https://ntrs.nasa.gov/search.jsp?R=19830011537 2020-03-21T04:09:00+00:00Z

original page is OF POOR QUALITY

PA: Reguest etrassis for public teleuse. That was sponsoral by NASA/MSEC/EPUX /W.P. Batit Ero cie Huntsville, AL

WIND TUNNEL TESTS OF SPACE SHUTTLE SOLID ROCKET BOOSTER INSULATION MATERIAL IN THE AEROTHERMAL TUNNEL C

> A. S. Hartman and K. W. Nutt Calspan Field Services, Inc.

EDC/PA_83-N83-19808

Unclas H2/20 03049

(AEDC-1SR-82-V38) WIND TUNNEL TESTS OF SPACE SHUTTLE SOLID FOCKET BCCSTEE INSULATION MATERIAL IN THE AFFCTHEFRAL TUNNEL C Final Report, 2 Sep. - 22 Sep. 1982 (Calspan Field Services, Inc.) 54 p

AEDC-TSR-82-V38

November 1982

Final Report for Period 2 September 1982 to 11 September 1982

Not cleared for public release without prior written approval of NASA/MSFC/EP44, Marshall Space Flight Center, Huntsville, AL 35812.

ARNOLD ENGINEERING DEVELOPM **ARNOLD AIR FORCE STATION, TENNESSEE** AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE

NOTICES

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

References to named commercial products in this report are not to be considered in any sense as an indorsement of the product by the United States Air Force or the Government.

APPROVAL STATEMENT

This report has been reviewed and approved.

H.J. Best

J. T. BEST Aeronautical Systems Branch Deputy for Operations

Approved for publication:

FOR THE COMMANDER RAMPY, Director ospace Flight Dynamics Test

eputy for Operations

	1		
UNC	CLAS	SSIF	IED

1

ORIGINAL PAGE IS

LINCLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION		READ INSTRUCTIONS
REPORT DUCUMENTATION	PAGE	BEFORE COMPLETING FORM
	2. GOVT ACCESSION NO.	S. RECIPIENT S CATALUG NUMBER
AEDC-TSR-82-V38		
4. TITLE (and Subtitie) WIND THINNEL TESTS OF SPACE SHUTTE	SOLTA POCKET	5. TYPE OF REPORT & PERIOD COVERED.
BOOSTER INSULATION MATERIAL IN THE	AFROTH FRMAL	Sent $2 = \text{Sent} 22$ 1982
TUNNEL C		6. PERFORMING ORG. REPORT NUMBER
••••••••••••••••••••••••••••••••••••••		· · · · · · · · · · · · · · · · · · ·
7. AUTHOR()		8. CONTRACT OR GRANT NUMBER(*)
A. S. Hartman and K. W. Nutt		
Calspan Field Services, Inc./AEDC I	Division	•
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK
Arnold Engineering Development Cent	ter	ARCA & WORK UNIT NUMBERS
Air Force Systems Command		Program Element 921E02
Arnold Air Force Station, TN 37389		CONTROL NO. 9EUZ
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
		November 1982
		13. NUMBER OF PAGES
		52
14. MONITORING AGENCY NAME & ADDRESS(11 dilleren	it from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
		[N/A
	<u></u>	
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different from	n Report)
	•	
18. SUPPLEMENTARY NOTES	<u> </u>	- · · · · · · · · · · · · · ·
•		
19. KEY WORDS (Continue on severae side if necessary an	id identify by black number)	·····
space shuttle foam in	sulation	•
External Tank		
aerodynamic heating		
materials testing		
neat transfer		
40. ABSTRACT (Continue on reverse side if necessary and	a igentify by block number)	Poorton Troulation
ducted in the von Karman Gas Dynami Tunnel C was run at Mach 4 with a t pressure of 100 psia. Cold wall he	cs Facility Tunne otal temperature ating rates were	of 1100-1440 °F and a total changed by varying the test
article support wedge angle. Selec test techniques and typical data ob	ted results are p tained.	presented to illustrate the
D FORM 1473 EDITION OF 1 NOV 65 IS OBSOL	RTE	

t

۰.

. 1

: 1

. CONTENTS

Page

1.0	NOMENCLATURE	2 5
2.0	AFPARATUS	
	2.1 Test Facility	. 5
	2.2 Test Article	6
	2.3 Test Instrumentation	6
3.0	TEST DESCRIPTION	_
	3.1 Test Conditions	7
	3.2 Test Procedures	8
	3.3 Data Reduction	9
	3.4 Uncertainty of Measurements	13
4.0	DATA PACKAGE PRESENTATION	13
	REFERENCES	14

APPENDIXES

I. ILLUSTRATIONS

Figure

1.	Tunnel C, Mach 4 Configuration .	• •			•	•	•	•	•	•	•	•	•	•	16
2.	Instaliation in Tunnel C	•	•	•	•	•	•	•	•	•	•	•	•	•	17
3.	Test Article Details	•	٠	•	•	•	•	•	•	•	•	•	•	•	19
4.	Calibration Plate	•	•	•	•	•	•	•	•	•	•	•	•	٠	21
5.	Specimen Configuration		٠	•	•	•	•	•	•	•	٠	•	•	٠	22
6.	Wedge Trajectory	•	•	•	•	•	٠	•	•	•	•	٠	•	•	28
7.	IR Line-Point Identification	•	•	•	•	•	•	•	•	•	٠	•	•	•	30
8.	Emmissivity-Temperature Sensiti	vit	У	Cui	cve	5	•	•	•	•	•	٠	٠	•	31
9.	IR-Top Photograph Comparison	•	•	•	•	•	•	•	•	•	•	٠	•	•	32
10.	Comparison of Tunnel Data with A	٩па	lyf	tic	a 1	C	al	lcι	118	ati	Loi	n	٠	•	33
11.	Data Repeatability		•	•	•	•	•	•	•	٠	•	•	•	•	34

II. TABLES

2

1.	Data Transmittal Summary .	•		•	•	. •	•	•	٠	•	•	•	•	•	•	٠	٠	36
2.	Material Summary	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	37
3.	Estimated Uncertainties .	•		•	•	•	•	•	•	•	•	•	•	•	•	•	٠	39
4.	Photographic Data Summary	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	41
5.	Instrumentation Locations	•	•		•	•	•	•	•	•	•	•	•	•	•	•	٠	42
6.	Run Summary	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠	•	•	44

III. SAMPLE TABULATED AND PLOTTED DATA

1.	Heat Transfer Data		-•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	47
2.	Photographic Data		•	•	•	•	•	•	•	•	•	•		•		•	•		•	•	٠	.51
3.	IR Data	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	٠	•	52

NOMENCLATURE

ORIGINAL PAGE IS OF POOR QUALITY

t.

•	
ALPHI	Indicated pitch angle, deg
b, THICK	Calibration plate skin thickness, in.
C	Calibration plate material specific heat, Btu/ft ² /1bm-°R
C1	Laboratory gage calibration factor, Btu/ft ² -sec-mv
C2	Temperature corrected gage calibration factor, Btu/ft ² -sec-mv
CAL	Calibration
CAMERA	Denotes camera locations: TOP - top of tunnel, OS - operating side of tunnel (right side look- ing downstream) SHG - Shadowgraph, IR - Infrared monitor screen)
CP	Free-stream specific heat, Btu/1bm-°R
CR	Center of rotation, axial station along the tunnel centerline about which the model rotates in pitch, in.
DTW/DT	Derivative of the model wall temperature with respect to time, °R/sec
E	Gardon gage output, mv
fps	Frames per sec
GAGE	Gardon gage identification number
H(TRT)	Heat transfer coefficient based on the theoretical recovery temperature for turbulent flow (TRT), QDOT/(TRT-TW), Btu/ft ² -sec-°R
H(TT) .	Heat transfer coefficient based on TT, QDOT/(TT-TW), Btu/ft ² -sec-°R
ITT	Enthalpy based on TT, Btu/1bm
KG	Gardon gage temperature calibration factor, °R/mv
м	Free-stream Mach number
MU	Dynamic viscosity based on free-stream temperature, lbf-sec/ft ²

.

