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PREFACE

This report describes part of the work done on a research
program in the remote sensing of the Great Lakes using a multi-
spectral scanner aboard an aircraft. The research has Leen
conducted for the NASA-Lewis Research Center, Cleveland, Ohio,
by Science Applications, Inc., at the Dayton, Ohio, office. The
primary objective of this program is to develop remote sansing
as a practical technique for the analysis of the Great Lakes.

Remote sensing of the environment involves the transfer of
radiation from the Earth's surfa-r 2 through the atmosphere to a
sensor which is located at some point within the atmosphere. For
water surfaces with their inherently low reflectances, the atmos-
pheric scattering of solar radiation acts as a significant noise
factor. 1In this report we have extended an existing model to
include various atmospheric radiation components so that the
resulting mathematical algorithm will allow one to extract a
radiance value which is more nearly representative of the actual
radiance of the water, independent of atmospheric effects.

This research was performed under contract NAS3-22495 and
covers the period from 4 March 1981 through 15 July 1982. Mr.
Thom Coney served as Technical Monitor of the contracc and Dr.
Robert E. Turner of Science Applications, Inc., was the program
manager and principal investigator.
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1
SUMMARY

In the analysis of remotely sensed data on bodies of water,
the atmosphere obscures the inherent surface features as a result
of the scattering and absorption of solar radiation. 1In the
case of multispectral data acyuired by aircraft or spacecraft
sensors, one can preprocess the data by applying mathematical
models and algorithms to the digitized data. The mathematical
model developed in this investigation is specifically designed to
account for various compenents of the visible and infrared radia-
tion in the atmosphere which interfere with the inherent signal
from a water surface. If the atmospheric parameters are known,
then when the algorithm is applied to the multispectral data sets,
an improved or corrected data set will result.

This improved atmospheric correction model allows for the path
radiance in the atmosphere as a result of singly-scattered solar
radiation and also siagly-scattered solar-reflected radiation. 1In
addition, the model includes a singly-scattered sky radiation compo-
nent for the radiation which is reflected by the water surface.
Comparisons are made among the relative magnitudes of these radia-
tion components in terms of the geometric and environmental factors.
Recommendations are presented for a more advanced model whicih would
include the corresponding radiation components for multiple
scattering.




2
INTRODUCTION

Multispectral scanner data obtained by sensors aboard aircraft
and spacecraft allow a user to examine the detailed physical
properties of a surface. ‘hese properties are of interest to
many investigations in various disciplines such as land use
studies, agriculture, hydrology, forestry, and oceancgraphy. 1In
all of these investigations, however, the scattering of visible
and infrared radiation by the atmespheric constituents will raduce
the inherent surface radiance and add a paih radiance to the
attenuated radiance from the target. Ffor many cases of the
remote sensing of bright land areas on relatively clear days the
attenuated radiation from the surface is rather large as compared
to the atmospheric path radiance. For water bodies, with inherently
low reflectances, this i3 no longer true and the path rudiance can
be a major effect in the total radiance at the sensor.

The purpose of this investigation was to extend an existing
atmospheric radiative transfer model to include other radiation
components which did not exist in the previous mcdel. These addi-
tional atmospheri. radiation components include specific effects
for the remote sensing of water surfaces. The model is used in
conjunction with an algorithm specifically designed for the analysis
of multispectral data.

The cdetermination of the atmospheric radiation components is
important for the analysis of the probability of misclassification
of various classes of surface materials. To first order one may
consider the so called linear transfer problem in which the path
radiance is constant over varying surface reflectances for a
horizontally spatially uniform haze. For a non-uniform haze,
however, the path radiance can vary, thereby resulting in a highey
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probability of misclassification of objects if the degree of non-
unifzrmity is unknown. A second-order effect, but one which can
become quite inportant for the remote sensing of high-contrast
targets is the adjacency effect. This is when radiation from a
bright target causes an increase in the path radiance with respect
to the radiance from a neighboring dark target. This problem

would exist, for example, in the remote sensing of water bodies

near bright sandy beaches. The results should be evident in the
brightzned image of the water near the shoreline, provided the
effects of waves and whitecaps are eliminated. This second-order
adjacency effect is not included in the model or algorithm in this
investigation but the effect can be accounted for if the investigator
has sufficiently detailed atmospheric data on the horizontal strati-
fication of aerosols.

