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.AThe research work on NASA Grant NAG 1-158 has been directed

toward a study of the effects of geometric nonlinearity on the

vibration response of isotropic beams (Re: Our Interim

Progress Report of Jar ► eta%y 12, 1983). Initial investigations

have shown that a stable solution can only be resolved after an

extremely fine meshed initial solution has been determined.

This initial solution requires extremely small time steps with

high computational resolution. An energetically stable solution

for a beam with a sharp pulse initial velocity profile he	 AM

obtained. The results of this study are reported in the paper

"On The Energetics Of Nonlinear Beam Vibrations" which has been

submitted for publication to the Journal of Computers And

Structures. A copy of this paper is enclosed. The example

problem discussed produces very sharp deformation gradients

even at moderately small deflections. This study has demr-n-

strated many numerical difficulties often overlooked in vibra-

tion analyses. The insight provided by this study illustrates

the numerical complexities which must be modeled accurately in

future studies.

Currently the research involves studying the effects of

different initial velocity profiles to determine an adequate

model for impact loading. The effects of spatially distributed

mass is being investigated to resolve the effect of an impact

object in contact with a beam. Implicit time integration,

schemes are being employed to further solutions which are



started by the explicit methods summarized above allowing for

larger time steps. To generate solutions of sufficient dura>

tion to practically investigate several fundamental periods is

computationally prohibitive using an explicit technique. The

implicit techniques are transiently unstable, therefore, a

combination approach is indicated.
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ABSTRACT

The nonlinear vibration response of a doW)le cantilevered

beam subjected to pulse loading over a central sector is

studied. The initial response is generated in detail to

ascertain the energetics of the response. The total energy

is used as a gauge of the stability and accuracy of the solu-

tion. It is shown that to obtain accurate and stable initial

solutions an extremely high spatial and time resolution is

required. This requirement was only evident through an

examination of the energy of the system. it is proposed,

therefore, to use the total energy of the system as a neces-

sary stability and accuracy criterion for the nonlinear response

of conservative systems. The results also demonstrate that

even for moderate nonlinearities, the effects of membrane

forces have a significant influence on the system. It is also

shown that while the fundamental response is contained in a

first mode envelope, the fluctuations caused by the higher

order modes must be resolved..
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INTRODUCTION

Many problems in mechanics require an accurate modeling

of nonlinear elastic vibrations. Many structural mechanics,

machine design, and aerospace design problems involve the

nonlinear vibration response of systems which can be decom-

posed into beams, plates or shells. z 4urther, recent experi-

mental work has shown that many problems dealing with the

impact response of composite materials involve a nonlinear

vibration response [1]. While many plate and shell solutions

have been presented in the literature, accuracy and quantita-

tive stability studies have been limited to modal response
i

analysis [2]. Most applied analyses to the problems of non-

linear mechanics under pulse or impact loading have employed

the techniques developed and tested under single or low order,

multiple mode conditions. The purpose of this study is to

analyze the energetics of the initial response of a nonlinear

elastic beam to pulse loading (approximated by a sinusoidal

velocity response). The total energy of the system has been

chosen as the measure of the accuracy and stability of the

solution. While the conservation of energy is only a neces-

sary condition for accuracy, it is shown that the solution

requirements to fulfill this criteria are extremely demanding.

Further refinements of the time and spatial discretizations

had no appreciable effect on the solution after energy con-

vergence had been established.

G



Most problems of engineering interest (especially for

composite application) involve the response of plates or

combinations of plate elements. The elate equations, however,

are significantly more complicated than the beam equations but

still have the same characteristic properties. It was chosen,

therefore, to analyxo a nonlinear beam possessing the same

bending stiffness and natu t°al frequency as a typical composite

plate.

There are various ways to formulate the governing equa-

tions for a nonlinear beam. For moderate deflections (i.e.,

less than 5 times the thickness of the beam), the assumptions

i
	 of inextensibility and negligible shear appear reasonable.

The resulting equations are mathematically equivalent to the

standard nonlinear formulation for the moderately large de-

flection of plates [3]. This feature allows establishment

of solution procedures applicable to plate problems without

addressing the more complicated system directly. For sim-

plicity, a square beam has been chosen with constant cross-

section.
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FORMULATION OF THE GOVERNING EQUATIONS

Consider the free vibrations of a square beam of thickness

h and length L, Let the origin, 0, be situated at the cross-

sectional centroid at the left end of the beam as shown in

Figure 1. Let x be the coordinate measure along the length of

the beam in the undeformed state. The equilibrium conditions

can then be written for a differential element as

ax 

P ;2U

	 (la)at

1 a-Ma	 3W	 z TV 

J `ax ax (N dam-at ) - p =	 . °

where N is the average normal stress across the cross-sectional.

