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ABSTRACT

In this thesis a stochastic model for the data acquisition system in a

multispectral scanner system, like the one utilized by the LANDSAT satellites,

is presented. A list of noise sources which are known or presumed to have a

significant effect in the information extraction process was constructed. Since

the shot noise introduced by the photodetectors in the sensor system is signal

level dependent, an atmospheric model was adopted which could adequately

describe the amount of radiation that gets into the sensors based on the

atmospheric transmittance. An analysis was carried out to find the output

spectral statistics in terms of the input signal statistics and the system

parameters. This was integrated into a set of fortran programs that when

supplied with, the class statistics, the noise levels introduced by the sensor

system, the atmospheric transmittance, and the atmospheric path radiance, can

be used to estimate the classification performance. In order to show the

beneficts of this model a series of runs were performed in which the Thematic

Mapper multispectral scanner was the system under consideration.

Consideration was given to the usage of preprocessing spatial filters as a way to

combat the noise introduced into the signal at different stages of the system.



CHAPTER 1

INTRODUCTION

1.1 Background

Remoted Sensing of the environment is largely concerned with the

measurements of electromagnetic energy emitted or reflected from the earth

surface. The data acquisition system can be considered in four basic parts: the

radiation source, the atmospheric path, the target, and the sensor. In the case

of Landsat, the sun is the radiation source and the atmosphere modifies the

spectral distribution of the solar radiance. A portion of the spectral radiance

that arrives at the earth surface in the visible and reflective infrared is reflected

back through the atmosphere and then may be measured in several spectral

bands by a multispectral sensor. Some of the sun's energy is absorbed and

then re-emitted at thermal infrared wavelengths. The output of the sensor in

each spectral band for a pixel on the earth surface is used to form a point in a

n dimensional space. This data is digitized and transmitted to a ground

station for processing.

Different ground covers have different spectral reflectance properties. This

provides the basis for their identification. Detecting these spectral differences

between ground covers allows classification of each pixel of the observed scene

as coming from one of a set of possible classes. Due to the randomness of



nature the points from a particular class can be characterized by a stochastic

ensemble. Fu, Landgrebe, and Phillips [F3] have shown empirically that a

multivariate gaussian density function is a good characterization for

agricultural multispectral data. This has imposed the use of statistical

pattern-recognition methods in the data analysis. A commonly used pattern

classifier algorithm is the minimum Bayes error scheme [S3].

1.2 Statement of the problem

The signal in a remote sensing system is corrupted, at different stages of

the data acquisition process, by different noise sources. It would be important

to understand the manner in which the different types of noise occurring in a

remote sensing system impact the performance of the data analysis portion of

the system. This subject has received relatively little attention to this time,

and the amount of information available in the literature is rather limited.

Studies to date have tended to concentrate primarily on the effect of

independent white Gaussian noise on classification accuracy [Wl,Ml,M2j.

Mobasseri developed a parametric model to analytically evaluate the response

of a multispectral scanner in any operational environment. In his work the

atmospheric effect was not considered, and the noise introduced by the sensor

system was arbitrarily chosen; it was assumed to have the same statistical

properties over all the spectral bands. Maxwell had also made a system analysis

study of the remote sensing system. He discussed the usage of preprocessing

the data before any classification is done. Although there have been extensive

studies on models for "correcting" or calibrating data in the face of



atmospheric effects [Tl], little is known about the deleterious impact of these

effects on the process of information extraction. Other system noise sources

have received even less attention; thus the relatively broad field of noise

sources, the interrelation of them with remote sensing system parameters, and

the information extraction process remains unexplored.

If the full potential of current, and especially of planned sensor systems is

to be realized, a better delineation of the relationship between sensor

parameters and data analysis results is needed.

1.3 Objectives

It is the objective of this work to develop a stochastic system model that

can be used to integrate and investigate the effect that different noise sources,

introduced by the atmosphere and the sensor system, can have on system

performance. Since both the signal and the noise are considered to be random

in character and therefore not obviously identifiable by inspection, a suitable

definition of the two is needed. The signal is defined to be that portion of the

scene response variability which contributes in any way to the ability to

discriminate among classes. For example, texture of a given cover class in a

given scene may appear to be random. However, in this case the randomness

implies variability which might be indicative of the cover class, and thus might

be part of the signal. All scene and system response variability which does not

so contribute to identifi ability is defined to be the noise. The theory of

stochastic process models for such situations provides a rich background of well

established tools, and these models have been the traditional types of models



used for highly complex problems.

Since the ultimate goal of most systems designed to recognize patterns is

to do so accurately, the probability of error is an important index of

performance which it is desirable to minimize, although, there is a lower bound

on the probability of error imposed by the random nature of the signals. The

classifier used is a Bayes minimum error pixel classifier for multivariate

gaussian density functions [S3]. In order to provide a measure of specificity to

this otherwise very general study, it was decided to use the Thematic Mapper

sensor parameters as an example system. In Appendix A a general description

of the Thematic Mapper is presented. The next chapter will discuss the

different noise sources to be modeled in the system.



CHAPTER 2

NOISE SOURCES

2.1 Noise List

As was mentioned earlier we wish to model scene and system response

variabilities in the data acquisition system which can potentially improve the

information extraction process. To begin the study a list of noise sources was

constructed. This list is intended to include all the sources of noise which are

known or presumed to have a significant deleterious effect on the classification

of the data. Since it would be impractical to deal with a very extensive list, it

was decided to prioritize the list, which is as follows:

Priority 1

1. Atmospheric effect(constant atmosphere)

2. Detector noise process

a. Shot noise(signal level dependent)

b. Johnson noise

3. Quantization effect



Priority 2

1. Training statistics estimation error

2. Optically induced noise

3. Atmospheric effect (non-constant atmosphere)

4. Goniometric variations

5. Non-class conditional earth surface variability

In constructing this list consideration was given both to the speculated

magnitude of the noise effect on net system performance, and upon the

probability of affecting performance improvements by better parameter

selection in the system design phase. It was shown by Mobasseri, McGillem,

and Anuta [M2] that the noise prior to detection is quite negligible and thus for

all practical purposes can be neglected. This implies that random noise

generated by the detector and quantizer stages are the major sources of

disturbance on the signal. This work is limited to the Priority 1 list. We

proceed next with a description of the noise sources in the Priority 1 list.

2.2 Atmospheric Effect

In this section the atmospheric model that was used in the simulation is

presented. The atmosphere is known to be a quite complex portion of the

system, with a number of mechanisms operative which will affect radiances

passing through it. To attempt to model all of these would be prohibitively

complex and indeed is not necessary for the purposes of this early stage of



studying the effect of such noise sources. Instead we will use a simple

atmospheric model for the preliminary work.

The atmosphere modifies the spectral solar radiance in a wavelength

dependent manner by two basic mechanisms, absorption and scattering. The

combination of these two is frequently refered to as attenuation. The

fundamentals of atmospheric scattering, and absorption involve complexities in

mathematical physics beyond the scope of this work . The discussion that

follows will deal with the topic in a less fundamental manner.

Absorption is the transformation of radiant energy into heat. In a clear

(haze free) atmosphere, absorption is almost negligible in many portions of the

optical range. For a hazy or polluted atmosphere absorption plays an

important role. Atmospheric absorption due to ozone is very strong for

wavelengths below .29um .

Scattering occurs when the radiation is reflected or refracted, from its

original directional flow, by particles in the atmosphere. There are three basic

kinds of scattering mechanism: Rayleigh, Mie, and non-selective scattering.