Multiple scattering is particularly important if the sky is
hazy. These effects are considered in the model for path radiance
which results from the sun as a source. We have not included the

multiple scattering effects for solar-reflected radiation.
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3
OPTICAL PROPERTIES OF WATER

The interpretation of remote sensing data collected over
water surfaces requires a detailed knowledge of the optical
properties of water and the air-water interface. Water is
unusual as a natural surface because it is a specular reflec-
tor and because in the visible regions sensible data can be
obtained from well below the water surface [1]. Also of im-
portance is the phenomenon of refraction, which occurs when
radiation passes through the air-water boundary. These pro-
perties of water and their significance in terms of remote
sensing are discussed in detail in this chapter.

3.1 REFLECTION, REFLECTANCE AND REFRACTION

Most natural surfaces are approximately Lambertian--re-
flecting incident radiance equally in all directions. A
smooth water surface, however, is a specular reflector, and
reflection of radiation from it follows the jeometrical law
of reflection. This geometric law requires that the angle
with respect to the normal to the surface of the reflected ray
equal the angle of incidence of the incident ray and that
the reflected ray be in the same plane as the incident ray.
Specular reflection is depicted in Figure 1. Reflectance, og,
of the water surface is given by the Fresnel equation

, 2 2
1 sin (ei-er) tan (ei-er)
o = +
s 2

% (1)
tan (6i+9r) ’

where 6, is the incident angle and o, is the angle of refraction.
The transmitted part of the incident ray experiences re-

, 2
sin (ei+er)

fraction at the water surface, as shown in Figure 2. Snell's
law, given by

sin(ei)

51n(6r) = n, (2)
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FIGURE 2. RE-RACTION OF THE TRANSMITTED BEAM AT THE
WATER SURFACE AND THE LAW OF REFRACTION
n = REFRACTIVE INDEX OF WATER RELATIVE TO AIR.




describes the relationship between the angle of incidence of
the incoming bean, Ot. the angle with respect to the normal to
the surface of the refracted beam, 8., and the refractive in-
dex of air relative to water. The refracted beam lies in the
same plane as the incident beam. The phenomenon of refrac-
tion is depicted in Figure 2. The law of refraction requires
that for a water surface, downward sky radiation and direct
sunlight enter the water within 48.5° of the vertical. Only
when the water surface is roughened by wind or another distur-
bance can direct sunlight or sky radiation penetrate the water
surface outside this range of angles. Back-scattered radia-
tion from beneath the water-air inte face also experiences
refraction on reaching the water surface. When the water sur-
face is calm, upward radiation incident at angles greater
than 48.5° with tre vertical is totally internally reflected
[2]. Thus, downward radiation beneath the water surface at
angles with the vertical greater than 48.5° is upward radiation
in the water which has been totally internally reflected [3].

Equations 1 and 2 show that the reflectance and transmit-
tance of the water surface are dependent on the refractive
index of water. The refractive index is influenced by changes
in temperature and by the concentration of various solutes in
the water. Figure 3 shows how the reflectance function, equa-
tion 1, varies as a function of the angle of incidence for
refractive indices of 1.20, 1.33, 1.40, 1.45. This range of
refractive indices encompasses the range of natural variability
in the refractive index for water; and Figure 3 shows that, over
this range, variation in the refractive index is of little
importance in determining the surface reflectance., For all of
the calculations shown in this report, a refractive index of
4/3 is used. Figure 4 shows transmittance, T, and reflectance,
pgsr a8 2 function of angle of incidence of the incoming radia-
tion for a refractive index of 1.33.

