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TECHNICAL MEMORANDUM |

A PRELIMINARY LOOK AT CONTROL AUGMENTED DYNAMIC ‘
RESPONSE OF STRUCTURES ;

I. INTRODUCTION

Classically, structural dynamicists and structural engineers have looked at structural redesign as
the technique for solving structural response and loads problems, Generally, control engineers have used
: their discipline as a means of controlling some system state, such as space vehicle attitudes, automobile
i pollution control, etc, In recent years, the two fields have started merging when control has been used :
as a means of reducing structural weight in the acronautics, aerospace, and automobile industries, The i
Space Shuttle is a good example of the use of vehicle load relief control system approaches to reduce
z the overall vehicle aerodynamic loading and thus save structural weight, This system used pitch and yaw
acceleration feedback to reduce acrodynamic loading by reducing angle of attack, side slip, and rolling
; of the vehicle in such a manner as to load the Orbiter wings in the most favorable direction, In addi-
tion, elevon load relief was employed to reduce elevon loading during ascent, This system, however,

only treated vehicle rigid body response. Improved approaches are being developed which move beyond
rigid body response dealing with elastic body response leading to control configured, optimized design
confligurations. Active control configured flutter suppression, aeroelastic tailoring, modal suppression,
and optimal design techniques fall under this general heading, These techniques have evolved ag struc-
tural dynamicists and control engineers have recognized the potential of using control systems and
control logic as means of altering structural dynamic responses, thus replacing structural redesign or
structural weight with more efficient use of already existing control systems, Optimized design of new
configurations naturally follows through the use of more complex control systems,

The evolution of the multidiscipline, structural control interaction has not developed as fast as
it should, Several reasons for this slow development are clear; (1) normal protection of one’s own
discipline, (2) the use of different transformations, terms, nomenclature, etc., for solving the same
type differential cquations, and (3) lack of proper systems engineering and organizations to force the
cross fertilization and system trades across these major disciplines.

Classically, if a structural dynamicist wants to change response or reduce loads, he changes stiff-
ness by (1) adding or subtracting materials, (2) passive isolation of components, etc., (3) addition of
: passive dampers, and (4) detuning the system from the forcing function, This report will treat these
; same concepts first from classical vibration and elasticity theory and then show how control logic can
i accomplish the same goals while still preserving the nomenctature and form structural dynamicists are
! familiar with, A brief look will also be made in the control engineer’s field showing how, with mini-
; mum effort, one can transform the knowledge and insight from structures to control and vice versa,
§ This is accomplished by first repeating the basic vibration charactetistics of a single degree-of-freedom
: mass, spring, damped, forced system, The basic equation is then recast with a control system feedback
logic, then put in the same form as the original equation, thus preserving the response characteristics
a structural engincer is used to working with, In the reformulation with control legic, the basic parame-
ters of inertia (mass), damping, and stiffness are augmented with control parameters. Next a single
bending, mode is treated to show the transference of the single degree-of-freedom to include structural
gains, centrai control, and distributive control concepts. Finally, these same concepts are briefly looked
§ at for two- and multimode-structural systems,
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Il. SINGLE DEGRME-OF-FREEDOM VIBRATION SYSTEM

The lincar single degree-of-freedom forced vibration system has been analyzed, discussed, and
published probably more than any other dynamje system, The reason for this is obvious; it is the basis
for dynamics and vibration in general, The same is true for linear preportional gain control theory,
Sinee the purpose of this report is to put fundamental controi theory in the vernacular of the struc-
tural dynamicist, a brief revizw of the basic results of vibration theory will be stated. Additional
information can be found in any vibration, dynamyus, or control theory text book, Figure ! depicts
the classical single degree-of-freedom linear forced system, Constant properties are assumed,
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Figure 1. Single degrec-of-freedom system,

The describing differential equation is;

m¥ + ck + Kx = f(t) n

Solutions to linear differential equations in this form break out into two parts, homogeneous and
nonhomogenous, Out of these have grown the classical stability criteria, usually expressed in structural s
dynamics as frequency and damping and in control theory as complex roots, the real part depicting a
product of damping and frequency and the imaginary part as the damped frequency. Without repeating

all the derivations, equation (1) can be rewritten in the form: .
. " ] 2 - -
¥+ 2 yc%x + Wi f(t) (2)
where,
{ = e < d 2 = — = v— 3 3
) m an 4 m n T 3) ,1




and in the homogeneous form where f(t) = 0, the classical roots are § + iw, where,
6 =-fw

wy = wy/ 12 G

Solutions to this equation for various type forcing functions are well known and are familiar
to the control and structural dynamics community,

The solution for forced oscillation can be obtained in several forms, The results are presented
as classical solution curves parameterized. in terms of damping and frequency. In general, these solu-
tions are expressed in terms of forcing functions that have the form of (1) impulses, (2) steps, (3)
sinusoidal, (4) ramps, etc, The response, for example, to a step function, subcritically damped, is well
known and takes the form:

-t
X)) = X, [1 — cos (w V1= tz)t - oz)] (5)
st : oY) %

where Xy is the new equilibrium position and

tan o = { (6)
Vv 1-¢2
The maximum displacement is then
-t
eV 1§
Xmax = X5t |1 +—=—===cosa )]