Each of these is based upon the presence of different scattering elements.

Certain spectral bands of the solar irradiance that pass through the atmosphere

are not severely attenuated. These bands are called atmospheric windows and

are widely used by earth observational satellites.

The atmosphere has three basic effects on the data acquisition system.

First, the spectral and spatial distribution of the incoming solar radiance (the

source) is modified as it passes through the atmosphere. Second, the reflected

and/or emitted spectral radiance from the earth surface (the target) is

attenuated. Third, a component of scattered radiation called path radiance is

added to the attenuated signal. The path radiance also depends on the
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reflectivity of the target and its surroundings. For simplicity we will assume

that the fields of interest are big enough such that the reflectivity is fairly

uniform around the target, even though this assumption is frequently not the

case. Kiang [Kl] showed that atmospheric effects on the reflected radiance can

be approximated with a linear equation, where the spectral radiance that falls

within the instantaneous field of view (IFOV) of the multispectral scanner is as

a function of wavelength X, is

L(X) = ra(X)Ls(X) + Lp(X). (2.1)

L8 (the signal) is the reflected and/or emitted spectral radiance from the pixel

under observation, ra(X) is the spectral atmospheric transmittance, and L_ is

the path spectral radiance introduced by scattering. Both Ls and L are known

to be random variables that are functions of the wavelength. Although it is

not written explicitly Ta, Ls, and Lp are functions of the solar zenith angle (0)

and the metereological range or visibility (V^). We are assuming that the

ground is a Lambertian surface, which implies that the reflected radiance is

independent of the viewing angle.

The spectral transmittance from the earth surface into the outer

atmosphere is given by

(2.2)

where rext is the extinction optical thickness introduced by ozone absorption,

Rayleigh, and aerosol scattering. Elterman [El] has done experimental and
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Table 2.1 Atmospheric extinction optical thickness for eight
metereological ranges and twenty different wave-
lengths in the range of .27-2.17 uro.

Extinction Optical Thickness T^t

X(/im)

0,27

0,28

0,30

0,32

0,34

0,36

0.38

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.80

0.90

1.06

1.26

1.67

2.17

Metereological Range V^(km)

2

76.276

40.658

7.657

4.080

3.414

3.086

2.881

2.593

2.203

1.968

1.805

1.624

1.452

1.341

1.178

1.067

.961

.876

.753

.672

3

75.324

39.760

6.809

3.281

2.665

2.383

2.202

1.969

1.650

1.462

1.337

1.204

1.089

.982

.859

.777

.699

.637

.548

.489

4

74.825

39.289

6.364

2.863

2.273

2.014

1.847

1.642

1.360

1.197

1.092

.984

.868

.793

.692

.624

.561

.511

.441

.392

5

74.513

38.995

6.086

2.601

2.027

1.783

1.624

1.437

1.178

1.031

.939

.846

.742

.675

.588

.529

.475

.433

.373

.332

6

74.299

38.794

5.896

2.422

1.859

1.625

1.472

1.297

1.054

.917

.834

.751

.655

.594

.516

.463

.416

.379

.326

.290

8

74.020

38.530

5.647

2.187

1.639

1.418

1.272

1.114

.891

.768

.696

.627

.542

.488

.422

.378

.338

.308

.266

.236

10

73.847

38.368

5.493

2.042

1.503

1.291

1.149

1.000

.791

.676

.611

.551

.473

.423

.364

.325

.290

.264

.228

.202

13

73.681

38.211

5.345

1.903

1.372

1.167

1.030

.891

.694

.587

.529

.477

.405

.359

.307

.273

.244

.222

.192

.169
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x(um)
Figure 2.1 Atmospheric optical thickness as a function of

wavelenght and metereological range.

Figure 2.2 Atmospheric transmittance as a function of mete-
reological range and wavelength.



11

theoretical tabulations of spectral optical parameters for a hazy atmosphere

with different metereological ranges. A selected part of Elterman's tabulations

for re'xt are presented in Table 2.1. Using this table a satisfactory linear

interpolation can be made between the wavelengths of .27um and about lum,

because rext is a slowly varying function of the wavelength. Fig. 2.1 is the

result of interpolating over the wavelength range of .3-1.24 microns and over

the metereological range of 2 to 13 kilometers. Fig. 2.2 is the atmospheric

transmittance obtained from (2.2) for a solar zenith angle of 37.5 degrees and

optical thickness given by Fig. 2.1. Observe that atmospheric attenuation is

stronger in the blue wavelength region compared to the red wavelength region.

This accounts for having reddish sunsets.

There are different models to estimate the atmospheric path radiance. I

will adopt in this work Duntley's method [D2], because of its simplicity

compared to other existing methods [S2]. Duntley argued that each segment of

the atmosphere has an equilibrium radiance Leq with a path radiance given by

LP(X) = Leq(X)[l - ra(X,V,,,0)]. (2.3)

In this method the equilibrium radiance can be determined from ground based

radiance and transmittance measurements.

Landsat photodetectors respond to the radiation that lies within certain

narrow spectral bands. Since we are only using a finite number of spectral

bands a matrix formulation of (2.1) is required.
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LI
L2

Ln

™~"

ra,

7a, °

0

Ta.

LS1

LS,

L
S.

+

LP,

LP,

LP.

(2.4)

L = raLg + Lp.

Lj is the radiance that enters the pupil of the sensor in the wavelength range

covered by the ith channel of the sensor. For notational simplicity ra, Lp, and

Ls will be refered to from now on as the transmittance matrix, the equivalent

radiance vector and the signal vector, respectively.

A linear transform of the form of (2.4) does not of itself affect the

classification results obtained from a minimum error Bayes classifier for

multivariate gaussian distributions. This can be shown as follows. Denote the

density function of the reflected radiance for class Wj before it passes through

the atmosphere as

p(Ls| Wj) = N(M jfEj) (2.5)

that is, a multivariate gaussian density function with covariance matrix £: and

mean vector Mj . The density function of the received radiance is given by

^NKMj + Lp , r£rt). (2.6)

Using (2.4) it is a matter of substitution to show
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p(l«H) = TrrrtL-lwi)- (2-7)
I Ta|

Since the transformed density function differs from its original density by a

multiplicative constant, the classification statistics in a multiclass problem are

unaffected. It can also be shown that the correlation coefficients between

channels is also preserved by (2.4),

P\i = Ply (2-8)

Thus the probability of misclassification between two different classes remain

the same after going through the atmosphere. This is true as long as an ideal

sensor and a constant atmosphere are considered.

A plausible atmospheric model has been introduced in this section. The

inputs to the model are: the atmospheric transmittance matrix and the path

radiance vector. It is important to recognize that this model is deterministic in

nature and does not account for spatial, spectral, and temporal atmospheric

variations. In Appendix B a non constant atmospheric model is discussed.
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2.3 Shot Noise

The purpose of this section is to find the first order statistics of the shot

noise introduced by the photodetectors in the sensor system. Shot noise

processes were first studied in connection with phototubes, but they have also

been observed in solid states devices like photodiodes [Dl].

