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2.
1. INTRODUCTION

During the last decade, researchers associated with the earth resources
program of NASA have been working on the problem of crop acreage and pro-
duction estimation using LANDSAT data. LANDSAT 1s a near-earth orbiting
satellite equipped with a multispectral scanner (MSS) which measures the
reflectance qf a target scene in various wavelength bands. The measure-
ment unit is a 1.1 acre square plot of land called a pixel. In estimating
acreages devoted to a specific crop of interest in a scene, each pixel {s
assigned efither to the crop or to the class of other ground categories; the
pixel classification is based on its spectral response, say a kxl vector
measurement [Heydorn, et al., 1979].

A scene image in the form of a false color composite picture is con-
structed using its MSS data. Image analysis and pattern recognition techniques
are used to correlate the spectral characteristics in the scene to the features

Aon ground. An area segment of several square miles is generally required for
an analyst to interpret its scene image and to delineate discernible pgtterns
for identifying possible land-use and land-cover classes. The MSS data for
pixels of a class are modeled by a multivariate distribution function. Dis-
criminant analysis techniques are applied to classify the MSS data and to

estimate, say, a crop acreage proportion in a segment (Odell, 1976).

As usual, a number of pixels are sampled to estimate the distribution
parameters for the distinct classes of pixels and to specify the classi-
fication procedure. Sampled pixels are first required to be fdentified
and labeled by their clagg;s on ground. Lack of adequate spectral dis-
crimination between the classes..among others, may cause mislabeling of

of some pixels, thus resulting in a biased estimate of the classification




parameters,

Another source of error in estimating a crop acreage proportion is
the presence of mixed pixels in a scene. A pixel is defined mixed {f
it 1s a boundary unit consisting of areas from more than one category of
land use. Otherwise, it 1S to be called a pure pixel. Often no distinc.
tion is made in the handling of mix>d and pure pixels in clustering and
classification of MSS data for estimating a crop acreage proportion in
a segment. Previous empirical studies conducted at the Johnson Space
Center have shown that the treatment of mixed pixels as {f they are pure
causes an additional bias in crop acreage estimation (Carnes and Baird,
1980). A large-scale application of LANDSAT data for wheat estimation in
U.S. and U,S.S.R. 1s described in the Proceedings of Technical Sessions,
The LACIE Symposium, NASA (1979).

The problem of estimating the relative acreage of a specific crop in
an area segment can be formulated as follows: suppose Ci and Cq denote the
classes of pixels for the crop of interest and the group of other ground
categories, respectively, and Cp denotes the class of mixed pixels in the
segment. Considering the segment size to be large, let =y be the proba-
bility of a random pixel to be from Cy and for a spectril measurement X,
let py be the conditional probability that it belongs to Cy, i1=0, 1,
given that the pixel is from either C; or Cp (1.e., it 1s a pure pixel).
Suppose ppy 1s the proportion of acreages in Cy that are devoted to the
crop of interest. Thus if p is the actual acreage proportion for the crop

of interest in the se ment, then

P =vmpml + (l-vp) P1. (1.1)
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Suppose p 1s estimated by the relative frequency of the segment pixels
that are classified into C) using a sample-based classification procedure.
It 1s assumed that only pure pixels are sampled for training the classifier
and these are subject to mislabeling as Cy or Co. Let Ry and Rg be the
classification regions for Cy and Cg, respectively. Define the random
variable

1 1f XeRy

w L 1

0 1f XeRy.

Then the estimate of p is given by

» =i f;:x(m (1.2)

where N is the total number of pixels in the segment (N is assumed to be
large). If Ny is the number of mixed pixels, then (1.2) can be written

as

P = *bml + (1-v)P1 (1.3)

where

™ * S"'"- P * A 2?“51’

N-Nn,
D1 = [1/(N-Ng)] 21: (). (1.4)

In this paper, we investigate p 7or its bias and variance. In section
2, we express these parameters in terms of the expected classification error
rates, their variances and covariance, and the first two moments of Ppy].
Considering the linear discriminant function for the classification rule,

the asymptotic first two moments of error rates and those of 5m1 are obtained



in section 3. Certain numerical results are given in section 4, It is
shown that the disparity in mislabeling rates of the two classes C;

and Cq has a significant effect on the error rates as well as on the bias

and variance of p. On the other hand, mainly the bias, and nrt the variance
of p is affected significantly as the relative size of mixed pixel class,

Ty varies.