J1-¢2

Plotting the solution for various damping values is shown on Figure 2,
It can be seen for increasing damping, the subcritical damping ¢ < 1, the extreme values shift to

the right (frequency decreases), and the amplitude decreases. If f(t) is a harmonic forcing function, the
homogenous solution takes the form

(V, + tw Xo)2 Fﬁj
X(t) = X0 4 —2 O etwt cos (w 1~ §‘2 t+ta &)
w2 (1 - §‘2)
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Figure 2, Disglacement of a subcritically damped vibration system to step input,

with
~(V, *+ X, $w)
ton o = °o..° €))
hg w Cy/ 1 =82

The solution in graphical form is shown in Figure 3,
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Figure 3. Subcritically damped vibration,

The nonhomogenous solution is better approached from the vectorial form if harmaaic forcing

functions are assume,

MR +CX+KX=F, el (10)




Thus, the particular solution is of the form

T = X el

giving

X [-92% + ¢ + K] = F,

Equation (13) shows the equilibrium of the various forces, inertial, damping, restoring, and driving,

(a1

with the T‘:o and X being no longer collinear, as in undamped oscillations, but forming a phase angle, c,

Letting r = Qfw be the ratio of the forcing frequency to the undampled natural frequency w, the

equation becomes

—y
Xs=
=

and

tan @ =

T, /K .

VAT Y e

B e e m._...“

co
K-uﬂ?'

(13)

Plotting u, the classicul magnification factor gives the value as shown in Figure 4 and the phase angle

as shown in Figure 5, The peak magnification factor p,, and y versus damping ratio is shown in
Figure 6, From these curves, one can sec the classical changes in response familiar to all structural

dynomicists and control engineers,
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Figure 4, Magnification factor.
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Figure 6. Damping lactor .

The effects of damping, inertia, and stiffness upon the response as well as how they interact
with the forcing function are well known, For example, more damping reduces the response but
increases the period of the oseillations, more mass reduces the static responses but increases the period,
increasing the spring incroases the frequency, and decreasing the period shortens the decay time.

Finally, tuning the frequency of dynamic systems to the forcing function increases several fold the
response amplitude, The structural engineer by changing mass, damping, and stiffness alters the response
of the system, Isolation systems are derived using these concepts, In summary, the response can be
changed by (1) adding mass, (2) adding structural damping, (3) changing stiffness through material

changes, structural configuration changes, etc,, or (4) altering the forcing function or detuning the strue-
tural response from it,

Section I shows how the system responso alteration can be achieved by augmenting it with
control coneepts instead of structural changes,
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SECTION {1l SINGLE DEGREE-OF-FRSENOM VIBRATION SYSTEM WITH CONTROL

From control theory, forces can be generated which are lincarly proportional to the displacement,
velocity, and acceleration, Using the familiar SDOF, the application ¢f control theory to alter gystem
response s illustrated in Figure 7 where

8(t) = [ag X(1) + agX(t) + nK(D)] F* (14)

f(eh Ll

M
|x(t)

= e g
T

Figure 7, Mass spring system with cost‘rol feedback,

A control force is generated lincarly proportional to displacement, velocity, and acceleration, and
f(t) is a completely independent forcing function (non-feedback) of the system, For this formulation, the
assumption is macde that the control force is ideal; i.e., no phase lags exist in the control mechanism, The
introduction of phase lag ot lead can be added later to further illustrate control augmentation of dynamic
response of structures, Introducing the augmented control force into the equation of motion of
dynamical systems gives:

mX + ck + Kx = f(t) + s(t) = mX + cX + Kx = f(t) + (agx + ajX + %) F* (15)
Recombining or collecting terms,
(m = aaF*) X + (¢ = a F*) X + (K = agF*) x = £(t) (165

It is clear that equation (16) is identical in form to equation (2). What has changed is the definition of
the parameters. No longer is the mass term true mass, but it is an apparent mass due to the control
force augmentation, The same js true for damping and stiffness terms, In addition, the control parame-
ters (gains) can take on positive or negative values, hence they must be carefully chosen in order to keep
the system stable since it is possible to drive the augmented terms te negative values. Defining the
augmented terms as:

e
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m*=m- azF"‘

¢* = ¢ F* a7
K* = K = agF*
equation (16) becomes:
m* X + o X + K* x = {(t) (18)
where,

o O-QIF”‘

05 =28 B o B e
$ m*  m - gy

(19)

~

# K~ QQF*

—
=

3

2.
m

il

w

=

m- azF*

The ability of dynamic engineers, through application of control augmentation, to alter the
behavior of dynamical systems while preserving the structural design and geometry is clearly illustrated,

In general, control theory and control systems are thought of as tools for achieving a desired
response of a system already in design, verification, or operational phases. These uses of control employ
both active feedback and open loop command control techniques, The past few years, systems engineers
have recognized the power of control to achieve the response goals and supplant in a more optimum way
structural weight, stiffness, and damping, This allows for tighter design tolerances and higher perform-
ance systems at lower cost and risks, This is accomplished through the use of the extra variables intro-
duced by control, including the choice of locating forces optimally for desired response, This will be
clearer in the sections dealing with space vehicle elastic modes and non-ideal control, This approach has
been exemplificd extensively in the active flutter suppression techniques employed on modern aircraft
and the new field commonly called *control configured design,” What is being done essentially is using
control theory prudently to augment structural design parameters, such as stiffness, damping, and mass
in both a static and dynamic sense and detuning the system from the forcing function,

