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TECHNICAL MEMORANDUM

A PnELIMINARY LOOK AT [CONTROL AUGMENTED DYNAMIC
RESPONSE OF STRUCTURES

1. INTRODUCTION

Classically, structural dynamicists and structural engineers have looked at structural redesign as
the technique for solving structural response and loads problems, Generally, control engineers have used
their discipline as a means of controlling some system state, such as space vehicle attitudes, automobile
pollution control, etc, In recent years, the two fields have started merging when control has been used
as a means of reducing structural weight In the aeronautics, aerospace, and automobile industries, The
Space Shuttle is a good example of the use of vehicle load relief control system approaches to reduce
the overall vehicle aerodynamic loading and thus save structural weight. This system used hitch and yaw
acceleration feedback to reduce aerodynamic loading by reducing angle of attack, side slip, and rolling
of the vehicle in such a manner as to load the Orbiter wings in the most favorable direction. In addi-
tion, elevon load relief was employed to reduce clevon loading during ascent, This system, however,
only treated vehicle rigid body response. Improved approaches are being developed which move beyond
rigid body response dealing with elastic body response leading to control configured, optimized design
configurations, Active control configure([ flutter suppression, aeroelastie tailoring, modal suppression,
and optimal design techniques fall under this general heading, These techniques have evolved o. struc-
tural dynamicists and control engineers have recognized the potential of using control systems and
control logic as means of altering structural dynamic responses, thus replacing structural redesign or
structural weight with more efficient use of already existing control systems. Optimized design of new
configurations naturally follows through the use of more complex control systems.

The evolution of the multidiscipline, structural control interaction has not developed as fast as
it should. Several reasons for this slow development are clear: (1) normal protection of one's own
discipline, (2) the use of different transformations, terms, nomenclature, etc., for solving the same
type differenthr,l equations, and (3) lace( of proper systems engineering and organizations to force the
cross fertilization and system trades across these major disciplines.

Classically, if a structural dynamicist wants to change response or reduce loads, lie changes stiff-
ness by (1) adding or subtracting materials, (2) passive isolation of components, etc., (3) addition of
passive dampers, and (4) detuning the system from the forcing function. This report will treat these
Same concepts first from classical vibration and elasticity theory and then show how control logic can
accomplisli the same goals while still preserving the nomenclature and form structural dynamicists are
familiar with. A brief look will also be made in the control engineer's field showing how, with mini-
nittnl effort, one can transform the, knowledge and insight from structures to control and vice versa.
This is accomplished by (first repeating the basic vibration characteristics of a single degree-of freedom
mass, spring, damped, forced system, The basic equation is then recast with a control system feedback
logic, then put in the same form as the original equation, thus preserving the response characteristics
a structural engineer is used to working with, In the reformulation with control logic, the basic paratlle-
ters of inertia (mass), damping, and stiffness are augmented with control parameters. Next a single
bending mode is treated to show the transference of the single degree-of-freedom to include structural
gains, central control, and distributive control concepts. Finally, these same concepts arc briefly looked
at for two- and tllultitnode-structural systems.
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II. SINGLE DEGRrE-OF-FREEDOM VIBRATION SYSTEM

The linear single degree-of-freedom forced vibration system has been analyzed, discussed, and
pablished probably more than any other dynamic system, The reasons for this is obvious; It is the basis
for dynamics and vibration in general, The same Is true for linear proportional gain control theory.
Since the purpose of this report is to put fundamental control theory in the vernacular of the struc-
tural dynamicist, a brief revl,4w of the basic results of vibration theory will be stated. Additional
information can be found in any vibration, dynanV.4s, or control theory text boob, Figure 1 depicts
the classical single degree-of-freedom linear forced system. Constant properties arc assumed.

f

Figure 1. Single degree-of-freedom system.

The describing differential equation is:

nix + ck + Kx = f(t) 	 (1)

Solutions to linear differential equations in this form break out into two parts, homogeneous and
nonhomogenous. Out of these have grown the classical stability criteria, usually expressed in structural
dynamics as frequency and damping and in control theory as complex roots, the real part depicting a
product of damping and frequency and the imaginary part as the damped frequency,. Without rereating
all the derivations, equation (1) can be rewritten, in the form:

r+2^wi+wax=f(t)
	

(2)

where,

t(t) — f(
t)	

and
	

2 ^ ^r = m W2 = K	 (3)

2
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and in the homogeneous form where f(t) = 0, the classical roots are 5 + iw, where,

5 = -^W

Wd ,-, w 1 ^^	 (4)

Solutions to this equation for various type forcing functions are well known and are familiar
to the control and structural dynamics community,

The solution for forced oscillation can be obtained in several forms. The results are presented
as classical solution curves parameterizes'. in terms of damping and frequency, In general, these solu-
tions are expressed in terms of forcing functions that have the form of (1) impulses, (2) steps, (3)
sinusoidal, (4) ramps, etc. The response, for example, to a step function, subcritically damped, is well
known and takes the form;

e-^'wt
X(t) = Xst 1 — j cos (W.̂ / l — 2 t — a)

where Xst is the new equilibrium position and

tan a = ---- ---
1 - ^2

The maximum displacement is then

X max = Xst 1 e
	

Cos 0.
.	 1 _ ^.2

Plotting the solution for various damping values is shown on Figure 2.