•

1

4

P	Free-stream static pressure, psia
PIC NO	Picture number, corresponds to number on each frame of contact print
	XXXX - XXX RUN NUMBER FRAME NUMBER
PT	Tunnel stilling chamber pressure, psia
Q .	Free-stream dynamic pressure, psia
QDOT	Heat flux, Btu/ft ² -sec
QDOT-0	Cold wall (i.e., 0°F) heat flux calculated from QDOT = H(TT)(TT-460), Btu/ft ² -sec
RE	Free-stream Reynolds number, ft
RHO	Free-stream density, lbm/ft ³
ROLL NO	Identification number for each roll of film
RUN	Data set identification number
SAMPLE	Specimen number
ST	Stanton number based on TT and free stream conditions, H(TT)/(RHO*V*CP)
STREX.2	Heat transfer correlation parameter ST(RE*X) ^{0.2}
T	Free-stream static temperature, *R
T/C	Thermocouple identification number
TGE	Gardon gage edge temperature, [•] R
TGDEL	• Temperature differential from the center to the edge of Gardon gage disc, [•] R
TI	Initial wall temperature
TIME	Elapsed time from lift-off, sec
TIMECL	Time at which the model reached tunnel centerline, Central Standard Time

1

¢

TIMEEXP	Time of exposure to the tunnel flow when the data were recorded, [TIME - $\frac{32}{57}$ (TIMEINJ)], sec
TIMEEXPT	Total exposure time for a RUN, sec
TIMEINJ	Elapsed time from lift-off to arrival at tunnel centerline, sec
TP	Wedge plate temperature, °R
TS	Material sample thermocouple temperature, R
TT	Tunnel stilling chamber temperature, °R
TW	Model surface temperature, °R
V	Free-stream velocity, ft/sec
WA	Wedge angle deg (see Fig. 3)
X, Y, Z	Orthogonal body axis system directions (see Fig. 3)
ε	Specimen emissivity
0	Calibration plate material density

1.0 INTRODUCTION

The work reported herein was performed by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), under Program Element 921E02, Control Number 9E02, at the request of the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), Huntsville, Alabama for Lockheed Missile and Space Co., Huntsville, AL. The Lockheed Missile and Space Co. project engineer was Mr. B. Dean and the NASA/MSFC project manager was Mr. W. P. Baker. The results were obtained by Calspan Field Services, Inc./AEDC Division, operating contractor for the Aerospace Flight Dynamics testing effort at the AEDC, AFSC, Arnold Air Force Station, Tennessee. The test was performed in the von Karman Gas Dynamics Facility (VKF), Hypersonic Wind Tunnel (C), on September 2, 21 and 22, 1982 under AEDC Project No. C462VC (Calspan No. V41C-2K).

The objective of this test was to measure the response to convective heating of the material used on the space shuttle's Solid Rocket Booster (SRB) Thermal Protection System (TPS). The wedge technique was used to produce local heating rates (Ref. 1) on the test sample.

Data were recorded at Mach number 4 with a tunnel stilling chamber pressure of 100 psia at stilling chamber temperatures of 1560-1900°R (1100-1440°F). Cold wall heating rates of nominally 4 to 20 Btu/ft²-sec were obtained by varying the wedge angle (WA).

All test data including detailed logs and other information required to use the data have been transmitted **to the second sponsor** as described in Table 1. Inquiries to obtain copies of the test data should be directed to NASA/MSFC/EP44, Marshall Space Flight Center, Huntsville, Alabama, 35812. A microfilm record has been retained in the VKF at AEDC.

2.0 APPARATUS

2.1 TEST FACILITY

- }

×∮

The Mach 4 Aerothermal Tunnel C is a closed-circuit, high temperature, supersonic free-jet wind tunnel with an axisymmetric contoured nozzle and a 25 in.-diam nozzle exit, Fig. 1. This tunnel utilizes parts of the Tunnel C circuit (the electric air heater, the Tunnel C test section and injection system) and operates continuously over a range of pressures from nominally 15 psia at a minimum stagnation temperature of 710°R to 180 psia at a stagnation temperature of 1570°R. Using the normal Tunnel C Mach 10 circuit (Series Heater Circuit), the Aerothermal Mach 4 nozzle operates at a maximum pressure and temperature of 100 psia and 1900°R, respectively. The air temperatures and pressures are normally achieved by mixing high temperature

air (up to 2250°R) from the primary flow discharged from the electric heater with the bypass air flow (at 1440°R) from the natural gas-fired heater. The primary and the bypass air flows discharge into a mixing chamber just upstream of the Aerothermal Tunnel C stilling chamber. The entire Aerothermal nozzle insert (the mixing chamber, throat and nozzle sections) is water cooled by integral, external water jackets. Since the test unit utilizes the Tunnel C model injection system, it allows for the removal of the model from the test section while the free-jet tunnel remains in operation. A description of the Tunnel C equipment may be found in the Test Facilities Handbook, Ref. 2.

2.2 TEST ARTICLE

The test article was designed to simulate the flow conditions over a section of material used on the SRB-TPS. To provide the desired flow conditions over the material, the wedge technique developed for material testing was used (Ref. 1). The oblique shock wave generated by the wedge reduces the free stream flow properties to the desired flow conditions. The flow field conditions over the wedge can be controlled by changing the wedge angle and, if desired, by adjusting the tunnel stilling chamber conditions.

The test article was supported by a sting which was attached to the Tunnel "C" mounting hardware. An installation photograph and sketch of the fixture in Tunnel C are shown in Fig. 2. The test article was comprised of two parts (the basic wedge and interchangeable material specimens) and is shown in Fig. 3. The wedge was 12 in. wide x 34 in. long. Three rows of 0.032 in. diam boundary layer trip spheres were attached to the wedge as shown in Fig. 3. A thin-skin calibration plate was used to obtain heat transfer levels at the higher wedge angles. This plate is shown in Fig. 4.

A typical test specimen consisted of a 12 in. x 10 in. x 0.125 in. aluminum support plate covered with a 1.0 \pm 0.25 in. layer of Instafoam or a varying thickness of MSA2[®] Examples of pretest and posttest photographs of the material specimens are shown in Fig. 5. For a complete list of material specimens see Table 2. All but two samples had imbedded thermocouples. The locations of these thermocouples are unavailable for this report.

2.3 TEST INSTRUMENTATION

The instrumentation, recording devices, and calibration methods used to measure the primary tunnel and test data parameters are listed in Table 3a along with the estimated measurement uncertainties. The range and estimated uncertainties for primary parameters that were calculated from the measured parameters are listed in Table 3b.

ORIGINAL PAGE IS

A variety of cameras was used to record the test results. Color motion pictures and 70mm sequence color stills recorded any changes in the samples as they were tested. These movie cameras were operated at frame rates of 24 fps. A shadowgraph still was taken for each run. A black and white video tape was also made for general coverage during the tests. Color 70mm sequence photographs and 16mm color movies (1 8 fps) were taken of the IR monitor. All photographic data taken during the test are identified in Table 4.

The Gardon gages used in the wedge were a special high temperature type, 0.25-in. diam, with a 0.010-in. thick sensing disk. Each gage had a Chromel[®]-Alumel[®] thermocouple to provide the gage edge temperature. These temperatures, together with the gage output, were used to determine the gage surface temperatures and corresponding heat transfer rate, which was then used to calculate the local heat transfer coefficient. The coordinate locations of the Gardon gages are listed in Table 5a.