face (i.e., the membrane stress) and M is the crass-secticAial

moment. It is explicitly assumed from the outset that shear

terms can be neglected. U and W represent the longitudinal

and transverse displacements, respectively. For an elastic,

isotropic beam, assuming inextensibility, the stress-dis-

placement relations can be written as (4]

M	 - E I a--	 (2a)

ax

au
N = E C ox ^" -(ax) 

2 ]
	 (2b)

where E is Young's modulus for the material and I is the
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cross-sectional moment of inertia. Utilizing; the stress-

displacement relations in the equilibrium conditions, the

governing equations can be written as

a 2U

DX

1	 a 2U' 1 aw a 2wWX _
ax

()

9 1W.' 1	 3 aw 2
1'7("5—x)

a 211	 91V	 9 2U

a' =
^..^

a	 ate'

+'
a 2 w aU
^1 .57 3 ^

1	 8 2W
_ —^ — J (3b)

ii^ere the following definitions have been adopted

C2 = B / p (4a)

R2 = I/h 2 (4b)

a2 =
c 2 R2 (4c)

The quantity p is the mass density of the material and A is

the cross- sectional area of the beam.

The total energy of the beam can be decomposed into

bending energy, membrane energy and kinetic energy. By de-

finition, these quantities can be written as
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L

E K "
Kinetic

Energy
l ^U	 2	 ajV ^,

^()	 *	 ()	 J	 dx	 (Sa)

0

L
Fending l ^^EB Energy'

M
dx	 (5b)

0

L
Membrane l

N2

EM '^ Enemy ` LT— A dx	 (Sc)

0

The total enemy is given by the sum of these components as

Total

ET	 Energy	 EK 'B + EM	 (G)

Utilizing the stress-displacement relations, the bending and

membrane components can be written as

L

EB 2 (ate) 
Z 

dx	 (7a)
ax

0

L	 2

EM = ^	 [^ - (ate) 
21 

dx	 (7b)
ax

0

The displacement :Formulation will be utilized for computa-

tional convenience.

For the example problem in this study, the beam will be

e

w

F



assumed to be rigidly clamped at both ends. Symmetric loading

will be applied to a central section of the beam to simulate

central impact. Tile boundary conditions at the ends of the

beam can be written as:

IV(,x-0) - W(x - L) -0
(8a)

Div' (x - 0)	 ^^'	 (x - L) w 0	 (8b)

U(x - 0) - U(x - 
h) ° 0	 (8c)

In general, four initial conditions must be specified in the

form

U(x, t A 0) - fl(xj	 (9a)

t	 0) - gi (Y ) (9b)

W(x, t	 0) = f2 (x)	 (gc)

Mv-9 (x, t	 0) ' 92(x)	 (9d)

r
i
f
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RESPONSE TO AN INITIAL PULSE

The material propcTties used in this study were chosen

to simulate the response of typical graphite-epoxy composite

plates. Typical average quasi-isotropic properties are

E = 7.2135 E + 10 Pascals

P = 1.6000 E + 03 Kg/m 3 	(10)

v = 0.33

For a circular plate with clamped edges the bending stiffness,
^I

K and natural frequency, w 0 are given by (5)

.17t E h3	 (Ila)
3(I - V I)

w 0= 3.125 h	 n	
(11b)

r

N

where r is the plate radius and h is the plate thickness. 	 G

Assuming a plate with radius 2.54 cm. and thickness 1.03 mm.,

the bending stiffness and natural frequencies are given by

K = 6.0843 E + 05 J/m 3	(12a)

w 0 = 3.4150 E + 04 /sec	 (12b)

For a linear, double cantilevered beam of square crosssection,

the bending stiffness and natural frequency are given by (6) }
r
`k
A
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K	 i92	 (13a)
Y.,

(4.730 2W 	 ---
L 2

	 -7	 (a3b)

3
Equating the beam and plate parameters, the equivalent beam

length and thickness are

h = 3.5565h-03 meters

L = 6.7203E-02 meters
,r

which are the dimensions employed in the present solution.

To simulate severe initial velocity response a sinusoidal

variation over the central section of length L/10 was chosen.

The initial conditions are then written as

U(x, t = 0) = ^(x, t = 0) = 0	 (14a)

W(x, t = 0)	 0	 (14b)
0	 x < x1

1OW(x - x )
a (x, t = 0) =	 v0 sIN(,--L 	—°)	 x1 < x < x2 (14c)

0	 x > x2

where

x1 = 9L/20	 r

(14d)
X
2 

= 11L/20

1

8

The center point velocity was chosen as 243 meters/second
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which. corresponds to an initial impact energy of 2.0077 Joules.

The governing; equations wore discretized by the central,

difference technique. Second order central, differences were

chosen for all spatial. derivativres. Due to the steep gradients
G

near the initial loading region, extremely fine meshes were
r
fl

required to obtain accuracy. Meshes consisting of 200, 500

and 1000 divisions along the length of the beam were employed.