It can be seen for increasing damping, the suberitical damping t < 1, the extreme values shift to
the right (frequency decreases), and the amplitude decreases. if f(t) is a harmonic forcing function, the
homogenous solution takes the form

-(I'l
X(t) =	 Xo i-e-cwt cos w 1 - 2 t + a

(5)

(6)

(7)

(8)

G
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with

r-(Vo + Xo	 (9)

tai: cc

ho rvC	 1 -x•2

The solution in graphical form is shown in Figure I

Figure 3, Subcritically damned vibration.

The nonliomo,genous solution is better approached from the vectorial form if harmooic forcing

functions are assumed,

MX+CX+KX=lioeiSZt	
(l ^

4
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Equation (13) shows the equilibrium of the various forces, Inertial, damping, restoring, and driving,
With ti ►e ho and X being no longer collinear, as in undamped oscillations, but forming a phase angle, a.

Letting r = n/w be the ratio of the forcing frequency to the undampled natural frequency w, the
equation becomes

1' o/K	 1' o
X = 	 tt , K µ	 (13)

I(, _ r2	 4 ^"r-

and

C. E2
tan CY "'

Plotting p, the clnssieal magnification factor gives the value as shown in Figure 4 and the phase tingle
as shown in Figure 5, The peak magnification factor µml x and µ versus damping ratio is shown in

Figure G, From these curves, one can see the classical changes in response familiar to all structural
dynun► icists and control engineers,

1	 2
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Figure 4. Magnification Factor,
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Figure 6. Damping factor

The effects of dampi tlg, inertia, and stlftltcss t1poll tile: response as well as how they Interact
with the forcing function are well known. For example, more damping reduces the response iltlt
Increases the period of the oscillations, more mass reduces the static responses but increases the period,
Increasi ng tite spring Increases the fregt►elley, and decreasing the ticriod shortens the decay time,
Finally, tuning; the frequency of dynamic systems to the forcing function Increases severat fold the
response amplitude. 'file structural engineer by ehtnnging tllass, dalnpit ng, tend stiffness alters the response
of the system. Isolation systems are derived using these concepts, In sulumary, the response call be
clll►ngeil by Gadding mass, 	 addint, structural damping, (3) changing stiffness through material
changes, structural configuration chanpos, etc, or (4) altering the forcing function or detuning the struc-
tural response from It,

Section III shows how file system response alteration can be aehleved by augmenting It with
control concepts instead of stmeturai changes,

L
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SECTION 111, SINGLE DEGREE•OF•FR'iFROM VIBRATION SYSTEM WITH CONTROL

From control theory, forces can be generated which are linearly proportional to the displacement,
velocity, and acceleration. Using the familiar SDOF, the application of control theory to alter system
response is Illustrated In Figure 7 where

(t) [(no x(t) + a l i(t) + a2x(t)] F*
	

(14)

V

Figure 7, Mass spring system with coiitYol feedback.

A control force is generated linearly proportional to displacement, velocity, and acceleration, and
f(t) is a completely independent forcing function (non-feedback) of the system. For this formulation, the
assumption is made that the control force is ideal; i.e., no phase lags exist in the control mechanism. The
introduction of please lag or lead can be added later to further illustrate control augmentation of dynamic
response of structures, Introducing the augmented control force into the equation of motion of
dynamical systems gives:

mx+cA+Kx = f(t)+s(t) = ink +cu+Kx f(t)+(aox+a lx+a2R)F*	 (15)

Recombining or collecting terms,

(in - a2F*) x + (c - a l F*) x + (K - a0F*) x = f(t)	 (16)

It is clear that equation (16) is identical in form to equation (2). What has changed is the definition of
the parameters. No logger is the mass term true mass, but it is an apparent mass due to the control
force augmentation. the same is true for damping and stiffness terms. In addition, the control parame-
ters (gains) can take o:n positive or negative values, Bence they must be carefully chosen in order to keep
the system stable since it is possible to drive the augmented terms to negative values. Refining the
augmented terms as.

7



M*=m-a2F*

c* = c - a i r*	 (17)

K* - K — aoF*

equation (16) becomes:

m* 'X' + c* k + K* x - f(t)	 (18)

where,

c*	 c — a l F*
m* w III — a2F*

(19)

cc^ —
K* --K-aOF*
m* 

e 
m — a2F*

The ability of dynamic engineers, through application of control augmentation, to alter the
behavior of dynamical systems while preserving the structural design and geometry is clearly illustrated.

In general, control theory and control systems are thought of as tools for achieving a desired
response of a system already in design, verification, or operational phases, These uses of control employ
both active feedback and open loop command control techniques, The past few years, systems engineers
have recognized the power of control to achieve the response goals and supplant in a inore optimum way
structural weight, stiffness, and damping. This allows for tighter design tolerances and higher perform-
ance systems at lower cost and risks, Thus is accomplished through the use of the extra variables intro-
duced by control, including the choice of locating forces optimally for desired response. This will, be
clearer in the sections dealing with space vehicle elastic modes and non-ideal control, This approach has
been exemplified extensively in the active flutter suppression techniques employed on modern aircraft
and the new field commonly called "control configured design." What is being done essentially is using
control theory prudently to augment structural design parameters, such as stiffness, damping, and mass
in both a static and dynamic sense and detuning the system from the forcing function.