2. BIAS AND VARIANCE OF p

Suppose 6] is the error of classifying a pixel from Cy into Cqo and
8o is for a pixel from Cg into C;. Of course, there is no error com-
mitted in the classificatior of a mixed pixel. Let 651 be the probability
of classifying a mixed pixe! into Cj. Suppose the classification rule is
determined on the basis of sample means and covariance metrices obtained
from a sample of n pure pixels of which ny labeled as C; and np = n-ny
labeled as Cg. Llet TX; and Xg be the sample means, and Sy and $g be the sample
covariance matrices for the two groups of labeled samples. Suppose 31.

80 and 8p) are the estimates of 81, 6g, and 6y, respectively,

given the sample observations. Then these estimates can be written in terms

of the conditional probabilities as follows:

81 = P[XeRo|XeCy » Ty, S, 120, 1]

80 = P[XeRy|XeCo » Fiu $4, 120, 1]

8m1 = P[XeRy|XeCy » Xy, S¢, =0, 1] (2.1)



Bias

For the expectad value of pj, we have
E(1) = ECECP |y S0 120, 1)
= E[P(XeRy Xy, $4. 120, 11]
Due to (2.1), we can write
E(P1) = p1(1-E(81)) + PoE(8o). (2.2)

So the bias of fy given by E(f1)-p1, s

B(F1) = -P1E(81) + PeE(8p). (2.3)

As pointed out in the appendix, the expected acreage of C, devoted to
the crop of interest is half of its total size so that py1=.5 and the bias cf

Smlu

B(Pm1) = E(Bm1) -.5. (2.4)

Accordingly, it follows from (1.3) that the bias of 6.
B(F) = »pB(Pm1) + (1-%m) B(P))
where B(p1) and B(Pp1) are given by (2.3) and (2.4).

Variance

For the variance of Py, we can write

var(py) = ECVar[py %, Sy, 120,171
+ Var (E[P1 %y, $4, 1=0,1])
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Since the entire segment data are classified to obtain 31. the conditional
variance of f), given sample data, is zero. Thus, the first term on

the right side is zero, and

Var(p1) = Var(P[XeRy Xy, $1. 1=0,1).

Again, 1t follows from (2.1) that

var(f) = pf Var(6,) + p§ Var(6g) - 2;pg Cov(6.80).  (2.6)
Because of (1.3), we have the variance of p given by

Var (B) = w2 Var(Bpy) + (1-vp)2 Var(By) + 2up(1-ny) Cov(B) Pyy)(2.7)

where Var(py) is as given in (2.6), Var(pm)) is simply the variance of 8y,
and Cov(P], Pm1) Obtained using the conditional argument, is given by

Cov(P1s Pm1) = -P1 Cov(81, Bm1) + P Cov(Bo. 8m1) (2.8)

3. LINEAR 0iSCRIMINANT ANALYSIS

As considered by Heydorn, et al,(1979), we assume that Cg and C;
have multivariate normal distributions: X ~ Ng(pj, E) 1f XeCy,

i=0,1. Without i0ss of generality, let

~8/2 a/2 :
= N = » I =
* [9 ] . [9] T (3.1)

where

8%« (uy - wo)” £ by - o)
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Suppose aq is the probability of mislabeling of a pixel from Cy, 1=0,1,
for the sample labeling procedure, which is generally manual using visual
interpretation of a scene image and knowledge of crop characteristics in
the area. The image analyst who makes the labeling decision for sampled
pixels uses their spectral information plus his a-priori crop knowledge
which is fairly reliable at a somewhat larger level (e.g., crop field)
but not at the pixe! level. Obviously, labeling of a pixel is partly
dependent upon 1ts spectral response and as such it should be taken into

account.

In another paper related to this topic, Chhikara and McKeon (1983)
have proposed an approach to modeling micallocation, in general, and have
discussed analytically the linear discriminant analysis in the presence of
misallocation in training samples. In the present context, their model
(b) can be considered suitable for the mislabeling of pixels. This is
a trurzated model for which thresholds are determined for the two classes
of pure pixels to assign class labels Cg and Cy to sampled pixels. Since
the crop information is utilized, these thresholds should be class specific
and be functions of mislabeling rates. Given ag and |, the labeling
procedure can be considered as follows:

Suppose X) is the component of measurement vector X in the first
dimension along wi..ich the class means are aligned. For XsCp, label
the pixel as Cq if X; < -4/2 + 21.2a0 and as Cj with probability
.5, otherwise; and for XcCj, label the pixel as C; 1f X; > 4/2 + zz°1

and as Cqo with probability .5, otherwise, where 21-2“0 and 22,1
are the (1-2«0)- and Zal- percentage points of the standard normal
distribution. Under this rule, a pixel has at most fifty percent chance of

misallocation. Of course, one can consider other than half for the



maximum probability of misallocation , say u, where Ocu<l;

: A but this would require the use of zl"q/" and Z,llu for the percentage
points so that the mislabeling rates remain as specified.