Several implicit and explicit time integration& schemes were

initially employed. To gauge the accuracy and stability of

the solution, the energy components and total energy were

calculated. Due to the conservative nature of the system, the

total energy should remain constant and equal to the initial	 w

impact energy.

The second order central difference operators are sum-

marized in the Appendix. Evaluation of all energy integrals

in this study were performed using Simpson's 1/3 rule, Com-

putations were performed on the CYBER 203 computer at NASA-

Langley Research Center. The code was written in CYBER Vector

FORTRAN. Some preliminary compkitations were also performed

using scalar FORTRAN on a VAX 11/750 and as IBM 4341. For the

solution range studied, neither of these machines had the

resolution to produce accurate solutions (this is discussed in

more detail later). The use of higher order difference

operators is not indicated for multiple mode vibration

problems due to the stability requirements necessary for con-

vergence.

E
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RESULTS AND DISCUSSION

Stability analysis for the linearized fourth order waN ►e

equation was performed for the explicit time integration

formulation in order to establish an upper bound on the

allowable time step for each order of spatial discr.etization.

The results of this analysis are summarized in Table 1.

There are no quantitatively accurate methods for predicting

the numerical stability of nonlinear systems in general. For

the nonlinear, fourth order wave equation, it can be shown

that the nonl.ine rite cau ses a "Buoyancy" effect and tie system

is, in :Fact, more stable than the corresponding linear system

[7]. It is therefore unnecessary to perform one of the

stability approximation analyses discussed in the literature

[ 8 ] .

Initially, Newmark implicit time integration was chosen 	 r

due to the unconditional stability for linear systems [9].

Computationally, however, the energy of the system oscillated

by a minimum of 40% even for very small time steps and fine

spatial discretizations. Similar results were obtained with

a Crank-Nicholson scheme [10]. An explicit second order central

difference scheme was chosen, therefore, to examine the

energetics of the initiation of the solution.,

Spatial discretizations of 200, 500 and 1000 divisions

were chosen, for comparison. The time steps initially chosen

were 5.E-09 seconds, 1.E-09 second, and 1.E-10 seconds,
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Table 1: Time Step Stability Limit (At) From

Linear Analysis With N Spatial Divisions

N	 Ax(meters)	 At(seconds)

	

200	 3.36015 E-04	 8.1893 E-09

	

S00	 1.34406 E-04	 1.3103 E-09

	

1000	 6.72030 E-05	 3.2757 E-10

Table 2 ,: Error In Average Energy And Maximum Scatter From

Constant Time Step Analysis With N Spatial Divisions

N At(seconds) % Error in IT Maximum Deviation

200 5.E -09 92.13% 61.33%

500 1.E -09 46.020 45.41%

	

1000	 1.E-10	 3.35%	 8.12%

Table 3: Error In Average Energy And Maximum.Scatter For N

Spatial Divisions Using Time Marching Scheme

N	 % Error in	 Maximum Deviation

	

200	 51.31%	 26.41%

	

500	 28.28%	 9.37%

	

1000	 0.11%	 0.16%
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respective:ly. The time steps were kept constant and the total	 F

energy was calculated as a function of tame. The solution was

generated for 50 microseconds which corresponds to approximately

one-fourth of the natural period. The mean error and percentage

of scatter in the total energy from these solutions is sum-

marized in Table 2. While the results with 1000 spatial in-

crements appear reasonable, a scatter of-approximately 8% and

a mean error of 3% could cause ,ignificant error later in the

calculation depending on the propagation of the error caused

by the integration algorithm employed to advance the solution.

To minimize the.error incurred during the initiation of

the solution, a time marching approacl'^ was adopted. An

initial time step of 1.E-14 seconds was chosen for the first

100 time steps. The initial conditions and final step results

were then employed to start the solution with a time step of

1.E-12 seconds. This solution was then advanced until the

time reached 5.E-09 seconds (for a spatial discretization of	
R

200 points), 1.E-09 seconds (for a spatial discretization of

500 points) or 1.E-10 seconds (for a spatial discretization c',

100 points). These final time steps were then advanced until

the elapsed time reached 50 microseconds. The

response is summarized in Table 3. For all sp

nations the predictions with the time marching

more accurate and more stable.

Due to the large gradients near the pulse

1000 spatial increments are required to obtain

total energy

atial discreti-

approach are

load boundaries,

reasonable
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I I	 accuracy during yrhe initial response. To continue the solution

with such a small time step, however, would be computationally

prohibitive. Several approaches are currently being investi-

gated. It is expected that the solution can be accurately

advanced by one of the implicit techniques and a coarser

spatial grid can be employed once the initial response is

accurately determined.