The example given used only one sensor of each type and one control force; however, for a multi-
mass system, one can go to multisensor, multicontrol force systems and extend substantially the number
of variables for optimizing the system. In the past, structural response has been augmented using a
control system designed for another function; orientation of space vehicle along a desired flight path.
Using the concepts presented, two control systems or an augmented single control system can be made
i,nore optimum to perform the two separate tasks, orienting a vehicle's attitude and changing the struc-
tural dynamic response to achieve a more optimum structural design.

w
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The substitution of equation (10) is not made back Into the equations, since it is obvious how it it
Is accomplished without destroying the validity of the solutions or graphical solutions shown in Section`
1I,

At this point, It is clear that a control system can be used to act as structural elements and wlter
the system responses, Classically, many ways are available for dealing with and understanding the systet"
response and deterininiing the hest approach for arriving at a solution, These aparyxir,hes, In general,
deal with the stability, response time, and amplitude determined by solution of d ,%'vrcntial equations as
discussed previously. These solutions fall Into the categories classically called homogenous and nonhomo-
genous and typically are called stability and response, Determination of these characteristics in the
stability area can be accomplished using (1) Routh criterion, (21 ) rout locus, (3) Nyquist, and (4) Nichols
tech niques, Complex variable theory of functions is the underlying theory used in these techniques,
such ai; Laplace transforms. Closed form solutions to the equations caa be used in special cases, but are
not a generally available technique, Numeiieral integration of the equations is generally applicable and
with modern computers Is efficient for large systems. Analog or hybrid computers also are an efficient
approach, particularly for nonlinear systems.

Recognizing that all dynamic models of structural systems and control systems are usually cast
in differential equation form, the techniques just described are applicable, The malor differences between
the two disciplines are in the way these equations are formulated.

Control engineers are concerned with several aspects of the structural dynamic interaction prob-
lem. First, control feedback logic is used as a technique for placing a dynamic system at a given state,
fnlJrinia l iy a clisplace;^^ °vint or rotati^vii, Thu-'s is 

a
ccomplished usfrlf; it response Command That dr1YCS The

system to this position by actuating a control force, If the system is stable, then the dynamic system
arrives at the desired position. This involves a position command about some static or normal position.
Secondly, in achieving this position command, the engineer is concerned with the rate of reaching this
position and the overshoot errors and recovery time produced in changing the dynamic system state,
Thirdiy, closely related to this is the stability of the system due to introducing control. Finally, lie is
concerned with the response of dynamic systems to any external environments that result in perturba-
tions to the response position lie is trying to achieve, These four areas exist whether one is concerned
with using control to optimize structural design or the control of a system to a desired state which results
in dynamic responses that are unwanted and must be contained or reduced (stability augmented systems,
cte,), When these areas are considered, the basic vibration response characteristics discussed earlier result;
however, it can be advantageous to formulate the equations in terms of a transformed or different
coordinate system, This coordinate system is formulated in terms of an error coordinate whicli is tho
difference between the commanded state and the response state, normally called X ian — X out ° C. As a
result, special analysis tools have been developed around these redefined equations which allows quick
insights into the control system parameters in terms of the system stability and response. Obviously, one
does not have to go to this special formulation, but can use the basic structural dynamics formulation
given previously where control is an input force proportional to state. The latter formulation results, in
many cases, in a less efficient analysis approach. It conserves, however, all the structural dynamics
engineer's b,ailt-hn understanding and intuition. Therefore, the control engineer needs awareness of this
data base. At the same time, the structural dynamic engineer must strive to reinterpret his firm data base
in terms of the transformed equations approach used by control so important to understanding and
implementing control concepts. Extensive literature exists on these techniques from both disciplines
and is not a focus of this paper; however, the following example depicts the g-vieral concept.

Using the original system with some different control concepts will allow reformulation of the
equations. A diffe.rentiator will operate on a position signal to obtain a rate in such a manner that the
resulting equation has the form:

9
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e = -Cee = `Ce (Xin - X
o)	 (20)

Introducing an electrical amplif"ier as a means of changing signal, than control force becomes for
a control amplifier of gain p

µ (a C + a 1 CCe) F*	 (21)

Then,

m Xo + C Xo + K Xo = f(t) + µF* (aoc + a 1 Ca)	 (22)

which becomes

M Xo + (C+ Ccµ ;:* a1) Xo + (K + uF* ao) Xo = Cc µF* a 1 Xo + µF* ao Xi + f(t) 	 (23)

Setting f(t) ^ 0 and putting this equation in transform form, the response can be written a;.

(Ce a, S + ao) AP XI

Xo _ M52 + (C + C  µF* a l) S+ (K + µF* ao)	
(2^)

Or in conventional vibration form:

(Cea 1 5 + ao) µF'4`/m Xi
Xo =	 (25)

52 + 2jw& + w2

j

where

C + CC µF* 2,1

M

and

2 K + µF* ao
w =

m
(27)
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which is the .same as equation (20) when the acceleration term is set to 0 and aoF* and aiT« us redo-

fined to have an amplifier gain, T}ris system is shown in block diagram form in Figure 8.

I Xo

X 
r ^	 MASS DAMPER X

i	 o
X IN	 +	 AMPLxIER	

FORCE

µF" (Doe +dl oqa
t

i
1

C	 —Ca^

DIFFERENTIATOR

Figure 8, dosed loop control augmentation diagram.

Equation (25) is now in a form that is easily ammenable to various control commands, response
augmentation, and analysis techniques, achieved through the introduction of a command signal and feed-
back error signal while maintaining the basic physical system presented earlier. As discussed previously,
what one is dealing with is the transformation between the time domain and frequency domain or vice
versa using a transformed ;parameter e. This formulation, therefore, allows the use of all the techniques
developed in the field of operational mathematics as well as control theory. It is assumed that the
reader is knowledgeable of these techniques for (1) generating time responses from equations in operator
forms using inverse transforms, etc,^(2) generation and understanding of transfer functions Y(S) or
Y(hw), and (3) numerical integration of differential equations. The area where, in general, the engineers
lack understanding or insight into control analysis techniques is the stability analysis techniques discussed
earlier. 'Whether an engineer comes up Airough the control or structural dynamics side, he knows that
the stability of a dynamic system is o,)tained from the homogenous solution through the roots of the
characteristics equation. The loss of intuition arises because of the special formulation of the equations
used in control theory.

