\begin{equation*}
\Phi_{s}{ }^{T} B u=0 \tag{22}
\end{equation*}
$$

then

$$
q_{s}=0
$$

$$
\begin{equation*}
\underline{A} \underline{\mathbf{u}}=0 \text { where } A=\Phi_{s}^{T} T_{B} \tag{23}
\end{equation*}
$$

Assume $n_{s}<n_{a}$, then partition \underline{A} and \underline{u} into

$$
\begin{align*}
& \underline{A}=\left[\underline{A}_{i} \vdots A_{d}\right], \text { with } \underline{A}_{d} \text { nonsingular } \\
& \underline{u}=\left[\begin{array}{c}
u_{i} \\
u_{d}
\end{array}\right] \tag{24}
\end{align*}
$$

Using (24), (23) becomes

$$
\begin{equation*}
A_{i} u_{i}+A_{d} u_{d}=0 \tag{25}
\end{equation*}
$$

From (25), solve for

$$
\begin{equation*}
\underline{u}_{d}=-\underline{A}_{d}{ }^{-1} \underline{A}_{i} \underline{u}_{i} \tag{26}
\end{equation*}
$$

Thus, if

$$
\underline{u}=\left[\begin{array}{c}
\underline{u}_{i} \tag{27}\\
\underline{u}_{d}
\end{array}\right]=\left[\begin{array}{cc}
I & \\
-A_{d}^{-1} & \\
A_{i}
\end{array}\right] \underline{u}_{i}
$$

Then the condition (22) will be met. Check

$$
\begin{aligned}
\Phi_{s}^{T} \underline{B} \underline{u}=\underline{A} \underline{u} & =\left[\begin{array}{ll}
A_{i} & A_{d}
\end{array}\right]\left[\begin{array}{c}
I \\
-A_{d} A_{i}
\end{array}\right] \underline{u}_{i} \\
& =\left(A_{i}-A_{i}\right) u_{i}=0
\end{aligned}
$$

Equation (25) implies that out of the n_{a} actuators, only $n^{\prime}=n_{a}-$ n_{s} of them can be controlled independently. Define

$$
\underline{D}=\left[\begin{array}{c}
I \tag{28}\\
-A_{d}^{-1} A_{i}
\end{array}\right]
$$

then

$$
\begin{equation*}
\underline{\mathbf{u}}=\underline{\mathrm{D}} \underline{\mathrm{u}}_{\mathrm{i}} \tag{29}
\end{equation*}
$$

Substitute (29) into (16) to get

$$
\begin{equation*}
\ddot{q}_{c}+2 E_{c} \omega_{c} \dot{q}_{c}+\omega_{c}^{2} q_{c}=\underline{\Phi}_{c}^{T} \quad \underline{B} \quad \underset{n_{c} \times n n_{a}}{n_{a}} \underset{n^{\prime}}{n^{\prime} \times 1} \underline{u}_{i} \tag{30}
\end{equation*}
$$

The design problem is then to choose u_{i} to control q_{c}
in in

$$
\begin{equation*}
q_{c}+2 E_{c} \omega_{c} \dot{q}_{c}+\omega_{c}^{2} q_{c}=\Phi_{c} \underline{B}^{\prime} \underline{u}^{\prime} \tag{31}
\end{equation*}
$$

where

$$
\begin{aligned}
& \underline{B}^{\prime}=\underline{B} \underline{D}=\underline{B}\left[\begin{array}{cc}
I & \\
-A_{d}^{-1} & \\
A_{i}
\end{array}\right] \\
& \underline{u}=\underline{u} \\
& \underline{A}=\left[\underline{\Phi}_{g}{ }^{\mathbf{T}}\right]
\end{aligned}
$$

Note that the placement on actuator should be such that one can find a non-singular $n_{s} \mathrm{Xn}_{\mathbf{s}}$ matrix ${\underset{A}{A}}$ from the matrix A.
4. Characteristic Equations for Undamped System with Generalized Control Law

The characteristic equation of an undamped system with a generalized control law is dexived using reanalysis theory in this section. This equation can be implemented in the computer programs for efficient eiqenvalue analysis or control gain synthesis.

Consider an undamped n-dof system with n_{a}-actuators, the equation of motion can be written as

$$
\begin{equation*}
\underline{\mathrm{M}} \underline{\mathrm{x}}+\underline{\mathrm{K}} \underline{\mathbf{x}}=\underline{\mathrm{B}} \underline{\mathbf{u}} \tag{32}
\end{equation*}
$$

where \mathcal{M}. K are the nxn mass and stiffness matrices respectively, u is a $n_{a} x l$ vector, i.e..

$$
\underline{u}=\left[\begin{array}{c}
u_{1} \\
\vdots \\
\dot{u} \\
\mathbf{u}_{a}
\end{array}\right]
$$

B is the $n \times n$ Boolean distribution matrix with n_{a} nonzero rows. We will designate x_{a} and x_{s} as the doE locations for actuator and sensors respectively. Now define

$$
\begin{align*}
& \underline{X}_{a}=\underline{B}_{a}^{T} \underset{n_{a}}{T}=n_{a} \text { vector } \\
& \underline{X}_{s}=\underline{B}_{s}^{T} \underline{x}=n_{s} x l \text { vector } \tag{33}
\end{align*}
$$

then we conclude that

$$
\begin{equation*}
\underline{B}=\underline{B} \tag{34}
\end{equation*}
$$

Furthermore, assume \underline{X}_{a} is contained in \underline{X}_{s}, and partition X_{s} as

$$
\underline{x}_{s}=\left[\begin{array}{l}
\underline{x}_{a} \tag{35}\\
\underline{x}_{r}
\end{array}\right]
$$

Now, the system dof can be partitioned either as

$$
\underline{x}=\left[\begin{array}{c}
x_{a} \\
\underline{x}_{r}
\end{array}\right] \quad \text { or } \quad \underline{x}=\left[\begin{array}{l}
x_{a} \\
\underline{x}_{b} \\
\underline{x}_{c}
\end{array}\right]
$$

Note that

$$
\underline{x}_{r}=\left\{\begin{array}{c}
\underline{x}_{b} \\
\underline{x}_{c}
\end{array}\right]
$$

Also note that

$$
n=n_{a}+n_{r}=n_{a}+n_{b}+n_{c}
$$

Now, express

$$
\begin{equation*}
\underline{x}_{s}=\underline{B}_{a} \underline{x}+\underline{B}_{b} \underline{x} \tag{36}
\end{equation*}
$$

Assume the control law is

$$
\begin{equation*}
\underline{\mathbf{u}}=-\left(\underline{c}_{a} \dot{\underline{x}}_{a}+\underline{c}_{b} \dot{\underline{x}}_{b}+\underline{k}_{a} \underline{x}_{a}+\underline{k}_{b} \underline{x}_{b}\right) \tag{37}
\end{equation*}
$$

Substitute (6) into (1), so that for the closed loop system

$$
\begin{align*}
& \underline{M} \underline{x}+\underline{K} \underline{x}=-\underline{B}_{a} \quad\left(\underline{c}_{a} \quad \underline{x}_{a}+\underline{c}_{b} \quad \underline{\dot{x}}_{b}+\underline{k}_{a} \quad \underline{x}+\underline{k}_{b} \quad \underline{x}_{b}\right) \tag{38}\\
& n_{a} \quad n_{a} \times n_{b} \quad n_{a} x n_{b} \quad n_{a} x n_{b} \quad n_{a} x n_{b}
\end{align*}
$$

or, assuming

$$
\begin{equation*}
\underline{x}=\underline{x} e^{s t} \tag{39}
\end{equation*}
$$

and letting $\underline{R}=\left(s^{2} M+K\right)^{-1}$ equation (38) becomes:

$$
\underline{x}=-\underline{R} \underline{B}_{a}\left(s \underline{C}_{a} \underline{x}_{a}+\operatorname{sc}_{b} \underline{x}_{b}+\underline{k}_{a} \underline{x}_{a}+\underline{k}_{b} \underline{x}_{b}\right)
$$

or

$$
\begin{equation*}
\underline{x}=-\underline{R} \underline{B}_{a}\left[\left(s{\underset{-}{a}}^{a}+\underline{k}_{a}\right) \underline{x}_{a}+\left(s \underline{g}_{b}+\underline{k}_{b}\right) \underline{x}_{b}\right] \tag{40}
\end{equation*}
$$

and finally

$$
\underline{x}=-\underline{R} \underline{B}_{a}\left[\left(s \underline{c}_{a}+\underline{k}_{a}\right)\left(s \underline{c}_{b}+\underline{k}_{b}\right)\right]\left[\begin{array}{l}
\underline{x}_{a} \\
\underline{x}_{b}
\end{array}\right]
$$

Now, premultiply (40) by ${\underset{T}{\mathrm{a}}}^{\mathbf{T}}$ to produce (41) and premultiply (40) by \underline{B}_{b}^{T} to produce (42).

$$
\begin{align*}
& \underline{B}_{a} \underline{T} \underline{\underline{x}}=-\underline{B}_{a} \underline{T}_{-}^{T} \underline{B}_{a}\left[\begin{array}{ll}
\underline{H}_{a} & \underline{H}_{b}
\end{array}\right]\left[\begin{array}{c}
\underline{x}_{a} \\
\underline{x}_{b}
\end{array}\right] \tag{41}\\
& \underline{B}_{b} \underline{T}^{T}=-\underline{B}_{b} \underline{T}_{\underline{R}} \underline{B}_{a}\left[\begin{array}{ll}
\underline{H}_{a} & \underline{H}_{b}
\end{array}\right]\left[\begin{array}{c}
\underline{x}_{a} \\
\underline{x}_{b}
\end{array}\right] \tag{42}
\end{align*}
$$

Use the definition

$$
\begin{aligned}
& \underline{x}_{a}=\underline{B}_{a}^{T} \underline{x}^{T} \\
& \underline{x}_{b}=\underline{B}_{b}^{T} \underline{x}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{H}=\left[\underline{H}_{a} \quad \underline{H}_{c}\right]=\left[\underline{s}_{a}+\underline{k}_{a} \quad \mathbf{s G}_{B}+\underline{k}_{b}\right] \\
& \underline{\hat{x}}=\left[\begin{array}{l}
\underline{x}_{a} \\
\underline{x}_{b}
\end{array}\right]
\end{aligned}
$$

Equations (41) and (42) become

$$
\begin{array}{rlcc}
\underline{x}_{a} & =-R_{a c} & \underline{H} & \underline{x} \\
n_{a} x & n_{a} n_{a} n_{a} x n^{\prime} n^{\prime} x l \tag{43}
\end{array} \quad n^{\prime}=n_{a}+n_{b}
$$

where
$\underline{R}_{a a}=$ portions of \underline{R} associated with \underline{X}_{a} only
$\underline{R}_{b a}=\underset{\text { pertween }}{\text { pof }} \underline{x}_{a} \underline{R}_{\text {and }} \underline{x}_{b}$
Rewrite (43) as

$$
\left[\begin{array}{l}
x_{a} \\
x_{b}
\end{array}\right]=\left[\begin{array}{cc}
-R_{a a} & H \\
-R_{b a} & H
\end{array}\right] \underline{\hat{x}}
$$

or .

$$
\begin{aligned}
& \underline{\hat{x}}=\left[\begin{array}{cc}
-R_{a a} & H \\
-R_{b a} & H
\end{array}\right] \underline{\hat{x}} \\
& \operatorname{det}\left[1+\left[\begin{array}{cc}
R_{a a} & \underline{H} \\
R_{b b} & \underline{H}
\end{array}\right]\right]=0
\end{aligned}
$$

thus

$$
\operatorname{det}\left[\begin{array}{cccc}
I+R_{a a} & \underline{H}_{a} & R_{a a} \underline{H}_{b} \tag{44}\\
R_{b a} \underline{H}_{a} & {\left[I+R_{b a} \underline{H}_{b}\right]}
\end{array}\right]=0
$$

is the characteristic equation of the closed loop system where

$$
\underline{H}_{a}=\underline{s c}_{a}+\underline{k}_{a} \quad \underline{H}_{b}=s \underline{c}_{B}+\underline{k}_{b}
$$

Example

For the 2-dof system shown in Figure (4.1)

$$
\begin{aligned}
& u_{1}=-\left(c_{a} \dot{x}_{1}+c_{b} \dot{x}_{2}\right) \\
& H_{a}=s c_{a} \quad H_{b}=s c_{b} \quad x_{a}=x_{1} \quad \underline{x}_{b}=x_{2} \\
& R_{a a}=R_{11} \quad R_{b b}=R_{22} \quad R_{b a}=R_{21}
\end{aligned}
$$

Thus, Eq. (14) becomes

$$
\operatorname{det}\left[\begin{array}{ll}
1+s c_{a} R_{11} & s c_{b} R_{11} \\
s c_{a} R_{21} & s c_{b} R_{21}
\end{array}\right]=0
$$

Fig. 4.1

5. Damper Design

Possible methods of controlling vibrations on large space structures have been reviewed. Two basic approaches are identified:

1. Modification of the control system so that the poles are well damped. This approach is based on the assumption that the major, if not only, cause of vibrations is the control system itself.
2. Addition of a separate damping system, which might be:
2.1 Passive damping
2.2 Active damping

The working medium of a ground based damper of either kind might be electromagnetic, but it would more probably be hydraulic or pneumatic, or, in the case of passive systems, magnetic or frictional. For space applications, hydraulic, pneumatic, and frictional systems must be ruled out as too unreliable in the space environment when little or no maintenance is possible. This leaves electromagnetic, magnetic, and possibly new systems based on the piezoelectric or other effects.

A list of possible systems is given in Table 5.1. The active damping systems using electromagnetics are assumed to incorporate coils moving in the fields of permanent magnets. The current in a coil would be provided by an electrical circuit in response to the output from one or more sensors. For the purpose of this study, such a circuit is assumed to introduce a negligible weight penalty, whereas the permanent magnet is considered to be a significant weight item. Similarly, the permanent magnet in the eddy current damper of a passive system is also considered to be a significant weight item. For systems which require a moving mass, such as the seismic mass of a passive system, or the mass in an active inertial system. it would therefore seem to be advantageous to combine the roles of moving mass and magnet in order to save weight. On this basis. the gyro concept might have a considerable weight disadvantage, because it would be impossible to combine the magnet and the flywheel.

Table 5.1. Possible Damping Systems

$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	Modification of Control System		
	2.1	Passive	Damping: Magnet and conductive strip
		2.1.1	Seismic mass with stationary magnet
		2.1 .2	Magnet as seismic mass
		2.1 .3	Gyro
		2.1.4	Two-force member
	2.2	Active	Damping: Electromagnetic
		2.2.1	Separate mass and magnet
			2.2.1.1 Linear
			2.2.1.2 Rotating (inertia wheel)
		2.2.2	Moving magnet
			2.2.2.1 Linkage system
			2.2.2.2 Rack and pinion
		2.2 .3	Gyro
		2.2 .4	Two-force member
	2.3	Active	Damping: Piezoelectric

In comparing active against passive damping, the relative disadvantage of requiring an electrical system for the former must be weighed against the need to tune the seismic mass to a given frequency, so that the latter is essentially a narrow band device, whereas the active damper is relatively broadband.

The systems mentioned in Table 5.1 are discussed in more detail below.