The example given used only one sensor of each type and one control force; however, Yor a multj-
mass system, one can go to multisensor, multicontrol force systems and extend substantially the number
of variables for optimizing the system, In the past, structural response has been augmented using a
control system designed for another function; orientation of space vehicle along a desired flight path,
Using the concepts presented, two control systems or an augmented single control system can be made
1nore optimum to perform the two separate tasks, orienting a vehicle’s attitude and changing the struc-
tural dynamic response to achieve a more optimum structural design,




The substitution of equation (10) is not made back into the equations, since it is obvious how it
is nccomplished without destroying the validity of the solutions or graphical solutions shown in Section
11,

At this point, it is clear that a control system can be used to act as struntural elements and ulter
the system responses, Classically, many ways are available for dealing with and undesstanding the system
response and determining the best approach for arriving at a solution, These appyatehes, in general,
deal with the stability, response time, and amplitude determined by solution of di*{urential equations as
discussed previously, These solutions fall into the categories classically called homogenous and nonhomo-
genous and typically are called stability and response, Determination of these characteristics in the
stability area can be accomplished using (1) Routh criterion, (2) root locus, (3) Nyquist, and (4) Nichols
techiniques, Complex variable theory of functions is the underlying theory used in these techniques,
such ay Laplace transforms, Closed form solutions to the equations ca.i be used in specal cases, but are
not a geaerally available technique, Numetical integration of the equations is generally applicable and
with modern computers is efficient for large systems. Analog or hybrid computers also are an efficient
approach, particularly for nonlinear systems.

Recognizing that all dynamic models of structural systems and control systems are usually cast
in differential equation form, the techniques just described are applicable, The major differences between
the two disciplines are in the way these equations are formulated,

Control engineers are concerned with several aspects of the structural dynamic interaction prob-
lem, First, control feedback logic is used as a technique for placing a dynamic system at a given state,
normally a displacement or rotation, This is sccomplished using a response command that drives the
system to this position by actuating a control force, If the system is stabie, then the dynamic system
arrives at the desired position. This involves a position command about some static or normal position,
Secondly, in achieving this position command, the engineer js concerned with the rate of reaching this
position and the overshoot errors and recovery time produced in changing the dynamic system state,
Thirdiy, closely related to this is the stability of the system due to introducing control. Finally, he is
concerned with the response of dynamic systems to any external environments that result in perturba-
tions to the response position he is trying to achieve, These four areas exist whether one is concerned
with using control to optimize structural design or the control of a system to a desired state which results
in dynamic responses that are unwanted and must be contained or reduced (stability augmented systems,
ete,), When these areas are considered, the basic vibration response characteristics discussed carlier result;
however, it can be advantageous to formulate the equations in terms of a transformed or different
coordinate system, This coordinate system is formulated in terms of an error coordinate which is the
difference between the commanded state and the response state, normally called Xj, - X 51 =€ Asa

result, special analysis tools have been developed around these redefined equations which allows quick
insights into the control system parameters in terms of the system stability and response. Obviously, one
does not have to go to this special formulation, but can use the basic structural dynamics formulation
given previously where control is an input force proportional o state. The latter formulation results, in
many cases, in a less efficient analysis approach, It conserves, however, all the structural dynamics
engincer’s built-in understanding and intuition, Therefore, the control engineer needs awareness of this
data base. At the same time, the structural dynamic engineer must strive to reinterpret his firm data base
in terms of the transformed equations approach used by control so important to understanding and
implementing control concepts. Extensive literature exists on these techniques from both disciplines

and is not a focus of this paper; however, the following example depicts the general concept,

Using the original system with some different control concepts will allow reformulation of the
equations. A differentiator will operate on a position signal to obtain a rate in such a manner that the
resulting equation has the form:




£ = =Cytt = =Cy (Kjpy = Xo) (20)

Introduclng an electrical amplifier as a means of changing signal, then control force becomes for
| a control amplifier of gain u

p (age +a) Coé) F¥ (21)
Then,

m X+ CXo+ K Xg= f(t)+uF* (age +ag Co) (22)
which becomes

M X, + (C Cot F¥ ) X + (K + pF* ag) X, = C, uF* ay X + uF* ag X; + (1) (23)

Setting f(t) = 0 and putting this equation in transform form, the response can be writien as.

(Cs 218 +ay) uF* X,

X, = (24)
M52 + (C + Cy F* a) 5+ (K + uF* a)
Or in conventional vibration form:
(Ceay 6 + ay) uF*/m X;
X, = e 0 i 25)
) 82 + 2twh + w?
where
C+ CC uF#* E,l
2w = et (26)
m
and
K+ uF*a
w2 = — 0 (27)

i m
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~the stability of a dynamic system is o’stained from the homogenous solution through the roots of the

ORIGINAL PAZE 1S
OF POOR QUALITY

which is the same as equation (20) when the acceleration term is set to 0 and a F* and a F* s rede-
fined to have an amplifier gain, This system is shown in block diagram form in Figure 8,