The structural dynamics engineer basically thinks in terms of frequency and damping which is
preserved only with the root locus technique. Other techniques for stability describe stability margins
in terms of phase and gain which are meaningful terms but at the expense of the concrete damping
expression. As was shown in equations (25), (26), and (27), the resulting transformed equation has the
form for the transfer function:

Xo	bm parr + ... + bo
X. ^ Y (P)	 (2$)

i	 anPl1+ ... +ao

and the closed-loop differential equation is

(an Pn + ... ao) bo = (bm Pm + ... bo) ©i

11
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Therefore, the 11011108eneous solution drat determines stability is arrived at by setting the right-hand side
equal to z ro and solving for the complex roots S I`s where

The problem is not waiting the characteristics equation but finding its roots. The characterlsties
equation cart be written in the Orm of a pblynomimal, or call be expressed In state form, or as coeffic-
lents of second order differentir equations irr matrix farm. The larger tine number of degrees of freedo ► na
or the order of the po!ynominal, tiro more difficult the solution for the roots tire, This results ]it 	 use
of transformed equations In cotijunctfon with the nway techniques based oil 	 variable theory
that use tine open-loop transfer 11 ► nction tis the basic equation formulation, `i'liese techniques arrive tit the
answers. ,graphicully or numerically In the frequency domain instead of using polynomhaat solvers or
matrix root Iteration techniques, The howl ,r of there tel;luiiques such as Routh criterion, Nyquist
stability criteria, Is that the stability boundarles (pa:.th:ive real mots) sari be found without obtaining
roots; however, as stated previously, the absolute level of stability Is not known, Tile Mouth criterion is
based oil 	 mathematical principle that the coeffivfents of the characteristic equation tire tine sums toad
Products of tine roots of tine equation. When carried through to completion, It is easily shown that for
stability all the coefficients must be positive, For simple characteristics equations (low order, few
parameters), the coefficients call 	 written In terms of key parameters and thus the stability boundaries
call be plotted veasus parameter variations. Using equation ("it) as till example, the coefficients tare;

:► 1 =C *CC14F*RI	 (30)

11 0 = R + PF* as

which says that tit must be tiositlw; which physically is correct and that C" + Co ply * a l and C + MF* ao

must be greater than zero, This gives two equations in two unknowns which can be solved its it function
of the other parameters, Sims (lucre are no cross couplings, the solutions ti ne independent which means
the damping and frequency and thus tine stability call be determiieci Independently. In most cases, the
system is coupled containing aaianny parameters which must be balanced to achieve the most optimum
stability chartic teris tics. Literature is full of the rrpplicatiou of Routh criterion,

Nyquist stability approaches tire also well documented, It is based oil complex variable theory
which says that It' you plot an enivelop oi' pofiits in the complex ,root Mane (closed contour) and calcu-
late the value of tine complex flanetioui (transfer Cuniction), a closed contour will also be developed in the
f(s) hla ►ie. 'rills closed contour about the origin will circle the origin it total of the number of poles
minus the number of zeroes where tile holes lire the roots of the deaioniihiator and tine zeroes are tine
roots of the numerator of the transfer function, The stability call 	 determined therefore by graphic
or numerical techniques and sloes not require finding the roots of the eharacterlstles equation. In general,
the equations :ore transformed such that the transfer W ietion has the forma.

1'
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In this case, the number of contou rs encircled minus one instead of the origin, Root locus tech-
iliques using present day computer technology has not placed as much emphasis on graphic techniques
as when the engineer had to determine system stability, sensitivity, and margins without high powered
computer technology and was forced to use graphic techniques. Root locus techniques plot the position
of poles and zeroes of the closed loop transfer function as a function of some control parameter such as
the amplifier gain µ, which is a gain in the open loop transfer function. In other wards, the root locus
procedure starts with the open-loop transfer function and ends with the poles and zeroes of the closed-
loop system, Before proceeding it is Important to remember that the closed-loop transfer function using
inverse transforms describes the transient response characterWics, In general form;

Xo(t) = C I es't , C2 cs„t + ,., Cn e s ^ t 	(32)

where the poles S al = ail + 1 wn determines the stability and frequency of response and the zeroes fix

the size of the transient terns for a particular input, i.e., the constants C l , C2, and Cpl . In this case,
cquntion (34) is rewritten:

Xo Xp	 KG

Xi ^1+Xo^1+KG	
(33)

where K is ail arbitrary gain of the control amplifier. The characteristic equation becomes

(P ^ S 1 ) (P — S2) ... (P — Sil ) = 1 + Xo(S) = l + G(S)K = 0 ,	 (34)

Graphically, then one plots the points where

G(S) = -t 1
	(35)

Using complex variable theot •y, the solution to equation (35) is found where the angle of G(S)

Angle of G(S) = angle of ­R = 7r + 'K 27r ,	 (36)

(31)

13



K = integer and the magnitude of G(P) _	 (37)

Thus, the angle of G(S)

2	 P
Angle G(S) = <A + E zero vectors - F pole vectors	 (38)

Magnitude G(S) = IAA 
Product of Z zero vector magnitudes

Product of F pole vector magnitudes

where these equations are derived from the factoring of

A (S — Z I ) ... (S - Zn)G(S) =.	 {39)
(S—P I )... (S — Pn)

Therefore, using complex variable theory, one can treat these complex members as vectors and
graphically evaluate G(S), It is not the purpose of this memo to go further into the details of root
locus, since it is well documented. Modern computers by-pass this graphics approach and solve for the
roots numerically which is a more efficient way. It is clear the solutions obtained in this manner are
equal to and consistent with those normally dealt with in structural dynamics. As stated previously,
modern day approachs do not depend on these graphic techniques; however, it is imperative that the
underlying principles inherent in these approaches be understood as well as staying abreast of the data
base developed in conventional structural dynamics analysis.