Modification of Control System (1.0)

Modern control theory prescribes methods for designing control circuits having poles in any desired location, thus active damping can be achieved directly at the major source of disturbances. A very simple example is illustrated in Figure (5.1) which shows a one-dimensional system consisting of two masses connected by a spring, having one rigid-body translational mode, and one vibrational mode. Suppose that the impulse from a thruster is applied at one of the two masses. The vibrational mode will be excited and the system will move off with one mass coming to rest every half cycle. Now suppose that there are two thruster impulses applied one half-period apart, then the system will move without any internal vibration after the first half-period. Applied on a very much larger and more complex scale, such an approach could be used to maneuver a large space structure without any residual vibrations of serious amplitude.

Passive Damping (2.1)

The only reliable method of passive damping appears to be through the use of a magnet and a conductive strip. When the strip is passed between the poles of a magnet, eddy currents are induced in a direction normal to the velocity and to the magnetic field, and the effectiveness of such a damper is directly proportional to the product of electrical conductivity, magnetic field strength, and pole area. Unfortunately, the damping forces so produced are relatively small at frequencies of interest.

Pour possible systems are shown in Figures (5.2) to (5.5). The first. system 2.1.1 in Figure (5.2), is a seismic damper, while for system 2.1 .2 in Figure (5.3) the magnet doubles as the seismic mass. For system 2.1.3 in Figure (5.4), the magnetic damper is used in conjunction with a gyro to provide damping against angular motion of the structure. Finally, for system 2.1.4 in Figure (5.5), the magnetic damper is used in a two-force member spanning part of the large structure.

Active Damping: Electromagnetic (2.2)

In the active damping system, energy is removed from the structure by the action of an electromagnetic actuator or an electric motor. For the purpose of illustration, a voice-coil shaker of the type used for vibration testing has been assumed for the analyses of the active systems in the appendices. Such shakers are relatively heavy, because they contain powerful permanent magnets, although careful redesign for space applications might result in considerable

SINGLE IMPULSE

dOUBLE IMPULSE, 2nd IMPULSE APPLIED ONE HALF PERIOD AFTER lst IMPULSE

Fig. (5.1) 1.0 Modification of Control System

Fig. (5.2) Seismic Mass, Stationary Mass (2.1.1)

Fig. (5.4) Gyro System

Fig. (5.5) (2.1.4) Two-Force Member
weight reductions. However. the weight penalty is directly proportional to the maximum energy which can be removed per cycle, as is shown in Appendix B. The design problem with a damper of this kind is that of ensuring that this maximum energy reduction per cycle is in fact available.

The system would be driven through a current amplifier from the difference between two integrated accelerometer signals, one from the structure, and one from the moving mass. Thus a force would be applied to the structure which would be directly proportional to the local velocity of the structure.

The major problem to be faced is how to provide an appropriate reaction on the structure so that as much energy is removed per cycle as is possible. One approach, shown as system 2.2.1.1 in Figure (5.6). employs a moving mass. As is shown in Appendix B, this system can be designed for peak performance at a given frequency. Above this frequency, performance is limited by the maximum available shaker force, while below this frequency, performance is limited by the maximum displacement available. An analogous rotarysystem, 2.2.1.2, shown in Figure (5.7) uses an electric motor driving an inertia wheel.

System 2.2.2.1 in Figure (5.8) is an improvement on the previous system, in which the shaker magnet doubles as the moving mass. A second version is shown in Figure (5.9). In Figure (5.8), the actuator motion is amplified by a "lazy tong" linkage. Such a linkage would not be practical, but could be used in a laboratory demonstration. In the second system, 2.2.2.2.. Figure (5.9). the shaker is replaced by an electric motor which drives itself up and down a shaft with a rack-and-pinion gear.

System 2.2.3 shown in Figure (5.10) is similar to system 2.1.3 shown in Figure (5.4) except that the passive damper has been replaced by an active electromagnetic damper, while system 2.2 .4 shown in Figure (5.11) is a two force member corresponding in a similar way with system 2.1.4 in Figure (5.5).

Active Damping: Piezoelectric (2.3)

Acoustical transducers have been made from polyvinylidene fluoride $\left(\mathrm{PVF}_{2}\right)$ sheet, aluminized on both sides. The sheet is polarized. so that when a voltage differential is applied between the aluminized coatings, the material strains in one direction. Conversely. when it is strained, a voltage differential is induced. If the material is bonded to the surface of a structural element, a surface shearing force can be induced which will load the structure, and, if properly controlled, is capable of introducing damping. Proper use of such a material evidently depends on new approaches to structural dynamic analysis, but is certainly worthy of consideration.

Electronics

The active systems would be driven by feedback circuits. Such a circuit is shown in Figure (5.12). which repeats system 2.2 il. 2 of Figure (5.8) with the addition of a circuit which compares $\mathrm{md}^{2} \mathrm{y} / \mathrm{dt}^{2}$ and

Fig. (5.6) System (2.2.1) Active Damper

Fig. (5.7) Inertia Wheel System 2.2.1.2

Fig. (5.8) System 2.2.2.1 Active Damper

Page intentionally left blank

Page intentionally left blank

Fig. (5.10) System 2.2.3 Actively Damped Inertia Wheel

Fig. (5.11) System 2.2.4 Two Force Member Active Damper

FIG. 12 SYSTEM 2.2.2.1 ACTIVE DAMPER Showing possible control loop added to system to yield desired characteristics
cdx/dt as derived from two accelerometers, the difference being used to drive the voice-coil current through a amplifier.

Comparative Performance

For a preliminary comparison of performance capability, two figures of merit can be considered.

1. Energy removed per cycle per unit mass at design frequency, W_{D} / m_{T}
2. Bandwidth

In Appendix B, the value for W_{D} / m_{T} achieved with gystem 2.2.2.1 in Figure (5.8) under design conditions is shown to be . $0619 \mathrm{~J} / \mathrm{kg}$. which is 79% of the maximum possible capability of a voice coil shaker. This was twice as good as the best system 2.2.1 arrangement of Figure (5.6). Therefore, it is tentatively concluded that other active damping systems, such as the inertia wheel. in Fig. (5.7). or the two force member, in Fig. (5.11), cannot be much better if they are based on electromagnetic action. passive systems, being based on magnets. are probably no better, although this has not been investigated.

Performance of the active system, based on rate of energy removal, is constant above the design frequency, but rolls off below it. In contrast, the passive system is narrow-band and has to be tuned to a given frequency.

It is shown in Appendix C that the PVF piezo-electric material has the potential for work per cycie of as much as $4 \mathrm{~J} / \mathrm{kg}$, which is more than 30 times that of the voice-coil shaker. On the other hand, using the minimum property values available, the work per cycle could be as low as $.005 \mathrm{~J} / \mathrm{kg}$, which is less than one tenth as good as a voice-coil shaker. One of the most critical properties is the dielectric field strength. E_{M}. Since a dielectric breakdown causes an explosive failure, it might be necessary to allow quite a large safety margin, so that PVF_{2} might prove no better than voice-coil shakers.

Conclusion of Review

It is concluded from this series that an electromagnetic actuator. suspended in such a way that the magnet forms part of the moving mass, is the most promising approach for immediate application.

Design of Experimental Damper

It was decided, as a result of the review, that an electromagnetic damper should be investigated experimentally, and that one should be developed for use on the scale model grillage at the NASA Langley Laboratory. The following design criteria were used initially

```
Maximum Force = 1 lbf = 4.45 N
Design Amplitude = 0.5 in. = 0.0127 m.
Degign Frequency = 0.36 Hz
```

Accelerometer on moving mass - NASA supplied
Accelerometer on grillage - NASA supplied
Electronics - off grillage - NASA supplied

A design which meets these requirements is shown in Fig. (5.13).

Description of Damper

The magnetic flux is supplied by the two toroidal samariumcobalt magnets. The remainder of the magnetic circuit is temporarily completed with mild steel, which has a high saturation flux, and can therefore be designed for minimum weight. However, pure iron will be substituted when it becomes available. The annular gap is large to accomodate the windings of the fixed coil. this dictates a design which minimizes flux leakage at the gap. For example, two magnets are used where one would suffice if the gap were small, also. the internal diameter is larger than is required merely for clearance.

The entire magnet assembly moves along a hardened steel shaft on linear bearings, with one inch of useful travel. An accelerometer is attached to the moving magnet to feed back the acceleration of its mass. which is directly proportional to the damping force. The fixed coil has a Delrin core, and is designed to take ten layers of 26 gage magnet wire.

An outer case of polycarbonate tubing is used to keep the linear bearings clean. It also holds a track in which a small ball race moves to prevent the magnet from turning and thereby twisting the leads to the accelerometer. The end cap of the cover is removable so that the accelerometer leads can be connected to terminals.

Magnet Analysis
The samarium cobalt magnets have the following specifications:

```
Outside Diameter = 0.75 in.
Inside Diameter = 0.43 in.
Magnetic Induction = 8000 Gauss
    =0.8 Tesla
```

The following is calculated:

```
Magnetic Flux = 153 micromaxwells
```

The remaining circuit is designed so that the magnetic flux density in the mild steel does not exceed 66\% of the 2.1 Tesla saturation flux density.

For the purpose of the subsequent analyses, the total 153 uM flux is assumed to cut the coil windings.

Fig. (5.13) N,A.S.A, Active Damper Actuator Prototype

It is assumed that each of the ten layers of 26 gage wire contains 67 turns, based on the following analysis

```
Spool length = 1.25 in.
Diameter of bare wire = 0.015945 ins
Diamater of enamelled wire (measured) = 0.01772 ins
Winding efficiency = 67 < 0.01772/1.25=0.95= 95%
Turns per meter = 10 < 67 x 39.37/1.25 = 21100 m
```

The relationship between the force acting, F, the flux Φ, the turns per meter, n, and the coil current A is developed as follows. Assume an effective coil diameter D, and a gap width \mathbf{w}_{g}. then the flux in the gap is

$$
\begin{array}{llll}
\mathrm{B}_{\text {gap }} & =\Phi / \pi & \mathrm{D} & \mathrm{w} \\
& & \mathrm{~g} \tag{5.1}
\end{array}
$$

The length of wire immersed in the gap is

$$
\begin{array}{lllll}
L_{\text {gap }} & =\pi \quad D \quad n & w \\ \tag{5.2}
\end{array}
$$

and the force acting between the coil and the magnet is

$$
\begin{array}{ccc}
\mathbf{F}=I & \mathbf{B} & =\ln I \tag{5.3}\\
& \text { gap } & \text { gap }
\end{array}
$$

Por a force of one lbf, or 4.45 N

$$
I=F / n \Phi=(4.45) /(21100)\left(153 \times 10^{-6}\right)=1.38 \mathrm{~A}
$$

In operation, this would be a peak value, the actual DC current recomended for 26 gage wire is 0.51 A , based on 254 circular mils (in ${ }^{2}$) at 500 per A. Thus a damper operating continuously at maximum amplitude would be limited to a maximum force of

$$
F_{\max }=\sqrt{2}(0.51 / 1.38)=0.521 b
$$

However, during tests, peak amplitude will vary, so that the damping constant can be set to correspond to a much higher maximum force without causing excessive heating in the coil. The resistance of the coil. based on 0.0410 Ohms/ft.. and a mean diameter of 1.2 ins, is

$$
R=(0.0410)(10)(67)(1.2) \pi /(12)=8.630 \mathrm{hms}
$$

Other estimates, based on different values for resistivity, have been as high as 23 Ohms. Based on 8.63 Ohms, the peak voltage is

```
Vmax = (1.38)(8.63)= ll.9 V
Vmin = -ll.9 V
```


Analysis of Damping Constants

If we redefine K so that it is the ratio of structural amplitude $\left|x_{0}\right|$ to damper amplitude, D_{M} i.e.,

$$
\begin{equation*}
K=1 X_{0} 1 / D_{m} \tag{5.4}
\end{equation*}
$$

then, from Eq. (B.2) of Appendix B

$$
\begin{equation*}
1 / K^{2}=1+c^{2} / \omega^{2} m_{2}^{2} \tag{5.5}
\end{equation*}
$$

also, with the linkage ratio R set to unity, Eq. (B.1) can be written as

$$
\begin{equation*}
F / F_{m}=\omega c D_{m} K / F_{m} \tag{5.6}
\end{equation*}
$$

For the present design, the following values are anticipated

$$
\begin{aligned}
& \mathrm{m}_{2}=0.428 \mathrm{~kg} \\
& \mathrm{D}_{\mathrm{m}}=1 / 2 \text { inch }=0.0127 \mathrm{~m} \\
& \mathrm{~F}_{\mathrm{m}}=1 \mathrm{lbf}=4.45 \mathrm{~N}
\end{aligned}
$$

From Eq. (5.5), we can construct the following table for the damping constants, c.

Table 5.2 Values of Damping Constants

			$c(\mathrm{Ns} / \mathrm{m})$				
K	$\mathrm{IX} \mid$	C / ω	$\mathrm{f}=.35 \mathrm{~Hz}$	$\mathrm{f}=1 \mathrm{~Hz}$	$\mathrm{f}=3.5 \mathrm{~Hz}$		
	$(\mathrm{~m})$	(kg)					
.8	.0102	.321	.7059	2.017	7.059		
.5	.0064	.7413	1.630	4.658	16.3		
.3	.0038	1.361	2.993	8.551	29.93		
.1	.0013	4.259	9.37	26.76	93.7		

and from Eq. (5.6) we can construct the following table for the corresponding force ratios, $\mathbf{F} / \mathbf{F}_{\mathbf{M}}$.

Table 5.3 Force Ratios

K	$\left\|x_{0}\right\|$	$\mathbf{E}=.35 \mathrm{~Hz}$	$\begin{gathered} \mathrm{F} / \mathrm{P}_{\mathrm{M}} \\ \mathrm{f} \end{gathered}$	$\mathrm{f}=3.5 \mathrm{~Hz}$
. 8	. 0102	. 00354	. 0289	. 354
. 5	. 0064	. 00511	. 0418	. 511
. 3	. 0038	. 00563	. 046	. 563
. 1	. 0013	. 00588	. 0480	. 588

Note that the full force capability of the actuator is not required until the frequency exceeds 3.5 Hz .

In the proposed design, the damping constant c will be set by the electronic circuit. Suppose we pick a value of $2 \mathrm{Ns} / \mathrm{m}$ and examine the corresponding values for K and F / F_{M} as given by Eqs. (5.5) and (5.6). Note that a value for K of unity could correspond to a peak-to-peak structural amplitude of one inch while a value for F / F_{m} of unity would correspond to a maximum force of one lbf, the design ${ }^{m}$ value. The results are given in Table 5.4.

Table 5.4 Values for K and F / F_{M} when $C=2 N s / m$, (Eqns. 2 and 3)

$\mathbf{f (H z)}$	K	$\mathrm{F} / \mathrm{F}_{\mathrm{M}}$
.1	.133	.00048
.2	.261	.00185
.3	.374	.00403
.35	.426	.00535
.4	.474	.00678
.5	.558	.01006
.8	.732	.0210
1.0	.802	.0288
1.5	.899	0.0484
2.0	.937	.0672
2.5	.958	.0859
3.0	.971	.1045
5.0	.989	.1773

Note that the maximum force is not approached even at 5 Hz . Had a larger damping constant been used, these forces would have been larger, but the value for K would have been smaller. For example, Table 5.5 shows how K varies with C at frequencies of 0.35 , 1.0 and 3.5 Hz .

