General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA TM-77007

ORIGINAL PART IS OF PUOR QUESTY

A STUDY OF THE STRUCTURE AND PROPERTIES OF CERTAIN ALUMINIDES

M. Ye. Drits, E. S. Kadaner, A. A. Vashchenko

Translation of "Issledovaniye struktury i svoystv nekotorykh alyuminidov". Legkie Splavy i Metody Ikh Obrabotki, (Light Alloys and Their Preparation), Edited by M.E. Drits, Moscow, "Nauka" Press, 1968, pp. 146-150.

(NASA-TM-77007) A STUDY OF THE STRUCTURE AND PROPERTIES OF CERTAIN ALUMINIDES (National Aeronautics and Space Administration) 12 p HC A02/MF A01 CSCL 14D

N83-21039

Unclas G3/24 09334

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546 DECEMBER 1982

1. Research No. NASA TM-77007 1. Title and babilite A STUDY OF THE STRUCTURE AND PROPERTIES OF CERTAIN ALUMINIDES 1. Awhold N. Ye. Drits, E.S. Kadaner, and A.A. Vashchenko 1. Fullaming Organization Report No. N. Ye. Drits, E.S. Kadaner, and A.A. Vashchenko 1. Converte of Genium. SCITRAN Dox 5456 Santa Barbara, CA 910A 2. Syristics Agenty News and Address Washington, D.C. 20546 3. Supplementary Notes Translation of "Inseledovaniye struktury i svoystv nekotorykh alyumindov". Legkie Splavy i Metody Ikh Obrabotki, (Light Alloys and Their Preparation), Edited by M.E. Drits, Moscow, "Nauka" Press, 1968, pp. 146-150. 13. Abstract Experimental data are presented on the structure and heat resistance of the aluminides ZrAl ₂ , Fe ₂ Al ₂ and Co ₂ Al ₂ , considering sp. wt., type of combination, and resistance to oxidn. at high temperatures. Co ₂ Al ₂ possesses a relatively high heat of formation, attributed to its high heat-resistance characteristics. 17. Key World (Scientic by Authorid) 18. Distributed This people The Act of Paper 12. Page 11. No. of Paper		OF PO	OK G	STANDARD TITLE PAGE	
A STUDY OF THE STRUCTURE AND PROPERTIES OF CERTAIN ALUMINIDES N. Ye. Drits, E.S. Kadaner, and A.A. Vashchunko Performing Organization Report No. N. Ye. Drits, E.S. Kadaner, and A.A. Vashchunko Performing Organization Report No. N. Ye. Drits, E.S. Kadaner, and A.A. Vashchunko Performing Organization Report No. N. Ye. Drits, E.S. Kadaner, and A.A. Vashchunko Performing Organization Report No. N. Ye. Drits, E.S. Kadaner, and A.A. Vashchunko Performing Organization Report No. N. Ye. Drits, E.S. Kadaner, and A.A. Vashchunko Performing Organization Report No. N. Ye. Drits, N. Ye. 3542 13. Type of Report and Paried Covered Translation 14. Specifing Agency Code 15. Supplementary Notes Translation of "Issledovaniye struktury i svoystv nekotorykh alyuminidov". Legkie Splavy i Metody Ikh Obrabotki, (Light Alloys and Their Preparation), Edited by M.E. Drits, Moscow, "Nauka" Press, 1968, pp. 146-150. 16. Abstract Experimental data are presented on the structure and heat resistance of the aluminides Zral, Pe ₂ Al ₂ and Co ₂ Al ₂ , considering sp. wt., type of combination, and resistance to oxidn. at high temperatures. Co ₂ Al ₃ possesses a relatively high heat of formation, attributed to its high heat-resistance characteristics. 17. Key World (Scientid by Authorid) 18. Distributed Missingle — Unlimited 19. Issued County Cleanit, for this people St. No. of Pages 12. Page	NASA TM-77007			3. Recipioni's Catalog No.	
As a considering Presented on the structure and heat resistance of the aluminides ZrAl3, Fe, Aliter by M. E. Drits, and the aluminides ZrAl3, Fe, Aliter by M. E. Drits, Moscow, "Nauka" Press, 1968, pp. 146-150. 19. Abstreet Experimental data are presented on the structure and heat resistance of the aluminides ZrAl3, Fe, Aliter by M. E. Drits, and resistance to oxide. at high temperatures. Co, Al3, considering sp. wt., type of combination, and resistance to oxide. at high temperatures. Co, Al3, possesses a relatively high heat of formation, attributed to its high heat-resistance characteristics. 19. North Glessif, led his report 20. Descrits Cleant, led his peepl 21. Price Management 22. Price Management 23. Descrits Cleant, led his peepl 22. Price Management 23. Descrits Cleant, led his peepl 23. Price Management 24. Price Management 25. Price Management					