Control theory is not ideal in application. Forces cannot be generated without introducing phase
lags. Also, through the use of electrical networks, and a digital control theory, the control engineer can
generate a control force or control signal that changes in amplitude and phase as a function of frequency
given additional flexibilities and power to design engineers. These effects do not change the basic con-
cepts presented. They do increase significantly the complexity of obtaining the solutions,

Section IV looks at these concepts in terms of the response of an elastic space vehicle or aircraft
response to environmental excitation.

SECTION IV. SPACE VEHICLE ELASTIC BODY RESPONSE CONCEPTS

Before going to elastic body response, it should be mentioned that the rigid body response of a
space vehicle in rotation and translation are mere extensions of the concepts just presented where the
major stiffness and damping are due to the control system with some augmentation from aerodynamics.
The major mass moment of inertia portion comes from the structural configuration with little or no aug-
mentation from control. This subject, rigid body response, has been treated extensively for many years
[ 11 and is not repeated here. This section will discuss only the elastic body effects because of their

0
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strong interaction with control and performance issues of large space structures, where not only control
of response but control of curvature or shape is Important. In these cases, requirements on ferrying
weight and overall size result in a very light, large, and low frequency structural system, These
constraints place strong emphasis upon a coupled system optimized design approach, Also, during ascent
night and aircraft flight, large aerodynamic and gust loads and uncomfortable ride qualities result from
the elastic body transient response to these disturbances, U.-e of control to reduce these responses is a
key design area,

As all structural dynamicists are aware, the solution of the structural dynamic equation wllh no
external forces Iead 3 to a set of normal modes and frequencies commonly called elgenvectors and cigen-
values. The anodes tare orthogonal and thus uncoupled, Since each anode can be characterized as an
effective mass and stiffness, called generalized, one can then couple theist with external forces, including
aerodynamic and control system using energy approaches such as LaGrange's equations, Using these
approaches, Including generalized coordinates, the equations are In the same general form used In vibra-
tion theory of both the single degree-of-freedom forced response and multidegree-of-freedom forced
response systems. Extensive documentation is available depicting these approaches and solutions used.

To understand elastic body responses (loads and stability), the assumption will be made (later
removed) that one elastic body mode Is uncoupled from the other and that the rigid bossy angle of
attack and engine deflection act as known (time w1sc) forcing functions to this model (Fig. 9),

Figure 9, Controlled elastic body response.

In order to write the equations under these assumptions, the gimbal engine generated force is split
into two part's; the rigid body generated control induced force is a known function of time, and the
elastic mode introduced control force is a function of the elastic body modal state (deflection, rate, and
acceleration). Phasing between the rigid body generated engine and aerodynamic .forces is neglected for
simplicity, When pleasing is neglected, the equation for a vending mode is written as follows:

Is



)~ Y ,44
nµ (t) + 2 ANIA wbµ 11µ (t) + wBµ2 n(t) = 

MB Selastic (t) + 
B

MB 77µ(t) + 
M13 iµ (t)

F Y'

+ MI %igid (t) +	 ^ Srigid (t)	 (40)

or

YE,

r1µ (t) + 2 Bµ wB^t " Mµ (t) +wB 2 "	 n(t) `	 Selastic (t) 
+ M(t)

B	 µ	 B	 I)	 B

t41)
(rigid body forcing
function plus wind gust)

where

71µ(t) = bending mode generalized coordinate,

wBµ = bending mode natural frequency,

MB = bendlixf mode generalized mass,

ABµ = structural damping,

B = local angle of attack aerodynamic term,

Gµ = local angle of attack aerodynamic term,

DA = rigid body aerodynamic force term,

Fs = vehicle thrust,

YE = mode deflection at engine.

To the uiunitiated, the engine nozzle is gimbaled to produce a lateral control force proportional
to the thrust times the sine of the deflected angles. For small angles, this force is equal to the thrust
times the angle In radians. Assuming that Selastic results from signals arising from body-fixed accelerome-
ters, rate gyros, and position gyros, the control equation becomes;

S elastic = a07711(t) Y'(Xg) + a l nµ(t) Y'(XR) + a 2r1 MY (XA)
	

(42)

t
p

a
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where ao is position signal gain, a l rate signal gain, a 2 accelerometer signal gain, Y'(X9) the bending

mode slope at the position sensor, Y'(X R) the bending mode slope at the rate sensor, and Y(XA) tie
bending mode deflection at the acceleration sensors.