Table 5.5 K va. C (Eqn. 2)

C	K			
Ns / m	0.35 Hz	1.0 Hz	3.5 Hz	
0.1	.994	.999	1.000	
0.2	.978	.997	1.000	
0.3	.953	.994	1.000	
0.4	.920	.989	.999	
0.6	.843	.976	.998	
0.8	.762	.958	.996	
1.0	.685	.937	.994	
1.5	.532	.873	.988	
2.0	.426	.802	.978	
2.5	.352	.732	.966	
3.0	.299	.607	.953	
5.0	.185	.474	.883	
10.0	.094	.260	.685	

None of the examples shown in Table 5.5 correspond to a value for P / F_{m} exceeding unity. Thus, the present design, if achieved, should be adequate for all of the cases shown, provided that c is set at $2 \mathrm{Ns} / \mathrm{m}$ or less.

Preliminary Tests

A prototype unit was built from the design shown in Figure 5.13. a photograph of this unit is shown in Figure 5.14, while the analog circuit used in an initial test of the unit attached to the NASA grillage is shown in Figure 5.15.

Because of the possibility of hitting the stops when the moving mass is not centralized, a spring was added to the system which gave it a natural frequency of about 2 Hz . Using switch no. 2 , the system was-excited at a natural frequency close to 4 Hz .. then it was switched to feedback control, and the resulting damping was observed. Through switch no. l, the inner feedback loop incorporating the accelerometer mounted on the moving mass could be included at will. When it was excluded, rapid damping of the 4 Hz . mode was observed, but when the inner loop was included, the system at first damped, and then went unstable at a frequency lower than 2 Hz .

It was concluded that the accelerometer on the inner loop could be discarded, but that an inner loop should be incorporated which included an LVDT to measure position. This way, a very low natural frequency could be simulated for the system, while a bias voltage could be applied to offset gravitational effects. At the same time. studies should continue on a system which incorporates an inner loop accelerometer.

Conclusions

An experimental damper has been designed in which a mass of $.428 \mathrm{~kg}(.95 \mathrm{lbm})$ moves over a peak-to-peak amplitude of one inch under a programed force which can be as much as one lbf. The design includes an accelerometer attached to the mass.

Fig. 5.14 Prototype Damper

Fig. 5.15 Control Circuit for Prototype Damper

The programmed force is to be produced from the generation of a current in an amplifier driven by the difference between a signal proportional to the structural velocity and one proportional to the acceleration of the mass. Thus a damping force c will be generated on the structure.

Tentatively, the following design values are suggested

```
Damping constant = 2 Newton sec/meter
Design frequency = 0.35 Hz
Structural Amplitude = . 43 inches peak-to-peak
```

From early experience with the prototype, it is concluded that the inner-loop accelerometer should be replaced by an LVDT if an early working system is required. However, research should continue into the use of the inner accelerometer, and an alternative to the LVDT should be found if dampers with longer strokes are found to be desirable.

III. CONCLUSIONS

In conclusion, this work has covered two aspects of the problems involved in damping large space structures. On the one hand, the analytical problem of locating dampers has been investigated, while on the other, the problems of damper design have been reviewed. These considexations are summarized below
(1) Five computer programs have been developed. They are
(i) ASMD1 - Assumed mode method with diagonal damping matrix
(ii) ASMD2 - Assumed mode method with full damping matrix
(iii) SPSTGN - Damped eigenvalues using reanalysis
(iv) COPZ - Optimization of damper gain
(v) NORMAL - Orthonormatization of mode shapes
(2) Proof has been presented for two criteria for the optimal location of dampers. They are:
(i) MCFC - That the optimal single damper location is where the constrained frequency is a minimum
(ii) MFSC - That the optimal locations of several dampers are where the constrained frequency associated with the damper location has the largest separation from the corresponding undamped natural frequency of the system.
(3) A method of minimizing the effect of control "spill-over" has been proposed and demonstrated.
(4) The characteristic equation of an undamped system with a generalized control law has been derived using reanalysis theory.
(5) A review of possible damper designs has been conducted. It was concluded that the most promising designs are active systems, using electromagnetic or piezoelectric actuators with linear or rotational motion.
(6) A prototype linear electromagnetic damper was built and demonstrated using a moving permanent magnet. The damper is driven by feedback from an accelerometer, mounted in the structure, and integrated to provide a feedback force proportional to structural velocity. It was found necessary to incorporate a centering spring which will be replaced in future designs by a position feedback from an LVDT or other device.

IV. Bibliography of Papers Published UNDER THIS CONTRACT

Optimal Damping for the Vibration Control of a Two-Dimemsional Structure
B.P. Wang, w.D. Pilkey, G. Horner

AIAA Paper No. 81-1845
Optimal Damper Location in the Vibration Control of Large Space Structures B.P. Wang, W.D. Pilkey, presented at the Third VPI/AIAA Symposium on Dynamics and Control of Large Flexible Spacecraft.

APPENDICES

Subroutine ASMDl

Assumed Mode Method - Diagonal Damping Matrix

I. INTRODUCTION

ASMD1 is a FORTRAN subroutine, based on the assumed mode method, that can be used to compute the eigenvalues of a damped system. The eigenvectors of the undamped system are used as the assumed modes. When all modes of the undamped system are used, the method is equivalent to a direct solution. Experience shows that retaining $1 / 3$ to $1 / 2$ of the modes of the original system in the assumed mode method usually leads to accurate eigenvalues while providing considerable sávings in computer time.

II. ASSUMED MODE FORMULATION

Let the free vibration of a damped system be described by

$$
\begin{equation*}
[m]\{\ddot{x}\}+[c]\{\dot{x}\}+[k]\{x\}=\{0\} \tag{A1.1}
\end{equation*}
$$

where [c] is a diagonal damping matrix. Let $\left\{\rho_{i}\right\}, \omega_{i}$ be the solution of the corresponding undamped problem

$$
\begin{equation*}
\omega^{2}[m]\{\rho\}=[k]\{\rho\} \tag{Al.2}
\end{equation*}
$$

Purthermore, assume the mode shapes are normalized to unit generalized mass, i.e.,

$$
\begin{equation*}
\left\{\rho_{i}\right\}^{\mathrm{T}}[\mathrm{~m}]\left\{\rho_{i}\right\}=1.0 \tag{Al.3}
\end{equation*}
$$

Define

$$
\begin{equation*}
\{x\}=\sum_{\ell=1}^{L}\left\{p_{\ell}\right\} q_{\ell}=[\Phi]\{q\} \tag{A1.4}
\end{equation*}
$$

$n \times 1 \quad n \times L$ Lxl
where L is the number of modes used. Substitute (Al.4) into (Al.1) and premultiply $[\Phi]^{T}$ to get

$$
\begin{equation*}
[[]\{\ddot{q}\}+[\bar{c}]\{\dot{q}\}+[\Lambda]\{q\}=\{0\} \tag{Al.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& {[\mathrm{I}]=\text { LxL identity matrix }} \\
& {[\Lambda]=\left[\omega_{l}^{2}\right]=\text { LxL diagonal matrix }} \\
& {[c]=[\Phi]^{T}[c][\Phi]=\text { LxL full matrix }}
\end{aligned}
$$

Set

$$
\{z\}=\left\{\begin{array}{l}
z_{1} \tag{Al.6}\\
z_{2}
\end{array}\right\}=\left\{\begin{array}{l}
\dot{q} \\
q
\end{array}\right\}
$$

2Lx1
Then, (A1.5) becomes

$$
\begin{equation*}
\left\{\dot{z}_{1}\right\}=-[\bar{c}]\left\{z_{1}\right\}-[\Lambda]\left\{z_{2}\right\} \tag{Al.7a}
\end{equation*}
$$

By definition (A1.6)

$$
\begin{equation*}
\left\{\dot{z}_{2}\right\}=\left\{z_{1}\right\} \tag{A1.7b}
\end{equation*}
$$

Place (Al.7a), (Al.7b) together

$$
\begin{equation*}
\{\dot{z}\}=[A]\{z\} \tag{A1.8}
\end{equation*}
$$

where

$$
[A]=\left\{\begin{array}{cc}
-[c] & -[\Lambda] \\
{[I]} & {[0]}
\end{array}\right]=\left\{\begin{array}{cc}
-[\Phi]^{T}[c][\Phi] & -\left[\omega_{l}^{2}\right] \\
{[I]} & {[0]}
\end{array}\right]
$$

A standard eigenvalue problem can be formulated from (8) and solved using the routine RESV in the NASA Langley library.
III. INPUT PARAMETERS
III. 1 Formal Parameters

Description of the 6 formal parameters

N: number of DOF's of the original system
NC: number of dampers

```
IPRT: Dynamical matrix ([A] in (8)) printing flag,
    =0 no printing
    =1 print
```


III. 2 Common Blocks

In addition to the formal parameters, the following variables enter the subroutine ASMD through the common block set contained in file COMASMD. This file must be placed in the main program.

NTITLE (I): a holerith array of up to 80 columns which is used to define the title of the job
JC(I): damper location (DOF) of the Ith damper $C(I)$: initial damper values WN(I): undamped natural frequency of the ith mode PHI(J,I): mode shape coefficient at dof J of the Ith mode NM: number of modes used in the assumed mode method
IV. OTHER SUBROUTINES USED

ASMD calls NASA Library routine RESV to compute the eigenvalues of the dynamical matrix [A]. The computed complex eigenvalues are stored in array $E R(I)$ and $E I(I)$, which are the real and imaginary part of the Ith eigenvalue of matrix [A].

v. USING SUBROUTINE ASMD

The following is a sample program that calls routine ASMDl.

PROGRAM TLSTASI(INFUT,OUTPUT,TAFE12)

C

C
DIMENEION G(3E)
COMMON / DATA1 'C(5O)
COMMON / DATAZ / FHI(99.99),WN(79)
COMMON (DATAS (EICDATA(90,20,4), DAMP(AO)
COMMON / DATA4 / NTITLE(80),JC(SO)
COMMON / DATAS ! NM
COMHON / DATAG / NDP COMMON /DATAT/ER(79),EI(99)
C
C

1
C
C
C

10
PRIMT 10,(NTITLE(I),I=1,80)
FORMAT (8OA1)
READ *,N,NM,NC
PRINT *,N,NM,NC
DO $20 \mathrm{I}=1$, NC
READ \%,JC(I),C(I)
PRINT *,JC(I),C(I)
CONTINUE
READ *,IPRT
PRINT *,IPRT
C
005010 I $=1$,NM
READ* WN(I),C(I)
PRINT*,WN(I), G(I)
READ* (PHI(J,I), J=1,N)
PRINT*, (PHI (J,I), J=1,N)
5011 FORMAT(5E1S.7)
5010 CONTINUE
PRINT\#, "N WN E"
DO 99 I=1:N
PRINT*,I,WN(I),G(I)
PRINT*, ${ }^{\text {PHI }}$
DO S99 J=1,N
PRINT*,(PHI(J,I),I=1,N)
C
C
C
C
CALL ASMDI(N,NC,IPRT)

VI. PROGRAM LISTING

\checkmark
c
c C C

SUBROUTINE ASMDI (N,NC:IFRT)

THIS FROGRAM USES THE ASSURELI MOLEE METHOL TO CEITUTE COAPLEX EIGENVALUES OF \cap GAMPIII SYSTIM.
DIAGONAL DAMPING MATRIX.

comprex chcueig
COMMON / DATA1 /C(50)
COMNON / DATAL / FHI (99999),WN(99)
COMMON / LIATAS / EICDAIA ($10,20,1$) , LIAM1' (10)
COMMON / IATAA / NTITLE(80), JC(50)
COMMON / IIATAS / NM
COMMON / DATAG / NIIF
COMMDN /DATAT/ER(79),EI(99)

MAX: 99
NMI $=2 *$ NM
$\mathrm{N}=\mathrm{NML}$
FORM DYNAMICAI. MATRIX

$$
N N=2 * N M
$$

no $100 \mathrm{I}=1$, NN
[1O $100 \mathrm{~J}=1$,NN
$\operatorname{MYEXAC}(I, J)=0.0$
no 200 I=1,NM
$I N=I+N M$
IIYEXAC(I,IN) $=$-WN(I) WWN(I)
DYEXAC(IN,I):1.0
IIO $200 \mathrm{~J}=1$, NM
HO $200 \mathrm{~L}=1, \mathrm{NC}$
$K=J C(L)$

CONTINUE
 FRINT 11
FFINT $10,(N T I T L E(I), I-1,80)$
FORMAT(80A1)
FORMAT(//)
IF (IFFT.EQ.O) GO TO 210
PRINT 201
FORMAT(1H1,///,* IYNAMICAL MATKIY IS *///)
DO $202 \mathrm{I}=1$,NN
PRINT 205, (IIYEXAC(1,J),J=1,NN)
FORIKAT(/,5X,5E15.6)

C

C

C
333
[10 $333 \mathrm{II}=1$, NMD
PRINT*,II,ER(II),"+",EI(II),"J"
PRINT 11
PRINT 11
9999 CONTINUE
END

VII NUMERICAL EXAMPLE

To illustrate the use of ASMD1, the 2 dof system of Fig. (Al.1) is used. A damper of $c=2.3$ is attached todof 2. The input data and control cards for this sample problem are shown in Table 1. The output is given in Table 2.

Fig. Al. 1 A Damped 2-dof system

Table 1 Control Cards and Input Data for Sample Problem

The test program TESTAS can be run through the use of the following job file:

```
:30B
BFW,CM300000,T1000.
USER,677121E.
CHARCE,10242B,LRC.
DELIVER. 1293B D UVA
ATTACH,FTNMLIB/UN=LIBRARY.
GET,TESTAS1.
MAF(OFF).
FTN,I=TESTAS1,L=0,OPT=1,B=F.
LDSET,LIE=FTNMLIE.
F.
REWIND,OUTPUT.
COFYEI,OUTFUT,OTTASI.
REPLACE,OTTASI.
DAYFILE,L=DATASI.
REPLACE,DATAS!.
EXIT.
REWIND,OUTPUT.
COFYEI,OUTFUT,XOTTAE:.
REPLACE,XOTTASI.
DAYFILE,L=XDATAE1.
PACK,XDATASI.
RECLACE, XDATAE1.
/EOR
TEST: 2-DOT FREE SYETEM,TEST ASMD1世 200%, TMODES USED, I DAMPER
2,2.34-14\cdots DNWPFR: DOF 2 c=2.3
```



```
    0.14.... W, 的: G:1
```



```
    0.316,-0.400
    EOI ENCOUNTERED.
/
```

Table 2 Output of Sample Problem

```
TEST: 2-IOF FREE SYSTEM:TEST ASMIII
    ASSUMEI MOUE METHOII, USE I I MOIIES
    ***** [IAMFEESS *****
    FLACEMENT(IIOF) VALUE
        2 2.3
```

 THE IIAMFEI E]gENUALUES:
 1. $0 .+0 . J$
$2-.8999940753023+0 . J$
$3-.1243049123488+1.1228049739271$
$4-.1243049123488+-1.1528049739: 1 J$

Appendix A-2

Subroutine ASMD2

Assumed Mode Method - Full Damping Matrix

I. INTRODUCTION

ASMD2 is a FORTRAN subroutine, based on the assumed mode method, that can be used to compute the eigenvalues of a damped system. The eigenvectors of the undamped system are used as the assumed modes. When all modes of the undamped system are used, the method is equivalent to a direct solution. Experience shows that retaining $1 / 3$ to $1 / 2$ of the modes of the original system in the assumed mode method usually leads to accurate eigenvalues while providing considerable savings in computer time. ASMD2 allows a full damping matrix to be used.