A photodetector converts light intensity into a current or voltage

waveform. When light with the proper wavelength is received at the surface of

the photosensitive material, electrons are released from its inner surface and

pulled by an electric field to a collecting anode. The flow of a single electron

from the cathode to the anode produces a current pulse, h(t), at the

photodetector output. This pulse is of finite duration and area equal to one

electron charge [Dl]. If an electromagnetic field is received at the surface of

the photodetector at time t=0, the output response current of the

photodetector is the sum of a random number of randomly located response

functions h(t),

k(o,t)
x(t) = £ h(t-tn) t>0, (2.9)

n=0

where tn is the time of release of the nth electron and k(0,t), the counting

process, is the number of electrons released during the time interval (0,t). Both

k(0,t) and tn are random variables. A process like the one describe by (2.9) is

called a shot noise process. In order to find the statistics of this process,

specification of the statistics of the emission times {tn} and the counting

process k(0,t) are required .
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The electron count is the number of electrons that flow during a particular

interval when detecting a radiation field with a photoresponsive surface. Given

a constant irradiance field the probability of releasing k electrons from the

photodetecting surface during the interval of time T is [Rl],

P(k) = - e - m k=0,l,2,... (2.10)

K has a Poisson distribution with parameter m. The parameter m is called the

level of the probability and is directly proportional to the radiance level L that

strikes the photodetector surface area A.

m = 7L. (2.11)

7 is a proportionality constant between the field intensity and the count

intensity. It is important to mention that 7 is a function of the surface area A

of the photodetector, the detector quantum efficiency, and the counting

interval T. The characteristic function of the discrete random variable k is

given by

. , 00 .,

$(w) = E[eJwk] = £ eJwkPk(k) (2.12)
k=0

m p
=e-» £ L- = exp[m(e'w-l)].

k=o K!

It is well known that the characteristic function of a random variable can be

used to find the moments of the corresponding random variable [Pi],
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(2.13)
d w n > - '^=0

From (2.12) and (2.13) it follows that the first two moments and the variance

for the counting process k are

E[k] = m (2.14)

E[k2] =m 2 +m

a£ = m.

Rice [Rl] showed that the electron emission times in the photodetector are

independent identically distributed random variables with uniform density

functions over the interval (t,t+T),

P(tn) =

T t<tn<t+T

0 elsewhere
(2.15)

Knowing the first order statistics of the counting process and the emission

times, an expression for the density function of the Poisson shot noise process

can be found,

oo

Px(x(t)) = ±J ^(w.tJe-^Wdw, (2.16)
—oo



17

where the characteristic function of the shot noise, $,(w,t), is given by

= Ek(EJexp(jw£h(t-tn))|k]).
n=0

(2.17)

Since the tns are independent,

n = l

where $y(w,t) is defined as

*y(w,t) = EJ

Taking the expected value with respect to k and making use of (2.12),

00

*x(w,t) = £ *>,t)P(k) = exp([*y(w,t)-l]m).
k=0

(2.17) is a general result given that a constant radiance is getting into the

sensor. Without loss of generality, let us define the response function, h(t), as

being equal to

h(t) =

3s.
'h 0<t<rh

0 elsewhere

where qg is electron charge and \ is the pulse duration time, then
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4>y(w)-l = -£[exp(jw—HI (2.18)1 rh

(w) = exp[nrh(e '-

where, n = —, is known as the count intensity. For this particular realization

of h(t), <J>x(w) is no longer a function of t. Again, the expected value of x and

its variance can be found using the characteristic function ^x(w),

tV •* — • ^X I — — ~ I*1 — / "= ' \TE(x) - -)-rr\ w=o - q«n - (^— - (^r)L

Observe, E(x) and o% are both dependent on the received intensity. When the

received intensity is high, the spread of the shot noise (its standard deviation)

is small compare to E(x). In order to find an approximation to the shot noise

density function let us define the normalized shot noise process as xn

i. = z&L (2.20)
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_.

(2.21)

.__2.

q=l

This last expression can easily be shown to converge to (2.22) as nrh—»oo

(2.22)

Since the normalize process xn is related to x by (2.20) it follows that x

approximates a gaussian random variable with mean E(x) and variance o%

provided nrh»l ,

(2.23)

Gagliardi [GlJ, proved that this approximation is independent of the shape of

h(t) as long as

nrh»l (2.24)

and

00

/ hq(t)dt<oo for all q > 2.
-oo

nrh is physically related to the number of electrons emitted during the interval
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(0,rh) or in terms of the input radiance,

When the condition nrh»l is not satisfied, the discrete nature of the Poisson

shot noise process will be evident at the photodetector output and a closed

form representation for the density function (2.16) becomes very complicated.

As was discussed in Chapter 1 the pixel radiance L from a given class and

spectral band is a random variable. For a given pixel, L can be assumed

constant because during the period of time that the measurement is done; there

is no significant variation in the radiance being received by the photodetector.

This suggest that in Landsat's case what we have is a conditional Poisson shot

noise process for every pixel observed on the earth surface. When this is the

case, the characteristic function in (2.21) becomes a conditional characteristic

function, conditioned over the random variable L. If the values assumed by L

still satisfying the conditions of (2.24) then the conditional density function of

the photodetector output will be (2.23) conditioned over L. For every observed

pixel the output of the photodetector could be modeled as the pixel constant

intensity level, the signal, plus a random variation from this intensity, the

noise. This random variation or noise is normal with a zero mean value and a

variance that is proportional to the (signal) intensity level. A model like this

suggests looking at the shot noise process as a signal plus noise problem. There

is one difficulty with this interpretation that must be kept in mind; it is the

fact that both the signal and the noise are not strictly independent.

It can be shown that the noise at the photodetector output is uncorrelated

to the signal level; remember that two process can be uncorrelated but still not
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independent. This is the case here. Since the noise in one channel is

uncorrelated to the signal level in that channel, and different detectors are used

for different wavelengths bands, the noise between the different photodetectors

is uncorrelated.

In this section the basis for the noise introduced by the photodetector was

presented with an approximation for the density function of the photodetector

output when the received signal level is high.

2.4 Quantization Noise

For Landsat satellites, the data undergoes an A/D conversion before it is

transmitted to an earth ground station. A/D conversion involves the

quantization of the analog signal to q—2" levels , where n is the number of bits

available. Basically, quantization is a mapping of the continuous data sample

space into a finite number of selected values. Once the signal is quantized it

can not be recovered exactly as it was before quantization. Since the

quantization process introduces some fluctuation about the true signal value,

this fluctuations can be regarded as an additive noise. The quantizer noise is

defined as

e = x-xq, (2.25)

x is the signal, and xq is the quantized signal. The mean square error

introduced by the quantizer is given by [G2]



22

= £/(x-Xi)2p(x)dx, (2.26)

where Ij is the ith interval range, p(x|i) is the probability density of the sample

value when in I; , and X; is the quantization value of the ith interval.

When a uniform quantizer is used and the conditional density function of

the input is uniform over all intervals, the error c has a uniform distribution

over one quantization interval A ,

-L -A<e<A
A 2 2

0 elsewhere
(2.27)

and its mean square error is given by

12
(2.28)

If the signal to be quantized has a normal distribution with zero mean and

variance a2 and a uniform quantizer with 2q levels is used the mean square

error is given by

~2 2c-
V/27T

A —
(x-iA--) V"3 dx

i=0

A
(x-f A + f) .(2.29)

Since the signal in Landsat satellites is usually modeled by a gaussian

distribution, (2.29) is a more exact expression to describe the mean square error
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introduced by the quantizer. From (2.29) it can be observed £2 is a function of

the signal variance. A computation of the mean square error (mse) and signal

to noise ratio (SNR) was carried out for different standard deviations with the

number of quantization levels fixed to 256, which corresponds to the Thematic

Mapper quantizer system. This was done for gaussian and uniform density

functions. The results obtained are shown in Fig. 2.3 and 2.4, which clearly

show that for standard deviations in the range of .5 to 27 there is not

significant difference between the mean square error introduced by quantization

of a uniform or a gaussian density function. If we assume that the standard

deviations of most of the input distributions to the quantizer in the TM system

are in the range of .5 to 27, and the mean values are not near one of the edges

A2

of the quantizer, then it is a good approximation to use as the mean
i i

square error introduced by the quantization operation.