Substituting equations (41) and (42) and simplifying resultq gives:

[2Bµ WBµ MB — Cµ — a l F'sYBY'(XRA ^ p(t)
nµ (t) +	 MB — a2rsYB Y(XA)

* [ w Bµ2 MB — 131A a OF SYB YU9)1 77µ(t) _	 Q(t)	 (43)
MB - a2 I^sYB Y(XA)	 [MB — aAY B Y (XA)]

It is clear that the above generalizations were made for one sensor of each type; however, the use
of more than one sensor sloes not destroy the use of the analogy, since the total signal is the sun of the
voltage coming from each control loop. The effects of multisensors on the roots, and therefore the
cross-coupling between modes, etc,, will be addressed later. Mow the response is altered by the control
system on the roots is now discussed for the ideal case. The equation becomes:

iiµ (t) + 2« rif t) + («2 + R2) (t) R Q(t)	 (44)

where

R2 = MB — 
a2  I Y(XA)	

(Apparent Mass)	 (45)

CZ = [2 ABµ wBu MB — Cµ — a 1 rsYL Y'(XRA 1^2	(Apparent Damping)	 (46)

(«2 +X32) _ [wBµ2 MB — Bµ — a0F YE,Y'(Xg)) R2 = w02	(Apparent Frequency)	 (47)

The roots to the equations are obviously « R defined in equations (46; and (47). Using these
roots, the solution to equation (44) gives insight into response-relieving mechanisms. Typical solutions
can be found for constant coefficients and known Q(t)'s. Assuming that Q(t) is some known (Laplace)
transform, then

2

 [

pQ(S) __I ,	

(48)

( )	 a i
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for initial conditions equal to 0. Letting Q (t) be a ramp input or Q(t) = Kit, then

n(t) _ 
R2K3	 pt	

2'
	 Cat sin (Ft~ 04)

(T' " 2- + p2 ^ (a'2 + p2) "a2 +`^2

where

ra
	 0

^
4 = 2 tan71
	

(50)

a.

and

R2K4

n W _	 eat sin (fit)

Finally, if Q(t) is a sine function

Q(t) = K4 sin SZt ,

then

^ at

q(t) = R2K	 _	
a	 1 sin (Rt - ^ 6) +	 sin (at + ,y^) ,	 (53)

4 [(2 + ^2 _ .Q2) + 4 «2n2)1/2 
1

92	 ^

Where

2aSt
^6=taril «2+a2_R2

^7 = tan-' -2 22 R 2a _R +St

and

18
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2 ^2 ^.

n(t) = R2K4	 _2 2	 —2	 1 J2 
-SZ sin (M + ^ 6) + a a e—at sin (%3t + ^c9)]

[(« +^	 st) + 4a 12 )

(SS)

where

^g = ^7 — taxi 1 
2 a R	 (56)

As expected, all cases show a difference between acceleration and displacement of the w 2 factor
on the transient part of the solution except for the sinusoidal forcing function which also contains a

steady-state term with a factor of Q & difference. Considering the solution to the ramp, step, or impulse,

the magnitude of the constant can be changed by the term R2 by use of accelerometers, These sclu-
tions -- ramp, step, and impulse — can also be altered through each of the sensors as they alter the
frequency or damping [equations (46) and (47)]. Rate gyros change the damping of the system either
positively or negatively depending on the sign of the modal deflection Y E and Y'(XR) and the rate gyro

gain, a l . Choosing the sensor location or gain such that a increases results in greater damping and lower
i	 i of 	 location	 L t

ha
t h

R 
+
nc	

1...41. a - 1. «.,.. I
Lran ssienL. (,hoosing an accelerometer" loc:.a6ion and gain such ^ha L' increases, increases UVLII the tlfiMpir,g
and the frequency, thus allowilOg the accelerometer to be used as a modal suppressor from both the
damping term and the frequency term. position gyros can be used to alter the frequency by a proper
choice of the sensor location or feedback gain, a 0 , The amplitude response (both steady-state and

transient) in these cases is reduced if the frequency is increased; however, the accelerometer output is
proportional to the frequency squared times the transient portion of the solution, Increasing the
damping lowers the peak transient response. All three types of input forces are expected during flit;ht
since the wind contains some form of each type of input. The response (acceleration or amplitude) Haan
be reduced by increasing the frequency or damping.

A more important type of force from the bending mode standpoint is the sinusoidal input. This
represents the turbulence portion of the. atmosphere, which can have frequency content in resonance
with the bending mode. Also, not only is the transient term important but the steady-state term can be
of a larger magnitude in both acceleration and amplitude. Again, increasing the damping decreases the
amplitude and this reduces the transient response, Increasing the frequency may not be feasible; ]low-
ever, since the resonance term contains R2 + a2 and q2 , and the amplitude of the frequency increases as
^'4 + 7i2 and S12 approach equal values. In this case,,,the frequency shift must be chosen to detune the
system from the forcing frequency. Additionally, for this case, the accelerometer can be used to reduce

the overall amplitude through R2 which multiplies the solution (Fig. 10). Care must be exercised in
using this term for reducing amplitude when at the same time it may increase the amplitude through
either finer tuning (with forcing function), or decreased damping and frequency, The change in damping
and frequency can be obtained by using the various sensors as discussed previously.

The discussion thus far has indicated that accelerometers, rate gyros, or position sensors, can be
used for augmenting elastic system response. The results point out very clearly that one must have a
very accurate description of both the vehicle modal characteristics and the input force (wind) to effec-
tively design a control system for modal suppression using these types of sensors. Also, the coupling of
these sensors in the rigid body control (used as input force for mode) is very important and cannot be
neglected.