Since many applications of remote sensing over water require
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examining the signature from beneath the water surface, Fres-
nel reflectance is of paramount importance. Figure 4 shows
that transmittance is hijhest when the incident beam is per-
pendicular to the water surface, while the reflectance is
lowest at this angle. Thus, from a consideration of the Fres-
nel formulas, one would expect the return from beneath the
water surface relative to the total, to be greatest when
viewing that surface at the nadir. Contributing to this
effort is the fact that most scattering phase functions for
polydispersions in water have a secondary peak at 180° [2].
Figure 4 shows that while the Fresnel reflectance function is
at a minimum at the nadir view angle, this function changes
very little out to viewing angles as great as 40°, at which
point it begins to rise steeply. Internal reflection at the
water surface of upwelling radiation is also at a minimum nor-
mal to the water surface. Thus, for remote sensing work where
the return from beneath the water surface is of greatest in-
terest, scan angles should be maintained within 40°to 45° of
the vertical. Beyond an angle of 48.5° no radiation from
beneath the water surface will reach the sensor when the water
surface is calm. Scanning in the solar plane is also problem-
atic in this regard since specularly reflected light on the
solar side of the scan plane would saturate the sensor. For
some purposes, such as viewing the glitter pattern on the
water surface, scanning in the solar plane may be desirable.

3.2 ABSORPTION AND SCATTERING

Water is a good absorber of electromagnetic radiation.
only in the relatively narrow spectral region from about 400
to 600 nanometers is the transparency of water such that
radiation can penetrate more than a few meters in depth below
the water surface. Both at wavelengths shorter than 400 nm and
longer than 600 nm, absorption increases rapidly and only very
small amounts of radiation are scattered back out of the water
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into the atmosphere. At the very short wavelengths this radi-
ation is further strongly attenuated in the atmosphere.
Scattering of radiation in water is caused by water mole-
cules, by dissolved salts and by particles in suspension.
These effects are usually assumed to be additive [4].
Scattering by water molecules is described by fluctuation
theory which predicts scattering of radiation as a result of
molecular movements which cause fluctuations in the density of
the medium. As in Rayleigh scattering, this type of scattering

is proportional to A4

, where A is the wavelength of the radi-
ation being scattered. The effect of dissolved salts on the
moleculax scattering phase function is usually small enough to
be neglected.

In general, most scattering in water is accomplished by
particles in suspension [4]. Particulate matter in water
derives from runoff from land, deposition from the atmosphere,
and organic processes within the water. Thus, particles may
be quite irregular in shape and particle size distributions are
difficult to characterize precisely [2]. Because some sources
of particles such as runoff of organic processes may be highly
localized in space, size distributions may vary greatly in
space and time. Although particle shapes vary considerably
from the spherical ideal of scattering theory, it has been
shown [5,6] that systems of irregqularly shaped particles can be
adequately approximated by systems of polydisperse systems of
spherical particles. The major observed features of phase func-
tions of particulate suspensions in water are a strong forward
scattering peak, a broad minimum around 100°-130° and a small
secondary peak in the back scattering direction [4].

3.3 OPTICAL PROPERTIES OF A WIND ROUGHENDED WATER SURFACE
Roughness of the water surface caused by wind presents an

additional problem in the calculation of the optical properties

of the surface. Waves increase the angle of incidence of direct
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radiation for high solar elevations. The effect on the Fresnel
reflectance, however, is of little consequence since the
reflectance does not vary much with solar zenith angle for
zenith angles less than 40° (see Figure 3). Waves reduce the
angle of incidence of direct radiation from a low sun, greatly
reducing the reflectance of the water surface. Cox and Munk
[7] have shown that wave action becomes a significant factor
for solar elevations below 20°. At these low sun elevations,
reduced reflection, shadowing and nultiple reflections greatly
reduce the reflected radiance.