The calibration plate temperatures were measured with FE-CN thermocouples. The thermocouple locations are shown in Fig. 4 and their coordinates and corresponding skin thickness are listed in Table 5b.

The infrared system which was used to measure model surface temperatures utilizes an AGA Thermovision $\textcircled{0}{680}$ camera which scans at the rate of 16 frames per second. The camera has a detector which is sensitive to infrared radiation in the 2 to 6 micron wavelength band. A description of the system is given in Ref. 3.

A total time of exposure to the tunnel flow is also required for data reduction. All the events which occur during a run, except the IR data, are timed using the digital clock in the DEC-10 computer, which processes all data from the continuous tunnels. The IR system used its own internal clock to reduce its time of exposure used in the IR data.

The imbedded thermocouples used to record temperature histories at various points inside the insulation materials were installed by Lockheed during specimen fabrication. Exact locations were not available for this report.

3.0 TEST DESCRIPTION

3.1 TEST CUNDITIONS

A summary of the nominal test conditions is given below:

Date	M	PT, psia	<u>TT, [•]R</u>	RUNS		
Sept. 2, 1982	3.92	100	1560-1900	1-27		
Sept. 21, 1982	3.92	100	1560	28-30		
Sept. 22, 1982	3.92	100	1560-1900	31-72		

ORIGINAL PAGE IS

A test summary showing the configurations tested and the variables for each is presented in Table 6.

3.2 TEST PROCEDURES

In the VKF continuous flow wind tunnels (A, B, C), the model is mounted on a sting support mechanism in an installation tank direct., underneath the tunnel test section. The tank is separated from the tunnel by a pair of fairing doors and a safety door. When closed, the fairing doors, except for a slot for the pitch sector, cover the opening to the tank and the safety door seals the tunnel from the tank area. After the model is prepared for a data run, the personnel access door to the installation tank is closed, the tank is vented to the tunnel flow, the safety and fairing doors are opened, the model is injected into the airstream, and the fairing doors are closed. After the data are obtained, the model is retracted into the tank and the sequence is reversed with the tank being vented to atmosphere to allow access to the model in preparation for the next run. The sequence is repeated for each configuration change.

The required local flow conditions over the test specimens are produced by attaching the panel to a large wedge. A complete description of this technique as used in Tunnel C is given in Ref. 1.

Instrumentation outputs were recorded using the digital data scanner in conjunction with the analog subsystem. Data acquisition from all instruments other than the infrared camera was under the control of a Digital Equipment Corporation (DEC) PDF 11/40 computer, utilizing the random access data system (RADS). The data were transmitted to a DEC-10 computer for processing.

During a run, the AGA 680 infrared camera scanned the model to produce a complete picture at the rate of 16 frames per second. The camera output was recorded on analog tape and simultaneously displayed on a color television monitor. The developing color patterns were observed as the model surface temperature increased, and the monitor was photographed as described in Section 2.3 to provide a permanent record. The camera output was also fed to an analog-to-digital converter under the cont ol of a PDP 11/34 computer. A single complete frame was digitized and transmitted to the DEC-10 computer at a rate predetermined for this test. During the first night of testing the PDP 11-34 was unable to transmit data to the DEC-10. The Runs were recorded on magnetic tape and retrieved later. These Runs are listed in Table 6.

Model attitude positioning and data recording were accomplished in one of two ways for each model injection. For most runs, the model attitude was set while in the installation tank and the model was injected at that attitude with data recorded automatically at preselected time intervals. For two runs, the model was pitched using the sweep mode of operation under the control of the Model Attitude Control System (MACS). With the MACS, model pitch requirements were entered into the controlling computer prior to the test and model positioning was performed automatically by the system. The requested and actual trajectories are compared in Fig. 6.

3.3 DATA REDUCTION

Measured stilling chamber pressure and temperature and the calibrated test section Mach number are used to compute the free-stream parameters. The equations for a perfect gas isentropic expansion from stilling chamber to test section were modified to account for real gas effects.

Data measurements obtained from the Gardon gages are gage output (E) and gage edge temperature (TGE). The gages are direct reading heat flux transducers and the gage output is converted to heating rate by means of a laboratory calibrated gage scale factor (C1). The scale factor has been found to be a function of gage temperature and therefore must be corrected for gage temperature changes,

$$C2 = C1 f(TGE)$$
(1)

Heat flux to the gage is then calculated for each data point by the following equation:

$$QDOT = (E)(C2)$$
 (2)

The gage wall temperature used in computing the gage heat-transfer coefficient is obtained from two measurements - the output of the gage edge thermocouple (TGE) and the temperature difference (TGDEL) from the gage center to its edge. TGDEL is proportional to the gage output, E, and is calculated by:

$$TGDEL = (KG)(E)$$
(3)

The gage wall temperature is then computed as

$$TW = TGE + 0.75(TGDEL)$$
(4)

where the factor 0.75 represents the average value across the gage.

The standard Gardon gage data reduction procedure was used to compute model local heat transfer-coefficients. The procedure averages five consecutive samples of gage output(E), commencing with the data loop recorded at approximately the time the model arrives at tunnel centerline. The gage edge temperature (TGE) was averaged in the same manner.

The heat transfer coefficient for each gage was computed using the following equation,

$$H(TT) = \frac{QDOT}{(TT-TW)}$$
(5)

QDOT-0 is the heat flux calculated when the gage wall temperature (TW) is assumed to be 460°R (0°F). It is computed using the following equation,

(6) QDOT-0 = H(TT)(TT-460)

The reduction of thin skin temperature data to coefficient form normally involves only the calorimeter heat balance for the thin skin as follows:

$$QDOT = \rho bc DTW/DT$$
 (7)

171

$$H(TT) = \frac{QDOT}{TT-TW} = \frac{\rho bc \ DTW/DT}{TT-TW}$$
(o)

Thermal radiation and heat conduction effects on the thin-skin element are neglected in the above relationship and the skin temperature response is assumed to be due to convective heating only. It can be shown that for constant TT, the following relationship is true:

$$\frac{d}{dt} \ln \frac{TT-TI}{TT-TW} = \frac{DTW/DT}{TT/TV}$$
(9)

Substituting Eq. (9) in Eq. (8) and rearranging terms yields:

$$\frac{H(TT)}{Ohc} = \frac{d}{dt} \ln \frac{TT-TI}{TT-TW}$$
(10)

By assuming that the value of H(TT)/pbc is a constant, it can be seen that the derivative (or slope) must also be constant. Hence, the term

is linear with time. This linearity assumes the validity of Eq. (8) which applies for convective heating only. The evaluation of conduction effects will be discussed later.

Caiginal page is of poor quality

The assumption that H("T) and c are constant is reasonable for this test although small variations do occur in these parameters. The variations of H(TT) caused by changing wall temperature and by transition movement with wall temperature are trivial for the small wall temperature changes that occur during data reduction. The value of the model material specific heat, c, was computed by the relation

$$c = 8.86196 \times 10^{-2} + 3.98668 \times 10^{-5}$$
 (TW), (316 stainless steel) (11)

The maximum variation of c over any curve fit was less than 1.5 percent. Thus, the assumption of constant c used to derive Equation 10 was reasonable. The value of density used for the 316 stainless steel skin was, $\rho = 501 \text{ lbm/ft}^3$, and the skin thickness, b, for each thermocouple is listed in Table 5.