It is of interest to investigate the component response

of the energy during the initial response stage. At the

start, all the energy as kinetic. As the pulse propagates, both

longitudinal and transverse vibrations are established. While

the first mode of vibration will dominate, many higher order

modes will cause important energetic effects. Figure 2 is a

plot of the Kinetic Energy as a function of time. While the

envelope of this curve decreases as the first mode response

would, several higher order vibrations are evident. These

higher order effects can account for 15%-30% of the kinetic

energy at any instant. Figure 3 is a plot of the bending

energy as a function of time. While the modal response is less

clear in this component, careful observation shows that the

bending energy is approximately 180 degrees out of phase with

the kinetic energy (as would be predicted by a modal analysis).

These qualitative features of the kinetic and bending energy

curves suggest the consistency of the present solution during

the initial response.
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Figure 4 is a plot of the membrane energy as a function of

tame. During the first quarter period studied, the envelope

response is monotonically increasing which is consistent with

first mode predict-tons. The higher order effects, however,

predict instantaneous fluctuations of up to 50$. These local

fluctuations could have significant effect on the accuracy of

failure prediction for nonlinear vibration problems.

Figure 5 is a plot of the center point displacement as a

function of time. The envelope of this curve also follows the

first mode predictions, however, higher order fluctuations

cause significant instantaneous deviations (as high as 30%).

The largest displacement in the time interval studied is

approximately 37% of the thickness of the beam. This should

be in the range of moderately small geometric linearity. This

observation is consistent with the prediction that the maximum

membrane energy is about 8% of the total. energy.
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CONCLUSIONS

The results of this study demonstrate the importance of

the initial response solution procedure to the solution of

nonlinear vibration problems. The total energy of the system

proved to be a good measure of the stability and accuracy of

the solution. It was shown that the initial response is much

more sensitive to time step size and spatial discretization

than simple stability and accuracy analyses would predict.

A time marching explicit integration scheme was demon- 	 t
i

strated to be an accurate and efficient way of initiating a

stable solution. It is expected (and currently beinginvesti-

gated) that any of the implicit integration schemes can be

used to accurately advance the solution after a good initial

response is generated.

The results of this study also indicate that much caution

should be exercised when solving vibration problems involving 	 A

steep initial gradients. Not only are the soli.ition procedure

and discretization.parameters important, but the precision of

the calculation can play a significant role in the accuracy

of the solution. All results presentLd in this study were

generated on the CYBER 203 computer at NASA-Langley Research

Centex. The range of variables that can be resolved on that

machine is from 9.548 * 8645 to 5.2E-8618 absolute;. While this

extreme range is unnecessary, calculations of a VAX 11/780

(absolute range of approximately 1.E + 32 to 1,E-37) and on
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an TBM 434 16 (absolute range of approximately LE + 76 to

l,E-79) produced erroneous {results utilizing arithmetic with

14 digit precision. Extremely small displacements can cause

significant gradients when entering into the nonlinear terms.

It was discovered during this study that the solutions can be

in error by as much as 100% due solely to the lack of

resolution of the small in , Aal displacements. Scaling of

the data is not a total solution as the order of longitudinal

and transverse displacements is significantly different, It

is unknown at present the order of resolution necessary to

resolve this problem. Once a stable initial solution is

produced, however, the variation in the gradient parameters

becomes resolvable on virtually any machine. The final cal-

culation stage was checked on the VAX 11/780 using the initial

conditions from the first two marching increments produced on

the CYBER 20.1 and compared with the final results from the

CYBER 203 calculation. Both solutions were identical pro-

ceeding from 1 to 50-microseconds. Alternative procedures

for this problem are being investigated for use on machines

without the precision of the CYBER machines.

The results of this study, while generated for a

particular example problem, provide a consistent yPthod for

initiating solutions to nonlinear elasticity vibration

problems in general. The constancy of the total energy is a

necessary condition for establishing the accuracy of solutlor,

for any conservative system. More complicated systems and
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f 	 ^^
ai

R	 spatial discretixation schemes often obscure the fundamental

problems which are present in nonlinear systems. The total

energy is a much overlooked indicator of solution accuracy

which is computationally simple and inexpensive. It is sug-

gested that convergence of linear and nonlinear vibration

solutions for conservative systems must satisfy conservation

of energy in addition to local convergences criteria currently

employed.
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APPENDIX

The standard second order central difference operators

are

3Y	 Yi * 1 - Yi
	 1ax^cT x

3 aY 	Yi * 1 - 2Y  * Y i _ 1

8x 2 X 
a xi	

(ox) z

3''Y	 yi. + 2 - 4Y i + i + 6Y  , 4Yi " I + Y i " 2Q-	 r

3x, 
	

x y= x	 ( Ax) ^+

for a function Y(x,...) where

Y(x - xi) = Yi
i

for all x i in the domain.

I
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