Nodal Network Generator for CAVE 3

Joseph V. Palmieri and Kenneth A. Rathjen

CONTRACT NAS1-15367

December 1982

Nodal Network Generator for CAVE 3

Joseph V. Palmieri and Kenneth A. Rathjen

CONTRACT NAS1-15367
December 1982

Mns

This Page Intentionally Left Blank

CONTENTS

Section Page
SUMMARY 1
1 INTRODUCTION 3
2 NODAL NETWORK GENERATOR DESCRIPTION 5
3 PROBLEM SETUP \& PROGRAM LIMITATIONS 7
4 INPUT DATA - MANUAL OR DIGITIZED (NNDIG) SETUP. 13
5 MODEL GENERATOR (NNGEN). 27
6 DETERMINATION OF COUPLINGS 53
6.1 Conductance (k) 53
6.1.1 Rectangular Nodes 53
6.1.2 Triangular Nodes 53
6.2 Radiation 55
7 BOUNDARY NODE ORIENTATION 59
8 REFERENCES 63

ILLUSTRATIONS

Figure Page
1 Structure to be Analyzed 8
2 Model Layout 9
3 Model Grid Creation 11
4 Grid Layout 12
5 Input Data Format \& Varıable Descriptions 14
6 Sample Input to NNGEN (Manual) 15
7 Sample Terminal Session NNDIG 16
8 . Input of Overall Parameters 17
9 Digitize Sector I. 18
10 Digitize Sector II 19
11 Digitize Sector III 20
12 Digitize Sector IV 21
13 Digatize Sector V 21
14 Digitize Sector VI. 22
15 Digitize x Grid. 22
16 Digitize y Grid. 23
17 Resultant Geometry Plot 24
18 Sample Input to NNGEN (Created by NNDIG) 25
19 Sample Terminal Session NNGEN 27
20 Internal Nodes - Layer 1 29
21 Internal Nodes - Layer 2 30
22 Internal Nodes - Layer 3 31
23 Internal Nodes Extended Numbering Scheme 32
24 Internal Nodes Extended Numbering Scheme - Layer 1 33
25 Internal Nodes Extended Numbering Scheme - Layer 2 34
26 Rotate Option. 35
27 Rotate Plot - Layer 1 36
28 Rotate Plot - Layer 4 37
29 Rotate Plot - Layer 7 38

ILLUSTRATIONS (Contd)

Figure Page
30 Creation of Input File to CAVE3 40
31 Sample Output Displaying Boundary Nodes (2 Sheets) 41
32 Sample Output Displaying Conduction Constant 44
33 Sample Output File (3 Sheets) 45
34 Boundary Node Option 48
35 Boundary Node Optıon - Layer 1 49
36
Boundary Node Option - Layer 2 50
37 Boundary Node Option - Layer 3 51
38
Determination of Conductance Links - Triangle to Rectangle 53
39
Determination of Conductance Links - Triangle to Triangle 55
40
Determination of Conductance Links - Boundary Nodes 56
41 Boundary Node Placement 60
42 Improper Node Orientation 61

SUMMARY

Grumman, under contract NAS1-14643, developed the computer code CAVE3 ("A General Transıent Heat Transfer Computer Code Utılizıng Eigenvectors and Eigenvalues") that performed a specialized transient thermal analysis. Under the present funding a new extension of CAVE3 was developed which automates the creation of the input.

The new software \cdot

- Utılizes Tektronix 4014 Graphic Scopes to display models
- Utılızes Tektronix Tablet Digitizers to generate model geometry
- Graphically displays the model geometry
- Creates a finite difference digital dataset with all conduction hinks computed ready for input to CAVE3.

This Page Intentionally Left Blank

Section 1

INTRODUCTION

The Network Generator software created for Langley Research Center automates the creation of finite difference thermal models for mput to the CAVE3 code provided Langley under contract NAS1-14643. The software makes use of the interactive capabilities of the INTERCOM CDC tımesharıng system on the Langley Research Center CDC 6600 computer. It utilizes the Tektronix 4014 Graphic Scope and digitizing interface and makes use of the appropriate Tektronix software resident in the Plot-10 package. The Network Generator utilizes the graphics hardware to expedite the - transformation of geometric data to dıgital data and provides visual confirmation of geometric and nodal networks.

The Network Generator is broken into two distinct programs: geometric data input and model generation. The geometry data input software is labeled NNDIG and makes use of Tektronix dıgitizing hardware to create a data set containing the pertment geometric information needed. This option provides the user with the capability to transfer geometric data from a scaled diagram displaying the model to be analyzed to the computer as a digital data set. This software does not have to be run if the user wants to generate the resultant geometry tıle by hand (if digitizing hardware were not available).

In either case, the geometry is fed to the model generation program (NNGEN). It is here that the actual finite difference model is created. NNGEN uses the geometry supplied to it with the specific properties of the materials to be analyzed and creates the digital data set that represents the finite difference model. Software establishes the numbering sequence, determines all geometric voids within the model, and bookkeeps all couplings. The software can generate two- or three-dimensional models and provides the user with the ability to have internal or boundary (surface) nodes.