The right side of Equation 10 was evaluated using a linear least squares curve fit of 7 consecutive data points to determine the slope. The curve fit was started at approximately the time the model arrived on the tunnel centerline. For each thermocouple the tabulated value of H(TT) was calculated from the slope and the appropriate values of pbc; i.e.,

$$H(TT) = \rho bc \frac{d}{dt} \ln \left[\frac{TT-TI}{TT-TW} \right]$$
(12)

To investigate conduction effects a second value of H(TT) was calculated at a time one second later. A comparison of these two values was used to identify those thermocouples that were influenced by significant conduction (or system noise). Conduction and/or noise effects were found to be negligible.

1

1

As discussed in Section 3.2, the output of the IR camera is displayed in real time on a color television monitor. A 70-mm camera was used to photograph the monitor screen simultaneously with the single frame digitizing process. An example of a monitor screen photograph is given in Fig. 7. On the television monitor the total-temperature range which the system is set up to measure is divided, in a nonlinear fashion, into ten separate colors, starting with blue for the lowest temperature and progressing through white for the highest. Each color then represents a temperature band within the total range, and the interface between two colors corresponds to one particular temperature. This provides a view in which unusual temperature patterns would be more easily discerned than in the digital data tabulations.

Digital infrared data were obtained at the rate listed on Table 6. One complete frame of infrared data consists of 70 scan lines with 110 points per line for a total of 7700 discrete but overlapping spots. For most test installations the field-of-view is such that the model does not fill the complete frame. In order to save storage space in the computer, only the portion of the frame which contains good model data is digitized. For this test the area of interest was 27 lines by 67 points (1809 discrete spots). For each spot, the camera output

is digitized and converted to a temperature reading by means of an equation derived from basic laws of radiation and incorporating various constants peculiar to this system. These constants are obtained from laboratory calibrations using a standard black body source. The calculated temperatures were nondimensionalized using the tunnel stilling chamber temperature. The ratios were tabulated in a two-dimensional array in which each spot location is defined by its Line number and Point number. The temperature given is the integrated temperature from an area approximately 1.2 in. in diameter. The IR data were reduced using a model emissivity of 0.9. Care must be used in selecting correct emissivity as errors in temperature can be introduced due to an emissivity mismatch. Figure 8 shows the corrections needed for two different wall temperatures.

In order to use the IR data it is necessary to define the model position in terms of Line and Point number. This was done by taking wind-off infrared scans of the wedge, with specimens attached, in the tunnel at the test attitude. The wedge, test panel, and tunnel walls were all at a uniform temperature equal to the room temperature. However, the test panel had a much higher emissivity than the other components. Thus, it was possible to adjust the system sensitivity so that the test panel could be seen in one color against a different colored background. A marker is then superimposed on the video monitor by the IR system electronics. This marker is a matrix of dots representing each spot in the digitized IR data. The marker can be controlled so that individual Lines or Points may be identified, or areas may be defined.

Figure 7 shows an IR photograph and its orientation in the tunnel. Lines and points of the leading edge and the trailing edge of the sample are shown for various wedge angles. Figure 9 shows a comparison of an IR photograph and a 70-mm top sequence photograph.

The above discussion implies that a given point on the model can be located within plus or minus one IR Line or Point. This dimension is a function of the camera detector size, the camera optics, and the distance to the model. For this test these parameters were such that the accuracy with which a given point on the model can be located within the IR frame was approximately 0.35 in.

For some runs, two sets of IR data photographs exist. The first set of photographic data was taken on shift and corresponds to the time shown in the tabulated photographic data (see Appendix III). The second set of photographic data was taken during the play back of the magnetic tape. The time shown on the second set of photographs is accurate to ± 5.0 sec and may not correspond to the times shown on the tabulated IR data. The times to be used to utilize all photographic data from the magnetic tape should come from the tabulated IR DATA. The times shown on all tabulated data are accurate to ± 0.04 sec. Table 4 identifies all rolls of film.

3.4 UNCERTAINTY OF MEASUREMENTS

- 1

In general, instrumentation calibrations and data uncertainty estimates were made using methods recognized by the National Bureau of Standards (NBS). Measurement uncertainty is a combination of bias . and precision errors defined as:

$$\mathbf{U} = \pm (\mathbf{B} + \mathbf{t}_{qS}\mathbf{S})$$

where B is the bias limit, S is the sample standard deviation and t_{95} is the 95th percentile point for the two-tailed Student's "t" distribution (95-percent confidence interval), which for sample sizes greater than 30 is taken equal to 2.

Estimates of the measured data uncertainties for this test are given in Table 3a. The data uncertainties for the measurements are determined from in-place calibrations through the data recording system and data reduction program.

Propagation of the bias and precision errors of measured data through the calculated data was made in accordance with Ref. 4 and the results are given in Table 3b.

4.0 DATA PACKAGE PRESENTATION

A complete set of all photographic data and tabulated data for this test has been provided to Lockheed Missile and Space Co. Photographic data which showed significant testing results and a complete set of tabulated data have been provided to NASA/Marshall Space Flight Center/EP44, Huntsville, Alabama. All test specimens for this test have been returned to the Lockheed Missile and Space Co.

Samples of the tabulated and plotted data from the calibration and materials specimen runs are presented in Appendix III. A copy of all tabulated data has been retained on microfilm in the VKF.

Agreement of the test data to a flat plate solution using the Echert reference method was good and an example can be seen in Fig. 10. Data repeatability from run to run was excellent and an example can be seen in Fig. 11.

REFERENCES

- 1. Matthews, R. K. and Stallings, D. W. "Materials Testing in the VKF Continuous Flow Wind Tunnels," presented at AIAA 9th Aerodynamic Testing Conference, Arlington, TX, June 7-9, 1976.
- 2. <u>Test Facilities Handbook</u> (Eleventh Edition). "von Karman Gas Dynamics Facility, Vol. 3." Arnold Engineering Development Center, April 1981.
- 3. Boylan, D. E., Carver, D. B., Stallings, D. W., and Trimmer, L. L. "Measurement and Mapping of Aerodynamic Heating Using a Remote Infrared Scanning Camera in Continuous Flow Wind Tunnels," AIAA Preprint 78-799, April 1978.
 - Thompson, J. W. and Abernethy, R. B. et. al., "Handbook Uncertainty in Gas Turbine Measurements," AEDC-TR-73-5 (AD755356) February 1973.

APPENDIX I

ILLUSTRATIONS

•

ſ

-

Ċ

ł

a. Installation Photograph Figure 2. Installation in Tunnel C

Figure 3. Test Article Details

Figure 4. Calibration Plate

THERMOCOUPLE COORDINATES GIVEN IN TABLE 5

1

Figure 5. Specimen Configuration

Instafoam Specimen Posttest Figure 5. Continued

Figure 5. Continued

Figure 5. Continued

ĺ

J

WA

Figure 8. Emissivity-Temperature Sensitivity Curve

Figure 9. IR-Top Photograph Comparison

Right Side Looking Downstream

l

11

-33

4.8 S.E 39 3.6 (E3) 2.**8** 1.8 6 -5.8 -4.8 -3.8 -2.8 -1.8 1 Hau Figure 11. Data Repeatability 1 7.5 22.5 12.5 5. B 2.5 20.0 17.5 15. B 25.8 19.6 0-1000 9.8 16.611.612.513.614.615.6 • Ξ¢ • 9.8 X 5.8 6.8 7.6 **S**I RUN DA7 D58 . 12.5 0007-0 7.5 5.8 2.5 22.5 20.0 17.5 15.0 25.0 16.0