MASS DAMPER X

AMPLIFIER FORCE N
A — .
AN p HE® (8,6 +8qC,é)

m i v

Y

¢ _coé
DIFFERENTIATOR

Figure 8. Closed loop control augmentation diagram,

Equation (25) is now in a form that jis easily ammenable to various control commands, response
augmentation, and analysis techniques, achieved through the introduction of a command signal and feed-
back error signal while maintaining the basic physical system presented earlier. As discussed previously, ‘
what one is dealing with is the transformation between the time domain and frequency domain or vice
versa using a transformed parameter ¢, This formulation, therefore, allows the use of all the techniques ‘
developed in the field of operational mathematics as well as control theory, It is assumed that the
reader is knowledgeable of these techniques for (1) generating time responses from equations in operator
forms using inverse transforms, etc,\(2) generation and understanding of transfer functions Y(8) or
Y(iw), and (3) numerical integration of differential equations, The area where, in general, the engineers
lack ungorstanding or insight into control analysis techniques is the stability analysis techniques discussed
earlier, 'Whether an engineer comes ug ihrough the control or structural dynamics side, he knows that

characteristics equation. The loss of intuition arises because of the special formulation of the equations
used in control theory.

The structural dypnamics engineer basically thinks in terms of frequency and damping which is ;
preserved only with the ront locus technique, Other techniques for stability describe stability margins
in terms of phasc and gain which are meaningful terms but at the expense of the concrete damping
expression. As was shown in equations (25), (26), and (27), the resulting transformed equation has the
form for the transfer function:

b PlTl + ...+ b
=Y (P) = = n 2 ’ (28)
a, PH A+, + 8y

XIOX

(=8

and the closed-loop differential equation is

(ap P+ . ag) b = (g, P™ + ... by) 6
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Therelore, the homogencous solution that determines stability is arrived at by setting the right-hand side
equal to zero and solving for the complex roots 6;'s where

§ookiw (29)

The problem is not writing the ¢haracteristics cquation but finding its roots, The characteristics

equation can be written in the form of a polynominal, or can be expressed in state form, or as coeffics

fents of second order differentic equations in matrix form, The larger the number of degrees of freedom

or the order of the polynominal, the more difficult the selution for the roots ure, This resulls in the use .
i of transtormed equations in conjunction with the maay technlques based on complex variable theory
i that use the open-loop transter function as the basic cquation formulation, These techniques wrive at the
answers graphically or numerically in the frequency domain instead of using polynominal solvers or °
matrix root iteration techniques, The power of these techniques such as Routh criterion, Nyquist
stability criterin, is that the stability bounduries (pazidive real roots) can be found without obtaining
roots; however, as stated previously, the absolute level of stability is not known, The Routh criterion is
based on the mathematical principle that the coefficients of the characteristic equation are the sums and
produets of the roots of the cquation, When carried through to completion, it Is easily shown that for
stability all the coelficients must be positive, For simple characteristies equations (low order, fow
parameters), the coefficients can be written in terms of key parameters and thus the stability boundaries
can be plotted versus parameter variations, Using equation (24) as an example, the coeflicients ares

=m

"
11

I

ap = Ok Cg ¥y (30)

=K T
f = K+ plt™* a,

which suys that m must be positive which physically is correct and that €+ Cy uF™* oy and K+ B a, ;i

must be greater than zero, This gives two equations in two unknowns which ean be solved as a function ;

ol the other purameters, Sinze there are no cross ceuplings, the solutions are independent which means “
the damping and frequency and thus tho stability can be determined independently, In most cases, the % 1
system is coupled containing many parameters which must be balanced to achieve the most optimum i ‘

stability characteristics, Literature is full of the application of Routh criterion, . f

4

Nyquist stability approaches are also well documented, It js based on complex variable theory

which says that iff you plot an envelop of points in the complex root plane (closed contour) and caleu-
late the value of the complex function (transfor function), u closed contour will also be developed in the
£¢8) plane. This closed contour about the origin will cirele the origin a total of the number of poles
minus the number of zeroes where the poles are the roots of the denominator and the zeroes are the
roots of the numetator of the transfer tunction, The stability can be determined therefore by graphic

or numerical techniques and does not require finding the roots of the characteristics equation, In general,
the equations are transformed such that the transfer function has the form:

T
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In this case, the number of contours encircled minus one instead of the origin, Root locus tech-
niques using present day computer technology has not placed as much emphasis on graphic techniques
as when the engineer had to determine system stability, sensitivity, and margins without high powered
coniputer technology and was forced to use graphic techniques. Rogt locus techniques plot the position
of poles and zeroes of the closed loop transfer function as a function of some control parameter such as
the amplifier gain g, which 1s a gain in the open loop transfer function. In other words, the root locus
procedure starts with the open-loop transfer function and ends with the poles and zeroes of the closed-
loop system. Before proceeding it is important to remember that the closed-loop transfer function using
inverse transforms describes the transient response characteristics, In general form:

Xot) = € b+ Cy S+, ¢ St (32)

where the poles S, = 0, + i w, determines the stability and frequency of response and the zeroes fix

the size of the transient term for a particular input, i.e,, the constants Cy, Co, and Cy,. In this case,
equation (34) is rewriten:

Xo ) Xo ) Kg @3
Xi 1+ XO 1+ KG ’
where K is an arbitrary gain of the control amplifier. The characteristic equation becomes
P=8S)P=8y) .. P=8)=1+X,)=1+GEK=0 . 34)
Graphically, then one plots the points where
¥ ,
G(®) = -~ (35)
J K .
Using complex variable theory, the solution to equation (35) is found where the angle of G(5)
1 ‘
Angle of G(S) = angle of "% =g+ K2r , (36)
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K = integer and the magaitude of G(P) = T €YD