Mr. James L. Hunt of the Hıgh Speed Aerodynamics Divısıon, Langley Research Center, Virginia, served as the NASA technical monitor for the program.

At Grumman, the contract was admınıstered by the Advanced Development office under Mr. Fred Berger, Manager of Advanced Development System Engineering, Dr. Kenneth A. Rathjen was Study Manager and Mr. Joseph V. Palmieri was Engineering Specialist, Software Development.

NODAL NETWORK GE NERATOR DESCRIPTION

The Nodal Network Generator package was created to automate the procedure of creating a digital math nodal to be used as input to the CAVE3 code (Reference 1). The package consists of two distinct programs; a Nodal Network Digitizing (NNDIG) program and a Nodal Network Generator (NNGEN) program. The package makes use of the Tektronix digitizing tablet and graphic scope (Model 4014) to transfer geometric nodal information directly to the computer and plot the resulting nodal network.

The program enables a user to create a math model by merely digitizing the vertıces of homogeneous sectors and digitızing a grid increment that defines the nodal surface. The program will automatically compute the geometric centroid of the nodal areas and place the nodes there, then automatically compute all the nodes each node sees, the conductance between nodes, the capacitance of the node, and the radiation area of the node surfaces in the x, y, and z direction. The program will determine whether the body has voids within it and will establish boundary nodes to identify this condition.

The program has two nodal options that can be employed; nodes can be placed at the centroids for all nodes or placed at the surface for boundary nodes with the conductances adjusted for the distance from the surface to the centroid. The program also provides a three-dimensional feature which allows the user to create a threedimensional regular model. The sections to follow will explain all of these features in detall.

Once the software has been accessed and executed, the Nodal Network Generator will create an mput file capable of being run with CAVE3. The only change to the data that may have to be made would be to include the boundary conditions using the areas created by the program, include interface conductance effects if desired, and incorporate any radiation couplings.

This Page Intentionally Left Blank

Section 3

PROBLEM SETUP \& PROGRAM LIMITATIONS

The first step in the development of a thermal math model is the creation of the nodal model on paper. Here the user can superımpose a nodal grid on the physical boundaries of the object to be analyzed. The Nodal Network Generator needs this first step as the engineer did in establishing a digital math model. The graphic representation of the nodal network must meet certain criterion before it can be used in conjunction with NNDIG. Consider Figure 1, a structure made up of a number of different materials. Each block shown (I - VI) represents a sector. This will be explained later. The geometry should first be laid out in a convenient orientation relative to a righthand Cartesian coordinate system. Because the Nodal Network Generator only analyzes regular three-dimensional shapes, we need only be concerned with the top view of the structure.

The external boundaries of the object should then be drawn to scale (Figure 2). Once the perımeter has been establıshed, the body itself should be broken down into sectors. Sectors are defined as homogeneous divisions of the body being analyzed and having isotropic properties within the sector bounds. The sector can have no more than 15 vertices and all angles must be convex, i.e., no internal angle can exceed 180°. The body itself can have no more than 20 sectors. The geometry displayed in Figure 2 was broken up into six sectors. All sectors have uniform thickness normal to the plane of the paper. Sectors I and II are made up of the same material (steel) and have identical properties as are sectors III and IV (aluminum). Sectors V (steel) and VI (alummum) have unique properties of their own. Notice that although Sectors I and II or III and IV have identical properties and would have met the homogeneous and isotropic rule as one sector, they had to be broken up into two independent sectors because an internal angle exceeded 180°.

With the sectors and sector vertices identified, it is now necessary to establish a network grid. The Nodal Network Generator is designed to set up rectangular and/or triangular nodes. The node boundaries are established by the grid size and its interaction with the physical boundaries of the model. The network grid is a system of lines

Fig 1. structure to be analyzed
parallel to the x and y axes that delineates the node boundaries of the body. The grid lines must be established running parallel to the x and y axis and will ultimately define the actual node size.

To establish a grid, the user must assure that:

- Each vertex will be intercepted by a grid line in both the x and y direction
- Each sector surface that is intercepted by a grid line must also be intercepted at that point by the orthogonal grid line. (This ensures that sloped boundaries of a sector are divided into triangular nodes and not trapezordal nodes)

FIG. 2 MODEL LAYOUT

- When employing the boundary option (Section 5), each sector must be divided at least once by a grid line in the primary plane of the body (x-y plane in Figure 2). This allows the program to "decide" where the boundary is located and, thus, where to place boundary nodes. It is inconsistent with the boundary option to allow a node to "see" boundary condition on opposite sides of a node. (This does not apply to the direction normal to the primary plane of the body because a one-layer model can be used with either option).