II. ASSUMED MODE FORMULATION

Let the free vibration of a damped system be described by

$$
[m]\{\ddot{x}\}+[c]\{\dot{x}\}+[k]\{x\}=\{0\}
$$

where [c] is a diagonal damping matrix. Let $\left\{\rho_{i}\right\}, \omega_{i}$ be the solution of the corresponding undamped problem

$$
\begin{equation*}
\omega^{2}[m]\{\rho\}=[k]\{\rho\} \tag{A2.2}
\end{equation*}
$$

Purthermore, assume the mode shapes are normalized to unit generalized mass, i.e..

$$
\begin{equation*}
\left\{\rho_{i}\right\}^{\mathrm{T}}[\mathrm{~m}]\left\{\rho_{i}\right\}=1.0 \tag{A2.3}
\end{equation*}
$$

Define

$$
\begin{equation*}
\{x\}=\sum_{\ell=1}^{L}\left\{\rho_{\ell}\right\} q_{\ell}=[\Phi]\{q\} \tag{A2.4}
\end{equation*}
$$

$$
\mathrm{nxl} \quad \mathrm{nxL} \mathrm{Lxl}
$$

where L is the number of modes used. Substitute (A2.4) into (A2.1) and premultiply by [$\Phi]^{T}$ to get

$$
\begin{equation*}
\{\mathrm{l}]\{\ddot{q}\}+[\bar{c}]\{\dot{q}\}+[\Lambda]\{q\}=\{0\} \tag{A2.5}
\end{equation*}
$$

where
[I] = LxI identity matrix
$[\Lambda]=\left[\omega_{\ell}^{2}\right]=\mathrm{LXL}$ diagonal matrix

$$
[c]=[\Phi]^{T}[c][\Phi]=\text { Lxd full matrix }
$$

set

$$
\{z\}=\left\{\begin{array}{l}
z_{1} \tag{A2.6}\\
z_{2}
\end{array}\right\}=\left[\begin{array}{l}
\dot{q} \\
q
\end{array}\right]
$$

Then, (A2.5) becomes

$$
\begin{equation*}
\left\{\dot{z}_{1}\right\}=-[\bar{c}]\left\{z_{1}\right\}-[\Lambda]\left\{z_{2}\right\} \tag{A2.7a}
\end{equation*}
$$

By definition (A2.6)

$$
\begin{equation*}
\left\{\dot{z}_{2}\right\}=\left\{z_{1}\right\} \tag{A2.7b}
\end{equation*}
$$

Place (7a), (7b) together

$$
\begin{equation*}
\{\dot{z}\}=[A]\{z\} \tag{A2.8}
\end{equation*}
$$

where

$$
[A]=\left[\begin{array}{cc}
-[c] & -[\Lambda] \\
{[I]} & {[0]}
\end{array}\right]=\left\{\begin{array}{cc}
-[\Phi]^{T}[c][\Phi] & -\left[\omega_{\ell}^{2}\right] \\
{[I]} & {[0]}
\end{array}\right]
$$

A standard eigenvalue problem can be formulated from (A2.8) and solved using the routine RESV in the NASA Langley library.
III. FORMAL PARAMETERS AND CALLING ASMD2

The subroutine ASMD2 is called with the statement:

CALL ASMDZ(N,NM,NKOWC,C,FHJ,WN,EK,EI,NTITLE,IFRT)

The formal parameters are defined as follows:
$N=$ N.D.O.F. IN THE SYSTEM
NM = NO. IUUES USED IN THE NSSUAED BUDE BALC.
NROWC = NO. OF FOWS IN THE NIN. STATEFIFNT FCIF C,FHI,WN,EF, EI
IN THE CALLING PROGFAM
$C=$ THE IIAMFING MATFIX
FHI = THE MODAL MATEIX-EIGENUECTOKS NOFHALIZEN TH UNIT HISSS.
WN = UECTOR OF UNDAMFED EIGENUALUFS.
$E R, E I=$ VECTORS CONTAINING THE KEAL. ANL IHAR. FAKTS UF THE EIGFNG OF THE DAIGFED SYSTEM.
NTITLE = A UECTOF(LIM二8O) CONTAINING THE TITLE OF THE RLIN.
IPRT = A FLAG TO ALLUW PRINTIIG THE GYNAMIIAL MAT. (I-PRINT, O-MO

IV. OTHER SUBROUTINES USED

ASMD2 calls NASA Library routine RESV to compute the eigenvalues of the dynamical matrix [A]. The computed complex eigenvalues are stored in array $E R(I)$ and $E I(I)$, which are the real and imaginary part of the Ith eigenvalue of matrix [A].

V. LISTING THE SUBROUTINE ASMD2

SUFROUTINE ASMH?(N,NM,NEOWC,C,FHI,WN,ER,EI,NTITLE:IFKT)

```
THIS FROGKAM USES THE ASSUMEI MOHE ME THOM TO COMFUTE COMFLEX ETGENUFLUES OF A DAMFED SYSIRM.
f FULI damfing maikix may be ustil.
```


FORMAL PAKAMETERS:
H= N, I, D.F. IN IHE SYSTEM

IN THE LALLING FROGKAM
1.= THE VAMFIMC, MATKIX
rhi = ihe mulal matkix-elgenvecions nokmalized to unit mase. WHI = USCTOK OF URGAMFED ETGENUALIESS.
 OF THE LARIT:IL SYSTEM.

 EI(NFOWC), NIIILE(BO)

Mati. .94
MHOR = N
NMI 2\%NM
fofim liynáícal natelx

```
HN-.2*NM
    LO 100 I=1,NN
    1O 100 J=1,NN
        A(I,J)=0.0
        DYEXAC(I,J)=0.0
        #0 200 I=1,NM
        IN=I+NM
        DYEXAC(I,IN)=-WN(I)*WN(I)
        DYEXAC(IN,I)=1.0
    CONTINUE
```

 no 12 J=1, NTIOF
 HO \(12 \mathrm{~L}=1\), NM
 H0 \(13 \mathrm{~K}=1\), NDOF
 \(A(J, L)=A(J, L)+C(J, K)\) *PHI \((K, L)\)
 continue
 C
1.

FFINT 201
 IO 202 $I=1$ ，NN
FRINT ？OS，（UYEXAC（1，J），J＝1，Ni！： FOFMAI（／，5X，5E15．6）

CALL．KESU（MAX，NIKL，LIYEXAC，FK，E゙I，（），O，V，WK，IEFFK）
PFEINT 1020，NM
FFINI＊， FHE IAAMFING MATKIX 1S：＂
IO SSE $[=1, N D O F$
6 6． 6 －FFIIJI＊，（C（I，J），J＝1，NMOF）
i
 F゙だない 11

$1:$
LO S 53 II＝1，NMW
FKlNIK，II，ER（II），＂t＂，EI（II），＂J＂
FFKIN111
FRINT 11
CON：1MUE

VI. CONTROL CARDS AND TEST PROGRAM

The test program TESTAS4 can be run through the use of the job file of Table 1 . Table 2 is a listing of the test program TESTAS4.

Table 1 Control Cards and Input Data for Sample Problem

```
/J08
1293H
                                    UVA
EF'W,CM300000,T1000.
USEF゙,697121E.
CHAFGE,102428,LRC.
IIELIUER. 1293E | UVA
ATTACH,FTNMLIB/UN=LIBRARY.
GET,TESTAS4.
MAF (OFF).
FTN,I=TESTAS4,L=0,OFT=1,E=F.
LUSET,LIB=FTNMLIB.
F
REW]NU,DUTFUT.
COFYYEI,OUTFUT,OTTAS4.
FEFLACE,OTTAS4.
IAYFILE,L=ØATAS4.
REF'LACE,DATAS4.
EXIT.
FEWINII,OUTFUT.
COFYEI,DUTFUT,XOTTAS4.
FEF'LACE, XOTTAS4.
IIAYFILE:L=XDATAS4.
FACK,XIIATAS4.
FEFLACE,XUATAS4.
/EOF
TEST: 2-DOF FREE SYSTEM4-2 DOF, 2 modes used in Ca/c.
    1.3,-.5,0,04 Damping matrix [\begin{array}{cc}{1.3}&{-0.5}\\{0}&{0}\end{array}]
    0, No printing of Dym, mot.
    0.577,0.5\7&
    1.2247.1&
    0.815,-0.409 &-4/2
    O
    EOI &NCOUNTERELI.
/
```

Table 2 Listing of program TESTAS4

P*	
	PROGRAM TESTAS4(INPUT, OUTPUT)
C	
C	
	DIMENSION G(88), C(99,99), FHI (99,99), WH (99), ER(99), EI(99)
	DIMENSIDN NTITLE(80)
C	
c	
D0 $1 \mathrm{I}=1,50$	
	DO $1 \mathrm{~J}:=1,50$
$1 \quad C(I, J)=0.0$	
C	
c	INFUT SECTION
c	
	FEAII $10,($ NTITLE $(1), ~ I=1,80)$
	FRINT 10, (NTITLE(I), I=1,80)
10	FOFMAT (8OA1)
599	FEAD $*$, N, NM
	PRINT * NRNM
C	
	$0020 \mathrm{I}=1, \mathrm{~N}$
	REABx, (C (I, J) ; J=1,N)
20	PRINT*, (C) $I, J), J=1, N)$
	KEAB *,IFRT
	PFINT *,IPRT
CC	
	$1105010 \mathrm{I}=1$, NM
	READ*, WN(I),G(I)
	FRINT*,WN(I),G(I)
	KEAL*, (PHI (J,I),J=1,N)
	FRINTX:(FHI (J,I), $\mathrm{J}=1, \mathrm{~N})$
5010	continue
	FRIMT*, -N WN G*
	$11099 \mathrm{I}=1, \mathrm{~N}$
99	FRINT*,I,WN(I),G(I)
	PRINT*, ${ }^{\text {PHI* }}$
	IO $999 \mathrm{~J}=1, \mathrm{~N}$
$\mathrm{C}_{\text {c }}$ (PRINT*,(PHI (J,1), $\left.\mathrm{I}=1, \mathrm{~N}\right)$	
C	
	CALL ASHU2(N,NM,99,C,PHI,WN,ER,E1,NTITLE,IFKT)
	PRINT*, '1=REPEAT, $0=$ STOP.
	REAU*, ITEST
	IF (1TEST.EQ.1) GO TO 599
C	
C	

END
C

Fig. A2.1 Actively Controlled 2-dof system

VII SAMPLE PROBLEM

Figure (A2.1) shows an actively controlled 2-dof free-free system. The contorl law is

$$
u_{1}=-1.3 \dot{x}_{1}+0.5 \dot{x}_{2}
$$

The input data to test program TESTAS4 is shown in Table 1 . Table 3 shows the output.

Table 3 Output of Sample Problem

TEST: 2-IUF FREE SYSTEM

ASSUMEII MODE METHOII, USE 2 MOMES

THE IIAMPING MATFIX IS:
$1.3-.5$
0.0 .

THE LAMFED EIGENUALUES:
1 0.to.J
2-.3403281689367+0.J
$3-.4790459155315+.971771301425 \mathrm{~J}$
4-.4790459155316t-.9717\%1301125J

Appendix A-3

Subroutine SPSTGN Documentation

Damped Eigenvalues Using Reanalysis

I. Introduction

SPSTGN is a FORTRAN subroutine that can be used to compute the damped eigenvalues when damping is introduced into an originally undamped system through the introduction of a diagonal viscous damping matrix. Based on the modal data of the undamped structure, the damped eigenvalues are computed using an efficient reanalysis formulation. It is the purpose of this document to summarize the formulation and usage of the subroutine SPSTGN.
II. Summary of the Reanalysis Formulation of the Damped Eigenvalue Problem

Given an undamped system described by the following normalized modal data

$$
\omega_{i},\left\{\rho_{1}\right\}, \quad i=1 \text { to } L \leqslant \text { Number DOF }=\text { NELEM }
$$

where

```
    \(\omega_{i}=\) natural frequency of the th mode, rad/sec
        = OMEGA (I)
\(\left(\rho_{i}\right)=\) ith mode shape
\(\rho_{j, i}=\) mode shape coefficient, jth component of the th mode
        \(=\operatorname{PHI}(J, I)\)
```

The normalization requirements are

$$
\left\{\rho_{i}\right\}^{T}[M]\left\{\rho_{j}\right\}=\left\{\begin{array}{lll}
0 & \text { if } & i \neq j \\
l & \text { if } & i=j
\end{array}\right\}
$$

where [M] is the system mass matrix.
With the introduction of n_{c} damper at oof $J_{1}, J_{2}, \ldots J_{n_{c}}$, the damped eigenvalue problem can be formulated as the solution of the characteristic equation:

$$
\begin{equation*}
\operatorname{det}(I+\hat{R}(s) \hat{C})=0 \tag{A3.1}
\end{equation*}
$$

where

$$
[\hat{R}]=n_{c} \times n_{c} \text { condensed receptance matrix }
$$

$$
\begin{array}{ll}
\hat{R}_{i j}=R_{J} J_{j} & \text { for } i=1, n_{c} \\
\text { for } j=1, n_{c}
\end{array}
$$

The element $R_{i j}$ are computing using

The following nomenclature is helpful in understanding the program
$L=$ no. of modes used in the receptance calculation
(\leqslant number of DOF's)
$n_{c}=$ NSTAT $=$ no. of dampers introduced
$J_{i}=$ ISTATNO(i) $=$ eth damper location (DOF in the model)
for $i=1$ to NSTAT
$[\hat{C}]=\left[\begin{array}{lllll}\bar{c}_{1} & & & & \\ & c_{2} & & & 0 \\ & & \cdot & & \\ & 0 & & c_{n}\end{array}\right]=$ condensed diagonal damping matrix
$\begin{aligned} c_{i}= & \text { CARRAY(I) }=i \text { th damper value, for } i=1 \text { to } n_{c} \\ & {\left[\text { located at } J_{i}(\text { or ISTATNO(i) }]\right.}\end{aligned}$
Two types of variation of damping constants are allowed. For no variation, set $N C D=1$, aDOPT $=0$, and $C D I N C=0$.
A. ADOPT $=0$, all dampers vary at the same time. For this case the initial damper values are $c_{i}=\operatorname{CARRAY}(I)$. Then all the c_{i} 's are increased by CDINC after each pass through the code. There are a total of NCD increments as specified by the user.
B. ADOPT $=1$, only one damper value changes, all other values remain constant. The initial damper values are input through the array CARRAY(I), and the initial damper values are
$c_{i}=\operatorname{CARRAY}(i)$ for $i=1$ to n_{c}.
$C_{n_{d}}$ will increase by CDINC each time the damper constants
are updated.
$c_{n_{d}}=\operatorname{CARRAY}\left(n_{d}\right)+\operatorname{CDINC}$

```
n
    ISTATNO(I) being varied.
```


III Input Parameters

III. 1 Pormal Parameters

Description of the 11 formal parameters:
NELEM: number of DOF's in the original system
NMOD : the number of modes requested for the printout $\leqslant \mathrm{L}$
RUNNO: your run number identifier
IDOPT: $0=$ all C values vary
1 = only one value varies (see NODEPL)
EPS : convergence parameter (used in the test for convergence in the Muller's Method root finding routine)
NDAM : number of modified system modes desired (< L)
NUMITER: maximum number of iterations per eigenvalue
CDINIT: initial damper value (units should be consistent with mass and stiffness, e.g. ib sec/in)
CDINC : increment in damper vlaue
NCD : total number of damper increments
NODEPL: the number of the varied damper in ISTATNO(I). NODEPL is an element of $1,2, \ldots . . N S T A T$.
Note: if IDOPT $=0$.
$c_{i}=c_{i o}+\Delta c$ for $L=1,2, \ldots$, NSTAT
if IDOPT = 1
$c_{i}=c_{i o} i \neq$ NODEPL
$c_{i}=c_{i o}+\Delta c, i=N O D E P L$

III. 2 Common Blocks

. In addition to these variables, the following variables enter the subroutine through the common blocks and must be evaluated prior to calling SPSTGN. Also, the common block set contained in the file COMSPST must be placed in the main program.