(

ORIGINAL PAGE IN OF POOR QUALITY

APPENDIX II

TABLES

1

TABLE 1. Data Transmittal Summary

The following items were transmitted to the User and Sponsor

•	User	Sponsor
	W. G. Dean Lockheed Missile and Space Co. 4800 Bradford Dr. Huntsville, AL 35812	W. B. Baker NASA/MSFC Huntsville, AL 35812
Item	No. of Copies	No, of Copies
Final Data Package Vols. 1 and 2 of 2	3	3
Installation Photos	1 each 8x10 prints	1 each 8x10 prints
Specimen Pretest Photos	1 each 8x10 prints	1 each. 8x10 prints
Specimen Posttest Photos	1 each 8x10 prints	l each 8x10 prints
70 mm Sequence · Tunnel & IR	1 contact print 1 duplicate negative	1 contact print
16 mm Direct Movies Tunnel & IR	l work print optical master	1 work print

Sample Number	Run Number	Sample Material	Thickness (inches)
TF-01	69	Instafoam	1.0
-02	23		
-03	68		
-04	22		
-05	14		
-06	13		
-07	47		
-08	46		·
-09	45		
-10	44		
-11	49		
-12	48		
-13	43		
-14	27	,	
-15	42		
-16	41		
-17	40		
-18	26	↓ · · · · · · · · · · · · · · · · · · ·	
-10			
MSA2-01	17	MSA2	0.5
-02	52		<u> </u>
-03	31		Y
-05	.63		
-07	10,11		0.5
-08	- 61		
-09	29		
-11	8		
-12	59		
-13	30		· ·
-15	9	· · · ·	
-16	60		
-17	28		1
-19	62		*
-20	56		0.25
-21	36		
-22	20		
-23	55		
-25	25	1 1	
-26	18	1	
-27	35		
-28	19	· · · · · · · · · · · · · · · · · · ·	
-29	54	I I .	
-31	37		0.5
-32	64	1	
-33	16	1	
-34	33		
36	67		0.25
-38	66	4 1	i l
-39	38		
-40	65	1	∳
-42	21		0.5
_43	34	↓ ↓ .	
	1		

TABLE 2. Material Summary

¥ (

Sample Number	Run Number	Sample Material	Thickness (inches)
MSA2-44	15	MSA2	0.5
-46	24		
-47	58		
-48			0,25
-51 -52	50		0,50
54	57	\perp	
-55	51	T	

CABLE	2.	Conci	Luded
-------	----	-------	-------

Procession Presenter Designation Procession	10 3F				lacari	Painty .				
Paraeter Paraeter 100-	100 100 100 100 100 100 100		jë		+ 0)7	t 055)		Type of	Type of	Nethod of Zystem
TILLING CHANNER, MISSOUR, FT, poin	1	Scheell	Jaboreal 10 Inibael	10 3120 Patents Jaon	Berding of Percent	lo jing Dinggeli Jaog	Ì	Kessuring Device	Becording Device	Callbratios
	0.1B	<u> </u>					184	Viancho Variabio reluctare pres- sure transducar	Digital data acquisi- tion aystem analog- to-d'gital converter	In-place application i multiple present levels susaured stift a preseure sessuris device calibrated in the standards laboratory
VTAL TENETAATURE,		P, P,	0.375			* (3756 * (3756	32 to 630 530 to 230	Chrose (B. Aluse) Liberaccouple	Doric temperature instrument digital muitiplexer	Thermocouple verifi cation of NBS con- formity/voltate mub mititution cal: brati
Job, INLA, LINA NOTI	0.015	230				0.05	15	Potentiometer		Heidenhain rotary encoder ROU700 Rewolution: 0.0006 Overall accuracy: 0.0010
	5=10-4	064	Bunttane(s	and a state	Matin	1).110 35	at to 365 days	Systron Donmer Rime code generator	Digital data acquisi- tion system	. Instrument lab call bration against Burcau of Standards
1117 TANGTER, QDOT,	0.015	29			(0.03 + 1 55	(F	~1 1 to 10	ele fage	Digital data acquisi- tion system amalog- to-digital converter	Radiant heat source and secondary atasdard
:		2	10.0		+ 14.0)	0.01)		Preston amplifier	-	Millivolt standard referenced to lab standard
PRIPERATURE, TOE, "P		8 9 2 0 2 0	3/65	-	+ %a/c)	207)	32 to 530 530 to 2300	Cral thereocouple		
11 April 12 April 11		00			1:32			vision Thorne-	Analog-to-Digital Coaverter	Secondery Standard Back 9:45 Tempera tare Boulde
									TSSSSE) Pahruary 1873	

TABLE 3. ESTIMATED UNCUTAINTIES a. Basic Keneurements

1

K.

(IN3) MI-33

39

•

TABLE 3. Concluded b. Celculated Parametera

ł

Ć

		STEA	DY-STI	ATE ESTIM	ATED MEASU	RENENT		
	Prech	sion Inder (S)		# 0	••• (8)	Lace 1 (B	rtalaty + tgs3)	,
	Percent of Baidag	10 JinU -STURANK JASE	To estand Popes 77	Porcent - of Barcent	Unit of Besure- Jaes	Percent of Anding	to stay o sugant o sugant o sugant	Range
H(TT), ETU/ft2-eec- or or cage	3.0		>30	3.0		9.9		
28	0.38		230			0.76		0.1-6.E
QDOT-9, BTU/ft ² -sec GARDON GAGE	2.0		82	2.0		•.•		
74, ⁰ 8		1	>30		~	•		111
VA, deg RE ft ⁻¹	0.70	0.05		0.56	•	1.96	0.10	0.5×105rE
E(TT), BTU/ft ² -sec-	1.0					1.17 8.0		3.7×10°1
This fits There-	4.0		920	9.0		14.0		
	7.0		230	•		20.0		4 1×10-4
Abernethy, R. B. et al.	. and Thong	N		dbook Use	artalate.	Cash and		

ORIGINAL PAGE IS OF POOR QUALITY

4.

TABLE 4. Photographic Data Summary

ĩ

Р.

۰ſ

ſ

	Camera Type	Frame Rate	Camera Location	Sample View	Film Roll No.	Run Numbers	
Camera 1	Varitron 70 um still	l frame/4 sec	Top upstream window	Top of specimen on centerline	426,428 311,313 315,317 345,347	8-21,22-27 28-30,31-37 38-51,52-58 59-67,68-72	
Camera 2	DRM-55 16 mm movie	24 fps	Top upstream window	Top of specimen on centerline	4782,4784,4786 4351,4353,4355 4357,4359,4361 4369,4372,4374 4376,4378	8-15,16-20,21-27, 28-30,31-33,35,36, 37&38,39-47,48-52, 53&54,55-57,58-61 62-65,66-72	
Camera 3	Varitron 70 mm still	1 frame/4sec	Operating side upstream window	Left side view of forward posi- tion of specimen on centerline	427,429 312,314 316,318 346,348	8-21,22-27 28-30,31-37 38-51,52-58 59-67,68-72	
Camera 4	DBM-55. 16 mm uovie	24 fps	Operating side upstream window	:	4783,4785,4787 4352,4354,4356 4358,4360,4368 4370,4373,4375 4377,4373	8-15,16-20,21-27 28-30,31-33,34-36 37&38,39-47,48-52 53&54,55-57,58-61 62-65,66-72	
Camera 5	Varitron 70 mm still shadowgraph stills	l/min	Operating side downstream window	Downstream window	425,297,306	4-27,28-30,31-72	
Camera 5A	Varitron 70 mm shadowgraph stills	l/min	Operating side upstream window	Upstream window	430	4-7	
Camera 6	BOLEX, IR movies	8 fps	IR room	IR screen	*4788,4380, 4381,4382,4383 4386,4387	8-27,28-37 38-54,55-67,68-72 1-25,26,62	
Camera 7	llasselblad IR stills	1 frame/10 sec	IR room	IR screen	*1,2,3 18,2a	8-10,13-21,22-27 28-72,8-62	