Figure 3 displays the step-by-step development of a nodal network. Note the incremental steps defined by the grid line locations in the x and y direction. All grid lines shown that have an asterisk indicate a grid line position that must be in the model. All non-asterisk lines are optional and at discretion of the user. Because it was stated previously that each vertex of a sector must have a grid line pass through it in both the x and y direction, when establishing the grid the user should first project lines parallel to both axes emanating from each vertex as is demonstrated in Figure 3 by the arrows shown. Grid lines $\mathrm{X} 1, \mathrm{X} 3, \mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 6, \mathrm{X} 9, \mathrm{Y} 4, \mathrm{Y} 6$, Y7, Y8, and Y9 were created this way. Note the Y7 projection crosses a skewed line of sectors V and VI, and, according to the rules previously stated, an orthogonal grid line must emanate from the intersection. This therefore established grid line X8. Lines Y2, Y3, and Y5 were put in to better define the analysis by the user. Note that the user included X2 to satisfy criterion from boundary option. As shown, depending on the shape of the model analyzed, the number of nodes created may be large just from required grid lines.

Once it has been established, the grid work (Figure 4) will represent the nodal boundaries of the model. Note by using this method all nodes are in line with one another, which is a necessary condition for the Nodel Network Generator.

Now that the model is established on paper, the user can access NNDIG and NNGEN to create an input data set to CAVE3 that contains all the network couplings and values of capacitance and conductance.

The Nodal Network software will provide the user with the option of placing nodes at the geometric centroid of the node or at a predescribed surface location. The program also provides the user with the ability to create a three-dimensional model, in which case the network developed will be mirrored down to a select number of layers (up to 10 layers). The nodes will be incremented and three-dimensional couplings will be established. All of these options will be described, but lead to another limitation. The program can currently create a model containing up to 500 nodes. Note the limitation on the amount of nodes created, maxımum number of sectors, and maximum amount of vertices per sector are totally arbitrary and were limited only to reduce the amount of computer core needed to run the program. Any one or all of these limitations can be increased by simply re-dimensioning the program.

FIG. 3 MODEL GRID CREATION

FIG. 4 GRID LAYOUT

Section 4

INPUT DATA - MANUAL OR DIGITIZED (NNDIG) SETUP

The input needed to create the digital thermal model is basically the description of the physical geometry, i.e. the coordinates (x and y) of all sector vertices, and the x and y position of the grid lines and the material properties, conductivity, the property card is repeated for sector II. The user must supply the number of

FIG 5. INPUT DATA FORMAT \& VARIABLE DESCRIPTIONS

FIG. 6 SAMPLE INPUT TO NNGEN (MANUAL)
vertices contaned in sector II, its density, specific heat, and conductivity. This card is followed by the coordinates of the vertices of sector III, and so on until you have mputted the material card and vertices for each sector of the model. Note when supplying the vertices, the user should repeat the first vertex of each sector as the last to close the body for plotting.

The input needed now is the x location of the first grid line followed by a zero. This is continued until all x grid locations are defined. The same procedure is used for the y grid location, except that 0 . is input first followed by the y coordinate of the grid location. The data file (Figure 6) is now ready for execution with NNGEN.

The above data file could have been automatically created in a fraction of the time using the digitizing option of the program. Figure 4 will again be used but this time in conjunction with the digitizer. An axis had to be drawn on the figure with reference point clearly denoted, as shown. Notice the grid tick points are marked on the respective axis. In this case we have nine grid marks in each direction. Note the number of grid points in the x direction does not have to equal the number of grid points in the y direction. The user should then affix the drawing to the digitizing table and access the program by typing at the Tektronix terminal: NNDIG (Figure 7).

```
nndig
PLEASE ENTER A TITLE FOR THE DATA FILE (60 CHAR - MAX)
3-d model for report
ENTER THREE(3) REF. PTS. (XRF(I),YRF(I),XRF(I))
AS DECIMAL NUMBERS SEP. BY COMMA
POINT 1>0.,26.,0.,
POINT 2J0.,0.,0.,
POINT 3) 30.,0.,0.,
DIGITIZE THESE THREE(3) REF. PTS.
DIGITIZE TWO(2) PTS. (LOWER-LEFT & UPPER RIGHT)
EACH HALF INCH AWAY FROM PICTURE FRAME
2165-046B
```

FIG. 7 SAMPLE TERMINAL SESSION NNDIG

The program then asks the user a number of prompts, the first being, "Enter a title for use as the first card in the data file." The program then calls for the reference points. As shown, the three points marked on Figure 4 were input at the terminal and then were digitized in the order they were input. The user merely placed the digitizing cursor to each point and recorded the data. He then placed the cursor on the remaining points and did the same. Once the three points were recorded, he pressed the carriage return to transmit them to the computer. This establishes the reference of the drawing, and any point recorded within these reference points will have a value based on these points. The user is then requested to digitize (same procedure as above) a point to the lower lefthand corner of the drawing outside the reference frame and the upper righthand corner. This is used to scale the drawing to the screen size and sample marks are denoted in Figure 4. Once accomplished the screen will be erased.