19
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Figure 10, Modal suppression.
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The previous interpretations can be stated In another way. The basic notion Here is the freedom
offered by a sensor complement In locating closed-loop eigenvalues as a possible source of quality
measures. Thus is motivated by two considerations. First, classical experience with root loci and fre-
quency domain design techniques provides tested insightful relationships between the performance cap-
abilities of a controlled system and the closed-loop bole arrangements permitted by sensors, Such notions
as stability, frequencies of oscillation, damping of individual modes of response, and dominance are all
apparent from the pole constellation. Secondly, there is a fundamental connection between pole place-
went and the concept of controlleb i y.

The previous discussion was based on the assumption that ideal control signals and response exist,
Although this is not true, the principles remain the same as long as the gain and pliase lag changes that
take place ut reality are considered. Also, the assumption is made that each mode is completely inde-
pendent of the other, which is not true, To illustrate this, atwo-sensor case will be presented first, then
a two-mode case,

If two accelerometers are used instead of one, the- denominator in equation (47) becomes:

1

IZ2
 ` MB ^ a

21 
FsYh Y(XAI) ~ a221'sY1J Y(XA2

)
(S7)

m
x
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This allows a choice of gains and sensor locations that would canal the accelerometer effect or allow
any mixture of effects (gains) between accelerometer locations. The other coefficients In equation (47)
could be modified in the same manner by using two or more rate or position gyros, This not only
illustrates the complexity of using many sensors but also the flexibility.

Extending the concept to two bending modes, but neglecting certain rigid body coupling, results
in the following equations which are derived by assuming only one sensor of each type in the control
equation, The control equation (elastic body feedback portion) Is

aclastle ^-- ao tnlYI'(Xg) rt2Y2'(Xg)] + a l 1 '1 Yl'(XR) + +2Y2'(XR)1

+ 92 1^ I Y  (X A) + 7*7'2 Y2(XA,)I

The coupled bending dynamics equations given in matrix form, using this control law arc. as follows:

MII1 - 92 Fs YEI Y 1 (XA) - 82 Fs YE1 Y2(XA) n1

1	 - g2 FS I E2 z 1 "' ' M132 - g2 FS YE2 Y 2 (XA') j (	 ^2

	

2rB1 MB1 - C11 al Fs YE1 x1'(XR)
	 ". a i Fs YE2 Y2 ' (XR) - C 12	 ^1

	

- a l Fs YE2 Y 1 '(XR) - C21
	

2132 cJB2 M132 - C22 - a  Fs YE2' XR	 h2

	

MB1 - B1 2 - B, l - ao Fs YE1 YI'(Xg)
	 `" B 12 - ao Fs YE 1 Y2' (Xg)	 n1

- B 12 - ao F s YE2 Y l'(X9)
	

MB2 W132 2 - B22 - ao ITS YE2 Y2 ' (Xg)	 772

Q l (t)Q2(t)	 o

The coefficients show that what is done with one sensor for one mode can be offset by the
redundant signal from the spcond mode, If the system is extended to include many sensor gains and
force input locations, the tradeoffs are apparent but too difficult to illustrate, Although the concepts
for one mode hold for this more general case of two modes, the design problem is increased many fold
because of cross-coupling through the control system, Obviously, the things that help suppress one mode
could easily aggravate another. With several modes and sensors, a procedure must be us.d that provides

(sh)

(S9)
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insight into important characteristics and that gives first cuts at the gains and sensor values and locations,
Num;,rical response techniques, optimal control techniques, sensitivity studies, anti root locus techniques
(eigenvectors and eigenvalue routines) allow the development of trades between control force locations,
sensor locations, and control law logic that provide the desired response in each mode or the over
response as a deflection and load.

Illustrated Inthis section has been the extension of the concepts discussed previously to elastic
body response of a space vehicle. Additional concepts of modal gains and multisensor control logic as
well as extension to inultimodes systems were addressed, all pr escribing the response In the general form
a structural dynamiclst Is familiar with, Non-Ideal control was not addressed; however, It is easily
included by writing the differential equations for these effects and adding them into the matrices and
generalized coordinates given In equation (30) [2].

SECTION V. NON-IDEAL CONTROL EFFECTS ON THE SOLUTION

As stated previously, the control system does not perform In this manner. Also the control
engineer calf alter the gain and phase electronically, producing greater flexibility to alter structural
response, Therefore, the analog presented must be extended to cover these conditions. Assumptions
must be made in this case also; namely, that these changes can be made without introducing excessive
degrees of freedom and that those Introduced do not create unstable modes at some other frequency,
all of wh cli can be acenritplished with proper des-Inn attention. Also, it is assumed that the coupled
frequency is fairly close to the uncoupled frequency of the spring mass system, This assumption can be
removed later. Using these assumptions and going to the equations using the control equation in the
form

S = F" [a	 (w) e101(w) X + a K	
i02M ,	 i^3(w) ..	

(60)0 K l	 l l (w) e	 X+ a2 IC3 (w) e	 X^ ,

where Ki is the gain and 0i the phase of the control system near the natural frequency of mass spri g

system either due to inherent lags or is artificially introduced to achieve a desired response. For each of
these terms, they can be rewritten in complex form + s

1
Ki (cos 0 (w) + i sin OA (w))

	
(G1)

it is desirable to remove the co,nplex term (1), This can be accomplished under the assumption
already states that the frequency . gill be near the natural frequency by dividing by w and taking a time
derivative of the variable. Performing these operations and assuming that the acceleration can be approxi-

mated as —w^ X, the control equation becomes

-y = F* ao I I [X cos 01(w) + X/w sin 01(w)] + F* al K2 [X cos 02(w) + X/w sin 02(w)]

	

+ F* a2 K2 [X cos 03 — X/w sin 03(w)]
	