The reflection cof diffuse radiation by the water surface
is little affected by surface roughness [2] ., although complete
agreement on this matter is lacking [8]. Burt [9]) found that the
albedo of a wind roughened water surface was slightly less than
the albedo of a smooth water surface--a decrease from 6.6% to
5.7% for the roughened surface. Cox and Munk [7] measured a
small increase in the albedo of a smooth water surface of 5%
to 5.5% for a water surface roughened by waves. Kondratyev [8]
on the other hand, calculates that where the solar zenith angle
is 0° the albedo of calm water surface of 2.1% will increase to
13.1%. When the solar zenith angle is 30°, the increase will
be from 2.2% to 3.8%, and for a solar zenith angle of 60°
there will be a decrease from 6.2% down to 2.4% for a roughened
surface. Plass et al. [10], using a Monte Carlo model of the
atmosphere ocean system, demonstrate that the downward flux
just below the surface always increases with wind speed, even
at high sun elevations. They attribute this result to the fact
that more sky radiance near the horizon enters the water when
waves are present.

The effect of waves on the radiance of the water surface
can be calculated if the probability distribution of surface
slopes is known. For an observer looking down on a water sur-
face, the specular angle will vary from place to place over the
surface of the water. Since in most remote sensing applications

12




the light source (Sun) and observer (sensor) are high enough
above the surface and the region v.ewed sufficiently small

that variation in the specular angle can be neglected. The ra-
diance of the surface is then directly proportional to the
probability of finding a surface element with slope, Spr at

the specular angle [11]. If p is this probability, the radi-
ance of the surface, Ls’ at vertical angle i is given by

Ls(i) = Lo(l)pf(l)p (3)
where

Lo(i) is radiance incident at the surface at vertical
angle i, and

pf(i) is the Fresnel reflectance at vertical angle i.

Duntley [12] and Cox and Munk [7,13] have studied the
statistical distribution of wave slope as a function of wind
speed. Observations of the effect of wind speed on spatially
or temporally averaged reflectance of the water surface indi-
cate that it is not significant for view angles less than 70°
from vertical. Angles in excess of 50° from the vertical are
seldom used in remote sensing systems because of the large
optical air mass at these angles.
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4
COMPONENTS OF REFLECTED AND PATH RADIANCE

IN REMOTE SENSING OVER WATER

In many applications of oceanographic remote sensing the
quantity of greatest interest is the radiance information
transmitted from below the water surface to a sensor, some-
times called the intrinsic radiance. To determine this quan-
tity from raw remote sensing data we must not only estimate
atmospheric path radiance but also the magnitude of radiance
reflected off the water surface and transmitted to the sensor.

In this chapter we describe in detail analytical models appro-
priate for estimating the following quantities: reflected sky
radiance, LSKYRE; singly scattered reflected solar path radiance,
LvpP; singly scattered path radiance, Lpss:; and multiply scattered
path radiance, LpMs. The first two of these quantities are
radiances resulting from specular reflection off the water sur-
face, the latter two are atmospheric path radiances. Each of
these radiances augments the radiance detected by a sensor,
masking the radiance signal from beneath the water surface, as
shown in Figure 5.

4.1 REFLECTED SKY RADIANCE, LSKYRE

The geometry for sky radiance reflected into the line of
sight of the sensor is depicted in Figure 6, where 6 represents the
nadir view angle of the sensor, ¢ the azimuth of the sensor scan-
ning plane. We assume a plane parallel uniform atmosphere. Sky
radiance dcwnwelling in the scan plane and incident at an angle
8 with the normal to the surface is reflected in the direction
of the sensor, and attenuated by the atmosphere as it travels to
the sensor. The surface reflectance is given by the Fresnel for-
mula for unpolarized light described in Chapter 3.

We consider in this model only singly scattered sky radiance,
generated by scattering of solar beam radiation along the straight
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I‘t Surface
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LsoL = direct beam radiance;

LpMs = multiply scattered path radiance;

Lpss = singly scattered path radiance;

Lgky = sky radiance;

LgkyRg = reflected sky radiance;

LsoLRE = reflected solar radiance;

Ly = upward scattered radiance beneath water surface;
Liytr = radiance scattered from beneath water surface.