The program will then ask the user how many sectors are to be digitized, how many layers the model will have, and what is the overall thickness (depth in the plane of the paper) of the model. As shown in Figure 8 the model has six sectors and will be a three-dimensional model consisting of three distinct cuts with an overall thickness of 15 units. The program then asks the respective thickness of each layer. As shown, the layers will have unit thicknesses of $3 ., 5$. , and 7. , respectively. If they all had the same thickness or there were only one layer, a carriage return would have been sufficient and the program would automatically establish the correct thicknesses. This data is now used by the program to create the second and third cards of the data file.


```
AND MM:SR OF LATESS mND ONJROL THICXNESB
26,3.15..
EMTER THICNOESS OF EACH LOTER (1CP7.0)
i-S C.R. MLOE INDICPTES UNIONH THICWIESS
33..5..7..
2165-008B
```

FIG. 8 INPUT OF OVERALL PARAMETERS

The program then queries the user (Figure 9) for the density, specific heat, and conductivity of the sector to be digitized. Once recorded, the user can begin digitizing the vertices of the sector. The vertices must be recorded in a clockwise manner starting at any vertex. The user should (for plotting purposes) return to the vertex he started with to close the geometry, i.e., the first vertex will also be the last vertex recorded. Once it is digitized, the geometry should be transmitted (carriage return). If there are more than nine vertices, you should transmit (carriage return) at or before nine, then proceed to record the remainder, never exceeding groups of nine before transmitting. Once accomplished, the user should press a backspace once, the carriage return to indicate he is finished with this sector. This procedure is repeated until all sectors are digitized (Figures 9 through 14).

FIG. 9 DIGITIZE SECTOR I

The program will then ask the user to digitize the lines defınıng the subdivision along the x axis (Figure 15) that have been laid out on Figure 4. To do so as before, each point is recorded using the digitizing cursor and transmitted with the carriage return. Groups of up to nine recorded points may be stored before transmission is required (carriage return). Once complete, the user should press a backspace and carriage return to indicate this portion is finished. Figure 16 displays the same procedure for the y increments. Once completed (backspace then carriage return pressed), the screen will erase and a plot will be drawn of the sectors digitized (Figure 17). When the user is finished looking at the plot, a carriage return will erase the screen, and a data set will be established as shown in Figure 18.

FIG. 10 DIgitize sector il

FIG. 11 DIGITIZE SECTOR III

FIG. 12 DIGITIZE SECTOR IV

Fig. 13 DIGITIZE SECTOR V

FIG. 14 DIGITIZE SECTOR VI

FIG. 15 DIGITIZE x GRID

FIG. 16 DIGITIZE y GRID

2165-017B
FIG. 17 RESULTANT GEOMETRY PLOT

This Page Intentionally Left Blank

MODEL GENERATOR (NNGEN)

Once it has been created, the geometry data file must be fed to the model generation portion of the program where the user has two options he might employ. The user can create a nodal network with the node centers located at the geometric centroid or the user can opt to have all boundary nodes moved to the surface in a predetermined fashion that will be described later. Each option will culminate in the creation of a data set capable of running with the CAVE3 code.

Using the geometry data file just created (Section 4), the user can create a thermal model by accessing the network generation program (NNGEN). As demonstrated in Figure 19, the program was accessed and it queried for an input of tolerance, a mechanism provided for in the software to allow for inaccuracies when digitizing.

```
nngen
INPUT TOLERANCE E12.5
.1
ENTER NODE NO., COND NO., RAD NO., YOU WISH TO START WITH. IF 1 CR
DO YOU UISH TO SEE A PLOT OF THE INTERNAL NODE CONFIGURATION?
yes
2165-018B
```

FIG. 19 SAMPLE TERMINAL SESSION NNGEN

The routine establishes its bookkeeping scheme by looking for node centers that are in line with one another, i.e., common x or y coordinates. When digitızing, it is extremely difficult (and most unlikely) for the user to repeat a point exactly. An example is shown in Figure 18. The data set represented here is one that was produced by the digitizing portion of the program. Note any set of vertices of any sector. Most sectors will show repeat coordinates, i.e., a boundary that is parallel to etther
the x or y axis would create like x or y coordinates in two vertices. Note the first sector shows like x coordinates of 3.967 and 3.954 ; close but not exact. This error (0.013) was caused by the inability of the user to repeat exactly the x coordinate using the digitizing cursor. Although it is small, the error would have misaligned node centers causing the bookkeeping scheme to fail.

To overcome this, the program requires an input of tolerance which is used as a \pm buffer on node center to determine allowable node alignment. The tolerance has been made an input because it depends upon the scale of the geometry and node size. In any case, it should always be less than half the distance of the smallest x or y nodal increment. Because the tolerance is only used to bookkeep the orientation of the nodes, it does not alter the actual value of the node centers and therefore does not vary the dimensional parameters.