41

ORIGINAL PAGE IS OF POOR QUALITY

* IR movies rolls 4386 & 4387 and Hasselblad roll 2a were taken from mag tape

TABLE 5. Instrumentation Locations

ORIGINAL PAGE IS OF POOR QUALITY

(

(

a. Gardon Gages

Gardon Gage No.	X, in,	Y,in.
1	7.5	0
2	9.0	0
3	10.5	0
4	12.0	· 0
5	13.5	4.5
6	13.5	3.1
7	13.5	1.75
	13.5	0
	13.5	-1.75
9	12.5	-3.1
10	13,3	-4.5
11	13.5	-4.5

TABLE 5. Concluded

ORIGINAL PAGE IS OF POOR QUALITY

T/C No.	X,in.	Y,in.	Skin Thickness, in.
	16	0	0.062
	16	i	
2	17		
4	18		
5	19		
6	20		
7	21		
8	22		
9	22.5		
10	23.0		
11	23.5		
12	24		
13	24.5		
14	25		
15	25.5		
16	26		
17	20.3		
18	27 5		
19	27.5		
20	28.5		
21	29		
23	29.5		
24	30		
25.	31		
26	32 [.]		
27	33	Ţ	
28	21.2	-2	
29 -	22.2		
30	23.2		
31	24.2		
32	25.2		
33	26.2		
34	21.2		
35	20.2		1 1
30	30.2	1 1	T T
3/	21 7	-4.2	0.063
20	22.7		· · ·
40	23.7		
41	24.7		
42	25.7	·	1
43	26.7		
44	27.2		
45	28.7		
46	29.7		1 [
47	30.7	1	↓ Ÿ
l	1		

(

b. Flat Plate Calibration Model Thermocouple

43[°]

TABLE 6. Run Summary

.

ORIGINAL PAGE IS OF POOR QUALITY

·			1	•		1		· · · · · · · · · · · · · · · · · · ·
t						IR	TIME	
[SAMPLE	PT	TT	WA,	IR	rate	expt	
RUN	NUMBER	psia	° R	deg	f-stop	sec/frame	sec	REMARKS
1	-	30	690	17.0	-	_	5	Blockage runs
2	-	1	765	23.1	-	_	s	
2	_		800	28 1	_	_	Ā	
		100	1840	171	_		4	
	-	100	1000	21 2			· a	
2	-		1900	21.2	-		10	
0	-			23.3	-	-	TO	
	-			28.3	-	-	3	ž.
8	MSA2-11			1/.2	1.2	6	109	IR data mag tape
9	MSA2-15			23.0			81	No data acquired
								TIMEEXPT and WA interred by
								Test log
10	MSA2-07			19.8			109	No IR data, sample injected twice
11	MSA2-07			19.6			21	due to failure to fully retract
						T		sample
12	MSA2-48			19.8		4	53	IR data mag tape
13	TF-06			27.1		4	26	
14	11 00 1F-05			19.8		4	17	
15	MSA2-44			27 1	1	6	107	
16	-22			10 8	10	Š	82	
10	-55			27 1	10	5	68	
1/	-01		-	12 6		4 E	74	
18	-20			13.0		5	74	
19	-28			10.1		4	70	
20	-22			0.0		9	154	······································
21	-42		·	16.3		9	145	
22	IF-04		ļ	13.6		10	1/	*
2,3	IF-02		L	6.6	i i	2	17	
24	MSA2-46		1560	28.4		15	65	
25	MSA2-25		1	10.5		15	182	
26	IF-18			28.4		2	17	•
27	IF-14			10.5		2	22	
28	MSA2-17			28.4		10	123	
29	MSA2-09			23.1		1	131	
30	-13			18.8			159	
31	-03			18.7			163	
32	_45			28.4		•	176	
32	_ 34			23.1		ΰ	180	IR data mag tape
				18.9		10	178	
34	-43			16.0		15	151	
55	-27			14.1		10	145	
0C	-21			14 7		10	207	
37	-31			14./			274	
38	-39			10.5			121	
39	-37			6.0		Ľ	19/	
40	_IF <u>-17</u>	┝┝┝╍┙		23,2		3	<u> </u>	
41	IF-16			18.8		3.	21	
42	-15			14.7		L	30	
43	-13	エー	L	6.0		L	64	
-								1

TABLE 6

ORIGINAL PAGE IS OF POOR QUALITY

Concluded

RUN	SAMPLE NUMBER	PT psia	TT °R	WA, deg	IR f-stop	IR rate sec/frame	TIME expt sec	REMARKS
44	TE-10	100	1 7 3 0	15.3	10.0	3	23	•
45	_09		1/50	11.6	10.0	ĩ	32	
46	-08			8.0			42	
47	-07			3.8			- 56	
48	-12			27.0			21	
49	-11			18.8		L	24	
50	MSA2-52			3.4		10	89	
51	-55			3.7			88	
52	-02			15.3		+	171	
53	-51			3.7	•	15	344	
54	-29			11.7		10	146	
55	-23			8.0		ł	165 .	
56	-20			3.7			198	
57	-54			22.0			133	
58	-47			22.0			104	
59	-12			27.0			100	
60	-16			22.0			127	
61	-08			18.8			127	
62	-19			3.8		11	189	IR data mag tape
63	-05	1		15.3		10	97	
64	-32		1900	13.6			12/	
65	-40			10.1				
66	-38			0.0			103	
6/	00-					1	23	· ·
60	TE-03			10.2		3	34	
70	-01		1720	11 7	1	3	25.7	
70	MCV3-04	• • • •	1726	15 3		10	87.3	•
72	MSA2-14		1560	28.4		10	173	
12	110AC-14	~	1,2,000					

ţ

1 (

APPENDIX III

(

SAMPLE TABULATED AND PLOTTED DATA

ł

Ļ

1

AMVIN/CALSVAN PIPLU SFHVICES, INC. Jede utvisium Vun Kapram Gas dyramics facility Armilu air funce station, temnessee Masa/lmse sm tps materials test Page 4

	CP RTU/LBM-DEG-R 2,393E-01	ithex.2	776E-02	5826-02	9416-02	8546-02	6615-02	1931-02	7241-62	2515-02	4265-02			.1736-42	
	ITT Вти/LbM 3.871E+02	J	-01 -												
	RE 7 T-1 1.853E+06	ST	301 9 1											2.8186	
T1MEKXPT SEC 162.44	ми LBF-SEC/FT2 2 . 994Е-07	0001-0	(BTU/FT2+SEC)	104 2/ 00* 1				10+3764 .	1.5326401		1.0042401	1.3926+01	1.5065+01	1.327E+01	
TIMECL Min Sec MSEC 56 19 997	RMG LHM/FT3 4.6585-03	GAGE PATA Heft)	FT2-SEC-R)	,511E-02	20-2904	46JE-U2	394E=02	.3175-02	20HE-02	.3326-U2	4542-02	.262Ľ-02	.Jo5E-02	.203E-02	
КОUR 16	Y FT/SEC 3622 . 6	E CARDON	C) (PIN	- .	-			-		-	-	-	-	-	
TIMEINJ Sec 3.041	0 PSIA 7.36	MEDG	TU/F12-SE	14.11	13.25	13.75	13.71	12.39	11.42	12.48	13.75	12.10	12.63	11.52	
CH 18 26,25	P PSIA 6.809E=01	Ĩ	DFG N) (B	6/9.0	671.5	622.2	615.6	621.4	611.9	625.7	617.0	604.3	617.8	605.2	
I 4A DFG 2 18.72	T DEG R 393.7		DEG H) (559.9	554.0	557.8	559.0	554.6	557.5	551.0	556.9	9.455	555.7	553.7	
ALPH DEG 1.73	TT NEG R 1562.7	3) (41) (12)	00°u	0.00	0.00	0.00	4.50	3.10	1.75	0.00	1.75	10		
SAMPLE HSA2-	PT PSIA 97.05	. 3	(IK)	7.50	0.00	10.50	12.00	13.50	13.50	05.61	05.61	11.50			
RUN 31				-	2	-	-	. 10	•	-	•	• •) • • •	-

۰.,

L

i

ŗ

DATE COMPUTED 14-UCT-62 Time Computed 14:32:US Date recorded 22-SEP-62 Time recorded 10:55:53 Project Number V--C-2K

.