M. Ye. Drits, E.S. Kadaner, and A.A. Vashchenko 7. Forlamma, Organization Name and Address SCITRAN Box 5456 Santa Barbara, CA 910A 2. Springing Apony More and Address Washington, D.C. 20546 3. Supplemental More and Address Translation Translation of "Issledovaniye struktury i svoystv nekotorykh alyuminidov". Legkie Splavy i Metody Ikh Obrabotki, (Light Alloys and Their Preparation), Edited by M.E. Drits, Moscow, "Nauka" Press, 1968, pp. 146-150. 4. Abstract Experimental data are presented on the structure and heat resistance of the aluminides ZrAl, Fe, Al, and Co, Al, considering sp. wt., type of combination, and resistance to oxide. at high temperatures. Co, Al, possesses a relatively high heat of formation, attributed to its high heat-resistance characteristics. 17. Key Verds (Edicated by Authorits) 18. Describbines Statement Unclassified - Unlimited 19. Security Cleans, for this report Unclassified - Unlimited			PROPERTIES		
and A.A. Vashchenko 7. Parlamman Organisation Name and Address SCITRAN Box 5456 Santa Barbara, CA 9108 2. Synthing Apeny None and Address National Astronautics and Space Administration Washington, D.C. 20546 3. Supplementary Notes Translation of "Issledovaniye struktury i svoystv nekotorykh alyuminidov". Legkie Splavy i Metody Ikh Obrabotki, (Light Alloys and Their Preparation), Edited by M.E. Drits, Moscow, "Nauka" Press, 1968, pp. 146-150. 4. Abstract Experimental data are presented on the structure and heat resistance of the aluminides ZrAl ₂ , Fe,Al ₂ and Co,Al ₃ , considering sp. wt., type of combination, and resistance to oxidn. at high temperatures. Co,Al ₃ possesses a relatively high heat of formation, attributed to its high heat-resistance characteristics. 17. New Words (Edicated by Authorics) 18. Orient button Statement Unclassified - Unlimited 19. Security Classified - Unlimited	7. Authoria)			8. Performing Organization Report No.	
Performing Organisation Name and Address SCITRAN Box 5456 Santa Barbara, CA 91108 2. Syntaining Agency Horse Washington, D.C. 20546 2. Syntaining Agency Horse Translation of "Issledovaniye struktury i svoystv nekotorykh alyuminidov". Legkie Splavy i Metody Ikh Obrabotki, (Light Alloys and Their Preparation), Edited by M.E. Drits, Moscow, "Nauka" Press, 1968, pp. 146-150. 4. Abstreet Experimental data are presented on the structure and heat resistance of the aluminides ZrAl ₃ , Fe,Al ₂ and Co,Al ₃ , considering sp. wt., type of combination, and resistance to oxidn. at high temperatures. Co,Al ₂ possesses a relatively high heat of formation, attributed to its high heat-resistance characteristics. 17. Key Words (Sciented by Authorits) 18. One-butes Stotemen Unclassified - Unlimited 19. Security Classif, (of this report) 20. Security Classif, (of this people) 21. Price 19. Security Classif, (of this people) 22. Price 19. Security Classif, (of this people) 23. Price 19. Security Classif, (of this people) 24. Price 19. Security Classif, (of this people) 25. Price 19. Security Classif, (of this people) 26. Price 27. Price 28. Price 28. Price 29. Price 29. Price 20. Price 21. Price 22. Price 23. Price 24. Price 25. Price 26. Price 27. Price 28. Price 28. Price 29. Price 20. Price 20. Price 20. Price 20. Price 20. Price 20. Price 21. Price 21. Price 22. Price 23. Price 24. Price 25. Price 26. Price 27. Price 28. Price 28. Price 29. Price 29. Price 20. Price 20. Price 20. Price 20. Price 20. Price 21. Price 21. Price 22. Price 23. Price 24. Price 25. Price 26. Price 27. Price 28. Price 28. Price 29. Price 29. Price 20. Price 20. Price 20. Price 20. Price 20. Price 21. Price 21. Price 22. Price 23. Price 24. Price 25. Price 26. Price 27. Price 28. Price 28. Price 29. Price 29. Price 20. Price	and A.A. Vashchenko		1	10. Work Unit No.	
SCITAN Box 5456 Santa Barbara, CA 93108 Description Assembly None and Address and Space Administration Washington, D.C. 20546 Supplementary Notes Translation of "Issledovaniye struktury i svoystv nekotorykh alyuminidov". Legkie Splavy i Metody Ikh Obrabotki, (Light Alloys and Their Preparation), Edited by M.E. Drits, Moscow, "Nauka" Press, 1968, pp. 146-150. Abstract Experimental data are presented on the structure and heat resistance of the aluminides ZrAl3, Fe2Al5 and Co_Al0, considering sp. wt., type of combination, and resistance to oxidn. at high temperatures. Co_Al0 possesses a relatively high heat of formation, attributed to its high heat-resistance characteristics. 17. Key Words (Selected by Authority) 18. Otherbotton Striemant Unclassified - Unlimited 19. Secontry Classif, (of this report) 20. Secontry Classif, (of this pope) 21. Page 12. Page 12. Page 13. Page 14. Page 15. Page 15					