A value of 0.1 was inputted for tolerance (any value up to approximately 1.0 could have been used in this case). The program then questions the user as to a starting node number, conductance number, and radiation number. This option was provided to allow the user to build a model in steps. In the terminal session provided, the user entered a carriage return indicating he wanted all numbering to start at 1. The routine then establishes the nodal arrangement of the geometry. Starting from the lower lefthand corner of the drawing, the routine establishes consecutive numbering of nodes and identifies any voids in the geometry, as demonstrated in Figure 20. The rectangular node centers are placed at the geometric centroid of the nodal area. In the case of triangular nodes, the node center is temporarily placed at the midpoint of the hypotenuse. This is only done for bookkeeping purposes for node alignment. At this point the software has established the bookkeeping of the model, 1.e., it knows which nodes see which nodes, which nodes see void (boundary) for all three dimensions.

The program then asks the user whether he wants to see a plot of the internal node configuration, i.e., with all node centers located at the geometric centroid. Again note although it will pictorially be represented at the midpoint on the hypotenuse, the triangular node will actually be placed at its centroid for computations. As shown in Figure 19 the user responded YES, resulting in Figures 20-22. Note in Figure 20, the layer number is denoted. In this case, the user is creating a three-layer model. The numbering begins in the lower lefthand corner and increments to the right. The node centers are in line with one another and the node boundaries are identified. Note also the void in the model and that the software eliminated it from the sequencing.

LAYER MUMBER

+10 ${ }^{\text {d }}$ +10		+108	+109			
$+9{ }^{+9}$		+100	$+101$	+102		+105
$+9+9$			$+93$	$+94$	$\begin{array}{r} 1 \\ +9 \$ \end{array}$	
$+8\}+8$				$+87$	$+8$	$+89$
$+8 \varphi+8$				+82	$+8$	$+84$
$+72+7$	$+74$	$+75$	$+76$	$+77$	+ 7	+ +79
$+64+65$	$+66$	$+67$	$+68$	$+69$	+ 71	$+71$
$+51+5$	$+58$	+ 59	$+68$	+ +61	+64	\% +63

Fig. 21 internal nodes - LAYER 2

2165-022B
FIG. 22 INTERNAL NODES - LAYER 3

Also note nodes 41, 42 and 48, 49. Their positions are superimposed on one another again only for bookkeeping. Each node will go into its respective triangle at the geometric centroid. Once the plot is completed, the user must hit the carriage return to reactivate the routine, at which time the plot will be erased. In this case, once the first layer is completed and erased, the second layer is plotted (Figure 21). Note the first node plotted is 56 , one greater than the last previous node plotted in layer one. The nodes are sequenced exactly as previously done and the plot is labeled LAYER 2. Hitting the carriage return plots the third and last layer (Figure 22), labeled as before, this time starting with node 111 and ending with 165.

Refer back to the option to set the starting node number, conductance, and radiation links for the demonstration included in Figures 23-25. Here the user chose to start numbering the nodes at 21 , the conductance block at 45 , and the radiation block at 37. As shown in Figure 24, the first node presented in numbered 21. In the data set created with the actual couplings (which will be discussed fully later), the first conductance number would be 45 and the first radiation number, 37. This is extremely useful when you are building a model in steps.

```
nngen
INPUT TOLERANCE E12.5
.1
ENTER NODE NO.. COND NO.. RAD NO., YOU WISH TO START UITH. IF 1 CR
21,45,37,
DO YOU UISH TO SEE A PLOT OF THE INTERNAL NODE CONFIGURATION?
yes
2165-0238
```

FIG. 23 INTERNAL NODES EXTENDED NUMBERING SCHEME

The program then provides a rotate option for the user which allows the user to see graphically an orthogonal view of the network. The program queries the user as to how many layers he or she wishes to see and the layer numbers - (starting from top to bottom). As shown, the user in this case chose three layers: 1, 4, and 7 (Figure 26). The results are shown in Figures 27-29. Compare Figure 27 with Figures 20,21 , and 22 . Note the rotation that took place. Similarily with Figures 27-29 and the same figures. Note also that the layer numbering is from top to bottom.

LAYER NUMBER 1

+7i +71		$+73$	$+74$			
$+6 \frac{1}{1}+6$		$+65$	$+66$	$+67$	1	+70
$+5 \$+5 \phi$			$+58$	$+59$	$+66$	
$+5 i+5$				$+52$	$+5$	$+54$
$+4 \frac{1}{5}+16$				$+47$	$+48$	$+49$
$+37+3$	+39	$+40$	$+41$	$+42$	$+4$	$43+44$
$+29+3$	+31	+ 32	$+33$	+ 34	+ 3	15 +36
$+21+21$	+23	+ 24	$+25$	+ 26	$+2$	$1+28$

2165-024B
FIG. 24 INTERNAL NODES EXTENDED NUMBERING SCHEME - LAYER 1

LAYER NUMBER a

FIG. 25 INTERNAL NODES EXTENDED NUMBERING SCHEME - LAYER 2

FIG. 26 ROTATE OPTION

LAYER NUMBER 1

LAYER NUMBER 7

2165-029B
FIG. 29 ROTATE PLOT - LAYER 7

Upon hitting a carriage return the user will erase the screen and will be asked whether he wants to employ the boundary option (Figure 30). In this case, the user replied NO and was asked whether he wanted to create a CAVE3 input file. Once the user responds YES, the program has established the entire bookkeeping scheme of the model in all dimensions, i.e., it knows that node 20 (Figure 20) sees node 19 and 21 in the x direction and node 12 and a boundary in the y direction. It also knows that node 20 sees node 75 (Figure 21) and a boundary in the z direction. It has computed the conductance links to all nodes (other than boundary) using the distances referenced from the node centers. It has computed all capacitances and established radiation areas (all areas to boundary). See Section 6 for a description of coupling computation.