NTITLE(I): a holerith array with a title of the job L: the number of modes used in the receptance calculation OMEGA(I): a vector containing the I values of the original ω_{l} PHI(J,I): a matrix whose L columns are the modeshapes of the original system (DIM: NELEM $\times \mathrm{L}$)
Note: These modeshapes must be normalized to unit generalized mass.
NSTAT: number of stations where dampers are placed
ISTATNO(I): an array giving the location (DOF) of the attached dampers $I=1$ to NSTAT
CARRAY(I): an array containing the damper value for position ISTATNO (I), I = 1 to NSTAT

IV. Using Subroutine SPTGN

The data required are input through formal parameters (Section III.1) and through the common block set COMSPST, into SPSTGN (Section III.2). It should be noted that mode shapes have to be normalized to unit generalized mass. That is.

$$
\left\{\rho_{i}\right\}^{T}[M]\left\{\rho_{i}\right\}=1.0
$$

V. SAMPLE PROBLEM

The Model is the NASA 88 D.C.F. grid.
The model data is read from TAPE 12 is NASSAGG2, which contains data for all 88 modes, including 3 rigid body modes.
Four dampers are placed at D.O.F. 1, 11, 77, 88.
The initial damper values are 0.2 .
The approximate receptance elements are to be calculated on the basis of using $L(=30 * *)$ modes of the 88 modes.

The first 2 modes are to be printed out (NMOD $=2$).
All the damper values are to vary (IDOPT $=0$) with increments of CDINC $=0.1$ for $N C D 5$ trials.
The convergence criterion for eigenvalues is $|\operatorname{det}(A)|<\epsilon=10^{-5}$.

The test program TESTSP is designed to interactively accept the above data and then call subroutine SPSTGN to do the calculations and print out the results.

The following input values were given (the remark number corresponds to the number in the following TESTSP printout).

Remark 3 TEST SPST (title)
2 88, 2, 30, 1 (88 DOF, 2 modes to be printed, use 30 modes, Run No. = 1)
30 (all damper values change)
4 The modal data was read from TAPE 12 NASAGG2
5 4. 1.E-S, 2, 50 (4 dampers $\epsilon(E P S)=10^{-5}$. computes 2 damped eigenvalues. max 50 iterations)
6 1. 11, 77. 88 (damper locations)
$70.2,0.2,0.2,0.2$ (inltial damper values)
$80.2,0.1,5,1$ (initial damper values, increment, 5 increments, all dampers vary)
**An arithmatic underflow condition will appear if a larger L is used. We have had such an experience by using $L=88$. This 1 . due to the formulation used in teh receptance calculation. It can be improved if so desıred. Our experience indicates that using $L=30$ provides very good results.

VI. Program Listing and Sample Run

The subroutine SPSTGN is listed in Table l. Table 2 lists a sample main program TESTSP which calls SPSTGN. The output of the sample problem is given in Table 3. The control cards necessary to run this sample problem is shown in Table 4.

Table 1 Listing of Subroutine SPSTGN

SUSFOUTIME SFSTGMGMELEM, MMOI, FUMNO, ITOFT, EFE, MIAM, PUMITEF,

公 CHINIT, EIINC,NEI,NOLEFL:

SFETG JFITTEN EY IK, A FALAZZOLO ANII IK, B. F. WANG MAY , 1781 COAFUTES EOME TO EENEFATE THE COMFLEX EIGENYALUES USIMO FEDMALYSIS FOFMULATEDA.

INFUT CAEI IESCFIFTIOM

MELEM: NO OF ELEMEMTS
MMOL: NO. OF MODES FEOUESTED FOF FRIMTOUT AMM EAMFEE EENEITIUTTY NNALYEIS ANE F:OTTIMG O 10 NMO 1
FUNAD: FUTI NUMEEF IGENTIFIER
IDOFT: $0=A L L E$ VALHES VAFY
\therefore OMLY OHE UA UE UAETEE
EFS: GOA!EGGFICE FOHAMETEF

 CHEDAY
CIIAC: GAMFER TACFEMENT FGE FOOT LOCUS FLOT LP.SEC. IN
MCI: TUTAL HUMEEF GF IIAMFER INCREMEHTS FOF FODT LOCUS FLOT
NOEEFL: THE NUAEES OF THE VAFEES IAMFEF IN ISTATHOSI)
I.E. MOTEF:. IS AH EIEMEHT OF 1.2 . . . MSTGT.

THIS TELLE WHETHEF MAEPL ESFIFST : EECONT ETC, IH ISTATMO

 WOFMGILZEI TO UNET GEAEFGLIZET MASE


```
||ILEEE TLTATHO
```



```
COMFLEX CIGEN,SLAMIN,ULAM,FLAM,COEIG,SLAMNXT,CMCOEIG,FII
POMF!EEX FHAT
! !gIrial TEET
```

Table 1 Continued


```
    COMMCY,BLNZ/SSTE(SS),SSROT(SO)
```



```
    6 EM(1:1)
```



```
    COBMONJ'BLKE/L
    COMMON/ELK10,SMINM(1:1)
    COHTON/ELK1S,WFEX(105):WIEX?105)
    COMMON/ELK゙13/CMCOETG(10S)
    COMmON/HLK14/EENSI(1;1)
    COMMON/ELK15,A(1,1)
    COMMON/BLN1G/FMF!
    COMMOHGELKOO/IAUTO,FEWAXSAIMAX
    COMMON:ELN21/ETOM(33)
    CDMMOM/ELI, 2ق,FACT
    COMmON/BLR2S•TSTATNU:1G),NSTAT,OAFFAY:自)
    COMMON,MLR2A/FIUEC(16)
    EGM*OM, EL&25:品E
    C0MMON/ELIF26/FHAT(10:10)
    COMMOM ( ELFA% / NTITLE(3O)
```



```
        EETA=1,0
        IIIAG=0
    FEAG *,MELEM,MMON,MEIG,L,IFLAG,F,EETA,FUMNO
    FFIHIT 1,NELEM,NMOI,NFIG,L,IFLGG,F,GETA,FUNNO
    1 FOFMAT(כIIO,3F10,3)
    N=AE!FEH
    NHM:=\!ELEM+!
        FFnry FysnOFT-LEOET
```



```
        !!f/10HT.EQ.0: GO TO 140
        E0 <0 心-50
            MM!TJA!H.
        *! ;0:0: - ! - - 
```



```
        COHT R.OULE
        F!FMAT:EEIG,G)
```



```
            %17 & 230
                GM!1 folyc
        U0% ! 1,al!a
        F:GI: &, SETF:I,SSROT:I,
        !rIUT &:ESTF(I::ESFST:T)
    G FOFMAT (2F10.3)
    5 CONTINUE
    2G 10 I 1,NELE:
```

Table 1 Continued


```
    *****秋炏悉变
        FEANALYSIS SECTION
        *****娄**********
    CfEFAY({NOLEF:)=CIINIT-CNINC
        GALL IMFFO(L,EFO,NIAM)
    #E. 30 T=1520IM
```



```
    FmCT-士.O
```



```
    M!| & STEF:| MUMITEF
```



```
    |!日-- TE::
    ?F:1LGT: g070 00
60 GOYTIMUE
70 EML!. EISGTOF:(rnIIETG)
```



```
'," Contymug
```



```
    O吅! FFETFFP!!DAM:
    -FT17 :AG%T
        LF(IIOFT,EQ.O) EO TO 1100
        CAFFAY(NOIEFL)=CAFFAY(NOLEFLS)+CIINC
        CO TO ZO
```

Table 1 Continued

```
110% IO 1000 II=1, NSTAT
1000 CAFFITY(IIO=CAFFAY(II) +CITIIC
    10Z FOFMAT(1H, 2X,*TIME 3-*:F10.3)
        30 CONTIMUE
            FETUKN
    ENI
C
C
C
        SUEROUTIME EMFE2(L,EEEgNMAH)
        INTEGER ISTATMO
        COMMON/ELKEZ/TSTATMIO(1S),MSTAT:CARFAY(1&)
        FRINT 1
        # FORMAT:IH , 4OX,FEESIN FLEAMALYSIS FOETION OF SOLE**
        FFINT 20
```



```
        [0 30 I-1.HETAY
        FEINT SE,ISTATMO(I), CAFFAY(I)
```



```
        吅以OP!TM!E
        MSIMT %qL,E以E
```



```
        #E rum:a
        EM|
        SUEFOUTINE INITIAL{ELAMIAMIMTEISAEETA:I:
C CALCULATE THFFE GTAFTIT!G VAIUES FOF MULLES ITEFATIOIT
    INTEGEF: ISTATNO
```



```
    OOMBOH E! , ב: STMO!Se.
```



```
        ,#yEn
        !!]:^?
    !r:- !n⿱㇒日勺心㇒⿱幺小心的
```



```
    1:10% E=F星
```



```
    %O contyiut.
    \because- - THA:15E:
```



```
    !OEE:E%A
```



```
    ULMM:2)-1.001*GLAMIN
    VLAM(1)=SLAMIM
    SLAM=!LAM(3)
    \therefore:LL FOFLH:ELAM,FL,IMIEIG)
```

RLA！f 3 ：＝FL
SL：M＝VLAM（2）
CHLL ROFLA（SLAMGFL，IUTEIG）
FLAM（2）－FiL
SLAM＝ULAM（1）
CALL FOFLA（ELGM，FL，INIEIE）
RLAM（1）－EL
AB＝［日ES（FLAM（1：）
$\Gamma F=1$
$T F=1,0 / T F^{\circ}$
$C E=A B * *^{*} T F^{\circ}$
FACT $=1.0 / E E$
FL AM（ 3 ）$=$ RLAM（ 3$) / A B$
FLAM＇ 2 ）－KLAM（2）／AB
R！AM（1）＝KLAM（1）／AE
FETUEN
ENI
SUSFOUTIME MULLEF：SGAMMXT）

FZ11 2－

$W=F Z J 1 d 2+F Z J 1 J 3-F Z J 3 J 2$

$今 Q=C S T F T(S Q)$
$A C i=\omega+5!$
$r_{1} C=-4-50$

「ET！ロ゙：
Eか14

？
－！min＇：－F！

E：！
GUEFOUTIUE CONUCHK（ITEF，EFS，TEST）
LOGICAL TEST
COMFLEX YLAM，FLAM，COETS，ELAM，YEETA：TEST？：TESTE，FII

COMMON／ELK7（ULAM（3）：FLOM（3）：COEIG（20）
COMMON＇BLKEE／IME

TEST FOF CONVEEGENCE IM MULLEE METHOE

 IIIAG＝0$E F \subseteq 2=0.01 * E F S$
SLMM＝U！OM（1）

OHECEI－TEESTEST1；
（ $\mathrm{HECH} \mathrm{CH}=\mathrm{COES}$（TEST2）
CHECKZ－CAES（TESTZ）
TEST＝，FALSE．

IF（CHECE1．LT，EFSA）TEST＝，TFYE．
［F（CHECLI $+E Q .0 .9)$ TEST $=$ ．TFUE．
［F（EIIAG．EQ＋G）GOTO E

5 COMTHMIE
IETUKM
EMT
SUEFMUATME ETGSTOF（IHEETG）
COMFIEX ULAB，F！AM，COEIG

COEfG（IMDEIG）＝1LAM（1）
EETDKM
ENU
SUEEGUTLIE UEXMOME（SLAMIM，IMDETG）
COMFLEX SLAMIN：VLAMッFLAK？COEIG

エロE EWBETO

：19！ $1=0$

UET：E！
Eill

$6 \operatorname{SM}(1 ; 1)$
COMMOM／ELKT／MLAM（Z），FUNM（天），COEIG（20）
COMMO：＇En」s，

Table 1 Continued

```
    COMMOR!'RLN2\Omega:FACT
    COMMOH/BLK2Z/ISTATNO(1S) #NSTAT,CAFRAY(15)
    COMMON/FLN゙26/FHAT(10.10%
            FEINT 320,FACT
            FORMAT (10Xg*FACT=采,2E15.5)
            FFINT 100,SLAM
                FDFHAT(10Xg* SLfMM + *,2E16.5!)
            MEIG=0
            SETA=1.0
            CALL FECEF(SLAM)
C
            FFFINT 100.SLAM
            IO 20 I=1,NSTAT
            #O 30 J=1:NSTMT
            ZO EIC(I;J)=FHOT(I,j)*CAFFAY(I)*SLAM*EETA
            SIC(I%I)=E[IC(IqI)+(1.0,0.0)
            20 SO?!TIMUE
            ISTAT=NSTAT
            LF(NSTAT,EO+的 G=EDC(土.1;
            AF!HSTAT.EO.1) 60 TO EO
            COLG CIETEF:ISTAT,EDC;O)
                \becauseO BOMT:RUR
                    FETHT 100,SLAM
                                    FFT!TT ZjOuG
```



```
            FLG
            IF:NFIG.EQ,I% FL-G/ELSA
                FFINT 310.G
            FEIIT 3ZO,EETA
                FOFMOT(10X%*EETA=*,2E16.5)
            IO 1 I =1%L
                        FFIINT 340,I
                    #10
```



```
            !F:%!TEIG.EO,L OOTS 1O
            M1!i InTMFIG-1
            0! 2 !-土n!!!
C FFGuT 20O%I:OOEEG:!
```



```
            FL EL,(SEFM-CONJG(SOETG(I)%)
            = Cont TM!me
            :S SONTI;M!E
            #EE[!?!
            |.\because:口
```



```
                SGI年TE FECEFTHNCE:
                        MOU-% MOEMALIEET TO VIIFT MODAL MASE
            [NTEEEF ISTATNO
            COMFLEX SLAM,FII
            OOMFGE:E FETIFFHAT
```