Chhikara and McKeon (1983) give the mixture distributions of the two
classes represented in the labeled training samples and obtain the asymp-
totic distribution of the semple-based boundary. Their approach is similar

to that of Efron (1975) and can be extended to obtain asymptotic first two
moments of all three estimatcrs, 81, 8g and 8y3. As discussed by
Efron, the optimum boundary (i.e., the case of known parameters) for the
linear discriminant rule is a plane perpendicular to xj-axis and inter-
secting it at point r, whereas when the sample size n {s largo.vtho
sample-based boundary is a plane intersecting x)-axis at point t«dv,
with normal vector at an angle da from the xj-axi-, where dr and da
represent small deviations. If Do, D; and Dy are the respective distances
of the first component means of Cg, Cy and Cp from the optimum boundary,
then their corresponding . 'stances from the sample-based boundary are

dg = (Dg + dt) cos da

dy = (Dj - dt) cos da

dy = (Dm + dr) cos da (3.2)

Then, 8g = #(- dg) and 81 = #(-d1). In Appendix we show that when

A < 3.5, the distribution for Cy can be approximated by normal, with
its mean zero and variance in the first dimension, of s 2/3 + Azllz.
Though it 1y not discussed, its variagce in any other dimension is 1.
Thus, the variance along the d,- direction is of coszda# sinzdu

or of + (1-012) sin? da = og. say. Accordingly, 've have

bn1 = #(-dn/og).
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By Tayior series expansion, ignoring higher than second order dif-
ferential terms, it can be shown that
8 = #(-Dg) = #(-Lg) dr + (1/2) Dy ¢(-Dg)[(dr)? + (da)?]
8, = 0(-D;) + #(-Dg) dr + (1/2) Oy ¢(-Dy)[(dr)? + (da)?]
Op1 = *(-Ou/07) = #(=Dyp/a}) (de/oy) + J(Dy/ay)

¢(-0y/01) [(dt/0})2 + (da/ey)?] (3.3)

In (3.3), we have Dg = t +4/2, 0y = -t + A/2 and Dy = 7 (e.g.,

refer to the figure given in Efron, 1975). Now by a straight forward
extension of the discussion and results of Chhikara and McKeon (1983) the
asymptotic first moments of 8g, 6], and 8y can be obtained as follows:

E(8g) = ¢(-Dg) + by Dge(-Dg)Lo 2 + (k-1) 6,2
E(8;) = 0(-Dy) + by D10(-Dy)(0,2 + (k-1) 0,2

E(8y1) = (-0*) + by D%(-0*)[0,*2 + (k-1) o 2]

Var(9g) = fo2(-Dg)lo,2 + by0fla,® + (k-1)0, %1
var (8,) = o2(-Dy)l0,2 + bpdflo,* + (k-1)0,%1
Vor (3g) = 2(-0%)[0,*2 + bp(0%)? [a 4 + (k-1)o,**1]

Cov(8gs 81) = Ae(-Dg)e(-Dy)[-0,2 + (DgDy/2n)
(0.4 + (k-1)a, %]
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Cov(8g. Guy) = A#(-0*)e(-Og) [(s,%/ay) + (D*Dg/af)
(0t + (k-1)0,9)]

s e O e g 5

Cov(8y, 8gy) » A0(-D*)e(-') C-(s,%/0y) + (0%Dy/2n0f) \
(0,4 + (k-1)0, 43 (3.4)

where

Dg=t+a4/2 , Dy=-r+a/2 , O*= 1)

a‘.' = g./01 a: g,/ (3.5)
with alz- 2/3 + 52/12. and a,z'and ,uz as the asymptotic variances
for the discriminant Laundary, which are given in equations (3.10) and

(3.11) of Chhikara and McKeon (1983).