By increasing the number of levels, making A smaller, we can make the

mean square error as small as we want. In practice this can not be achieved

because storage and bandwidth requirements impose an upper bound into the

number of quantization levels actually used.
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2.5 Johnson Noise

Johnson noise , also known as thermal noise, is produced by the random

motion of electrons in a conductive material. In 1924, Johnson performed a

systematic observation of the thermal fluctuations of electricity in conductors.

His observations were in complete agreement with the predictions done by the

theory of thermodynamics and quantum mechanics. The theory predicts [G2]

that the mean square voltage produced in a resistor R is given by

(v-vm)2 = 4R(f)-|L-Af, (2.30)

ekT-l

where: h = Planck's constant, k = Boltzmann's constant, v is the

instantaneous voltage, T is the temperature in degrees Kelvin, Af is the

bandwidth of the noise, and vm is the mean voltage.

Thermal noise, black body radiation, and quantum noise can be developed

from a few basic physical principles, as it was presented in a review paper by

Oliver [Ol]. The voltage induced by thermal noise has been shown to have a

normal distribution with zero mean and variance kTBR.

p(v) = exp(- '- <2-32'

where B is the bandwidth of the noise . This result could be expected on the

basis of the Central Limit Theorem, because the voltage generated in an

electrical circuit by the thermal noise is the summation of individual short
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current pulses produced by the electrons in the conductive material as they

travel between collisions. For practical purposes it can be assumed that the

thermal noise is white since the electron pulses produced by the collisions are

extremely short in duration. Thermal noise is also observed in lossy dielectrics

as the result of random thermal excitations of polarizable molecules, forming

fluctuating dipoles.
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CHAPTER 3

MATHEMATICAL AND SOFTWARE MODEL

3.1 Description of the Model

In chapter two a statistical description of the noises in the Priority 1 list

was presented. It is the purpose of this section to merge all of them together in

a system that models the physical process of noise being added at different

stages of the data acquisition process. In Fig. 3.1 a block diagram of the data

acquisition system is shown, where all the noises are being referred to the

radiance domain. This was done in order to avoid working with different types

of units. We are not considering in this work the effects of the optics system in

the signal. In vector equation form the model is described by

Z = X(L) + U + V, (3.1)

where, X, U, and V are independent random vectors.

Z - is the sensor output, which is the signal to be transmitted to earth.

L - is the radiance that gets into the sensor pupil after going through

the atmosphere,

L - raLs + Lp.

X - is the photodetector output, it is a function of the signal level,
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X(LS) = (raLs + Lp)

U - preamp noise, is modeled by a gaussian distribution with zero mean

and diagonal covariance matrix.

V - quantization noise, it is uniformly distributed with zero mean and

A2

Ev = 1, where A is the radiance range of one quantum level and I is

the identity matrix.

The statistical properties of the input random process are modified at the

different system stages. If we want to investigate the relationship between

sensor parameters and overall performance we require a theoretical

understanding of how the signal statistics are modified as it flows through the

system. Although X(L) and V are not normally distributed, Z has been shown

empirically [F3] to resemble a normal distribution. Arguments like the Central

Limit Theorem are commonly used to substantiate this result. Since a

multivariate gaussian distribution is completely specified by its covariance

matrix and mean vector, we are interested to see how these random process

parameters are affected by the system transformations. Another important

descriptor to be considered, for each spectral band, is the correlation coefficient

between the input and the output as a function of the system parameters.

In Fig. 3.1 L is the actual radiance vector that enters the sensor pupil and

X is the photodetector output vector in the radiance domain. As was shown in

chapter 2 the density function of a single photodetector output can be

approximated by (3.2) as the number of electrons emitted in the interval (0,rh)

becomes large,
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(3'2)

k; is a parameter descriptive of the photodetector performance and it is related

to the system parameters discussed in the shot noise section of chapter two by

T
k;2 = . The correlation coefficient between X; and L; is given by

So, PX^J, ^ e(lual

where,

E(Xi) = ELjEx/Xil L;)] = E(L;) = LJ (3.4)

E(X;
2) = ELi[EXi(Xi2| L;)] = E(ki2Li+Li2) = k^+L (3.5)

8 = E(Xi2)-E(X;)
2 - ki2Li+^ (3.6)

oo

>Li2. (3.7)
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This is a general result and does not rely on the asymptotic condition imposed

over the shot noise process to obtain (3.2). Observe, pXL( is approximately

equal to one if kj2«^r- ; this will correspond to an ideal photodetector. For
Li

a single spectral band the input-output correlation is

' '

Since XpU;, and V; are independent random variables

(3.10)

E(z) = Lj

=E(ZiLi) = EKLitXi + Uj+Vi)) = E(LiXi) = L

So,

_ 'L,

Using the atmospheric model discussed in chapter two, L^rJLgj+Lp, the
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correlation coefficient between the input signal Lsi and Z; for a given spectral

band is

PZL' "

As a test of the physical significance of (3.11. b) observe, for zero atmospheric

transmittance PztL,, ~ ®> an^ f°r no system noise, ki=ffy = ̂ v,=0, the

correlation coefficient is equal to one. Equation (3.11. b) clearly shows that the

magnitude of the input-output correlation in a particular spectral band goes

down as the average input radiance of the signal in that spectral band

increases.

For the definition of signal-to-noise ratio (SNR), using the variance of the

signal, taken as f^a^ over the variance of the noise, kj^rJLgj+LpJ+cr^+ov,

we can express the SNR for each channel in terms of the input-output

correlation as

Pzi...
SNR = - — . (3.12)

Recalling X;, Uj, and V; are independent vectors we can state that the output

covariance matrix is given by

Ez = Ex + £u + Evl (3.13)

where the covariance matrix for U and V are diagonal matrices that are

specified by system parameters. Ex is formed by diagonal elements ffx
 2, (3.6) ,
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and off diagonal elements pxf <rx<rx where ,

(3.14)

and

Using the model adopted in chapter two for a photodetector output, we have

(3.15)

where the ith channel output is equal to the input radiance L; plus a random

variable with zero mean and variance k}2!̂ . An expression for the cross spectral

output correlation, /Jx,x> can be obtained from,

l + ni)(Lj + nj)] =E(L iL j)

so,

(3.16)

This is an interesting expression because it allows us to describe the

photodetector output cross spectral correlation in terms of the input cross

spectral correlation, p^^ . Combining (3.13) and (3.16) an expression for the

output covariance matrix and mean vector can be obtained in terms of the

different system noise sources,
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E[Z] - E[L] = raE[Ls] +Leq(I-rJ (3.17)

(3.18)

Since a covariance matrix is a symmetric matrix the upper diagonal elements

in (3.18) were omitted. Observe that the off diagonal elements of Ez are equal

to the off diagonal elements of Ej. This implies a smaller correlation coefficient

between spectral bands at the output of the system, because the expression

inside the brackets in (3.19) is less than one.

Pz.z, - PL.L, (3.19)

Summarizing, in this section an additive noise model has been adopted to

describe the relationship between system parameters and the signal, and the

output covariance matrix of this model was computed. It was shown that the

higher the average radiance in a particular spectral band the lower the

correlation between the input and the output of the system. Equations (3.11),

(3.12), (3.17) and, (3.18) can be used in the evaluation or design phase of

system parameters if statistical knowledge of the different kinds of signals to be

observed is available. Having an analytical expression for the output
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covariance matrices and the input-output correlation allows us to use

parametric statistical pattern recognition techniques for the study of system

parameters without having to actually generate the data sets representative of

the noisy signal.