Santa Barbara, CA 93108 Santa Barbara, CA 93108 Supering Aponty Norse and Address Washington, D.C. 20346 Supering Aponty Norse Translation of "Issledovaniye struktury i svoystv nekotorykh alyuminidov". Legkie Splavy i Metody Ikh Obrabotki, (Light Alloys and Their Preparation), Edited by M.E. Drits, Moscow, "Nauka" Press, 1968, pp. 146-150. A Abstract Experimental data are presented on the structure and heat resistance of the aluminides ZrAl ₃ , Fe ₂ Al ₅ and Co ₂ Al ₆ , considering sp. wt., type of combination, and resistance to oxiden at high temperatures. Co ₂ Al ₆ possesses a relatively high heat of formation, attributed to its high heat-resistance characteristics. 17. Key Yorde (Sciented by Authorid) 18. Oterbuten Science Unclassified - Unlimited	SCITRAN		·		
Washington, D.C. 20546 1. Implementary Notes Translation of "Issledovaniye struktury i svoystv nekotorykh alyuminidov". Legkie Splavy i Metody Ikh Obrabotki, (Light Alloys and Their Preparation). Edited by M.E. Drits, Moscow, "Nauka" Press, 1968, pp. 146-150. A Abstract Experimental data are presented on the structure and heat resistance of the aluminides ZrAl ₃ , Fe ₂ Al ₃ and Co ₂ Al ₃ , considering sp. wt., type of combination, and resistance to oxide at high temperatures. Co ₂ Al ₃ possesses a relatively high heat of formation, attributed to its high heat-resistance characteristics. 17. Key Yords (Schooled by Authorits) 18. Distributed Stributed Unclassified - Unlimited 19. Security Classif, (of this report) 20. Security Classif, (of this report) 21. Page 10.					
Washington, D.C. 20546 14. Specially Appears Code Translation of "Issledovaniye struktury i svoystv nekotorykh alyuminidov". Legkie Splavy i Metody Ikh Obrabotki, (Light Alloys and Their Preparation), Edited by M.E. Drits, Moscow, "Nauka" Press, 1968, pp. 146-150. Abstract Experimental data are presented on the structure and heat resistance of the aluminides ZrAl3, Fe,Al5 and Co,Al2, considering sp. wt., type of combination, and resistance to oxidn. at high temperatures. Co,Al2 possesses a relatively high heat of formation, attributed to its high heat-resistance characteristics. 17. Key Vorda (Scheeled by Authoriti) 18. Distribution Statement Unclassified - Unlimited 19. Security Classif. (of this page) 20. Security Classif. (of this page) 21. Page	2. Spensoring Agency Home and Ad National Aeronautic	dress s and Space A	dministration		
Translation of "Issledovaniye struktury i svoystv nekotorykh alyuminidov". Legkie Splavy i Metody Ikh Obrabotki, (Light Alloys and Their Preparation), Edited by M.E. Drits, Moscow, "Nauka" Press, 1968, pp. 146-150. Abtract' Experimental data are presented on the structure and heat resistance of the aluminides ZrAl3, Fe,Al5 and Co,Al, considering sp. wt., type of combination, and resistance to oxidn. at high temperatures. Co,Al, possesses a relatively high heat of formation, attributed to its high heat-resistance characteristics. 17. Key Wards (Edwards by Authoria) 18. One-buten Statement Unclassified - Unlimited 19. Secondry Closel, (ed Als Appen) 20. Page 19. Pa				14. Spensering Agency Code	
Unclassified - Unlimited 19. Security Classif. (of this report 20. Security Classif. (of this page) 20. Ho. of Pages 22. Pages Unclassified - Unlimited	Experimental dat resistance of the Co ₂ Al ₀ , consider resistance to ox a relatively high	e aluminides ing sp. wt. idn. at high h heat of fo	s ZrAl ₃ , Fe ₂ , type of continuous temperature or mation, at	Al ₅ and imbination, and res. Co ₂ Al ₀ possesses	
Unclassified - Unlimited 19. Security Classif. (of the report 20. Security Classif. (of the page) 20. Pages 11. Pag				•	
Unclassified - Unlimited 19. Security Classif. (of this report 20. Security Classif. (of this page) 20. Ho. of Pages 22. Pages Unclassified - Unlimited					
Unclassified - Unlimited 19. Security Classif. (of this report 20. Security Classif. (of this page) 20. Ho. of Pages 22. Pages Unclassified - Unlimited					
Unclassified - Unlimited 19. Security Classif. (of this report 20. Security Classif. (of this page) 20. Ho. of Pages 22. Pages Unclassified - Unlimited					
19. Security Classif, (of this report) 29. Security Classif, (of this page) 29- No. of Pages 22. Price	17. Key Words (Selected by Author(ci)		10. Distribution Statement		
line) and filed			Unclassi	fied - Unlimited	
line) and filed					
	19. Security Classif. (of this report			21- No. of Pages 22. Price	