The program then asks the user for a control card and a series of title cards (up to four lines). If he has less than four, the user need only hit a carriage return for the next line to signal the program that the title entry is finished. The program then requests the START, DTIME, FINAL TIME, and SIGMA (Stephan Boltzman Constant) for execution and the initial temperature of iterated nodes.

The program then provides the user with the ability to create the convective boundary links. The user will be asked successively for the convective heat transfer coefficient for $\pm x$ direction $\pm y$ direction and $\pm z$ direction and the heat transfer coefficient for any diagonal boundary surfaces (hypotenuse). A carriage return indicates zero heat transfer. As demonstrated in Figure 30, the user indicated that a 100. $\mathrm{BTU} / \mathrm{hr} \mathrm{ft}^{2} \mathrm{~F}$ coefficient was to be applied to any boundary surface facing the positive x direction (see Section 6). There should be a zero coupling to the negative x direction. For the y direction he chose a zero coupling to positive y and $200 \mathrm{BTU} / \mathrm{hr} \mathrm{ft}^{2} \mathrm{~F}$ to the negative y direction. The user also indicated a zero coupling in both z directions and any diagonal (carriage return with no response indicates zero couplings). In Section 6 the user can see a description of how the couplings are created. Briefly each direction $+\mathrm{x},-\mathrm{y}$, etc., is given a specific boundary node number, i.e., positive $\mathrm{x}, 993$, negative $\mathrm{x}, 994$; positive $\mathrm{y}, 991$; etc. In checking the couplings established in a partial output data set (Figure 31), note that there are no couplings to node 991 $(+\mathrm{y}), 994(-\mathrm{x}), 995$ (hypotenuse), and 998 and $999(\pm \mathrm{z})$.

```
DO YOU WISH TO USE THE BOUNDARY OPTIONP
nO YOU WANT TO CREATE A CAUE3 INPUT FILE?
yes
ENTER THE CAUE3 CONTROL CARD (I5)
(NUMBND,NUMITR,NUMCON,NUMRAD,NUMNOD,NUMFLX,NSTR,NEUALU, IDIAG, IFLUX)
4,165,800,242,999,0,15000,5,0,0,
ENTER TITLLE CARDS 4 MAX. AFTER LAST CARD HIT CAR. RET.
    test
            of
                nngen
ENTER START TIME,DTIME,FINAL TIME,SIGMA
0.0.1,1.,1.714e-8,
ENṪER'INÍTIAL TEMPERATURE OF ITERATED NODES
50.,
ENTÉR CONUECTING HEAT TRANSFER COEF FOR X DIRECTION,PLUS,MINUS
100.0.
ENTER CÓNUECTING HEAT TRANSFER COEF FOR Y DIRECTION,PLUS,MINUS
0.,200.
ENTER CONUECTING HEAT TRANSFER COEF FOR Z DIRECTION,PLUS,MINUS
ENTER CONUECTING HEAT TRANSFER COEF FOR HYPOTENUSE
2165-030B
```

FIG. 30 CREATION OF INPUT FILE TO CAVE3

$\begin{aligned} & 11100 \\ & 22200 \end{aligned}$						CONDUCTANCE	BLOCK
0	1	1	9	8.165 E			
0	2	1	2	7.7898	01		
0	3	2	10	8.165 E			
0	4	2	3	6.1728	01		
0	5	3	11	1.244E			
-	6	3		5.263 B			
0	7	4	12	1.173E	02		
0	8	4	5	7.934 E	01		
0	9	5	13	9.6778			
0	10	5		1.975E			
0	11	6	14	4.800 E	02		
0	12	6	7	2.978E	02		
0	13	7	15	4.8008			
0	14	7		2.676E			
0	15	8		5.883 E	02		
0	16	9		1.0238			
-	-	-	-	-			
-	-	-	-				
-	-	-	-				
-	-	-	-	-			
-	-	-	-	-			
0	356	107	161	5.819 F			
0	357	108	162	1-443E			
-	358	1	992	1.2058	03		
0	359	2	992	1.205 E	03		
0	360	3	992	1.836 E			
0	361	4		1.73 0E	03		
0	362	5		3-0128	03		
0	363	6	992	1.494 E	03		
0	364	7	992	1-494E			
0	365	8		1.8318			
0	366	8		5.79 3R			
-	367	16	993	6.159 R	02		
0	368	24	993	3-3818			
0	369	26	993	1.026 E			
0	370	29	993	1.026 B	03		
-	371	31	993	1.063 E	03		
0	372	34	993	1.0638			
0	373 374	36	993	9.054 E			
0	374	38	992	3.012 L			
0	375	42	993	9.0548			
0	376	44	993	7.2458			
0	377	49	993	7.2458			
-	-	-	-	-			
-	-	-	-	-			
$2165 \cdot 031 \mathrm{~B}$		-	-	-			