3.2 Index of Performance

If one is interested in the evaluation or design of system parameters a

variable or variables against which any given parameter set can be compared is

needed. Probability of correct classification or its complement the probability

of error is a good choice for such an index of performance from a user point of

view. Unfortunately, the Bayes minimum error can not be expressed in an

analytical form because it involves a multidimensional integration over a

complex boundary region,

(3.20)
r,

P(WJ) is the a priori probability of class w; , p(Z | w;) is the density function of Z

given that Z comes from class w;, and F; is the region in the multidimensional

space where the Bayes criteria has classified the samples into class W;.

There are different algorithms which are commonly used for the error

estimation. For example, random sampling techniques, such as Monte Carlo

simulations, can be used for estimating the error. In this scheme, N random

vectors are generated from the training samples statistics and they are
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classified in accordance to the Bayes decision criteria. The number of

incorrectly classified samples divided by N gives the maximum likelihood

estimate of the Bayes error. This estimator is known to be unbiased [Fl], The

error estimation to be obtained from a Monte Carlo simulation is a random

variable which is dependent on the number of samples used. For accurate

estimates a large number of samples are required which implies large amounts

of CPU time. An algorithm was presented by Fukunaga and Krile [F2], for a

two class problem, which transforms the multidimensional integration of (3.20)

into a one dimensional integration in the frequency domain. This algorithm, in

theory, is exact. Although, small errors may be introduced by its numerical

implementation, compared to Monte Carlo simulations, it is more accurate, and

more efficient in machine time.

Statistical separability can be used as an alternative index of performance

when the probability of error results are inconvenient to compute. A well

known statistical distance function between two gaussianly distributed classes

is the Bhattacharyya distance[Bl],

T(Ei+E2)|
^- (3.21)

which has been commonly used for feature extraction applications [S3]. It is

appealing to use the Bhattacharyya distance as an aid in the design or

evaluation of system parameter. Although, there is not an exact relationship

between probability of error and the Bhattacharyya distance, an upper and a

lower bound exists for the Bayes error in terms of ft [Flj,
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1-46U1 < £ < 6U = i (3.22)

Based on simulation results Whitsitt [Wl] suggested the usage of the

complementary error function of \/2/7 as an approximation of the Bayes error.

When the two classes under consideration have equal covariance matrices and

equal a priori probabilities, the approximation turns into an equality. If this is

a good approximation it has to be bounded between the upper and the lower

bound of the Bayes error, given by (3.22), for all values of /i. A proof of the
-*,

consistency of this approximation follows.

The complementary error function is defined as

oo -xi

Q(x) - / -c 2 dx. (3.23)

It is known Q(x) has an upper bound given by [VI],

Q(x) < -e 2 x > 0. (3.24)

Replacing x by v/2ji in (3.24) it is easily proved Q(v/2/*) is less than the upper

bound given by (3.22). The lower bound consistency can be proven by putting

the left hand side of (3.22) in the form

1 < 2Q(v/2/i) + N/l-e'2" = g(/i). (3.25)

Observe that at p equal zero or infinity the equality is satisfied. Since g(/i) has
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these boundary conditions, if it ever goes below the value one, it will have a

minimum point. Taking the derivative of g(^), using the Leibnitz rule of

derivation under the integral sign, and setting it equal to zero, we obtain

-i -i
-^Le-"(2Ai) 2 + e-2"(l-e-2") 2 = 0.
V27T

Since we are interested in the relative minimum in the open interval (0,oo) the

previous expression can be simplified into

lj=l f

which can be solved interactively obtaining the value p = .4221 . Substituing

this value in (3.25) we obtain

1 < g(.4221) = 1.113 .

This proves the approximation is consistent with the bounds established on

the Bayes error by (3.22). The advantage of using Q(>/2ji) as an approximation

of the Bayes error is that it does not require extensive computer computations.

In Fig. 3.2 the relationship between Q(v/2/I) and the upper and lower bounds

on the error probability is shown.
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Figure 3.2 Comparison of the upper bound, lower bound and
approximating function of the Bayes error obtained
from the Bhattacharyya distance.
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3.3 Software System

The next step was to construct a software system which could adequately

simulate noise from each of the types of sources to be considered. In order to

simplify the problem, only two classes with equal a priori probabilities were

simultaneously considered, and the output distribution of these was assume to

be gaussian. Since real data is likely to have characteristics that are highly

dependent on outside and uncontrollable elements, such as deviations from the

gaussian assumption, it was decided to use the covariance matrices obtained

from training samples as the input signal. Thus a system of computer

programs was written to allow for the use of a LARSYS data statistics file as

input and to use it to simulate an unadulterated signal source. In general the

required inputs to the software system are:

1- Atmospheric optical thickness vector and solar zenith angle

2- Duntley's equivalent radiance vector, Leq

3- k vector, with shot noise system parameters

4- Covariance matrices for preamp and quantization noise

5- Spectral covariance matrices and mean vectors for the two classes to

be considered

6- Weighting factors vector for the selective adjustment of the different

noise sources

The software output consists of:

1- Bayes minimum error for each output class and overall

2- Bhattacharyya distance between two output classes

3- Complementary error function of \/2/7

For computing the pairwise error, the algorithm developed by Fukunaga and
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Krile was used. A list of the software programs can be found in Appendix C.

3.4 Selection of the Data Set

As an initial data set airborne multispectral scanner data of Segment 210

of the 1971 Corn Blight Watch Experiment was selected. The scanner

instrument used to collect this data was the Michigan M-7 airborne scanner.

The selection of this data set was influenced by the following factors:

1- Ground truth for every pixel should be available. This is important

both for deriving good quality training samples and for accurate

determination of performance.

2- The characteristics for this data set, e.g. the number of spectral bands

and the ground spatial resolution, are representative of possible future

spaceborne scanners.

3- The informational classes in the ground scene are adequately complex

to be representative of possible future applications and to provide a

significant challenge against which to test future scanner system designs.

Out of this data set we used a subset of classes that gave good

classification performance when no noise was present, but was sensitive

to the noise levels introduced by the sensor system. The criteria

adopted to choose these classes was based on the coincidental spectral

plot from the training samples of segment 210 .

It was decided to use bands and noise levels which approximate the

Thematic Mapper in order to enhance the practical benefits of the study.

Channels 1,5,7,8,10 from segment 210 data were the ones which had the best
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match with channels 1,2,3,4,5 in the Thematic Mapper. The Thematic Mapper

noise equivalent radiance curves for quantization, preamp, and shot noise were

obtained from NASA's Goddard Space Center for the first five spectral bands

in the TM, see Figure 3.3 to 3.7. This curves clearly show the dependence

between shot noise and the signal level.

3.5 Simulations Performed and Results

In this section it is shown how, by using the model developed, we can

investigate the relationship between classification accuracy, sensor parameters,

class statistics and the atmospheric effects. In particular, we want to study if

by slightly adjusting the noise levels introduced by the Thematic Mapper

sensor system we can make a significant change in the recognition accuracy.

Another parameter to be modified is the atmospheric visibility.