Gardon Gage Data Cont Inued Sample 1. i

20

ORIGINAL PAGE IS OF POOR QUALITY

.

LATE UNTERVIEW VOLUTION TIME CUAPUTE V9114102 DATE RECORDEL 2-SEP-62 TIME MECONDEL 3:29128 PROJECT NUMBER V C 2K

4

t

L.:

۲

• ---

" FIELD SERVICES, InC.	d Las Utramics facility	FURCE STATION, TENNESSEE	KK IPS MAIEKIALS IEST
AKVIN/CAL	ALUC DIVIE Vum nakman	AKRULD AIK	PAGE 1

CE 1		i	 								
4 D 4	SAMPL	ų	•	ALPHT Dec	N N N	č					
•	CLEAN	CAL	H	-0.6	17.00	16.00			•		
£	P1	11	+	а.	0	>	044	2	RE	111	ŝ
1.93	FS1A 97.51	UFG N 1856.7	DEG K 475.5	PSIA 6.6926-0	1 7.21	1 FT/SEC	L6M/FT3 3.7946-03	LBF-SEC/FT2 3.4926-07	2 FT-1 1.420E+06	BTU/LBM 4.664E+U2	BTU/LBA-DEGR 2.395E-01
1/6	×	*	a t	THON		H(TT)	0-1-00	THICK	51	STREX.2	
)	(14.)	(10.)	(DEG K)	19/014)	2-5EC)	(810/FT2-51.0	-R) (bTU/FT	2-SEC) (IN.)	-	ſ	
-	15.000	000.0	549.4	15.433	0	1.2166-02	17.0104	0.062	3.1 879E-03	5.6666E-02	
~	16.000	0.000	589.9	[4. 43	9	1.16UE-02	16.4755	0.062	3.0876E-03	5.55976-02	
-	17.000	0.00.0	589.3	14.553	-	1.1466-02	· 16.0342	0.062	3.0057E-03	5.47616-02	·
•	16.400	000.0	5=4.4	214.61		1.1036-02	15.4068	0.002	2.6873E-03	5.32305-02	•
ŝ	14.000	0.000	591.3	14.147	•	1.1214-02	15.054	0.062	2.93466-03	5.4669E-02	
٠	20.000	0.00.0	591.1	14.158	2	1.1146-02	15.6255	0.062	2.92836-03	5.51J5E-02	
~	21.000	0.04:0	540.2	17.44	2	1.0625-02	14.4.903	0.002	2,77936-03	5.2842E-02	
	24.000	0:00	540.4	13.465	2	1.0642-02	14.6610	0.062	2./65/E-03	5.144HE-02	
œ	22.500	0.000	585.0	13.004		1.0275-02	14.3400	0.062	2.66/4E-UJ	2.15051.5	
01	23.000	6. COU	9.055	13.072	-	1.03JE-02	14.4207	0.062	2./U/St-0]	5.2326E-U2	
11	005.62	6.040	584.5	12.629	<u> </u>	1.0121-02	14.1409	240.0	2.0-310cd.2	3.1332E-02	
12	24.000	0.000	2.220	12.021	-	20-3610.1	2941.41	240.0	2.031100.2	20-360/1°C	
2	24.500	0.000	1.145	12.684		1.0021-02				30-346110 20-370703	
-	25.006	0.00.0	5.265	551°F1	•	1.0415-02					
15	22.500	0.000							2. 19205-03 2. 50161-03	50-36021-5 5 14031-02	0
	20.000	000.0		776-71	<u>e</u> -					5.10101-02	rj F
			1 . 7 R C	104.21	•	9-9101-01	6154-E1	0.062	2.594UE-03	5.18625-02	GI P
	22.500	0.000	105	12.754		1.00+6-02	3 C R O R A	0.062	2.63446-03	5.29638-02	N/ D(
	000	000.0	592.3	12.492		9.6H1E-U3	19.7996	0.062	2.5462E-U3	5.20426-02	Al DR
21	24.500	0.00	545.6	12.260	-	9.6611-03	13.5208	0.062	2.53396-03	5.12106-02	_ ? (
22	29.000	0.00	1.145	12.368	11	9.774E-03	13.6510	U. 062	2.5543E-U3	5.18636-02	P/ QL
23	29.500	0.000	591.7	12.273	02	- 9.7u2t-u3	13.5449	0.062	2.53436-03	5.107bE-02	AG JA
24	10.v00	6.000	6.122	12.045	92	9.5626-03	13.3548	0.062	2.5028E-03	5.1103E-02	
35	31.000	0.000	592.2	12.630	1	9.514F-U3	13.240	0.062	2.4914E-03	20-3002102	
9 e 7 e	32.000	077-0	9.065	12.100		50-3545.8 50-3165.0		0 442	2.3030E-03	5.10465-02	3 Y
22			5 1 1 5 1 4 5 1 1 4 1 4			1 - 1745 - 07	~~~~	0,062	2.61026-03	5.35316-02	
	27.240	-2.000	- · · · · · · · · · · · · · · · · · · ·	16.61		1.0566-02	14.7476	6.062	2.7634E-03	5.3135E-02	
101	21.200	-2,000	540.0	13.076		1.0326-02	14.4182	2.97.0	2.7021E-43	5.24ÚbE-02	
1	24.200	-2.600	2.065	13.004	0 +	1.6326-02	14.4162	6.062	2.70176-03	5.28456-02	
	25.200	-2.000	592.2	13.074	÷ 2	1.0346-02	14.414	2000	2.7064t-03	5.3367L-02	
	26.200	-2.040	590.8	12.93	23	1.0226-02	14.2758	0.062	2.61546-03	5.31676-02	
T	27.200	-2.000	5=6.9	12.461		9.642E-03	13.7467	0.642	2.5762E-03	5.1542E-02	
5	28.200	-2.040	590.0	12.24		9.6666-43	13.5003	0.062	2.53006-03	5.1025E-02	
1	29.200	-2.006	564.6	12.05	57	9.5166-03	13.2412		2.49096-03	2.03605-02	
37	36.200	-2.000	250.0	11.90	•	5.399E-03	13.128		2.4001E-03	5.01365-02	
	21.700	-4.200	1.130	14-11		7.000	7) P Z * P *	• • • • •			