1


```
    6 Sil:1:1;
        COMMOH:ELKB/L
        COMMOMS㫙N1G/FMFEL
```



```
        COMMOW,KLK2G/FHAT(10:16)
            SET&-i.0
    MO S = 1,NSTAT
    IF=15THTMO:1)
    MO 10 J=1:NSTAT
    FHAT(I,J)=(0,0,0.0)
    JF=IGTATNOCJ
    00 20 K=1,L
2G FHAT(I,G)=FHAT(I,I)+FHI(IF,GYFHT&JF, 只)
    {(ELGM**2*(EETA**2)+0wEEA(N)**2)
1S comTjMUE
    G CORTMNUL
        &FTUFT!
        FNI
        SUEFTUTTME AFEIEOT(MGAM)
        CCNF!ES UHFM,FLAM,COEIGYDE:
```



```
            HETG=1.0
        IO 10 I=1,MIAM
10 COEIG(I) COEIS(I)*BETA
    NFC=NIAMM-1
    IO & I-1, NFO
    .GTOF=0
```



```
    15!-1
    |M : J-Tr,T,!AB
    \thereforeI A[AFB(COEDG(J):
    AT AEL`A%,
```



```
` ME!| `:4!-
```



```
    1,1%:6, !"MOF, -nG%!
1 r0!!T.rM!
    B!%!!!
    HM!
```



```
    -F!il L
```



```
    S *ZETA*,13X,*OMEGAN SEC-1*)
            NF:IG=0
    \because2 !! I-1.N[AMM
    !とき-!
```

```
    TF(IF:16+EQ.1) ICE=I+1
    MMEGmN二COES(COEIG(I))
    ZE%=-FEAL(COEIG(I))/OKEGAN
    FRINT 2O.ICE.COETGGJ%,ZETAFOMEGAM
20 FOFMOT(1H y 10%,IS,10X,E12,5, #X,E12,5,13X,F13.4,11X,E12.E)
1O CONTINUE
    C:ETIFI
    ENy
    GUEFOUTINE CIETEF(IST:A%I)
        IETEFMIMANT OF AN NST BY NST COMFLEX MATFIX WHEEE MST:I
    COMFLEX A(10,10), II
    COMFLEX FMULT, EIG,HET, BG,TEMF
    MGIZ=NST
    ICOUMT %
    HMMSYS-NGTZ-1
    [0 14 I=1,M@MSYS
```



```
        EMLE THE FOW EONTAMNDNG THIS ELEMENTg ROU NEGFG
    MN=1\div1
    *TG-A:P: %
    wageme
    M0 J J MN:MSTZ
    IF(CAES(EIG)-CAES(A(J,I)); む5SF
    6 EIG=A(J,I)
    NEGSW=1
    G CONTIMUE
    OG=1.O/EIG
```



```
    1F;日GKU-5% 7:LO%!
```



```
    , 10- - - Ty,10I.
```



```
    O !:! % -TEME
        GBMEMGTE UMHOWHS FFOM FIFET COLUMM OF CUEFEUT EYSTEA
10 10 & O MM%HETZ
            GGMUTE FIVOTAL MULYIFLEES
    FM!LLT=-A':, 1;*FG
    AFFLY FMULT TO ALL COLUMNS OF THE CUFEEYIT A MAFFIX EOW
    IO 11 J=NN,NSIZ
```



```
IS CONTINUE
```

Table 1 Continued

```
i.q cofl7 [MME
    I}={1,0.0.0
    IO \00 T=1,NSIZ
100 II=I*N(I口I)
    JCOMNT-(ICOUHT,2)*2
    IF(ICOONT, IE ICOUNT) I= IN
    EET:SFM
    ENO
    GUSEOUTINE HEADMG
    INTEGEF ISTATNO
    COMMOM/ELKZZ/ISTATAD(16:,MSTAT,CAFFAY(1こ)
    FFINT I
```



```
    GEINT 20
```



```
    HO EO I=1,得TAT
    FFIIMT Z5:ISTATMO(I),CAEFAY(I:
5 FOFMAT:1HO:6X,I2,15X%E10.3:
\thereforeO COMTIMME
    RETUNT!
    EE!!!
```



```
    M5E,ETON LHDL!E%
    L00[O:的 FE,TE
    IF((ISW,FQ.0),OR,(ISN,GT.J):RETUFM
        G0 T0 (1,2,3,4:E) ISU
```



```
    IF(FS.ANI,(!IF,GT,O)) FFIMT 27-LHOL,IW&
```



```
    AF=1!-1
    !!:%G: EMLU E:T:
    :年111:4
    \becauseく,..!al!E:
```



```
    & &&HL
    N!-!:"
```



```
    r: r!ut
    \because!!!!:
    !%,品夏。
    !1.7.15:!
        !1!
```

Table 2 Listing of Program TESTSP
FEOSEAM TESTEFIMFUT,OUTGUT, AFEAE:
 COMFUTEF CQLE TO SEMEFABE BOOT LOCUS FLOTS FOF A EULFR EEFUQULLI BEAM MOUEL DITH MULTIF! E DAMFEFS.
THE EEAM IS SUFFGFTEI EY TFANSLATIONAL ANE ROTATIONAL SFRINGS.
THIS CODE WAS IEVELOFEI UNEEF THE NASA LAMGLEY SFAGE SYEUCTUFE COATFAACT
INTESEP IETATMO
YTMEACYOH YFOU(100), TEMF(100)

\because OMADEX FHAT WOOTCR TEST
 COMMON/FLK゙2/EK (33.38)
COMMOH; ELKIZ; EK(1;1) COMMON: HLI $3 / S S T F(S E): S S F O T(E B)$

\therefore SM:1:1?

MOMMONFLFBTL

COMMUHFELKOO/JAUTO:FEMAXOAMAK
COMMOM/ELRE1/STOM(33)
COMHOH/ELF, 22/FACT

COMmORKELE2A, F11!EC(16)

\&!!! ! f t

? PE!E:

(3) $\because-i n$ thos?

FEGT(12, 6011) OMEGA(I) G:
STOM(I) =OMEGA(I)
EEAII(12.501:) (FHI(J,I), $1=1 \cdot N$)
COnT:NUE
FOFMAM:CE16. $2:$

12与

(7) : A

!
β

$\because \pi$
Table 3 Output of Sample Problem

$$
\begin{gathered}
\therefore 9-795641 \\
\therefore 6-776 \sin \\
1.33 \text { N40700 }
\end{gathered}
$$

$$
\begin{gathered}
\therefore 0-36360 \\
60-3 i 675 \% \\
5-75 \text { N0G30 }
\end{gathered}
$$ EfBEF! E: MiLu!

$$
100 E+00
$$

$$
\begin{array}{r}
-406+00 \\
+40+60
\end{array}
$$

$$
\begin{aligned}
& \text { Table } 3 \text { Continued } \\
& \text { LEGIN FEniblysIS FOFTION OF COME }
\end{aligned}
$$


```
#4nCtBogo05, f10%o
!ESF%&-151E.
```



```
FEMENM, -品TP!
BMF`E*, MUTFUT,㫛听,
```



```
EF!AGE=GOUT
```



```
###5
```



```
    ##
```


Program COPZ Documentation

Damper Gain Optimization with Fixed Modal Damping Ratios

I. INTRODUCTION

COPZ is a damping optimization program to compute minimum damping gains for specified modal damping ratios using a diagonal damping matrix. Subroutine COMMIN is used in the optimization process.
II. PROBLEM FORMULATIONS

When a diagonal damping matrix [C] is introduced into an originally undamped system, the damped eigenvalue can be found by solving

$$
\begin{equation*}
f(s)=\operatorname{det}[I+[\hat{R}(s)][\hat{C}]]=0 \tag{A4.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& s \quad=\text { compel eigenvalue of the damped system } \\
& {[\hat{C}]=\text { submatrix of }[\Delta C] \text { that contains only the nonzero }} \\
& \text { terms of [} \Delta C \text {] } \\
& {[\hat{R}]=\text { corresponding sub-matrix of the receptance matrix } R} \\
& \hat{R}_{i \jmath}=R_{J_{j} J_{j}}=\sum_{\ell=1}^{n} \frac{\rho_{J_{i}} \rho_{J} \ell}{S_{i}^{2}+\omega_{l}}
\end{aligned}
$$

Let

$$
[\hat{C}]=\left|\begin{array}{llll}
c_{1} & & & 0 \\
& \cdot & & \\
0 & & c_{N_{c}}
\end{array}\right|
$$

The optimization problem is:

$$
\text { find } c_{i} \cdot i=1 \text { to } N_{c}
$$

such that $J_{1}={ }_{i=1}^{N_{1}}$ is minimized subject to the constraint

$$
\mathrm{f}\left(\mathrm{~S}_{\ell}\right)=0, \quad \ell=1 \text { to } \mathrm{N}_{\mathrm{E}}
$$

where

$$
s_{\ell}=-\zeta_{\ell} \omega_{n_{\ell}} \pm j \sqrt{1-\zeta_{\ell}^{2} \omega_{n_{l}}}
$$

To convert the above constrained optimization problem into one without constraints, a penalty function approach is used. The problem solved by COPZ can then be rephrased as

$$
\text { find } c_{i}, i=1 \text { to } N_{C}
$$

such that

$$
J=\sum_{i=1}^{N} c_{i}+\sum_{\ell=1}^{N} W\left(f\left(S_{\ell}\right)\right)
$$

is minimized. where W is weighting function. Experience shows $\mathrm{W}=$ 1000 yields good results.

There are $N_{C}+N_{E}$ unknowns in the optimized problems. The
 specified). The last N_{C} unknowns are the damper gains.

II. INPUT TO COPZ

A. Input from terminal (or input from TAPE 5). All are free format.

1. Title. One line description of the problem.
2. NDOF,NMODE,NE,NC

NDOF $=$ no. of system dof
NMODE $=$ no. of modes to be used
$\mathrm{NE}=$ no. of specificied !
$\mathrm{NC}=$ no. of dampers.
3. $J D(I), I=1, N C)$
$J D(I)=I t h$ damper location
4. $X(I), I=1, N C$
initial damper constant
5. NM(I), ETA(I), (I = 1 to NE)
$N M(I)=$ mode no.
ETA $(I)=\zeta_{i}=$ specified damping ratio
6. WEIGHT

WEIGHT $=W$ is objective function $J=1000$ usually
B. Modal Data Needed: (same as routine SPSTGN)

Read from TAPE 12:
For $I=1$ to NMODE
WN(I),GM (Format 5X,2E16.9)
(PHI(JJ,I), I=1,NDOF) (Format 5E16.9)
Note: $\quad W N(I)=\omega_{i}, G M($ noticed $), \operatorname{PHI}(J, I)=\rho_{j, i}$

IV. SAMPLE RUN OF COPZ

Table 1 shows the job file to run COPZ, include data for a sample problem. For this sample problem, we place 6 dampers at dof 1. 11, 39, 50, 78 , and 88 of the 88 -dof grillage model. We specify the model dampings to be 0.7 and 0.6 respectively for mode 4 and 5 (the first vibration modes). The results are:

$$
\begin{array}{ll}
C_{1}=0.214, & C_{11}=0.268, \\
C_{50}=0.146, & C_{78}=0.207, \\
c_{39}=0.146 \\
=0.267
\end{array}
$$

These results can be found in the end of Table 2.

Table 1 CONTROL Cards for use of Program COPZ

```
#G% MrM!
MP4"'0z0cong, 1000.
```



```
nFT•听的
FTH:{=%OF#,F!=10000, E=F.
L."OEM - ER=FT:.ALIE,
```



```
    *Eいい":
```



```
1-4:, 趶号.
```



```
\therefore:7
```



```
\thereforeA...所品五
```



```
%!:
```



```
•ロ!-ミ", ソ, -., ミ
```



```
#.".
```


Table 2 COPZ Sample Run Output

```
    !この0
#
```



```
2-2526
    #BGT ramEES {DE&T:QnG
1:士 = %- %e8
```



```
    AMUT FATSE OF: MOTE MO, , TEETEET ZETA
i= =
    TMENT 员ETEHT
19ng.
```


.

…

Table 2 Continued

```
                    MESTSN !AFTAGLES
                        OMEF UHETIAE UFEEE
        EOUNT VNMUE EOSNT
        U!E!I)
                            X(I)
                                    y!g(!)
```



```
        ,10000E-52 , 105905+00 , 10000E+0E
        -100095-2玉 , 19000E+S0 - 10C00ET0E
```



```
            ETORAGE REOUINEHEMTG FOF MMFG AEEAGE
\begin{tabular}{|c|c|c|c|}
\hline \(\triangle \mathrm{AFH}\) &  & FEDUSEE & UEED \\
\hline \(\because \because: 39\) & 2 90 &  & \(\because \mathrm{O}\) \\
\hline  & 200 & 46 & \(\therefore{ }^{-}\) \\
\hline
\end{tabular}
```



```
\therefore. A
```



```
    `.
```



```
    #:
```


Table 2 Continued

Table 2 Continued

```
X(I)
```



```
    .10.2E+00 +100CE%20 : 2000E+6n
GI-
(-9.527771052218:7.89m2915%7%74.
```



```
\because(I)=
```



```
    -10coEtco - 1000Et-0 , 1000E+0人
S1
```



```
    FGFIT= 2 % PET% .15S4E+00-.3GGFE-01
~(I)=
    .13J4E+22 . S30E+02 - .200E+00 . .0005+00 .0005%00
    .10005:00 .10205+02 . .000E+0%
OI=
(-7.5!945259%22,9,04ニ47E540325)
    FUS IT- ! FIET- .16ESET00-.4044E-0号
X'I:
```



```
-T.
```



```
A: ;
```



```
E1-
```



```
    FOFIT: I ,HET= .1507E+00-.104ZE-O2
X(I)
```



```
i.
```



```
:!:
```



```
    : 
```



```
E!
```


Table 2 Continued

```
: : %
```



```
    , %O%F%%0
    !?
        ABcE+90
            .1900E\div20
                                .2000Et00
\because!
```



```
    \because!:
```



```
<!
```



```
    (I)
        lllll
        lllll
        lllll
        lllll
        lllll
        lllll
        lllll
        lllll
`?
```



```
\because1!1
```



```
* :
```



```
    *:=
```



```
\because:
            {2z75+02 - , 2005t00
```


Table 2 Continued


```
    AEB= = 46436%-0.
```



```
    <!%
```



```
        .100:E+00
            -1046E\div0S
            -1006E+00
EI
{-8, -24#74592703,0.99267021541%)
```



```
X:!:-
```



```
    OT
```



```
    - ver.7!re
```



```
|(1)=
```


Table 2 Continued

```
":
```



```
    A\therefore-EE:O!
.2671E+OS
    NI\IE+GO
\therefore!:
```



```
"'T
```



```
    * 2415+0号
:T-
```



```
ZI
-11.0:1#720708%,12.20J041F0m&;
```



```
\because:T)-
```



```
                                    Z
```

Table 2 Continued

```
*!!:
```



```
\because%= , \because92005:1.1
```


V．Listing of Program COPZ


```
#
```



```
                        Mg EMn=TEGG:TS
```

 Mg EMn=TEGG:TS
 ジA4:E: #!n!
    ```
                        ジA4:E: #!n!
```



```
            * AMM:A - AT A.
```



```
            A \therefore. =: + # \ddots
```



```
                OMFGE品:
```


Program Listing Continued

```
    #5\% - =
```



```
    三号"三-:
    \because5: HE=ッ:心
```



```
    ENY:0
```



```
    O-6 - - , %
```



```
#
    4:口% .%
```



```
OMF:` MOMAL EMTA
```



```
        \becausen!`!吅
```


$\therefore \because$

ㅡ.. :
- . ! ! " : ! !

:I-T!MST:

Program Listing Continued

Program Listing Continued


```
COMMON , OATA":EN
```


$\therefore 5-5$
$23-9$
NT: MO:

\therefore -

$-\stackrel{\square}{+}$

:PRTE‘́=A: E

?: : ! : : ! !

$\because \because \because \because \because: 口$
: $\because=-\cdots=$
$\cdot{ }^{\prime}$