FIG. 31 SAMPLE OUTPUT DISPLAYING BOUNDARY NODES (SHEET 1 OF 2)

FIG. 31 SAMPLE OUTPUT DISPLAYING BOUNDARY NODES (SHEET 2 OF 2)

Following the conduction block, the program supplies a radiation block which contains the link bookkeeping and the value of the node surface area exposed to the boundary. This block can be replaced with the actual radiation couplings when computed. A dummy block is supplied for Heat Sources where the user can supply the needed information. This block is followed by a Conductance Area Constant Block representing the $A / \Delta x$ term in computing the conductance link. This term is extremely useful when the user has a condition of changing properties. The data supplied is the conductance number, the constant values from the first and second nodes listed for that particular conductance number, and the sector number of each node. An example of the output is shown in Figure 32.

The final block of data is a dummy table to allow the user to supply one if needed. At this point the program will establish an output file on the system, and it will be in a format conductive to running CAVE3. The nodal arrangement will be that for all internal nodes. A segmented sample (because of its large size) is presented in Figure 33.

Figure 34 represents the second option provided, i.e., the boundary option. Had the user responded YES to the boundary option question, the program would have established all thermal parameters based on boundary node center locations. Figures 35 through 37 represent plots of the boundary option used on the model shown in Figure 3. A description of the boundary node conductance and orientation is described in Section 6. Figure 35 is identical to Figure 20 except any node exposed to a boundary is moved to the surface. The bookkeepıng is identical but, when computing the conductance, a new conductive distance is used based upon its location relative to the node it sees (see Section 6). The program performs identically as before and establishes an output data file ready for input to the CAVE3 code.

FIG. 32 SAMPLE OUTPUT DISPLAYING CONDUCTION CONSTANT

FIG. 33 SAMPLE OUTPUT FILE (SHEET 1 OF 3)

FIG. 33 SAMPLE OUTPUT FILE (SHEET 2 OF 3)

FIG. 33 SAMPLE OUTPUT FILE (SHEET 3 OF 3)

```
DO YOU WISH TO USE THE BOUNDARY OPTION?
yes
DO YOU WISH TO SEE A PLOT OF THE BOUNDARY NODE CONFIGURATION? yes
2165-037B
```

FIG. 34 BOUNDARY NODE OPTION

This Page Intentionally Left Blank

Section 6

DETERMINATION OF COUPLINGS

The units of length and area are based on the model dimensions in the input file. Consistency of units is the responsibility of the user. Both conductance couplings and radiating areas are calculated by the program.

6.1 CONDUCTANCE (K)

6.1.1 Rectangular Nodes

6.1.1.1 Internal - The determination of conductive couplings is calculated as $K=k A / L$ where A is the cross-sectional area between nodes, and L is the distance between centroids.
6.1.1.2 Boundary Option - The conductive coupling calculation is the same as that for internal nodes except that the additional length out to the boundary of surface nodes is taken into account. This approach is applied in all three dimensions.

6.1.2 Triangular Nodes

6.1.2.1 Internal - The node center is assumed to be at the centroid of the triangle. The determination of conductance is illustrated in Figure 38.

FIG. 38 DETERMINATION OF CONDUCTANCE LINKS - TRIANGLE TO RECTANGLE

For triangular nodes, the cross-sectional area is the average of the area at the node surface and that at the centroid parallel to the node surface.

$$
\begin{aligned}
& A_{\text {avg }}=\frac{A_{c}+A_{s}}{2}=5 / 6 A_{s} \\
& K_{1}=\frac{\mathrm{kA}}{\mathrm{~L}}=\frac{\mathrm{k}_{1}(5 / 6(\Delta \mathrm{Y}) \mathrm{t})}{\Delta \mathrm{X}_{1} / 3}=5 / 2 \mathrm{k}_{1} \frac{\Delta \mathrm{Yt}}{\Delta \mathrm{X}} \\
& \mathrm{~K}_{2}=\frac{\mathrm{kA}}{\mathrm{~L}}=\frac{\mathrm{k}_{2} \Delta \mathrm{Yt}}{\Delta \mathrm{X}_{2} / 2}=\frac{2 \mathrm{k}_{2} \Delta \mathrm{Yt}}{\Delta \mathrm{X}} \\
& \mathrm{~K}_{12}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2} *}{\mathrm{~K}_{1}+\mathrm{K}_{2}}
\end{aligned}
$$