FIGURE 5. COMPONENTS OF TOTAL RADIANCE DETECTED BY SENSOR
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FIGURE 6. GEOMITRY FOR REFLECTED SKY
RADIANCE COMPUTATION,
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line path from the top of the attosphere to the water surface.
In Figure 6, this straight line path has direction (=-u,¢), where
4 = cosf. In order to define the angle of scattering we must
first define 'wo vectors, one defining the direction of a photon
leaving the Sun and the other the direction of the singly
scattered sky radiation. If (-u°.¢°) is the direction of the
photon leaving the Sun (where Mo is the cosine of the solar
zenith angle, eo, and ¢ is the photon azimuth), the vector
direction c¢f the photon leaving the Sun is

rsin(n-eo)cos¢0 '/I-poz cos¢0'

LSOL - sin(n—eo)sin¢0 - /I-ueﬁ sin¢o ' (4)
-cos(n-eo) ] BT )

and

p- - r -
sin(n-0)cos¢ YI-u? cosy

Lggy = |sin(n-6)sine = | /T=u7 sin¢ . (5)
Lcos(n-e) -u

The cosine of the scattering angle, \gkY., is given by the dot
product I,sorL °* Lsky., i.e.

cos\ggy = M g * Yl=it vi-uy? cos (d=bq) . (6)

e & I L
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The equation for singly-scattered sky radiance, L

skyss’' 18
the well-known formula [14]

“O“OEOP(XSKY) =t9/u -Ta/ M
Lsxyss = T lug-w) [e 0 -0 ] (7

where Eo = solar irradiance at the top of the atmosphere;
W = atmospheric single scattering albedo;
Ty = optical thickness of atmosphere;

p(XSKY) = gcattering phase function for scattering
angle XgKy *

When the sky radiance is reflected off the surface of the
water it i# diminished by the Fresnel reflectance of the water
surface, Pper and further attenuated by the atmosphere on its
way to the sensor. Thus, the complete formula for the . -~flected
sky radiance is

- =(tg=1)/u
Lskyre ™ *r © Lskyss (8)

where i is the cosine of the scan angle, r is the optical depth

=(19=T)/¥ ig the transmittance of the atmos-

of the sensor, and e
phere between the water surface and the sensor. At this point

we take note of the fact that in the above formula for the singly
scattered reflected sky radiance, the reflectance of the water
surface and the transmittance of the atmosphere are opposing

effects. Assuming the refractive index of water to be 1.33, the

18
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Fresnel reflectance of water at the nadir vie': angle reaches a
minimum of 0.021 and attains a maximum of 1.0 at the grazing
angle. Typical values of Pp for angles commonly used in remote
sensing range between 2.1 at the nadir to 3.0 at a scan angle
of 46°. The transmittance, on the other hand, reaches a max-
imum at the nadir and becomes increasingly small as the scan
angle increases. These effects will be discussed further in
the following chapter.

4.2 SINGLY SCATTERED REFLECTED SOLAR RADIANCE, LVP'

The phenomenon of specular reflection produces an image of
the radiation source on the surface of the water. We refer
to the image of the Sun on the water surface as the virtual Sun.
If the scan plane is coincident with the solar plane and the
sensor is scanning on the solar side of the scan plane at a
view angle equal to the solar zenith angle, the field of view
becomes saturated with the radiance of the Sun's image. Radi-
ance from the virtual Sun is also scattered into the line of
sight of the sensor. 1In the terminology of this report, we refer
to singly-scattered path radiance from the Sun as virtual Sun
path radiance, LVP'

To find the scattering angle for the computation of singly-
scattered virtual Sun path radiance, we note that the zenith

angle of a photon leaving the virtual Sun is 6 and the azi-

SUN

muth angle is % + m (see Figure 7). The vector direc-

= Ysun
tion of a photon leaving the virtual Sun is

- P -
sineSUN cos¢0 /1—u02 cos¢>0
LysoL = |sinégyy siney| = | /I=H,? sing, (9)
cos8guy ) Ho
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FIGURE 7. GEOMETRY FOR VIRTUAL SUN PATH RADIANCEL
CALCULATION.
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and the vector direction into which photons from the virtual Sun
are scattered, creating virtual Sun path radiance is

sinécos¢ Y1l-u?2 cos¢
Lyp = sinfsin¢| = Y1-u2 sin¢ . (10)
cosé u

The scattering angle is the dot product,

LVSOL . LVP = U Y + V1-p2 /l—uOZ cos(¢-¢o). (11)