OF POOR QUALITY

A STUDY OF THE STRUCTURE AND PROPERTIES OF CERTAIN ALUMINIDES

M. Ye. Drits, E. S. Kadaner, A. A. Vashchenko

The varied and valuable complex of physico-chemical /116* properties possessed by metallic compounds has conditioned their possibility of practical application as materials having special physical properties, as well as the bases for structural heat-resistant alloys [1-7].

However, the application of such materials is for the most part inhibited due to the high brittleness of the metallides not only at room temperature, but also at elevated temperatures.

Outstanding in its properties among the metallic compounds is the class of aluminides, which are lightweight and have a relatively high melting point. Some of them are characterized by a high heat resistance and scaling resistance, and possess superconductive and other special physical properties. This class of metallides has not yet been sufficiently studied. The available data on the physical and mechanical properties are extremely limited and difficult to compare due to the differences in methods of producing and studying the compounds [8-10].

The goal of this work included the accumulation of experimental data on the structure and heat resistance of aluminides ZrAl₃, Fe₂Al₅, Co₂Al₉.

The available literary data on the properties of these compounds are presented below.

^{*} Numbers in margins indicate foreign pagination.

Properties	ZrAl3	Fe2Al5	Co ₂ A1 ₉
Aluminum content, weight %	47.01	54.71	67.32
Fusion temperature, °C	1580	1173	946
Specific weight, g/cm ³	4.11	par 144	3.46
Crystalline structure	Tetra- gonal	Monoclinic	Monoclinic
Character of compound formation	Congruent	Congruent	By peritectic reaction
Heat of formation, kcal/mole	ères inni	6.4	38.5
Electrical resistance, mkom·cm	17	plane galan	
Microhardness at room temperature kG/mm ²	. 560	1000	735
Chemical stability			
Solubility of ther elements in compound			High solubili of Fe, Ni, significant solubility

of Si.

In selecting the indicated objects of study, consideration was also given to such characteristics as the specific weight, fusion temperature, character of compound formation, resistance to oxidation during heating and others, as well as to the practical interest which these compounds may have individually or as reinforcement phases in aluminum alloys.