```
O
```



```
    \hdashline:- - =%
```



```
            ``m'!u'r -
```



```
    ":" - "-
    M, M-1%:- M
        "5:- !
```



```
    # = = & ''-
    \because.":\because', - -
```



```
        ## \therefore `%=
```



```
    \thereforeO- - - ב, !
        -. ' ! ' . '.'`
```



```
\because
```


Program Listing Continued


```
        FET:ME!
        E|!
EQZ E!口天MMTEEEM,
```


Program NORMAL Documentation

Mode Shape Ortho Normalization

I . INTRODUCTION

NORMAL is a FORTRAN program that can be used to orthonormalize the mode shapes computed by EISPACK routines (such as RESV). For zero-frequency rigid body modes, Gram-Schmidt orthogonalization procedure (see the Appendix A5.1) is used to make the rigid body modes orthogonal to each other with respect to the mass matrix. All modes are then normalized to unit generalized mass. Currently up to 3 rigid body modes can be accepted.

II. INPUT TO NORMAL

The following data is needed to use NORMAL:

1. Input $N, N R, L$ where $N=$ no. of dof of the system

NR $=$ no. of rigid body
(\$3) mode
$L=$ number of elastic modes to be normalized
2. Read from TAPE 20

For $I=1$ to L
WN(I), (V(J,I),J = I,N)

where

WN $(I)=\omega_{i}=$ natural frequency of the i th mode, rad/sec
$V(J, I)={\underset{\rho}{j i}}=$ mode shape coefficient at dof j of ith mode
3. Read from TAPE 10
$\mathrm{NJ},(\mathrm{AM}(\mathrm{I}), \mathrm{I}=1, \mathrm{NJ})$
NJ $=$ no. of system dof

where

$A M(I)=m_{i}=$ lumped mass of ith dof
Note: Both TAPE 10 and TAPE 20 are created by unformatted WRITE in a prior analysis

III．PROGRAM LISTING

ミこ：：ЗミM

L=:10. OF ELASTIC MOEES TOEE NOFMALIZED TO UNET EEN, ※゚ミミ

〔USE 「こEE F天天かAT!

THE MOSNALIZEI MOTAL MATFIX IS WEITTEN DN THFEID.

C

TO $200 \quad \mathrm{I}=1, \mathrm{~L}$

$\because 0: 0 \because 01=:, j$
$E 2=0.0$
$\because 0 \leq 20 \leq=\leq, N$

$5 M=$ SNF: : ミ)
[10 3200 $1=: \times N$
$\because: 00 \quad$ U:J.1) = $\because!-5: / E M$
-ここ气 EC!TIIUE
C
C
$\stackrel{\circ}{C}$
C
C
IF isiF..:E.i) 60 T0 9999
L10 4:00 $I=1, N$
$\therefore \pm=2(I, 1)=U(5,1)$
$f_{i}=0$

$52=0$
IO 4E00 I=: : N

GM = GFFT(Gニ)
10 4400 I=1,N

```
1\div00 U(T,2)=こ(エ,2),SM
        IF (MF,LT.Z) EO TO P?%9
    C2 = 0
    C1=0
    5O 5100 I=1,N
    E: = C1 - Z(I,1; HiM(I)*V(I,3)
־士00 C2 = C2 - ב(I, 2)*&M(I)*U(I,3)
    E2=0 .
    IG EこO0 I=1:M
```