As in the case of singly scattered sky radiance, the same
types of physical interactions which generate singly-scattered
sky radiance from direct solar radiation also scatter radiation
from the virtual Sun to generate virtual Sun path radiance. Thus,
we may use the same equation for singly-scattered sky radiance,
with some modifications, to find the singly-scattered virtual
Sun path radiance, Lyp+ One difference is in that the compu-
tation of Lyp We will now sum the scattered radiation over a
path beginning at 1 = To (the optical depth of the scene viewed
by the sensor) and ending at the optical depth of the sensor, rT.
If we denote the irradiance of the virtual Sun by Eo‘, we obtain
the following formula for singly-scattered path radiance from
the virtual Sun:

21
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woHoEg ™ P(cosXyp) [e-(ro-r)/uo _e-(ro—r)/u] . (12)

Lyp = 4m (up=u)

»

by noting that the Ep~ is the image of
the Sun reflected in the water surface. Hence, the irradiance

We define Eo

of the virtual Sun is the irradiance of the true Sun at the
top of the atmosphere attenuated by the atmosphere and the reflec-
tance of the water surface, i.e.,

.- =-10/40
E,” = op © Eg (13)

where PR is the Fresnel reflectance and e-To/uo is the transmit-
tance of the atmosphere.

4.3 SINGLY SCATTERED PAT:! RADIANCE, LPSS'

The geometry for singly-scattered path radiance is shown
in Figure 8. The formula for singly-scattered path radiance
is similar to that for singly-scattered path radiance from the
Sun--the same straight line path from To to T is used, but Eg
is substituted for Eo‘ in the formula. The cosine of the
scattering angle for singly-scattered path radiance, COSXpgg is
also the negative of the cosine ¢of the scattering angle used to
compute the phase function for LVP' Thus, cosyx is the dot
product, iSOL . £VP’ vector directions which have already been
defined. The formula used to compute singly-scattered solar
path radiance is

L - woHoEg P (COSXpgg) o~T0/H0  [o(To=T)/ug _e-(ro-r)/u]
PSS 4W(u+uo)

(14)
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FIGURE 8. GEOMETRY FOR SINGLY SCATTERED PATH RADIANCE,

LPSS' CALCULATION.
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where the variables in the above equation are as previously
defined.

4.4 MULTIPLY SCATTERED PATH RADIANCE, LPMS'
To compute multiply scattered path radiance we use an
analytical approximation described in detail in an earlier re-

port [15] . The formula for the computation of L

pMs 18

Ep

4n [ug+(1-n) 1)

Lons =

l(l'n)To[p(UI¢luolﬂ+¢o) + p(“r¢r‘“o¢o)] + Uop(UI¢1-uO¢o)

2uy%p -(1t9=-1)/u
+ 1-e” 70 +  J(1=n) P(u,b,up,m+d4)
1+2(1-n)(l-o)T0

8(1-n)ug®e |
1+2 (1-n) (1-p) 1|

+ pusd,=ngro,)] - &ro+u)e°(T0‘T)/“-(r+uJ

(15)

The single-scattering phase functions are given by:

Pk 0,ugm+og) = B [u ug=/TIRD (T-HT) cos (0-4)]

p(UI¢I-UOI¢0) = P[‘U U0+/H"U2§ (l-qu) COS(¢"¢0)] .
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5
COMPUTER MODEL AND RESULTS

In this chapter we describe implementation of the formulas
discussed in Chapter 4 in the computer program called ATCOR. Many
of the details of ATCOR have been presented in a previous report
[16], so only a brief description of the entire program will be
given here. Our discussion will focus primarily on the subroutine
ATMSFR, in which the formulas presented in Chapter 4 have been
introduced.