The compounds $ZrAl_3$ and Fe_2Al_5 have relatively high melting points, possess congruent melting points, and their specific weight is on the order of 4 g/cm^3 . The compound Co_2Al_9 with specific weight of 3.46 g/cm³ is formed according to the peritectic reaction. As compared with most other aluminides, compound Co_2Al_9 differs in its high heat of

formation, which makes it possible to rely upon its high refractory characteristics.

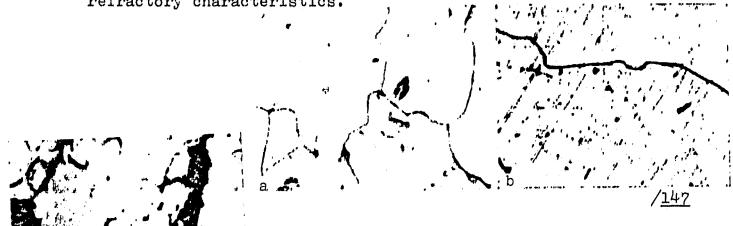


Fig. 1. Structure of aluminides in a cast state, x340.

a - ZrAl₃ (55.2% Zr); b - Fe₂Al₅ (42.9% Fe); c - Co₂Al₉ (30.75% Co).

A study of the properties of the indicated metallic compounds is evidently good not only for clarifying their role as alloying elements in aluminum alloys, but also for an evaluation of their possible application as the basis for a heat-resistant alloy.

The preparation of the compounds selected for study was done by means of direct fusion of the pure components. The charge materials were: aluminum grade A99, iodide zirconium, armco-iron and cobalt grade KO. The computation of charge was conducted in accordance with the compound's stoichoimetric composition. The compounds were prepared first in an arc furnace in a helium atmosphere in the form of lumps, and then smelted in an induction furnace under an argon stream with subsequent casting into a heated steel ingot mold with graphite fitting. The results of the chemical analysis indicated values close to the computational, with a deviation from the given composition within the margins of 1 - 1.5%.

Confirmed by means of metallographic analysis was the presence of a single-phase structure for compounds ZrAl₃ and Fe₂Al₅ (fig. 1). In the case of compound Co₂Al₉, however, despite the similarity of its chemical composition to the given one, the structure of the ingot was heterophasal, which is evidently associated with the peritectic character of formation of this compound.

Evident in the microphotograph (fig. 1,c) are thermoetched sections of aluminum-cobalt eutectics and two types of crystals. Located inside the light-grey crystals are crystals with a darker coloration. In accordance with the character of peritectic transformations in the system Al - Co we may consider that the light-grey crystals are the compound Co_2Al_9 , while the more cobalt-rich compound $\text{Co}_4\text{Al}_{13}$ is located in the center.

For compounds $ZrAl_3$ and Fe_2Al_5 , an x-ray analysis was also conducted on a URS70 device in a RKD chamber with cobalt irradiation. The computation of the x-ray photographs to interplanar distances, the analysis of line intensities, and the comparison of the results with tabulated $\frac{148}{2}$ values for pure substances showed that the crystalline structure of the studied materials corresponds to the structure of compounds $ZrAl_3$ and Fe_2Al_5 .

For the purpose of eliminating defects in the cast structure and increasing the plasticity of the brittle compounds, hot deformation of the cast ingots was performed. Efforts were made by means of the deformation also to accelerate and facilitate the diffusional processes of equalization in compound Co_2Al_Q with the peritectic structure by subsequent high-temperature annealing. The deformation of the cast compounds was implemented by means of static hot jumping up on a hydraulic press of 200 t. The excess part of the ingot with concentrated piping was cut off

by the electric spark method, while the healthy part of the ingot 25 mm in diameter and 40 mm in height was placed in a steel casing in the form of a cup, which was sealed at the top with a cover. The ingots in the casing were heated to 600°, after which they were upset by 50-60%. The press instrument was heated to 500°. The selected conditions made it possible to perform deformation of the indicated compounds practically without cracking and disintegration.

The changes in the microstructure after deformation were expressed in the appearance of slippage lines within the grains and the pulverization of individual grains. In the case of fusion of compound Co_2Al_9 after deformation, the traits of the cast dendritic structure are strongly retained.