4, NUMERICAL RESULTS

In this section we illustrate the bias and variance of 3 numerically
by considering ks2, As2, p=,5, and n=100., First, in Table 1, we give
values of t. atz and ouz associated with the sample-based discriminant
boundary when A=2, pi=.5, .3 and the mislabeling rates, a)=0 and ug=0,
1, .2, .3, .4, These values are taken from Table 1 in Chhikara and McKeon
(1983) corresponding to their model (b), and are used here to compute asymp-
totic first two moments of 8, 31 and Op) as described in (3.4).

It is seen that the discriminant boundary point, t shifts to the left
as ag increases. This is expected due to disparity in mislabeling rates
for the training samples disfavoring Co which s centered to the left on

xl-cxis. The variance otZ increases and adz decreases as a increases.




Table 1: Values of «, ,tz and ,,“2 for the Sample-based Boundary (a=2)
( ) T Ctz Ouz
g, a1

P1=-5 P1=-3 P1=-5 P1=.3 P1=-5 P1=-3
(0,0) 0 42 1.000 1.360 2.000 2.190
(.1,0) -.19 .09 1.136 1.308 1.068 845
(02.0) -.‘0 '017 1-5‘1 1.717 07‘7 0‘88
(03.0) °065 '-44 20‘73 2.5‘2 06“ 0387
(.4,0) -1.00 -.82 5.373 5.178 73 .515
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In Table 2, we show the results on mean &.d variance for different esti-
mators as well as give the bias of D) and that of Py) when p)=.5 and n=100.
Based on the values of OTZ and 0“2 given in Table 1, similar results
can be easily computed for the case of pj=.3. It is seen from these
results that E(8g) and var(8g) increase, whereas 5(31) and Var(al)
decrease as ag ncreases, but E(Snl) decreases and Var(8;) increases.
Again, this can be expected because of a shift to the left in the boundary.
30 and 31 are negatively correlated, but 3,1 has positive correlation
with each of 30 and 31. Interestingly, the variance of 8y; fs
affected only slightly, though it is considerably higher than those of 30
and 31 when the disparity between the two mislabeling rates is small. The
absolute bias increases for each of Py and Pyy, and so are their

variances and covariances.

Next, we combine the two estimators pj and pmy by considering the
proportion of mixed pixels, »p = 0, .1, .3, .4, .5, and compute the
bias and variance of 6 (Table 3). Both the bias and the variance increase
as aq increases. But there is an interaction with respect to change
in =p; the absolute bias and variance first decrease then increase
as wy varies from 0 to .5. However, there is only a slight change

in the variance due to change in wp.
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Table 2: Means, Variances and Covariances of 8g, 8) and Bpy;, and
Biases, Variances and Covariances of Py, Pm].

(A=2, p1=.5, n=100)

Mislabeling Rates (ag,a})

Parameter
(0,0) (.1,0) (-2.0) (-3.0) (.4,0)

E(8g) .162 212 T 276 .365 .500
E(8)) .162 119 .084 .052 .026
E(6m1) .500 .422 .346 .256 .151
Var(8q) .0006 .0009 .0017 .0035 .0085
Var(8)) . 0006 .0004 _  .0004 .0003 .0002
*Var (8p1) .0025 .0017 .0021 .0026 .0032
Cov(6g,8;) -.0006 -.0006 -.0008 -.0009 -.0012
Cov(8(,8my) 0012 .0013 .0019 .0030 .0052
Cov(80,6m1) +0012 .0009 .0009 .0008 .0007
B(p1) 0 .047 .096 .156 .237
B(Pm1) 0 -.078 -.154 -.244 -.349
Var(py) .0006 .0006 .0009 .0014 .002¢4
Cov(P1, Pm1) 0 .0002 .0005 .0011 .0023

*Var (pp1) = Var(3p1)
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Table 3: Bias and Variance of § (p=.5, 4=2, k=2, n=100)

Mislabeling Rates (ag, o))

" OO L0 1T TS0 (.4,0)
(1) Bias
0 0 .047 .096 156 .237
.1 0 .035 7 .116 .178
2 0 .022 .046 .076 .120
.3 0 .010 .021 .036 061
.4 0 -.003 -.004 -.004 .003
.5 0 -.016 -.029 -.044 -.056
{i1) Variance x10-4
0 6 6 9 14 28
.1 5 5 8 14 27
.2 5 5 8 14 27
.3 5 5 8 14 26
.4 6 5 9 14 26
.5 8 7 10 16 27
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5. CONCLUSION