Sample 1. Concluded

d. Thin Skin Data

			ן אך י אריי									-	DATE COMPUTED 18-UCT-I
RV [M/CAL 200 01 V [300 xamma xuulu al	SPAN FIEL SION N GAS DYN R FORCE S	D SEMMICES Amics Faci Tation, Th	22	f1									rime computed 14:34: Date recumbed 22-56P=1 Lime recorded 14:55: Project kumber V=-C=5
ASA/LMSC PAGE 2	Ske TPS	MATERIALS	TEST									• •	
NUK ;	SAMPLE	ALPHI DEG 1 73	NA DEG		TINE SF		NOUR N	1 MECL 1 N SEC 1 6 19 5	4SEC	1]486%PT Sec 162.40			
5 1		11	- +		. 3	_	~	RHO	,	2	2 2 1	177	CP 2010-10-10-10-10-10-10-10-10-10-10-10-10-
	PS1A	DEG R 1542.7	DEC 8 191.7	PSIA 6.8096-	01 7.	4	7/SEC 122.6	. LAN/FT 4.600E-(AF - SEC / FT2 , 9446-07	FT-1 1.453E+06	BTU/LBN 3.871E+02	2,3936-01
CANERA	DI DIA). TIME	11	NEEXP.	TS 1	15 2	15 3	TS +	E 3	۰ م			
				St.C		560 A	050	511	S DC	د م			
401	• •	60°09	n vî	2	542.4	5.9.3	542.	5.10	s. S.				
101	-	10.03	•	R. 24	542.3	519.0	542.5	- H S	5	••			
-	2	63.56		1.83	543.5	540.1							
22		63.76 61.77	• •	2.05		540.4							
Suc	•		.		544.2	540.7	544	540.	0 53	4.0			
200	• =	67.52	•	5.79	545.0	541.5	545	2 540.	• 5]	•••		•	
TUP	6.1	67.54	£ '	5.41	545.2	541.6	5 5 5	5 60.		***			
0S 101	20	71.28		6.55 5.5	240.2				• • •				
		91.17			547.2	543.4	547.	4 542.	2 53	4.1			OF
: 0	21	15.04		11.1	544.0	544.0	544	2 542.	÷ 51	4.2			RIG F
100	21	75.05	- '	1.12	544.0)
80	22		- F					1 544				•	OF
	22		• 38		550.4	544.7	550.	b 545.	• • • •	4.2			
US	2	12.56	•	(H.O.	550.4	546.	550.	545.	;; ;	4.2			PA QU
18	•		••••	11.67	551.0								
1 (P					1.254		551.	7 546					E - 1.17
ŝ	22				553.2	549.	553.	0 547.	. 53		•		IS TY
TOP	35	80 06	3	38.35	\$51.2	544.4	553.	2 544.		4.2			
91	0	56.60	- · ·	91.59		055	554.	2 0 4 6. 2 1 0 4 6.					
5) 100	36		• U	2.10									
401	26				550.1	552	555.	9 550.	. 53	14.6			
05	27	97.54	~	95 . R.F	550.1	552.	555.	9 550.					
C 10	20	101	<u> </u>	99.42	557.3	554	556.	9 552.		0 4			
100	78 v C							552					•
	- *	105.11			554.0	555.	558.	5 551.					
50		105.11	-		559.0	5.55.	1 55H.	5 553.	- 2 -	14.7			
100	00	101 . AS		07.12	560.1	557.	559.	9 555	~				
(15	2	108°4		07.12	500.1	557							
101	57	112.6				200		224°					
3						556	561-	0 556.		14.9		•	
										•			

• •

••

C v

.

.

.

. . ┙.

. •

.

		ORIGI	NAL DOR	PAG QUA	e is Lity																			
						56		0.596	*04°0	0.000	0.599	209.0	194.0	0.603	0.595 0.595	109.0	9.55.0	0.600	9 04 0	0.612	.594	555.0 573.0	0.523	0.380 0.362
2-80V- 16137 2-56P- 71481						55		0.599	0.601	0.540	0.501	0.595	0.501	0.593	0.548	0.594	0.600	0.599	0.599	0.509	0.568	0.559	0.539	0.365
UTED Uted Rded Rded						54		0.593 0.542	0.596	0.599	0.002	0.599 992 992 995 99	0.605	0.589	0.591	0.592	0.000	0.595	265.0	0.598	0.594	0.594	0.530	0.374
200 200 200 200 200 200 200 200 200 200						5		0.584 0.595	0.593	275.0 275.0	0.601	0.597 U.602	0.596	0.592	0.596	9.55.0	0.595	0.598	0.6U2	0.596	104.0	0.591	0.514	0.383 0.362
TAU TINI TATI TATI		RE FT-1 362+07				52		0.583	0.592	0.596	0.597	0.593	0.592	0.602	0.607	0.595	109.00	0.594	0.597	0.592	10.594	0.515	0.511	0.377 5 0.35 8
		•				51		0.584	0.585	0.596	0.592	0 . 59 J	0.596	0.601	0.604	0.592	0.603	0.641	0.502	9.54	0.59	0.59	0.52	0.18
		EC/FT3				20		0.580	0.585	0.601	0.592	0.601	0.588	0.6094	0.601	0.595	0.597	0.597	0.583	0.596	0.594	0.592	0.528	0.354
		LBM-SU 0. 35				74		0.578	0.543	0.546	0.576	0.542	0.595	0.543	0.574	0.542	0.603	0.000	585.0	0.598	0.593	0.592	0,522	0.140
	200	HU /f13 76-02		4/T		*		0.542	0.547	0.545	0.566	0.593		0.570	0.562	0.54	0.549	0.549	192.0	0.549	0.577	0.540	0.521	0.374 0.358
	11 MECL 44 25	0 L C				47		0.543	6.541	0.549	0.541	0.542	0.546	0.544	185.0	0.596	0.546	0.549	515 D	0.569	0.540	0.540	0.533	0.374
	~	/sec 52.8		RECORI 2.198		9 7		0.570	0.590	0.602	0.581		0.585	0.591	0.593	0.596	0.591	635.0	0.592	0.582		0.588	0.535	0.37
		11 1 1 1 1 1 1 1 1		ATUAE	104 •	45		0.567	0.572	0.585	0.575	0.578	0.50	0.576	104.0	0.596	0.595	0.579	7 O	0.579	0.571	0.564	0.532	0.171
	TINE 140	0 PSIA 7.16		TENPER TINE E	•	;		0.550	0.519	0.564	0.569	0.50	0.591	0.590	0.542	0.595	47 X 0	0.561	0.579	0.564	10.543	0.541	0.516	1 0.374
	-	E+00				4	•	0.554	0.557	9 O	0.567	0.557	0.571	0,576	0.57		184°0		0.51	0.57		0.58	0.52	0.17
(VKF) Ee	4 9 9	PSI 1 0.641		•	•	42	•	0.558	0.583	0.541	0.564	0.5+2	0.571	0.509	0.550	0.567	0.579	0.574		0.580	0.592	145.0	0.523	0.368
		T DEG R 107.0	•	PAGE	•	Ŧ	;	5 0.554	7 0.540	100.01	1 0 . 5 • 1	9.0.579	1 0.542	1 0.561	2 0.570	5 0.563	9 0.579	4 0.570	7 0.575 0.575	1 0.566	162.0 5	7 0.553		0.340
SERVIC SERVIC TION.		K .4	0		•	40	•	0.55	0.55	0.57		0.56	0.57	0.57		0.55	0.55	0.55	0°55	0.57	• • • •	0.5		0.75
TELD I DTHAM DTHAM DTHAM DTHAM DTHAM TELD TELD	~~~ ų	77 056 1499	1111	7 M A M		5	•	0.546	0.550	0.550		0.554	0.54	0 - 5 + 0			0.554	0.5	0.5	0.561		0.52		0.15
5108 5748 7 5748 7 578 7 5787 7 578 7 578	SANPI F	PT 518 7.2	LN185	61 6		2	•	0.459	0.413	0.191		0.495	0.474	0.440	0.54 .0	015.0	0.469	151.0	1.1.0	0.474	0.467			0.145
C DIVI 14/CAL 14/CAL 14/CAL 14/CAL 14/CAL 14/CAL	,	••	NODEL			5	•	U. J5B		u. 1:5		111.0		v. 392		c. 396 c. 396	96(0	u. 392	6. JES	0.371	c.) /]		0.154	0.326
	23 23	Z •		•		L 146		39	;		- 10 G - 4	-0	6 4	0 (• r	22	22	21	52	~ ~					:22

Sample 3. IR Data

•