Thus, the angle of G(S)

2 P
Angle G(S) = <A + Z zero vectors - Z pole vectors (38)

Product of Z zero vector magnitudes

Magnitude G(S) = |A| Product nf P pole vector magnitudes

’

where these equations are derived from the factoring of

A(S=-Z)) . 82y

= . 39
G(5) (S-Py) .. S-Pp) =

Therefore, using complex variable theory, one can treat these complex members as vectors and
graphically evaluate G(S), It is not the purpose of this memo to go further into the details of root
locus, since it is well documented. Modern computers by-pass this graphics approach and solve for the
roots numerically which is a more efficient way. It is clear the solutions obtained in this manner are
equal to and consistent with those normally dealt with in structural dynamics. As stated previously,
modern day approachs do not depend on these graphic techniques; however, it is imperative that the
underlying principles inherent in these approaches be understood as well as staying abreast of the data
base developed in conventional structural dynamics analysis.

Control theory is not ideal in application, Forces cannot be generated without introducing phase
lags, Also, through the use of electrical networks, and a digital control theory, the control engineer can
generate a control force or control signal that changes in amplitude and phase as a function of frequency
given additional flexibilities and power to design engineers. These effects do not change the basic con-
cepts presented. They do increase significantly the complexity of obtaining the solutions,

Section IV looks at these concepts in terms of the response of an elastic space vehicle or aircraft
response to environmental excitation,

SECTION IV, SPACE VEHICLE ELASTIC BODY RESPONSE CONCEPTS

Before going to elastic body response, it should be mentioned that the rigid body response of a
space vehicle in rotation and translation are mere extensions of the concepts just presented where the
major stiffness and damping are due to the control system with some augmentation from aerodynamics.
The major mass moment of inertia portion comes from the structural configuration with little or no aug-
mentation from control. This subject, rigid body response, has been treated extensively for many years
[11 and is not repeated here. This section will discuss only the elastic body effects because of their
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strong interaction with control and performance issues of large space structures, where not only control
of response but control of curvature or shape is important, In these cases, requirements on ferrying
weight and overall size result in a very light, large, and low frequency structural system, These
constraints place strong emphasis upon a coupled system optimized design approach, Also, during ascent
flight and aircraft flight, large acrodynamic and gust loads and uncomfortable ride qualities result from
the elastic body transient response to these disturbances, Use of control to reduce these responses is o
key design area,

As all structural dynamicists are aware, the solution of the structural dynamic equation with no
external forces lends to a set of normal modes and {requencies commonly called eigenvectors and eigen-
values, The modes are orthogonal and thus uncoupled. Since ench mode can be claracterized as an
effective mass and stiffness, called generalized, one can then couple them with external forces, including
acrodynamic and control system using energy approaches such as LaGrange’s equations, Using these
approaches, including generalized coordinates, the equations are in the same general form used in vibra-
tion theory of both the single degree-of-freedom forced response and multidegree-of-freedom forced
response systems, Extensive documentation is available depicting these approaches and solutions used,

To understand clastic body responses (loads and stability), the assumption will be made (later
removed) that one elastic body mode is uncoupled from the other and that the rigid body angle of
attack and engine deflection act as known (time wise) forcing functions to this model (Fig. 9).

i
ACTUATOR

CONTROL
SYSTEM

CONTROL FORCE]

A 2

Figure 9, Controlled elastic body response,

In order to write the cquations under these assumptions, the gimbal engine generated force is split
into two parts; the rigid body generated control induced force is a known function of time, and the
elastic mode introduced control force is a function of the elastic body modal state (deflection, rate, and
acceleration). Phasing between the rigid body generated engine and aerodynamic forces is neglected for
simplicity. When phasing is neglected, the equation for a bending mode is written as follows:
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or

where

Mo )+ 2 b (L) + tanYEzsr +B“ b4 ohon
M (8 42§y Wppp My ) wBuzn() N elastic () -&I-}-}-n#() M—-}-}-n“()

Dy Fs Yg
C Bu F, Yg 9_@

(130
=1 7, )+
N

( e\ - 8B . N
M .‘“"BMZ Mg n(t) Mp Selastic (V) My

41
(rigid body forcing
function plus wind gust)

n#(t) = bending mode generalized coordinate,
Wy = bending mode natural frequency,

Mp = bending mode generalized mass,

§py = structural damping,

B# = local angle of attack aerodynamic term,
C“ = local angle of attack aerodynamic term,
D,_l = rigid body aerodynamic force term,

¢ = vehicle thrust,

Y = mode deflection at engine,

To the uninitiated, the engine nozzle is ginrbaled to produce a lateral control force proportional

to the thrust times the sine of the deflected angles. For small angles, this force is equal to the thrust
times the angle in radians. Assuming that 8g,c4;0 results from signals arising from body-fixed accelerome-

ters, rate gyros, and position gyros, the control equation becomes:
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where ag Is position signal gain, a) rate signal gain, a5 accelerometer signal gain, Y'(Xg) the bending

mode slope at the position sensor, Y'(XR) the bending mode slope at the rate sensor, and Y(Xp) the
bending mode deflection at the acceleration sensors, '

Substituting equations (41) and (42) and simplifying results gives:

[2§‘B].l wWpy Mp - CN - ﬂlFSYEY'(XR)] ﬁ“(t)

iy, (t) +

[wB{.l2 Mp - B“ - ﬂOFSYE Y'(Xg)] ﬂu(t) - Q(t)

43
Mg - azFSYE Y(XA) [MB - azFSYE Y (XA)] 43)

e

It is clear that the above generalizations were made for one sensor of each type; however, the use
of more than one sensor does not destroy the use of the analogy, since the total signal is the sum of the
voltage coming from cach control loop, The effects of multisensors on the roots, and therefore the
cross-coupling between modes, ctc., will be addressed later. How the response is altered by the control
system on the roots is now discussed for the ideal case. The equation becomes:

My (@ + 2800 + @ + B =R QW) , (44)

where

1
R* = M = apF oYy YK (Apparent Mass) (45)

{2 g'B“ WRy My - CIJ - 31 FYp Y'(XR)] £2 (Apparent Damping) (46)

=11

!
2

1 R2 = w02 (Apparent Frequency) .  (47)

The roots to the equations are obviously & * B defined in equations (46) and (47). Using these
roots, the solution to equation (44) gives insight into response-relieving mechanisms, Typical solutions
can be found for constant coefficients and known Q(t)'s. Assuming that Q(t) is some known (Laplace)
transform, then

R2 BQ(s)
) =— | ————], 48
) = [(s—oz)z " 52:! (48)
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for initial conditions equal to 0, Letting Q(t) be a ramp input or Q(t) = Kst, then
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n(t) = 5

where

l'cnl

Rl

Yq=2 tan™] <_ ) )

and

R2K - _
n @)= 4 [e""t sin (ﬁt):| )

B
Finally, if Q(t) is a sine function

Q(t) = K4 sin Qt

R2K, [ Bt 2

- * o sin (§F - ¥g)
a2+ 72 (@2 +7H) '&2+732] v

1 sin (22t ~ ¥g) + 2 sin @+ vy

then
n(t) = R%Ky4
where
Vg = tan”! _5?—;-3—5%2-—&;2—
g =t =2 _gi o2
and
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(51)

(52)

(53)

(54)




ORIGINAL PAGE 15
OF POOR QUALITY

w2 + B2

)
[(&2 .’.'62 - &'22) + 4&2 9‘2] 1/2

n(t) = R2K4

[-—SZ sin (2t + ¢g) + =

0t gin (Bt + \l/g)]] )
(55)

where
.| 28f
a2 _“['32

Vg =Yg -ta (56)

As expected, all cases show a difference between acceleration and displacement of the w? factor
on the transient part of the solution except for the sinusoidal forcing function which also contains a

steady-state term with a factor of 2 difference, Considering the solution to the ramp, step, or impulse,

the magnitude of the constant can be changed by the term r2 by use of accelerometers, These scii-
tions — ramp, step, and impulse - can also be altered through each of the sensors as they alter the
frequency or damping [equations (46) and (47)]. Rate gyros change the damping of the system either
positively or negatively depending on the sign of the modal deflection Yy and Y (XR) and the rate gyro

gain, a. Choosing the sensor location or gain such that « increases results in greater damping and lower

2

transient. Choosing an accelerometer location and gain such that R increases, increases both the damping
and the frequency, thus allowing the accelerometer to be used as a modal suppressor from both the
damping term and the frequency term, Position gyros can be used to alter the frequency by a proper
choice of the sensor location or feedback gain, ag, The amplitude response (both steady-state and

transient) in these cases is reduced if the frequency is increased; however, the accelerometer output is
pruportional to the frequency squared times the transient portion of the solution, Increasing the
damping lowers the peak transient response. All three types of input forces are expected during flight
since the wind contains some form of each type of input, The response (acceleration or amplitudej zan
be reduced by increasing the frequency or damping.

A more important type of force from the bending mode standpoint is the sinusoidal input, This
represents the turbulence portion of the atmosphere, which can have frequency content in resonance
with the bending mode. Also, not only is the transient term important but the steady-state term can be
of a larger magnitude in both acceleration and amplitude, Again, increasing the damping decreases the
amplitude and thus reduces the transient response, Increasing the frequency may not be feasible; how-

ever, since the resonance term containg '52 + & and 822, and the amplitude of the frequency increases as

'62 + &2 and §2 approach equal values, In this case,.the frequency shift must be chosen to detune the
system from the forcing frequency. Additionally, for this case, the accelerometer can be used to reduce

the overall amplitude through R2 which multiplies the solution (Fig. 10). Care must be exercised in
using this term for reducing amplitude when at the same time it may increase the amplitude through
either finer tuning (with forcing function), or decreased damping and frequency. The change in damping
and frequengy can be obtained by using the various sensors as discussed previously.

The discussion thus far has indicated that accelerometers, rate gyros, or position sensors, can be
used for augmenting elastic system response, The results point out very clearly that one must have a
very accurate description of both the vehicle modal characteristics and the input force (wind) to effec-
" tively design a control system for modal suppression using these types of sensors. Also, the coupling of
these sensors in the rigid body control (used as input force for mode) is very important and cannot be
neglected,
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Figure 10, Modal suppression,

The previous interpretations can be stated in another way, The basic notion here is the freedom
offered by a sensor complement in locating closed-loop eigenvalues as a possible source of quality
measures. This is motivated by two considerations, First, classical experience with root loci and fre-
quency domain design techniques provides tested insightful relationships between the performance cap-
abilities of a controlled system and the closed-loop pole arrangements permitted by sensors, Such notions
as stability, frequencies of oscillation, damping of individual modes of response, and dominance are all
apparent from the pole constellation. Secondly, there is a fundamental connection between pole place- ;
ment and the concept of controllabfiity.