```
    G2=G2 + Z!ItE`#こ(I,3)*F:M(I)
    GM = SQFT(G2)
    IN 5300 I=1,N
    U(I,Z)=Z(I,Z):GM
        FFINT * ,GN(1):(V(J:I),J=1,N)
    GM = 1.0
    I:N E000 I=1,N
    HEITE:12) WN(I), GM
EGO WFITE(12) (V(J,i),j=1,N )
EE:1 FOEMAT(EE:6.9)
EO:1 FOFM&T(5X:25:6.9)
ヲニ%O EOMTINBE
    ETOP
    ENH
```


APPENDIX A5.1

Gram-Schmidt Orthogonalization Prodecure

n independent vectors $\left\{v_{i}\right\}$ can be transformed into vectors \{ p_{i} \} orthogonal with respect to a matrix [m] using the following recursion equations:

$$
\begin{aligned}
& \{p\}_{1}=\{r\}_{1} \\
& \{p\}_{i}=\{r\}_{i}+\alpha_{i 1}\{p\}_{i}+\alpha_{i 2}\{p\}_{2}+\ldots+\alpha_{i, i-1}\{p\}_{i-1}
\end{aligned}
$$

where

$$
\alpha_{i j}=-\frac{\{p\}_{j}^{T}[m]\{r\}_{i}}{\{p)_{j}^{T}[m](r\}_{j}}
$$

APPENDIX B

Active Damper Analysis - Linear

Figure (B.1) shows system 2.2.2.1, it is essentially the same as Figure (5.6) except that definitions of displacement coordinates have been added. Note that the concept is essentially different to that used in the prototype design, which uses a long-stroke actuator without a linkage.

Definitions

C - Damping constant
D - Voice coil. i.e.. shaker, displacement
f - Frequency
F - Shaker force
K - Ratio of maximum structural amplitude to maximum voice-coil amplitude at design conditions

- shaker mass
m^{1} - Moving mass
p^{2} - Rate of energy absorption
R - Linkage ratio
W - Energy absorbed from structure
x - Displacement of structure
y - Displacement of m_{2}
2 - Relative displacement
ω - Radial frequency

Subscripts

AL - Amplitude limited
CH - Characteristic
C - Per cycle
D - Design
FL - Frequency limited
M - Maximum
0 - Complex amplitude
T - Total

Referring to Figure (B.l), the basic damping equation is

$$
\begin{equation*}
F / R=c d x / d t=m_{2} d^{2} y / d t^{2}=m_{2}\left(d^{2} x / d t^{2}+d^{2} z / d t^{2}\right) \tag{B.I}
\end{equation*}
$$

and, assuming sHM with complex amplitudes of x_{0}, z_{0}. respectively

$$
\begin{equation*}
\left|z_{0}\right|=\left|x_{0}\right|\left\{1+\left(C^{2} / \omega^{2} m_{2}^{2}\right)\right\}^{1 / 2} \tag{B.2}
\end{equation*}
$$

If motion is amplitude-limited. so that

$$
\begin{equation*}
1 z_{0}^{\prime} A L=R D_{M} \tag{B.3}
\end{equation*}
$$

then

Fig. (B.1) System 2.2.1 Active Dampcr

$$
\begin{equation*}
I x_{0} A_{A L}=R D_{M} /\left\{1+\left(C^{2} / \omega^{2} m_{2}^{2}\right)\right\}^{1 / 2} \tag{B.4}
\end{equation*}
$$

whereas, if the motion is force-limited, we get, from B1

$$
\begin{equation*}
\left|x_{o}\right|_{F L}=F_{M} / \omega C R \tag{B.5}
\end{equation*}
$$

Defining design conditions as those for which amplitude limits and force limits coincide, so that

$$
\begin{equation*}
1 x_{O}^{\prime} A L=1 x_{0}^{\prime} F L=1 x_{O L}^{\prime} D \tag{B.6}
\end{equation*}
$$

and introducing the ratio

$$
\begin{equation*}
K=\mid x_{o}{ }^{\prime} D^{\prime} D_{M} \tag{B.7}
\end{equation*}
$$

one can eliminate c from (B.4) and (B.5) to get the biquadratic equation

$$
\begin{equation*}
(R / K)^{4}-(R / K)^{2}-\left(f_{C H} / K f_{D}\right)^{4}=0 \tag{B.8}
\end{equation*}
$$

where $f_{C H}$ is the characteristic frequency given by

$$
\begin{equation*}
f_{C H}=\frac{1}{2} \pi\left\{F_{M} / m_{2} D_{M}\right\}^{1 / 2} \tag{B.9}
\end{equation*}
$$

and $\mathbf{f}_{\mathbf{d}}$ is the design frequency. Solving A8

$$
\begin{equation*}
(R / K)^{2}=1 / 2+1 / 2\left\{1+4\left(f_{\mathrm{CH}} / \mathrm{Kf}_{\mathrm{D}}\right)^{4}\right\}^{1 / 2} \tag{B.10}
\end{equation*}
$$

thus, assuming that K, f_{D}, and $f_{C H}$ are given, the linkage ratio R can be found, and the linkage can be designed. The damping constant c can be found by substituting back into (B.4) and assuming design conditions

$$
\begin{equation*}
c=2 \pi f_{D} m_{2}\left\{\left(R^{2} / K^{2}\right)-1\right\}^{1 / 2} \tag{B.11}
\end{equation*}
$$

Note that the electronic system is designed so that the damping constant c is a constant regardless of frequency. Thus, on rearranging (B.4), and substituting from (B.11)

$$
\begin{equation*}
\frac{I x_{0}{ }^{\prime} F L}{\left|x_{0}\right|}=\frac{R / K}{\left\{\left(R / K^{2}-1\right)\left(f_{D}^{2} / f^{2}\right)+1\right\}^{\prime}} ; f<f_{D} \tag{B.12}
\end{equation*}
$$

Equation (B.12) defines the ratio of structural amplitude at frequency f to the design amplitude. It is less then unity. For frequencies above the design frequency, the structural amplitude is force limited, so that, according to (B.1)

$$
\begin{equation*}
\left.\frac{\left|x_{\theta}\right|}{\mid x_{O}^{\prime} D}=\frac{f^{\prime}}{\bar{f}} ; \quad f\right\rangle f_{D} \tag{B.13}
\end{equation*}
$$

The above two equations define structural amplitudes for which the damping system would remain linear under conditions of SHM. If the structure were to vibrate at a single frequency, they would constitute an envelope of permissible amplitudes. The situation with complicated structural responses would be much more difficult to analyze.

The energy removed from the structure per cycle is

$$
\begin{equation*}
w_{c}=\oint c \dot{x} d x=2 \pi^{2} f c\left|x_{o}\right|^{2} \tag{B.14}
\end{equation*}
$$

thus, at design conditions

$$
\begin{equation*}
W_{D}=2 \pi^{2} f_{D} c \mid x_{o}^{\prime}{ }_{D} \tag{B.15}
\end{equation*}
$$

and. on substitution from (B.5) and (B.7)

$$
\begin{equation*}
W_{D}=W_{m}(R / K) \tag{B.16}
\end{equation*}
$$

where

$$
\begin{equation*}
W_{M}=\pi F_{M} D_{M} \tag{B.17}
\end{equation*}
$$

is the maximum energy which can be removed by the shaker. Since R / K is always greater than unity, W_{D} is always less than W_{M}, the discrepancy being due to phase differences between the structural and damper motions.

From (B.14) and (B.15)

$$
\frac{W_{C}}{W_{D}}=\frac{f}{f_{D}} \frac{1 x_{Q} \mid 2}{\left|x_{o}\right| 2}
$$

thus. for the amplitude limited case of (B.12)

$$
\begin{equation*}
\frac{W_{C}}{W_{D}}=\frac{\left(f / f_{D}\right)\left(R^{2} / K^{2}\right)}{\left(R^{2} / K^{2}-1\right)\left(f_{D}^{2} / f^{2}\right)+1} ; f<f_{D} \tag{B.19}
\end{equation*}
$$

while for the force-limited case of (B.13)

$$
\begin{equation*}
\frac{W_{c}}{W_{D}}=\frac{\mathbf{f}_{D}}{\mathbf{f}^{\prime}} ; f>f_{D} \tag{B.20}
\end{equation*}
$$

$$
\begin{equation*}
P=f W_{C} \tag{B.21}
\end{equation*}
$$

thus, above the design frequency

$$
\begin{equation*}
P=P_{D}=f_{D} W_{D} ; \quad f>f_{D} \tag{B.22}
\end{equation*}
$$

while, below the design frequency, we have from (B.19)

$$
\begin{equation*}
P / P_{D}=\frac{\left(f^{2} / f_{D}^{2}\right)\left(R^{2} / K^{2}\right)}{\left(R^{2} / K^{2}-l\right)\left(f_{D}^{2} / f^{2}\right)+1} \tag{B.23}
\end{equation*}
$$

Taking the Goodman V102 shaker as representative of current practice, we use the following values as typical:
mass, $m_{1}=21 b_{m}=0.9072 \mathrm{~kg}$
maximum force, $F_{M}=2 \quad 1 b_{f}=8.890 \mathrm{~N}$
$\mathrm{P}-\mathrm{P}$ deflection, $2 \mathrm{D}_{\mathrm{M}}=0.2^{\prime \prime}=0.00508 \mathrm{~m}$
Max work per cycle, $W_{M}(f r o m(B .17))=0.0709$ Joules
Max work per cycle per unit mass, $W_{M} / \mathrm{m}=0.0782 \mathrm{~J} / \mathrm{kg}$

As an example, consider a design condition of one inch structural amplitude, $\mid x_{0}{ }^{\prime}{ }_{D}$ ' at a frequency f_{D} of one Hertz. Then from (B.7)

$$
K=1 x_{o}{ }_{D} D_{M}=10
$$

The following three sets of calculations are for three values of the moving mass m_{2}

Case
1
2
3
Dimensions

| m_{2} | 0.09072 | 0.9072 | 9.072 | kg |
| :--- | :---: | :--- | :--- | :--- |
| f_{CH} (from A9) | 31.26 | 9.886 | 3.126 | Hz |
| R / K (from AlO) | 3.207 | 1.264 | 1.005 | |
| C (from All) | 1.737 | 4.407 | 5.707 | Ns / m |
| $W_{D}($ from Al6) | 0.0221 | 0.0561 | 0.0705 | J |
| $\mathrm{~m}_{\mathrm{T}}=\mathrm{m}_{1}+\mathrm{m}_{2}$ | 0.9979 | 1.8144 | 9.9792 | kg |
| $\mathrm{~W}_{\mathrm{D}} / \mathrm{m}_{\mathrm{T}}$ | 0.0221 | 0.0309 | 0.0071 | $\mathrm{~J} / \mathrm{kg}$ |
| $\mathrm{P} / \mathrm{m}_{\mathrm{T}}($ from A22 $)$ | 0.0221 | 0.0309 | 0.0071 | $\mathrm{~W} / \mathrm{kg}$ |

It will be noted that case 2 , for which the magnet and moving mass are equal, gives the best performance in terms of watts of energy removed per kg for frequencies above one kz . The damping constant c achieved is also close to the maximum. If system 2.2.2.1 in Pigure (5.7) were used instead, the total mass m_{T} would be 0.0972
kg, and the performance of the system would otherwise be identical to case 2 above. Thus, values for ${ }_{W_{P}} / m_{T}$ and P / m_{T} would be 0.0619 J / kg and $0.619 \mathrm{w} / \mathrm{kg}$ respectively. This ${ }^{T}$ value for $W_{D} / \mathrm{m}_{\mathrm{T}}$ is close to the maximum value of $\mathrm{w}_{\mathrm{M}} / \mathrm{m}$ obtainable with this voice-coil shaker.

Use of Piezoelectric Materials

Polyvinylidene flouride (PVF_{2}) exhibits the following relationship between strain e_{1}, normal electric field, E_{3}, and stress $\sigma_{1}\left(\right.$ see Figure (C.1)) ${ }^{1}$

$$
\begin{equation*}
\theta_{1}=-d_{31} E_{3}+\left(1 / C_{11}^{E}\right) \sigma_{1} \tag{C.1}
\end{equation*}
$$

where $d_{31}=$ transverse piezoeletric charge coefficient

$$
c_{1}^{E}=\text { modulus of elasticity }
$$

Assuming SHM with maximum values of $e_{M^{\prime}} E_{M}$ and $\sigma_{M_{0}^{\prime}}$ such that e and σ are 90° out of phase with each other, and 45° out of phase with E_{3}.

$$
\begin{align*}
& \sigma_{M}=d_{31} C_{11}^{E} E_{M} / \sqrt{2} \tag{C.2}\\
& e_{M}=d_{31} E_{M} / \sqrt{2} \tag{C.3}
\end{align*}
$$

and the maximum energy absorbed per unit volume is

$$
\begin{equation*}
w_{M}=\pi \sigma_{M} e_{M}=\pi d_{31}^{2} C_{11}^{E} E_{M}^{2 / 2} \tag{C.4}
\end{equation*}
$$

while

$$
\begin{equation*}
w_{M} / m=w_{M} / \rho=\pi d_{31}^{2} C_{11}^{E} E_{M}^{2 / 2 \rho} \tag{C.5}
\end{equation*}
$$

Typical values are

$$
\begin{aligned}
& d_{31}=5 \text { to } 37 \times 10^{-12} \mathrm{~m} / \mathrm{V} \\
& \mathrm{C}_{11}^{\mathrm{E}}=1.6 \text { to } 3.8 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2} \\
& E_{M}=12 \text { to } 30 \times 10^{6} \mathrm{~V} / \mathrm{m} \\
& \rho=1.8 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

which gives the following range of values

$$
W_{M} / m=.005 \text { to } 4.1 \mathrm{~J} / \mathrm{Kg}
$$

Fig. (C.1) Unit Cube of Polyvinylidene Flouride (PVF2) Piezoelectric Material

The most critical property is that of E_{M}. Unless a considerable safety margin is allowed, there ${ }^{M}$ is a severe danger of dielectric breakdown in a space application, particular after a micrometeorite has damaged the material.

Simulation of NASA Tests

To help the actuator hardware design, a model of the prototype actuators will be put on the finite element model to simulater a vibration control test. Initially, a linear simulation will be performed. The purpose is to determine the magnitude of the displacement and the actuator force under designed conditions. The assumptions of this simulation are
(1) the system is linear
(2) the FEM of the NASA grillage (or beam) will be used as the undamped structure
(3) the actuator dynamics will be ignored. That is, the actuator will be assumed to be a perfect device capable of producing force $f=c x$ under all conditions.
(4) the weight of each damper will be included as a discrete mass added to the system
(5) the excitation will be an initial displacement and/or initial velocity of the FEM.

Formulations

Let [M], [K] be the mass and stiffness of the undamped structure. Introducing n_{c} dampers at dof $J_{1} \ldots J_{n c}$, the damping matrix is

$$
\begin{equation*}
[C]=[B][\hat{c}][B]^{T} \tag{D.I}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left.[B]=\left[\left\{\begin{array}{llllll}
J_{1}
\end{array}\right\} i\left\{_{J_{2}}\right\} \ldots i e_{J_{n c}}\right\}\right]_{n \times n_{c}}
\end{aligned}
$$

and

$$
\left\{e_{J}\right\}=\text { null vector except the jth element has a value of } l
$$

In expanded form,

The contribution to the mass matrix due to the mass of the damper is

$$
[\Delta M]=[B][\hat{\Delta} M][B]^{T}
$$

or

where we assume all dampers are identical and have a mass of $\Delta \mathrm{m}$. The equation of motion of the system is

$$
\begin{equation*}
[\bar{M}]\{x\}+[c]\{\dot{x}\}+[K]\{x\}=\{0\} \tag{D.4}
\end{equation*}
$$

where

$$
[\bar{M}]=[M]+[\Delta M]
$$

The initial conditions are

$$
\begin{align*}
& \{x(0)\}=\left\{x_{0}\right\} \tag{D.5}\\
& \{\dot{x}(0)\}=\left\{\dot{x}_{0}\right\}
\end{align*}
$$

[^0]
APPENDIX E

1. Bounds on Transient Responses

2. Time Domain Optimal Design

1. Bounds on Transient Responses

The disturbances acting on an Large space Structure is mission dependent. However, one can say that these disturbances are usually of a transient type, e.g. firing of control thrusters for attitude control etc. The vibration control system must be designed to suppress these transient vibrations. One way of measuring the performance of a vibration control system is to evaluate how fast the control system can bring the response from some initial disturbed state to within an "acceptable" level. The response could be the displacement, velocity, or acceleration at certain "critical" locations of the LSS. For a large structure, it may not be easy to define which specific response is critical and the designer usually resorts to some aggregation of responses as the performance measure. One commonly used criterion is the minimization of

$$
\left.V(\{z\})=\{z\}^{T}[P]\{z\} ; \quad z=\left\lvert\, \begin{array}{l}
x \tag{E.l}\\
\dot{x}
\end{array}\right.\right]
$$

where [P] is the weighting matrix. The estimation of transient behavior for the performance index can be derived according to Lyapunov's 2nd method, given a linear system governed by $(z)=[A]\{z\}$ with initial state $\left\{z_{0}\right)$ at $t=t_{0}$ and where $V\left(\{z\}, t_{0}\right)$ is given, the system attains a value of v given by $v((z), t)=v\left(\left(z_{0}\right), t_{0}\right) e^{-\eta(t-t)}$ in $t-t_{0}$ seconds using Lyapunov's second method (Ref. 1.,2). The following is a description of the use of Lyapunov's second method in estimating transient responses (Ref. 6) and then indicate how it is applied to the control of LSS. Finally, some research issues will be raised.

Given initial states $\left\{z_{0}\right\}$ and the initial value $V\left(\left\{z_{0}\right\}, t_{0}\right)$, the system reaches the region

$$
\begin{equation*}
V(\{z\}, t)=V\left(x_{0}, t_{0}\right) e^{-\eta\left(t-t_{0}\right)} \tag{E.2}
\end{equation*}
$$

in $t-t_{0}$ seconds.
For a linear time invariant system governed by the following state equations

$$
\begin{equation*}
\{\dot{z}\}=[A]\{z\} \tag{E.3}
\end{equation*}
$$

the parameter η in Eq. (E.2) is the minimum eigenvalue of the matrix [Q][P] where [P] and [Q] are related by

$$
\begin{equation*}
[A]^{T}[P]+[P][A]=-[Q] \tag{E.4}
\end{equation*}
$$

and [P] is the weighting matrix in the performance index, Eq. (E.1). Note that if $[Q]$ is symmetric. so will be [P].

The above results can be applied to the control of LSS by letting

$$
[A]=\left[\begin{array}{c|c}
0 & 1 \tag{E.5}\\
----- & ----- \\
-M^{-1}{ }_{k} & -M^{-1}
\end{array}\right]
$$

where [A] is the dynamical matrix of the closed loop system. That is, in Eq. (E.5) the mass matrix [M] include the mass of the control devices; [k] is the stiffness matrix of the system plus the control law that is proportion to the displacement ($\{x\}$) and [c] is the damping matrix which corresponds to the portion of control law that is proportional to rate ($\{\dot{\mathbf{x}}\}$), see Appendix F for detailed formulation.

It should be noted that the use of Lyapunov's second method requires that all the eigenvalues of the matrix [A] have negative real parts. For a free-free structure with no position feedback. the system matrix [A] has some zero eigenvalues. Thus, to use the above results directly we need to include positive feedback terms in the control law.

The Lyapunov's second method provides a sound basis for transient performance estimates. To apply it to the design of vibration control of LSS, the following research needs to be carried out.
(1) matrix [Q] must be positive definnte, otherwise its elgenvalue could be zero or negative which renders the estimate (Eq. (E.2)) useless. This implies the performance index $V((z), t)$ is restricted to quadratic form with weight matrix [P] that leads to a positive definite [Q]. Thus, [P] may not be specified arbitrarily. The question of how to pick matrix [P] needs further research.
(2) Alternatively, we can specify a positive definite [Q] and solve for [P] by Eq. (E.4). This requires the solution of a set of $n(n+1) / 2$ equation, where n is the order of matrix [A]. An efficient solution scheme of Eq. (E.4) needs to be develoepd (or found in the literature).
(3) modify the formulation to allow it to accept LSS whose control law consists of rate feedback only. This may be achieved by formulating equations of motion for elastic modes only by filtering out the rigid body motion.
(4) application of the formulation in a truncated modal space. This will reduce the computational burden drastically.
(5) Formulate a synthesis procedure using the basic results. This may be achieved by iteractive methods or by a direct formulation. The results of the above researches can also be used in the next section.

2. Time Domain Optimal Design

Traditionally, time optimal design using optimal control theory with quadratic performance results in the solution of a higher order Riccatti equation, (Ref. 3). This will result in a control law with full state feedback which may be difficult to implement. For a vibration control system, it may be advisable to take another approach. That is one could fix the form of the control law then find the pairs that optimize some performance index. In general, nonlinear programming approaches can be used to find the optimal gains. This will be extremely costly since many transient responses are to be evaluated. If we limit ourself to a quadratic performance index, then the Lyapunov's second method can be used to evaluate the performance index when the system is driven by initial conditions. The general results (Ref. 6) will be stated first and then their application to LSS will be indicated.

Consider the system

$$
\begin{equation*}
\{\dot{z}\}=[A]\{z\} \tag{E.6}
\end{equation*}
$$

where all eigenvalue sof [A] have negative real parts, or the original (0) is asympototically stable. The design problem is to adjust the elements in matrix [A] such that the performance index

$$
J=\int_{0}^{\infty}\{z\}^{T}[Q]\{z\} d t
$$

is minimized. It has been shown that

$$
\begin{equation*}
J=\int_{0}^{\infty}\{z\}^{T}[Q]\{z\} d t=\left\{z_{0}\right\}^{T}[P]\left\{z_{0}\right\} \tag{E.7}
\end{equation*}
$$

where [P] is the solution of the equation
$[A]^{T}[P]+[P][A]=-[Q]$
Note that [P] is symmetrical. The significance of Eq. (E.7) is that to evaluate the performance index, no transient analysis has to be performed at all. Rather, we just solve a set of $n(n+1) / 2$ linear Eqs. (E.8) and then perform matrix multiplication. Since the elements of [P] is an implicit function of matrix [A] through Eq. (3), the following optimal procedure can be proposed:
(1) from trial value of design parameters, form matrix [A]
(2) solve [P] using Eq. (E.B)
(3) evaluate J using Eq. (E.7)
(4) repeat the above process until J is minimized.

When applied to LSS, we simply use the dynamic [A] as defined in Appendix F. The results of the research is used in the previous section is applicable here also.

REFERENCES

1. R.E. Kalman and J.E. Bertram, "Control System Analysis and Design Via the Second Method of Lyaponov", Trans. ASME J. of Basic Engineering, 80, June 1960, pp. 371-400.
2. K. Ogata, Modern Control Engineering, Prentice-Hall, Inc. Englewood Cliffs, New Jersey.
3. Brian D. Anderson and John B. Moore, Linear Optimal Control, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

APPENDIX F

Formulation of Dynamical Matrix for LSS with General Control Law

Consider the actively controlled Lass

$$
\begin{equation*}
[M][\ddot{x}]+\left[k_{0}\right]\{z\}=[B]\{u\} \tag{Fr}
\end{equation*}
$$

where
[k] is the stiffnes matrix of the uncontrolled structure (nan)
[M] is the mass matrix of the controlled system including the mass and inertia of the control devices (sensors and actuators, etc) (nxn)
[B] is the control distribution matrix ($\mathrm{NxN}_{\mathbf{u}}$)
$\{u\}$ is the control input ($\left.N_{n} \mathrm{Xl}\right)$
Let the control law be

$$
\begin{equation*}
\{\underline{u}\}=-[\hat{\Delta k}]\{y\}-[\hat{\Delta} c]\{\dot{y}\} \tag{F.2}
\end{equation*}
$$

where

$$
\begin{align*}
& \{y\}=\left[B_{d}\right]\{x\}=\text { displacement measurement }\left(N_{d} x l\right) \tag{F.3}\\
& \{\dot{y}\}=\left[B_{u}\right]\{\dot{x}\}=\text { velocity measurement }\left(N_{u} x l\right)
\end{align*}
$$

$$
[\hat{\Delta K}]=\text { displacement gain matrix }\left(N_{\mathbf{u}} \times N_{d}\right)
$$

$$
[\hat{\Delta c}]=\text { velocity gain matrix }\left(N_{u} x N_{u}\right)
$$

$$
\left[B_{d}\right]=\text { displacement measurement matrix }\left(N_{d} x N\right)
$$

$$
\left[B_{u}\right]=\text { velocity measurement matrix }\left(N_{u} \times N\right)
$$

Substitute (F.3) into (F.2)

$$
\begin{equation*}
\{u\}=-[\hat{\Delta k}]\left[B_{d}\right]\{x\}-[\hat{\Delta} c]\left[B_{u}\right]\{\dot{x}\} \tag{F.4}
\end{equation*}
$$

Substitute (F.4) into (F.1)

$$
\begin{equation*}
[M]\{\ddot{x}\}+\left[K_{o}\right]\{x\}=-\left[B \hat{\Delta}^{k B} B_{d}\right]\{x\}-\left[B \hat{\Delta}^{C} B_{u}\right]\{\dot{x}\} \tag{FR}
\end{equation*}
$$

Equation (P.5) can be simplified to

$$
\begin{equation*}
[M]\{x\}+[c]\{\dot{x}\}+[k]\{x\}=\{0\} \tag{Fe}
\end{equation*}
$$

where

$$
\begin{align*}
& {[C]=[B]\left[\hat{\Delta}_{C}\right]\left[B_{v}\right]} \\
& {[K]=\left[K_{0}\right]+[\Delta K]} \tag{Fr}\\
& {[\Delta K]=[B][\hat{\Delta K}]\left[B_{d}\right]}
\end{align*}
$$

Note that in general, matrix [K] and [C] are arbitrary matrices, they may not be symmetric.

Finally, we can put (F.6) in state space form as

$$
\begin{equation*}
\{\dot{z}\}=[A]\{z\} \tag{F.8}
\end{equation*}
$$

where

$$
\begin{align*}
& {[A]=\left\{\begin{array}{c|c}
0 & I \\
--M^{-1} K & -M^{-1} c
\end{array}\right]} \tag{FR}\\
& \{z\}=\left\{\begin{array}{c}
x \\
\dot{x}
\end{array}\right\}
\end{align*}
$$

Detection

The actuator failure modes can be classified as:
(a) total failure: actuator does not produce a force in response to a command signal
(b) random failure: actuator produces random force for a given input signal.
The total failure mode may be considered in the design of electronics for the actuator.

The random failure mode is more complex and may not be detected using hardware alone. In this case, a monitoring system to keep track of the performance of each actuator may be needed. Through the performance monitoring an adaptive control approach may be derived to detect andisolate failed actuators. Such an approach has been used in the detection of rate gyro failure in flight control systems [Ref. 1]. The feasibility of this approach to our problem is being investigated. Literature search will be made to look for other approaches.

References

1. Wagdi, M.N., "An Adaptive Control Approach to Sensor Failure Detection and Isolation," Journal of Guidance and Control. Vol. 5, No. 2, pp. 118-123. 1982.

[^0]: Equation (D.4) can be solved numerically using any of the numerical solution techniques. e.g. Wilson's θ method or Newmark β method. Alternatively, a modal solution of (4) can be obtained by using the complex mode of the system (see Hurty and Rubinstein (Ref. l). Once the modes are known an analytical expression can be written for each mode in this approach.

 REFERENCE

 1. W.C. Hurty and M.F. Rubenstein, Dynamics of Structures, Prentice-hall, Inc. Englewood Cliffs, N.J. 1964 (ch. 9).