We have investigated theoretically the error in crop acreage estimation
using Landsat data and the current methodology of MSS data processing and
linear discriminant analysis. Labeling of pixels by an image analyst is
modeled and the effect of mislabeling rates on the bias and variance of the
crop proportion estimate discussed. In past, investigators have assuwed a
random model for misallocation in training samples (Lachenbruch, 1966 and
MclLachlan, 1972), which is not applicable here. Lachenbruch (1974) has dis-
cussed two non-random models which are similar to our proposed model. He,
however, studied these models only in the context of Fisher linear discri-
minant function, assuming equal a-priori probabilities and evaluated its
performance using a simulation study. Presently no assumption of equal
a-priori probabilities is made and the numbers of pixels labeled as Cg and
C; are, in fact, treated as random, as one would expect. Only the total

sample size n is assumed fixed.'

This study extends the usual two-class classification methodology to
a third class which presently arises due to mixed pixels in an area segment.
Similar situation may also arise in inventorying forest, range, and other

land-use and land-cover categories using a fallible measuring device.

Presently we have assumed that the class of mixed pixels is separable
from the other two classes, and hence, Ny is known. If Ny is unknown and
mixed pixels are delineated using an imperfect boundary detection method,

then an estimate of p is obtained by
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P =ty bm *+ (1-%p) P

where Ty is an estimate of xy. Because the number of mixed pixels in a

segment 1is large and because all such pixels are delineated (1.e., no sampl-
ing is envolved in the estimation of x,), the variance of ;m will be negligible.
Thus, we may consider wy known, assuming that the procedur: of delineating

mixed pixels is unbiased.
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APPENDIX
Distribution of Cp

Let U be the proportion of acreage devpted to the crop of interest in
& randomly selected mixed pixel. Then U has the uniform distribution over

interval (0, 1). Thus, pp1=E(U)=.5.

Dana (1982), and Lambeck and Potter (1979) have shown that the radiance
received by Landsat sensor over a target area (resolution element) is almost
a linear function of the reflectivity directly transmitted from the target
to the sensor. The aerosol optical thickness in atmosphere has a multiplica-
tive effect on the target reflectivity and the convolution of two contrasting
surface reflectances for a boundary pixel can well be approximated by their
linear combination. So, one may define the spectral measurement of a mixed

pixel in a wavelength band by
Y =UXg + (1-U) Xg (A.1)

where Xg and X; are the spectral measurements of two pure pixels representing

the two classes, say Cp and C;, of the boundary.

In the transformed space, discrimination between Cq and Cy is in the
first dimension alone. Thus, it is suffice to discuss the distribution of
Cp for the univariate case. Suppose Xg and X; are univariate and normally

distributed, say Xy ~ N(-e,az) and X, ~ N(e.az).
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It is easy to see that the conditional distribution of Y given U = u, is normal
with mean (1-2u)e and variance[u? + (1-u)2Je2. Now writing the joint

density, say f(y,u), of Y and U as a product of the conditional density, say
f(y|u), and the marginal density of U, and then integrating it with respect

to u, the density function of Y can be expressed as follows;

1
f(y) =(1/20/7) 1(1//1+v2)exp [-(y-v8)2/2(1+v2)a2] dv  (A.2)

Clearly, the density function f(y) is not of the normal type. To examine its

departure from normality, we next obtain its moments and the measures of

skewness and kurtosis.

It can be easily verified that
E(Y) = 0
E(Y2) = §o? + § o2 (A.3)
E(Y3) = 0
E(YY) = (7 0% + 802 02 + 0%

The measure of skewness is zero and the measure of kurtosis is given by

y = 9(7c%+802624 94)
or + 8¢ + 8

To evaluate vy, let 6 = ¢ A/2, where A represents the distance between the

distributions of classes being mixed. Then

(A.5)



)

Thus, for some typical values of A, we find y as shown below.

A 0 1 2 3 3.5 4 6 10
v | .15 322 3.0 3.00 2.87  2.75  2.38 I.8T

Since vy = 3 for a normal distribution, the distribution of the mixed pixel
class is not normal. However, its departure from normality is small if

0 <A< 3.5 Thus, this distribution can be approximated by normal provided
the spectral measurements of classes constituting boundary satisfy the

condition of a < 3.5.
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