Another internal triangular node configuration is illustrated in Figure 39. In this case the average cross-sectional area between the centroid and the sloped boundary is:

$$
A=5 / 6 \quad\left(\sqrt{(\Delta X)^{2}+(\Delta Y)^{2}}\right) t
$$

and

$$
L_{1 \text {-interface }} \quad=1 / 2\left(1 / 3 \sqrt{(\Delta X)^{2}+(\Delta Y)^{2}}\right)=1 / 6 \sqrt{(\Delta X)^{2}+(\Delta Y)^{2}}
$$

thus

$$
K_{1}=\frac{k_{1} A}{L}=\frac{k(5 / 6 \sqrt{ }) t}{1 / 6 \sqrt{ }}=5 \mathrm{kt}
$$

and as before

$$
\mathrm{K}_{12}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}
$$

[^0]

2165-042B
FIG. 39 DETERMINATION OF CONDUCTANCE LINKS - TRIANGLE TO TRIANGLE

It should be noted that this representation is accurate for isosceles triangular nodes. For triangular nodes with a large aspect ratio (e. g., greater than 2:1) this representation may not give adequate results so that a more nearly square grid in desireable when using triangular nodes.
6.1.2.2 Boundary Option - the conductive coupling calculation is the same as for internal nodes except that the additional length out to the surface or corner of the node is taken into account. In each case the average cross-sectional area taken over the length L is used. Figure 40 illustrates the calculation details for the possible configurations.

6.2 RADIATION

As an aid to the user, exposed surface areas of the nodes are set up in the radiation coupling block. These areas can either be modıfied or deleted. Seven fictitious boundary node designations have been used to allow rapid identification of node surfaces. These boundary nodes are set up as the second node number in the radiation coupling format. The boundary nodes are defined in the following table:

Avg x-direction area $=A_{x}$
$A_{x}=3 / 4 \Delta y * t$
$t=$ layer thickness
$K_{1 x}=\frac{k\left[A_{x}\right]}{\Delta x / 2}=1.5 \mathrm{k} \frac{\Delta y * t}{\Delta x}$
also $K_{1 y}=\frac{k A_{y}}{\Delta y / 2}=1.5 k \frac{\Delta x * t}{\Delta y}$
$A_{x}=3 / 4 y * t$
$A_{y}=3 / 4 x * t$
$K_{1 x}=1.5 k \frac{\Delta y * t}{\Delta x}$
$K_{\uparrow y}=1.5 \mathrm{k} \frac{\Delta x * t}{\Delta y}$

$$
\begin{aligned}
& A_{x y z} \text { avg }=\left[1 / 2 \sqrt{(\Delta x)^{2}+(\Delta y)^{2}}\right] t \\
& L=1 / 2 \sqrt{(\Delta x)^{2}+(\Delta y)^{2}} \\
& K_{1 x y}=\frac{k A_{x y z \text { avg }}=k t}{L}
\end{aligned}
$$

FIG. 40 DETERMINATION OF CONDUCTANCE LINKS - BOUNDARY NODES

DESIGNATION

991

992
993
994
995
998
999

+ y side $x z$
- y side xz
$+x$ side yz
- x side yz
$\mathrm{x}-\mathrm{y}$ (hypotenuse) xyz
- z side xy
$+z$ side $x y$

This Page Intentionally Left Blank

BOUNDARY NODE ORIENTATION

When the boundary option is employed, the internal node configuration is altered to a prescribed surface configuration. The actual location of the surface node depends on the boundary orientation with respect to the node in question. Figure 41 displays the movement of the internal node to the surface. The figure is broken down into $6(\mathrm{~A}-\mathrm{F})$ representative surface nodes. "A" represents an internal node surrounded on all sides but one. The node is then placed at the midpoint of the surface exposed to boundary when the boundary option is activated. Although only one orientation of " A " is shown, the movement could have been in any direction, i.e., the boundary could have been on the bottom (in which case the node would have been placed there), etc.
"B" represents a node surrounded on two adjacent sides and the node is placed at the corner. "C" represents a triangular node the hypotenuse of which sees boundary. The node is placed at the midpoint of the hypotenuse. " D " displays a triangular node bases of which are exposed to boundary, in which case the node is placed at the corner. "E" and "F" represent triangular nodes where only one base is exposed to boundary, in which the node is placed at the midpoint of that base.

Figure 42 displays improperly designed nodes that cannot employ the boundary option. When any of these arrangements are encountered, the program will leave the internal node unaltered and write a message in the output file warning the user that the node was not altered.

FIG 41 BOUNDARY NODE PLACEMENT

FIG. 42 IMPROPER NODE ORIENTATION

This Page Intentionally Left Blank

Section 8
REFERENCES

1. J. Palmieri and K. Rathjen, "CAVE3: A General Transient Heat Transfer Computer Code Utilizing Eigenvectors and Eigenvalues," NASA CR145290, Feburary 1978.

End of Document

[^0]: *Note that the displacement between nodes in the y-direction has been neglected.