An evaluation of the comparative heat resistance of the studied compounds was conducted on deformed samples by the long-time hardness method within the temperature sphere of 500 - 700°. Used for this purpose was a device with lever loading mechanism. The hardness measurement was done with a 5 mm diameter ball under a load of 150 kg and with holding the sample under load for a period of 1 hr. Testing up to 600° was conducted in a medium of molten saltpetre, and at higher temperatures -- in an air environment. At room temperature the hardness was measured on a Brinel press with a 5 mm ball under load of 250 kg on the samples which had previously been tested at elevated temperatures. The phase microhardness measurements were conducted on cast samples on an IMT-3 device at a load of 20 and 50 g.

Based on the example of compounds $\mathrm{Fe_2Al_5}$ and $\mathrm{Co_2Al_9}$, the effect of high-temperature annealing on their structure and hardness at increased temperatures was studied. The samples were annealed in vacuum and argon-filled quartz ampules at 1000° for 100 hrs. for compound $\mathrm{Fe_2Al_5}$ and at 640° -- 10 hrs $+880^\circ$ -- 100 and 380 hrs. for the compound $\mathrm{Co_2Al_9}$.

Presented below ate the data for measurement of microhardness and hardness of the studied compounds:

Compound	ZrAl ₃	Fe ₂ A1 ₅	Co ₂ Al ₉
H_{μ} (P = 50g), kl'/mm ² H_{B} (P = 250 kg), kl'/mm ²	590	1100	750
H_{R} (P = 250 kg), k1'/mm ²	216	264	244

In a cast state, all the compounds are very brittle and are characterized by high microhardness values. After conducting the hot deformation, it was possible to perform standard hardness tests after Brinnel at a load of 250 kl'. The imprints for hardness had a regular form without any traces of cracks. The hardness value of the compounds in a hot deformed state is considerably lower as compared with the microhardness of the cast samples, which is evidently associated to a certain degree with the increased plasticity of the compounds as a result of the deformation.

The change in long-time hardness of compounds ZrAl, and Fe2Al5 depending on the test temperature is presented in fig. 2. In a deformed state (curves 1,2), the highest values $\frac{149}{1}$ of long-time hardness within the entire range of test temperatures is exhibited by the high-melt compound ZrAl3. In the temperature interval of 550 - 650° this compound suffers practically no loss of strength. Its hardness comprises around 60 - 70 kG/mm². Compound Fe₂Al₅ has a noticeable loss of strength with increased test temperature, and at a temperature of 600° already yields significantly by its value of long-time hardness to compound ZrAl3. Annealing the compound Fe₂Al₅ leads to an increase in its long-time hardness (curve) only at 500°. At test temperatures of 550 - 600°, the long-time hardness of the compound before and after annealing is practically identical. An increase in the long-time hardness of compound $\mathrm{Fe_2Al_5}$ at 500^{O} due to annealing is evidently conditioned by the high stability

of the recrystallized structure of the annealed material as compared with its deformed state (fig. 3,a).

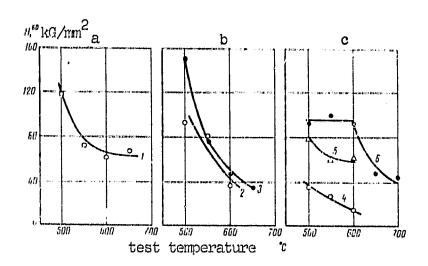
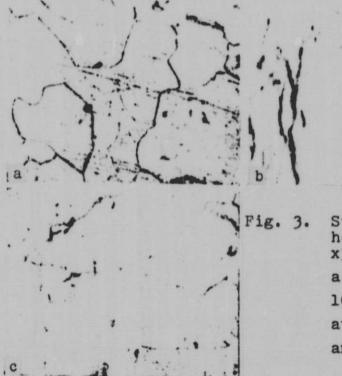


Fig. 2. Long-time hardness of aluminides at various temperatures.


$$a - ZrAl_3$$
; $b - Fe_2Al_5$; $c - Co_2Al_9$.

l - heat deformed; 2 - heat deformed; 3 - heat deformed and annealed at 1000° -- 100 hrs; 4 - heat deformed; 5 - heat deformed and annealed at 880° -- 100 hrs.; 6 - heat deformed and ahhealed at 880° -- 380 hrs.