A series of different computer simulations were conducted using the

developed software system. In these runs the data set used came from the Corn

Blight Watch experiment. We considered this data set as representative of a

noise free data set and for the purpose of the simulation we assumed it was

collected under perfect atmospheric conditions by an ideal TM kind of

instrument. Using the software system we can corrupt the signal statistics,

based on the chosen system parameters, and quantify the degradation in terms

of the index of performance proposed in the previous sections.

In the first experimental run the inputs were:

1- Equivalent radiance vector, Leq = 150(1,1,1,1,1)T, the particular

choice of this vector value was arbitrary.
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2- Atmospheric optical thickness matrix for a haze atmosphere. Eight

different metereological ranges were considered, see chapter two.

3- Thematic Mapper noise equivalent radiance system parameters for

shot, preamp and quantization noise; this was obtained from NASA.

4- Covariance matrices and mean vectors for the two input classes, see

Fig. 3.8. This matrices correspond to the subclasses soyl and soy2

obtained from the training samples selected by LARS staff.

In Fig. 3.9 is shown the results of how the Bayes error changes for

different atmospheric visibilities, which correspond to a haze regime. Observe

that for high visibilities the error due to preamp noise alone is significantly

larger than that due to shot noise and quantization noise. This is in complete

agreement with the kind of theoretical result expected from (3.17) because the

atmosphere attenuates the power in the signal and introduces a path radiance

component into the signal. This causes the two input signals to approach one

another making them more susceptible to system noise. Fig 3.10 shows that the

same relative results would be obtained when Q(\/2/7) is considered, although

the values of Q(\/2Ju) are always least when compared to the values of the

error. Figure 3.10 is a smoother version of Fig. 3.9; this is explained by the

fact that the function Q(\/2ji) is an approximation of the actual error and can

not track perfectly the fluctuations in it. Quantization noise did not show a

significant variation in the recognition accuracy for the range of atmospheres

considered and was the less degradating noise source in the system.

The results in Fig. 3.11 correspond to an atmosphere with a horizontal

visibility of eight kilometers. Here it is shown how the Bayes error changes

when the shot noise parameters, K, are adjusted by a variable c from zero

times its original or actual value to twice its actual value. While this
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Figure 3.8 Statistics for subclasses soy 1 and soy 2.

parameter was changed the rest of the system parameters were set to their

original values. There was a change of approximately five percent between the

maximum and the minimum of the Bayes error in Fig. 3.11. Figure 3.12 shows

the same type of result when the preamp noise level is the adjusted parameter.

In Figure 3.13, the adjusted system parameter was the number of bits

used by the quantizer for representing the dynamical range of the incoming

signals. When this result is compared to Fig. 3.9 it is observed that if five bits
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were used, the quantization noise turns out to be the most predominant source

of noise. For the particular set of classes considered in Fig. 3.13, an

improvement in the number of bits from eight shows no significant difference in

the probability of error.

The purpose of this section was to show how the software system could be

used to evaluate the response of a multispectral scanner under different

operational environments and different sensor parameters. The results obtained

here were specific for the two input classes selected.

3.6 Removal of Atmospheric Effects and Noise

As was observed with regard to Fig. 3.9, the atmosphere has an important

role in the degradation of class recognition. Based on the noise free atmospheric

model discussed in Chapter Two, it is reasonable to ask; if the atmospheric

transmittance and path radiance are available to us will it be possible to do an

atmospheric correction on the data such that the classification results can be

improved? In order to answer this question, lets first look at what an

atmospheric correction would consist of. To correct for the atmosphere an

inverse type of operation is needed. This will involve changing the data from

the digitized domain into the radiance domain, subtracting from it the

estimated path radiance and then multiplying by the estimated inverse

atmospheric transmittance matrix. By looking at (3.1) we can easily see that

the resulting expression will be
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Y = r^Z-Lp) = L. + rE-|N(L). (3.26)

where N represents all the noises introduced by the sensor system. For data

taken under good atmospheric conditions the second term could be negligible

compared to the signal term, Ls. Now, if the classifier used is a Bayes

minimum error pixel classifier the answer to the question is no. This is because

as was shown in Chapter Two, this type of operations does not affect the

percent of overlapping between the possible classes.

If it is desirable-to estimate-the reflectance of the ground based on the

available data, the digitized data will have to be converted to the radiance

domain. Once in the radiance domain all atmospheric effects present in the

data have to be removed as mention earlier and then multiplied by the inverse

solar irradiance matrix measured at the earth surface. Much has been done

with this kind of calibration procedure (S2], which sounds very reasonable if a

photo-interpretation method is to be used. But again, if the main concern of

the user is to do an accurate estimation of the classification based only on the

frame of data available, and using a quantitative approach then it makes no

difference in the classification results to correct for the atmosphere or go to the

reflectance domain.

Maxwell [Ml] has made use of spatial filters as an alternative method of

reducing the spectral noise and in that way improving the classification

accuracy. In particular he made use of a moving average window which

showed a classification improvement from 18.8 percent of error to 3.6 when it

was applied to a noisy data set. He made the observation that although there

was a significant improvement in the classification accuracy the edges of the
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final images were blurred by the filter. Since a linear spatial filter like the

moving average window will tend to blur the edges in the image, defined at the

boundaries of one class to another (introducing possible misclassification), we

decided to seek another kind of filter which could preserve a good classification

accuracy in the overall image frame. A non-linear filter known as the median

filter seemed to have these attributes [H2j.

The implementation of a median filter can be understood in a similar way

as the moving average window, but in the median filter case the pixel falling in

the center of the window is replaced by the median value obtained from all the

pixel values falling inside the window. Some preliminary results were obtained

using a recursive separable median filter with a window of width three. Table

3.1 summarizes the results obtained when a four band multispectral image was

corrupted with additive gaussian noise with standard deviation equal to seven.

This noisy image was filtered with a recursive separable median filter and then

a classification was performed and compared to the classifications obtained for

the original image and the noisy image. The classification improvement after

filtering was greater than twenty percent overall. Figures 3.14 - 3.16 show the

classification results. One of the disadvantages of this filter is that the output

statistics are far from trivial to obtain and closed form expressions are very

difficult to find. Future work is planned to be done with this kind of filter and

to compare it to the moving average window and other proposed non-linear



Table 3.1 Classification results for a separable recursive
median filter.

Class

Soybeans

Corn

Oats

Wheat

Rede)

Alfalfa

Rye 1

Percent of Correct Classification

Original

06.0

07.0

05.3

07.3

02.6

04.0

05.7

Noisy

42.0

62.3

51.0

63.3

51.3

70.3

50.5

Filtered

73.2

86.2

74.0

83.4

76.0

88.0

86.2

Figure 3.14 Classification results of the original data.
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Figure 3.15 Classification results of the original data
plus white additive gaussian noise, N(0,7).

Figure 3.16 Classification results of noisy filtered data.
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filters.

3.7 Observations

In this work a model for the data acquisition system in a multispectral

scanner system like the one utilized by the LANDSAT satellites was presented.

Since the shot noise introduced by the photodetectors in the sensor system is

signal level dependent, an atmospheric model was adopted which could

adequately describe the amount of radiation that gets into the sensors based

on the atmospheric transmittance. An analysis was carried out to find the

output spectral statistics in terms of the input signal statistics and the system

parameters. This was integrated into a set of fortran programs that can be

used to estimate the classification performance when supplied with the class

statistics, noise levels introduced by the sensor system, the atmospheric

transmittance, and the atmospheric path radiance.

Further topics to be considered in the improvement of this model are:

1- Relaxation of the assumption of relatively high input radiance

arriving at the photodetector input, which allowed approximating the

photodetector output by a gaussian distribution with parameters being

signal level dependent.