(G2)
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L2	 aq K1
m + I^ * a l 

	
sin 02(w) * a2 K3 cos 03(w) X * [ C + F*	 sin 01M

+ al KO cos 02(w) - a2 K3 sin ¢3 (w)] 7C * (K + F* (ao K  cos 02(w)j X = f(t) .	 63)

The power of control becomes obvious when it is recognized that the K's and O's can be determined
using state-of-art filter-design techniques, The 0 i's can take on any value from 0 to 27r, the K's are usually

values between 0 and 1. The choice of the signs and magnitudes on the control gains, n0, a l , a2, coupled
with the choices of K's and O's allows altering the response of the basic equations in many ways. (1) by
changing the structural dynamic design, (2) through basic control system gain choice, and (3) by Intro-
ducing filters or networks that change the feedback as a function of frequency. In all cases, the basic
understanding reached for the single degree of freedom system is preserved. Obviously, one cannot get
these frequency dependent changes without altering the number of degrees of freedom; however, if
proper attention Is given, it will not destroy the analog given.

In summary, up to this point in the report, one sees that a control system In all Its basic linear
forms can be lnterproted A s pseudo struictural elements, prosnxving the general response characterist ics
which a structural dynamics engineer is so familiar with. Ideally, then control ca-t be interpreted as a
means of adding or subtracting stiffness, damping, and facatis, all gained without changing the structural
design. Adding the influence of filtering networks, any feedback term can be made to act as springs,
dampers, or mass. Thus opens up a whole new vista of design approaches that includes substituting
control for structure and is the basis for the relative new field of control configured vehicles. The
penalty paid for these additional design parameters is the redundancy required in the control system for
fail operational or fail safe requirements. 	 u

SECTION VI. ),.:ALGGIES TO VARIOUS CONTROL CONCEPTS

So far, all the discussion has centered on the use of linear, proportia!Ilal, central, control theory.
The analogies shown do not preclude, however, nonlinear control or decentralized control. Mere, the
structural dynanucist would just move into nonlinear vibration theory or specialized analysis and develop
the same kind of analogies.

Digital control theory can usually be put in the form of the continuous analog systems used so
far in this paper if the sample rate is high enough relative to the structural frequencies of concern. Tlus
is always a good starting place. From that point on, new analogies need development but fall into the
categories of sample data system analysis techniques currently employed and sample data control theory
analysis techniques, which through transformations put the operations back in Us same general form
discussed previously. Certainly, one can think easily in terms of RMS, spectrums, etc,, and how these
are altered for dynamic system with control. The development of various analogies are left to the reader.

Force point sensing is an old concept; however, it has new emphe.sis in that by using distributed
control (at the force inputs) the concept can be implemented for misty modes. The idea is to sense and
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control the response at the same place on the structure, Ideally, this system is always response reducing
or stabilizing; however, control force actuators introduce phase lags that can change this effect, Intro-
ducing a filter or network that compensates for the actuator characteristics would put one back to the
ideal case discussed,

The concept of distributed control is to put the logic, sensors, andforce actuators in selected
areas
otherwise,e ►

 the
crossi talk between each areaYcreatesreal problemsa

 respnse for each area must b
 they comp ete and coup le with

 understood; 
eachp	 y	 p	 p	 4

other. This approach does not, however, destroy the analogies developed so far, This concept is very
powerful for shape control, Using the bending mode equation (14) derived in the previous section
requires only that terms are included for each sensor, control force, and logic accounting for the slopes
and deflection where cacti element is located, The only complexity 4s the additional terms and ability
to differentiate their influence, The problems got very messy when going to a multimode system; how-
ever, many more variables are avaiiable to got the optimum response solution,

Putting the centralized control and distributed control together and allowing the centralized
control to be hierarchal gives additional flexibility but at the expense of complexity (Fig. 11). The
reader can easily develop these analogies if desired.

CONTROL SENSOR
O CONTROL EFFECTOR

* CENTRAL CONTROL SENSOR

4 CENTRAL CONTROL EFFECTOR

Figure 11. Distributed control system.
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SECTION, VII, PROBLEMS, CONCERNS, AND FUTURE CHALLENGES

13verything discussed has made the tacit assumption that the sensed state is ideally identified,
This Is not the case in the real world. Many times noise, other subsystem response frequencies, etc,,
obscure the desired signal, The whole area of state identification and pattern recognition, must be
extended, With better and better sensors, more complex control logic, and Iilgh structuitt modal density
of very complex and highly coupled modes makes this u prime area to attach.

Optimal control approaelics have basically dealt with the system response with no weighting
factors for structural design changes, These areas need to be integrated further than has been acconYp-
lished to date and development of a ,beans of doing total system optimized design in temp s of structure,
materials, thermal, and control.

A major problem facing this new discipline is the basic sensitivities of the responses, design, etc,,
to the uncertainties of both the structural model and the control system model, Isere is needed learning
control devices, desensitizing approaches, and sensitivity analysis techniques for large parameter systems.

Techrii{ t•acs for truncating or selecting critical structural modes and control system characteristics
is one of the major problems racing this new discipline. If the problem solutions are reduced to a
manageable size and complexity, major effort needs to be started in both criteria and reduction tech-
niques developed.

Obviously, In the future not only space vehicles and large space systems but the whole field of
energy and transportation must deal with this new discipline, The future challenge is to either create a
now discipline or cause the separate disciplines to understand, communicate, and work together in a way
not generally clone in the least, It is hoped that this short introduction to some of the analogies will
eauso someone to look afresh: at these areas.
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