The alloy corresponding in its chemical composition to compound Co₂Al₉, as indicated above, has a heterophase structure and in a non-annealed state is characterized by very low values of long-time hardness. At 500° the long-time hardness of the Al-Co alloy is equal to 40 kG/mm², and at 600° it drops to 17 kG/mm² (fig. 2, curve 4). As a result of annealing this alloy at 640° for 10 hrs., the eutectic areas disappear in its structure. Subsequent high-temperature annealing at 880° for a period of 100 hrs. still does not lead to a full homogenization in the structure of the alloy, which remains two-phased (fig. 3,b). However, after the indicated thermal processing there is observed a

noticeable increase in the long-time hardness (see fig. 2, curve 5). At a test temperature of 500°, the long-time hardness of the Al-Co alloy is approximately doubled, while at 600° it is increased by approximately 3 times and becomes close to the long-time hardness for compound ZrAl3. Longer annealing at 880° for a period of 380 hours leads to full completion of the peritectic transformation and to an achievement of a single-phase, homogeneous structure of the compound Co₂Al₉ (fig. 3,c). The compound Co₂Al₉ obtained by this means is characterized by high values of long-time hardness (around 100 kG/mm²) and suffers practically no loss of strength in the temperature interval of 500 - 600° (see fig. 2, curve 6). At a test temperature of 600°, the long-time hardness of the compound Co₂Al₉ is 50% higher than for compound ZrAl₃, and 170% higher than for compound Fe₂Al₅.

/150

Structure of aluminides after heat deformation and annealing, x340.

a - Fe₂Al₅, annealed at 1000° - 100 hrs.; b - Co₂Al₉, annealed at 880° -- 100 hrs.; c - Co₂Al₉ annealed at 880° -- 380 hrs.

As compared with a heterophasal alloy of the same composition, compound $\mathrm{Co}_2\mathrm{Al}_9$ has significantly better resistance to the action of temperature and stress, which is particularly arparent at high test temperatures. Thus, at 600° the long-time hardness of compound $\mathrm{Co}_2\mathrm{Al}_9$ is 6 times higher than that of an Al-Co alloy of the same chemical composition.

Only at temperatures above 600° is there a noticeable loss of strength in the cobalt aluminide. At test temperatures of 650 - 700° , the compound Co_2Al_9 yields in its long-time hardness to compound ZrAl_3 , but exceeds compound Fe_2Al_5 .

Thus, the comparative evaluation of heat resistant aluminides which we have conducted has shown that the highest and most stable hardness values are possessed by compound ${\rm Co}_2{\rm Al}_9$. The high absolute values of long-time hardness and the low degree of strength loss for aluminide ${\rm Co}_2{\rm Al}_9$ at increased temperatures allow us to conclude that cobalt must have a positive effect on the heat resistance of aluminum alloys.

LITERATURE

- 1. N. N. Kornilov. Metallidy i vzaimodeystviye mezhdu nimi. ["Metallides and the interaction between them"]. Izd.vo "Nauka", 1964.
- 2. Mekhanicheskiye svoystva metallicheskikh soyedineniy. ["The mechanical properties of metallic compounds"]. Trans. from Eng. Metallurgizdat, 1962.
- 3. P. Stark. <u>J. Metals</u>, 1964, 16, No. 3, 46.
- 4. R. Louri. Collected works: <u>Problemy sovremennoy</u> metallurgiyi ["Problems in modern metallurgy", No. 5, 1953, p. 143.
- 5. I. I. Novikov, V. S. Zolotarevskiy, D. S. Tykochinskiy. Fizika metallov i metallovedeniya. ["The physics of metals and science of metals"], 1963, 15, vol. 6, 813.
- 6. Bauer Greehard. Techn. Rundschau, 1960, 52, No. 23, 33.

- 7. E. R. Petty. <u>J. Inst. Metals</u>, 1961, 89, No. 9, 343.
- 8. Z. A. Sviderskaya, N. I. Gurkina. <u>Izv. AN SSSR, ONT.</u> <u>Metallurgiya i toplivo,</u> 1962, No. 1.
- 9. V. S. Sinel 'nikova, V. A. Podergin, V. I. Rechkin.
 Alyuminidy. ["Aluminides"]. Izd-vo "Naukova dumka",
 1965.
- 10. V. S. Sinel'nikova. Roroshkovaya metallurgiya, 1966, No. 6, 64.