The previous discussion was based on the assumption that ideal control signals and response exist,
Although this is not true, the principles remain the same as long as the gain and phase lag changes that .
take place in reality are considered, Also, the assumption is made that cach mode 1s completely inde-
pendent of the other, which is not true, To illustrate this, a two-sensor case will be presented first, then ’
a two-mode case, i

If two accelerometers are used instead of one, the denominator in equation (47) becomes:

1
5 = Mp - 221F5¥p YO ) = aaF¥p Y(Xp,) G7
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This allows a choice of gains and sensor locations that would cancel the accelerometer offect or allow
any mixture of effects (gains) between accclerometer locations, The other coefficients in equation (47)
X could be modified in the same manner by using two or more rate or position gyros, This not only
' illustrates the complexity of using many sensors but also the flexibility,

Extending the concept to two bending modes, but neglecting certain rigid body coupling, results
in the following equations which are derived by assuming only one sensor of each type in the control
equation, The control equation (elastic body feedback portiont) is

' Seastic = a0 [11Y1'(Xg) + Yo' (X +ay [y Y{'(XR) + MYy (XR)]
: gy [ Y1(X0) + 7y YoXpa)l . (58)

The coupled bending dynamics equations given in matrix form, using this control law are as follows:

Mpy -8, Fs Y1 Y1 (Xp) - 8y Fy Y| Yo(Xp) i 4 Z
| ~EFsYE2 Y1 KW My; - 8 Fy Yz Yo (Xp) | | 72
2rgy Mpy - Cyy - ay Fg Yy Y{'(XR) ~aj Fg Ypy Yo' (XR) - Cyp My
- a) Fg Y Y{'(XR) - Cyy 2fpy wpg Mpa - Cyp - 8y F Ypo' Xg 05
Mp) - BI2 - Byq - ag Fg Yp; Y{'(Xp) - Byg - ag Fg Yg1 Yo' (Xp) n
" - By~ ag Fg Ypp Y{'(Xp) Mpy wpa? = Byy - ag Fy Ypg Yo' (Xy) m
* Q)
- = , (59
{cht) } 0 ‘

The coefficients show that what is done with one sensor for one mode can be offset by the
redundant signal from the srcond mode. If the system is extended to include many sensor gains and
5 force input locations, the tradeoffs arc apparent but too difficult to illustrate, Although the concepts
, for one mode hold for this more general case of two modes, the design problem is increased many fold
because of cross-coupling through the control system, Obviously, the things that help suppress one mode
could casily aggravate another, With several modes and sensors, a procedure must be usad that provides
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insight into important characteristics and that gives first cuts at the gains and sensor values and locations,
Numgsrical response techniques, optimal control techniques, sensitivity studies, and root locus techniques
(eigenvectors and cigenvalue routines) allow the development of trades between control force locations,
sensor locations, and control law logie that provide the desired response in each mode or the over
response as a deflection and load,

Iustrated in this scction has been the extension of the coneepts discussed previously to elastic
body response of a space vehicle, Additional concepts of modal gains and multisensor control logic as
well as extension to multimodes systems were addressed, all prescribing the response in the general form
a structural dynamicist is familiar with, Non-ideal control was not addressed; however, it Is easily
included by writing the differential equations for these effects and adding them into the matrices and
generalized coordinates given in equation (30) [2].

SECTION V. NON-IDEAL CONTROL EFFECTS ON THE SOLUTION

As stated previously, the control system does not perform in this manner, Also the control
engineer can alter the gain and phase electronically, producing greater flexibility to alter structural
response, Therefore, the analog presented must be extended to cover these conditions, Assumptions
must be made in this case also; namely, that these changes can be made without introducing excessive
degrees of freedom and that those introduced do not create unstable modes at some other frequency,
all of which ean be accomplished with proper design attention. Also, it is assumed that the coupled
frequency is fairly close to the uncoupled frequency of the spring mass system, This assumption can be
removed later, Using these assumptions and going to the equations using the control equation in the
form

(w) $2(w) ig3(w) .

5 = F¥* [ag Ky (w) S ay Ky (@) e 2 X+ 0y Ky (w) 0 , (60)

where K; is the gain and ¢; the phase of the control system near the natural frequency of mass spri g

system either due to inherent lags or is artificially introduced to achieve a desired response, For each of
these terms, they can be rewritten in complex form s

K (cos ¢ (w) + 1 sin ¢y (w)) . 1)

It is desirable to remove the comnplex term (i), This can be accomplished under the assumption
already states that the frequency .vill be near the natural frequency by dividing by w and taking a time
derivative of the variable, Performing these operations and assuming that the acceleration can be approxi-

mated as ~w? X, the control equation becomes
v =F*ag Ky [X cos ¢1(w) + X/w sin ¢1(w)] + F* ay Ky [X cos ¢y(w) + X/w sin ¢r(w)]

+ F* a5 Ky [X cos ¢3 = X/ew sin $a(w)] . (62)
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X Kq ' w [ Ky
m+ B (g = sin gy0c) + 8y Ky cos gg(@))| %+ [ 41 (2 sin 1)