2- Implementation of a non-constant atmospheric model.

3- Use of a path radiance model that considers the cover class under

observation.

A library of programs called the Unified Scanner Analysis Package (USAP)

had been developed at the Laboratory of Application of Remote Sensing
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(LARS) to simulate a multispectral scanner in a more global way than the one

presented in this thesis. This package has a weak point because it does not

consider any atmospheric effects and it assumes the sensor noise to be the same

in all spectral bands. The work done in this study could be easily appended to

the USAP system developed at LARS in order to obtain a better simulation of

the multispectral scanner system.
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APPENDIX A
THEMATIC MAPPER

The Thematic Mapper (TM) is a scanning optical sensor aboard the

Landsat 4 satellite, which is in a near polar sun-synchronous orbit at an

altitude of 705 kilometers, with an earth swath scan of 185 Km wide. The TM

is a second generation of earth resources space sensor. It works on the same

basic principles of the Multispectral Scanners (MSS) aboard Landsat 1, 2, and

3. It is an image forming system where each pixel in the image is a vector

consisting of a set of measurements from selected wavelengths regions in the

spectrum. The TM was design so that it will achieve higher imagery

resolution, sharper spectral separation, improved geometric fidelity and greater

radiometric accuracy and resolution, compared to previous scanners. The

spectral bands used by the TM are

band

1

2

3

4

5

6

7

range

.4S-.52

.52-.60

.6S-.69

.76-.90

1.55-1.75

2.08-2.35

10.4-122.5

description

blue

green

red

near infrared

middle infrared

middle infrared

thermal infrared
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These bands were selected because they have proven to be helpful in the

prediction of vegetation mapping, which is the principal mission of the

Thematic Mapper. Silicon.detectors are being used for the first 4 bands. The

two middle infrared and thermal infrared bands use indium antimonide and

mercury cadmiun-telluride detectors, respectively. The detectors of the latter

three bands must be at low temperatures in order to preserve high SNR.

Harnage and Landgrebe [Hi] have stated that classification accuracies are

acceptable for most remote sensing applications when the fields of the scene are

greater than 8 Instantaneous Fields of Views (IFOV) in size. With the TM

IFOV of 30 meters, adequate crop estimation is more approachable in countries

where the field sizes are smaller that the ones in USA.

A nominal equatorial crossing time of 9:30 AM has been chosen for

Landsat 4 because it will provide less cloud cover and topographic information

can be obtained from the shadows. It follows that a nominal equatorial solar

zenith angle of 37.5 degrees will be achieved by the Thematic Mapper. For a

detailed description of the Thematic Mapper design predicted performances see

[H1.S1].
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APPENDIX B

NON CONSTANT ATMOSPHERE

The non constant atmosphere considered here is one where the

atmospheric transmittance and path radiance varies along the satellite path.

This could be induced by inhomogeneity of aerosol and water vapor

concentrations in the atmosphere. A model presented by Kiang [Klj that

considers this fluctuations is given by

L = r.(t)L. + Lp(t) (1)

where ra and Lp are the transmittance matrix and path radiance vector,

respectively. Both of them are considered to be random and are functions of

the optical thickness t which is also a random vector with mean value t0. Let

TO - ra(t0) and Lpo = Lp(t0). Expanding L in a Taylor series of t about t0.

L = r0Ls + Lpo + l(-£-)0L8 + (-r^oKt-g + H.O.T. (3)

Assuming that the fluctuations of the optical thickness are small we can neglect

the higher order terms and make the following approximation,

L * r0L, + Lpo + 7 (4)
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which resembles the constant atmospheric model presented in Chapter 2 with

the exception that there is an additive term 7 which is due to the fluctuations

of optical thickness. This term can be considered as a first order

approximation to be the atmospheric noise. It has an expected value of

It then follows

E[L]r,r0E[Ls]+Lpo

This model was not used in the present work because the statistics of the

random variable 7 were unknown.
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APPENDIX C

SOFTWARE LISTING

program mas

Thl» program flmulatei Una italliUcal transformatloni that
two Input glgnali undergo at dnerent nagei of a
multlipectral iConner §7Hem The ilgnalj tor each elate
era characlerlced by the eovnrlanea matneai and mean netort

The program estimate! the probability of mliclanlfleatlan and
the Bhattaeharyye dlBlance between claaiaa The Inputa toUia
program are

fnar»e=output file nama
tao=atmoapherlc optical thickness values
a ̂ values that will adjust the actual nolle levels.
mr=met«reologlcel range
tacter=lBcramant used by numarleal Intigration
^dimensionality to ba u»ed
ko=actual dlmanilonallty of input itaUitlei
lndex=lth coafflclant In a to ba modlfiad
valu«I=»tarUng value of a(lndax)
vBlu0£=nnal value of a(lndax)
•tepl=# of IntervalB u»ed
cnani>e(la:Z)= Input file with ilgnal itatKUei

Llbronet ueed (DiSL) are uaed

/'charaelar*6 cname(S).tname
' real kc(ZS.Z).mz(ZS.e).k7>(ei.Z).«yi(B.S).lp(B),t(5}
nale(2S.4).rmax(D).rmln(6).a(3).tao(5).kl(6).ke(B)

data kl/Z 30Be-4.Z 1533e-4.Z.3B3a-4.1 7689e-«.1.767Se-4.n.TOTB»-«/
data kS/ 74e-5..53e-5. 45e-S..35e-5. 7ee-5..Baa-5/
data Ip/lSO .ISO .ISO..ISO .ISO .ISO./
datarinax/1.0ee-3.E 54e-3.1 4Be-3.3.26»-3..B4e-3..4B7e-3/
data rooln/0 .0..0 .0 .0 .0 /
data cname/'clai>r.'elaai2V

• read control file
read(5, *) (name
open(E.nle=fname) '
rewind Z

1000 raad(S.*.and=300) tao
read(a.*) a.mr.factor.k.ko
reod(5.*) lndax.valual.valu«Z,itepl

prtnf("lactor=".fB «)1.factor
wrtU(6.*)
kd=ko«(ko+l)/Z
kdl=k»(k+l)/Z

• read Input etatlstlcs for two elanas
dol 1=1.2
open( 1.91e=cname(l))
rewind 1
n>Bd(l.')(kys0.1)J=l.kd).(eyaai).)=l.ko)
close(l)

1 continue

• set values of weighting coeff
alndez^valuel
lstep=n)nt(stepl)
U(veluf.l eq value E) l>tep=0
do E lqv=0,l»tap
o(lndei)=alndel+ lqv*step
wrlte(B.B) Index.valuel,valueZ.«tepl,B,(indeT)

8 format(13.4fB B)
wrtte(fl.')

• form cov matrteei for ihot,praam and quant noire
thata=(37.5/3BO)»Z -3 14158
do31=l.k
la=l*(l-l)/Z+ 1
•(la.l)=a(l)«kl(l)»iqTt(8SS./(rma»(l)-rmto(l)0)

t<l)=B»p(-l tao(l)/coi(that«))
3 continue

lf(lqv aq.O) then
prlsf("metereologleal range : MEJ'.mr
wrlle(e.')
prlnf("atmoiphenc trarumlttance ".10T6.3)'.(tO)J=l.k)
wrlte(6.«)
endlf

doS001c=l,Z
•
• form eovarlanee matrix for ngnal
•

do 1001>=l.k
pathr=lp(lx) «O-t(l»))
mc(lz.lc)st(lz)<ayi(li.lc) 4- pathr

do 75 ly=ljj
kk=lx«(U-l)/Z + ly
11(11 eq.ly) than

ki(kk.lc)=i
alia
ki(kk.lc)=t<lT)»kya(kk.lc)«t(ly)
endlf

75 continue
100 continue
500 continue
c call u>wim("ilgr.«.kt(l,l)jL.l)
c calluiwim("ilge".4.1»(l.e)Jc.l)

calldlag(kt(1.0.kt(l.E).mr(l.l).mt(1.2).kJcdl.iBetor.B(tedn))
E continue

go to 1000
300 prtnt'O'enn of fllel'

nop
end



71

•ubrotrana dlag(ilgl,tige.invl.mvz.nd.ndl.fBeuir.Tlndm)

Thlt subroutine doe* e slmuttaneou* dlagonaftcaUan on UM two
Input covarlanca maulcee Th< transformation uied lj olio
applied to the mean vectors It computes Uu Bay** error,
computti the Bhaltaehoryye
distance uid the upper bound of the Bayaa •rror itabllshed by
It.
SUBROUTIKES CALLED.
subroutine error and lubroutlnn defined In the DISL library

ml mvi(nd).mvZ(nd).sl«l(ndl).il«E<ndl)
reel l(10.10).tl(10,10).*kl(200)
raa)phl(10.1D).wk(Zno).wkm(10.10).ev>l(SO).dlit(SO)
reol evec(10.10).»ko(lD.10).rei(10)

ao 12 U=l. nd
do iei7=l.nd

12wkm(lx.ly)=00

• nrtft elgenveeton «j«^ eigenv&luee of vtgmal ->
cull elgri(fl£l.nd.)obn.<i*&L«v«i:.lr,«k.ler)
lf(wk(l) gt 100 ) then

prtnt'C performance Indez)-".tl4.5)>,wk(l)
stop

endi'

• form e»al-«(-.S)
do 30 li=l. mi

30 vkm(lx.lz)=enl(lz)**(-.S)
c call u>wtm("eTecl".&,aT»c.lO,nd,Bn.E)
e call uewf m("enl**-.5~. 1 l.wkm. 10.nd.nd.E5

• form T= •»»)••( -.5) •

do351y=ljid
•um=0 0
do 33 1=1. nd

33 continue
t(li.ly)=«um
tt(ly.tt)=iuin

35 continue
40 continue
e eal)uewttn(-T~.l.t,10.ad,ni«)

form t»U«S*tt -> «
call Tmulif(il«E.nd.tt,ad,10.wkm.lO)
call Tmulff(t.wkm.nd.ndj>d.l0.10.tt.lOJeT)

call vevtfi(tUid.l0.wk)
c call umm(-K".l.wkjul.8)

• and eigenvector* and e)gmhu» of vk
call elgr>(wk.nd,)obn.anl.evec.U.wkl.ler)
lf(«k(l).gt 100) then

prlnf("performanea lnde»Z=".M4 S)'.wkl(l)
Hop

eiuUf
c cell uiwfmC'erec of k-.B.«*ec.lO,ndjui.Z)
c print '('elgentraluei of K~.10fl4 5)-.(eveJ(l).l=ljid)

• form phl=evec-t • t
call vmulfm(evec.t.nd,nd.nd.l0.10.phl.l0.i«r)

c call u>wfm("matrlz trana H.13.phi.l0.nd.nd.E)

• form dl»t vector
dc601=l.nd

rvun=0.0
do S0)«lj>d
tt(lJ)=phlUl)

SO continue
60 continue

call vmulH(t,mvE,ndjui.l.l0.50.dlst.50.lBT)

e caD ujwnn("ll£l-.4.l}£l.nd.l)
c call u»wsm("«l«2".4.ll4E,nd.l)

• form Identity

eel) vmulff(t,wkm.ndjui.nd.l0.10.wkB,10.1«T)
callunrfm("ld«nUty*".9.wka.l0.ndj»d.l)

form eigenvalue matrix
call vtnubf(ilg2.nd.tUnd.l0.wkm.lO)
callvmul>T(t.«kinAdjid.nd.l0.10.wka.l0.1ir)
caB UiwfmC'elgenrahiei'ME.wka. lO.ndjid.l)

• compute Bhattacharrya dlptanee
«dlit=0
do 1001=l.nd
dd=dUt(l)»«2/(E«(l +eval(l)))
dd=dd+ log((l.+eral(l))/2 ) -.5«log(eval(l))
edlfteedllt-fdd

100 eontlaue

el=exp(-l >ealit)
ree(l)=ediit
r«l(E)=el*10O
rel(3)=el*&0
re»(4)=«rfc(
prtnf("u = ".f8.3)',edut
el=exp(-l.*r<<lit)
prtnf 1 < .1- V10x."e<-.fB3)1.Bl«100..100 «•!/£.

eompx.

rei(S)-— I
rei(fl)=eE
r».(7)=.

•rror
iSlf t,tt,dUt,eval.fectoTjid,el,aZ,e.nf)

r»i(B)=HoBt(nf)
wriu(e,1000) (rei(l)J=1.8)

1000 format("n*ulu ~.SflZ.3)

wrtte(8.«) (rei(l)J=l.B)
return
end
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lubrouUae «rer<a.b..n.d,el£.iaetar.ndlm.el.a2.a.le)
• Thli lubroutlne li called by "dlag". It eitlmotei the
• probability of error between two claim by performing
• o numerical Integration over a tingle Tollable In the
• frequency domain, tea Fukunage and KrUa.

nala(ndlm.E).b(ndlm.E).h(ndlm.2).d(iuUm).elg(ndlin)
c prtnt'C'entar (actor ndlm elg d ")'
c read(S.*) tertor.ndlm.elg.d

wrtt«(o.')
pnnf("algen»aluei -.!0».3)'.(alg(l).l=l.ndlm)
wrlte(B.')
print' ("dliianee vector -,10fB.3)'.(d(l).l=l. ndlm)
wnte(6.*)

11 lormat(lore.3)

p)=3 141SB28S4
»1 = 1
V2=.ES
v3=.5

a(Ll)=l -l.

b(Ll)=(l
b(l.e)=eqrt(el8(l))»dlit
b!Z=b(l.l)"2

lombdo=log(el8(I))
h(l.l)=blZ/(l -a(l,l)) + lambda
h(l.Z)=-l *bZZ/(l +0(1.2)) + lambda

5 continue

1 continue
lc-lc+1
w=lc*tactor

pmagl=l.
pang 1=0.
pmage=l

do!01=l.ndlm

ewl=e(l.l)*w
BwEsadBj'w
olw£=o(l.l)«w3

duml= etan(
dume= etan(ew2)-«r«((h(i.E)+bEZ<BEw2/dmE))
pen< 1 -pang 1 + duml
pangE=pangE + dumE
pmagl=pmagl*(iiml"(~vS)*axp(-v9*bie*we/dml))

10 continue
pangl^.S^pangl
pangE=.9*pangE
phll =(pmog 1 /w) •>ln(pangl)
phl£-(pmage/w)*iilji(pangE)

c prmf("ang.mag.phlE.w".4fU.S)i.pang2.pmagZ.phlZ,
e1=el+phll
eZ-eE-fphlE
pmag=pmag 1 +pmagE
lf(pmag gt..OO01) ge to 1

el=.5-(l./pl)»el«lactoT
el=(l -el)-100
eE= ( 5 - (1 /pl)»eE«factor)nOO
e=(el+eZ)/E

c prtnr("el.eS.e.n".3j7.B.lB)',el,eE.«,lc
return
end