+ a3 Ko cos ¢p(w) = a9 K3 sin ¢3(w)] X + [K + F* (2 Ky cos !)52(03)] X ={(t). 763)

The power of control becomes obvious when it is recognized that the K's and ¢'s can be determined
using state-of-art filter-design techniques, The ¢;'s can take on any value from 0 to 2, the K's are usually

values between O and 1. The choice of the signs and magnitudes on the control gains, ag, a1, g2 coupled

with the choices of K’s and ¢'s allows altering the response of the basic equations in many ways: (1) by
changing the structural dynamic design, (2) through basic control system gain choice, and (3) by intro-
ducing filters or networks that change the feedback as a function of frequency. In all cases, the basic
understanding reached for the single degree of freedom system is preserved, Obviously, one cannot get
these frequency dependent changes without altering the number of degrees of freedom; however, if
proper attention is given, it will not destroy the analog given,

In summary, up to tlis point in the report, one sces that a control system in all its basic linear
forms can be interpreted as pseudo structural elements, preserving the general response characteristics
which a structural dynamics engineer is so familiar with, Ideally, then control cay be interpreted as a
means of adding or subtracting stiffness, damping, and facatis, all gained without changing the structural
design, Adding the influence of filtering networks, any feedback term can be made to act as springs,
dampers, or mass, This opens up a whole new vista of design approaches that includes substituting
control for structure and is the basis for the relative new field of control configured vehicles, The
penalty paid for these additional design parameters is the redundancy required in the control system for
fail operational or fail safe requirements,

SECTION VI, A._ALGGIES TO VARIOUS CONTROL CONCEPTS

So far, all the discussion has centered on the use of linear, proportianal, central, control theory.
The analogies shown do not preclude, however, nonlinear control or decentralized control, Here, the
structural dynamicist would just move into nonlinear vibration theory or specialized analysis and develop
the same kind of analogies,

Digital control theory can usually be put in the form of the continuous analog systems used so
far ip this paper if the sample rate is high enough relafive to the structural frequencies of concern. This
is always a good starting place, From that point on, new analogies need development but fali into the
categories of sample data system analysis techniques currently employed and sample data control theory
analysis techniques, which through transformations put the operations back in this same general form
discussed previously, Certainly, one can think easily in terms of RMS, spectrums, gtc., and how these
are altered for dynamic system with control, The development of various analogies are left ta the reader,

Force point sensing is an old concept; however, it has new emphasis in that by wusing Qistributed
control (at the force inputs) the concept can be implemented for many modes, The idea is to sense and
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control the response at the same place on the structure, Ideally. this system is always response reducing
or stabilizing; however, control force actuators introduce phase lugs that can change this effect, Intro-
ducing a filter or network that compensates for the actuator characteristics would put one hack to the
ideal case discussed,

The concept of distributed control is to put the logic, sensors, and force actuators in selected
arcas of the structure, This means the iogic and desired response for each arca must be well understood;
otherwige, cross talk between cach area creates real problems as they compete and couple with each
other, This approach does not, however, destroy the analogies developed so far, This concept is very
powerful for shape control, Using the bending mode equation (14) dexived in the previous section
requires only that terms are included for each sensor, control force, and logic accounting for the slopes
and deflection where cach element is located, The only complexity is the additional terms and ability
to differentiate their influence, The problems get very messy when going to a multimode system; how-
ever, many more vatiables are avaiiable to get the optimum response solution,

Putting the centralized control and distributed control together and allowing the centralized
control to be hicrarchal gives additional flexibility but at the expense of complexity (Fig. 11). The
reader can casily develop these analogies if desired,

O CONTROL SENSOR

O CONTROL EFFECTOR

% CENTRAL CONTROL SENSOR

A CENTRAL CONTROL EFFECTOR

Figure 11. Distributed control system.
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SECTION VII, PROBLEMS, CONCERNS, AND FUTURE CHALLENGES

Everything discussed has made the tacit assumption that the sensed state is ideally identified,
This is not the case in the real world, Many times noise, other subsystem response frequencies, ete,,
obscure the desired signal, The whole area of state identification and pattern recognition must be
extended, With better and bLetter sensors, more complex control logic, and high structuszl modal density
of very complex and highly coupled modes makes this a prime area to attack,

Optimal control approaches have basically dealt with the system response with no wejghting
factors for structural design changes, These arcas need to be integrated further than has been accomp-
lished to dato and development of a means of doing total system optimized design in terms of structure,
materials, thermal, and covtrol,

A major problem facing this new discipline is the basic sensitivities of the responses, design, etc,,
to the uncertainties of both the structural model and the control system model, Here is needed learning
control devices, desensitizing approaches, and sensitivity analysis techniques for large parameter systems,

Technirqies for truncating or selecting critical structural modes and control system characteristics
is one of the major problems facing this new discipline, If the problem solutions are reduced to a
manageable size and complexity, major effort needs to be started in both criteria and reduction tech-
niques developed,

Ovviously, in the future not only space vehicles and large space systems but the whole field of
energy and transportation must deal with this new discipline, The future challenge is to either create a
new discipline or cause the separate disciplines to understand, communicate, and work together in a way
not generally done in the past, It is hoped that this short introduction to some of the analogies will
cause someone to look afresh at these areas.
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