5.1 SPECIFICATION OF SOLAR AND SENSOR GEOMETRY

The geometric relationship of the sencor to the environment
is shown in Figure 9. The geographic coordinates of the sensor
locate the center of a spherical coordinate system used to define
angles needed in model calculations. In the diagram the scanner
scans along a path from Pl (the first pixel) to Pn (the last pixel).
The azimuth of the scan plane is measured in the counterclockwise
direction from north to the first pixel and is read into the program
by the routine ATMSFR. The first pixel is always 90° in a clock-
wise direction from a vector pointing in the direction of the flight.

The solar zenith and azimuth angles are computed automatically
once the latitude, longitude, date, time of day (standard time), and
zone number are specified. The extraterrestrial solar irradiance
is also computed based on these inputs.

5.2 ATMOSPHERIC CORRECTION OPTIONS

Two input parameters set by the user determine which calcula-
tions are performed in routine ATMSFR. These parameters are SCATT
and OPTION. SCATT may assume the value of either 0 or l; OPTION
can take on the values of 1, 2, or 3. If SCATT is 0, only multiply
scattered path radiance is calculated and the value of OPTION can
be any integer and will be ignored since only LPMS is then calculated.
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W

FIGURE 9. SCAN PLANE AND SOLAR GEOMETRY. ¢sCAN IS MEASURED
COUNTERCLOCKWISE FROM NORTH TO PIXEL #1, ¢SUN IS
MEASURED COUNTERCLOCKWISE FROI1 SOUTH. POSITIVE
SCAN ANGLES ARE MEASURED FROM THE FIRST PIXEL TO
THE NADIR. NEGATIVE SCAN ANGLES ARE MEASURED FROM
THE NADIR TO THE LAST PIXEL. Pj; AND Pp ARE THE FIRST
AND LAST PIXELS, RESPECTIVELY.
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If SCATT is 1, single scattering computations are performed and

the value of OPTION is used to determine which values to calculate.
If OPTION = 1, singly scattered path radiance, LPSS, and reflected
sky racdiance, LSKYRE, are computed. If OPTION = 2, LPSS and virtual
sun path radiance, LVP, are computed. 1If OPTION = 3, LPSS, LSKYRE
and LVP are calculated.

OPTION and SCATT are read into the data file on logical unit 4.
The format for this record is (5I5), and the variables read in are:

FSTP LSTP PTINC SCATT OPTION

where
FSTP = the number of the first pixel to be processed,
LSTP = the number of the last pixel to be processed,
PTINC = the pixel increment to use in the processing,
and SCATT and OPTION are as previously defined.

The output file which is used by ATMSFR is given in Table 1
and the new subroutine ATMSFR2 is given in Table 2.

5.3 MODEL INPUT PARAMETERS
In addition to the geometric paramete.s, we must specify
parameters characterizing the medium and the measurement system.

The model makes use of several "altitude" values which must
be input by the user. First, one must know the actual altitude
(km) of the sensor above the surface. Second, one must know the
pressure (millibars) of the atmosphere at the surfes~e, and third,
one must know the atmospheric pressure (in millibars) at flight
altitude. If only the altitudes are known, one can use the
tables relating pressure to altitude as given by the U.S. Standard
Atmosphere [17].
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TABLE 1

INPUT FILE ON LOGICAL UNIT 4

FOR USE BY ATMSFR

ORIGINAL PAGE IS
OF POOR QUALITY

READ OCURS
lLINE 5> | IN ROUTINE INPUT VARIABLES FORMAT
FSTP,LSTP, PTINC,

1 ATMSFR SCATT, OPTION (515)

2 DATE MNTH, DAY, YEAR (314)

3 ANGLES HOUR, MIN, SEC (215,F6.3)

4 ANGLES NZ (15)

5 ANGLES mrn,rﬁggnééz:ggégonns, l(ZIs:gg . g),zxs ’

6 ATMSFR ZSCAN, ZGRND , LSW (2F8.5,15)

7 ATMSFR (WAVE (I) ,1=1,QNCHAN) (10F8.5)

8 ATMSFR (RHO(I) ,I=1.QNCHAN) (1OF8.5)

9 PHASE R,IM (2F8.6)
s PHASE ™, NANG, (C(I),I=1,NANG) |2I5/(10F8.6))
s | eme | me@oeas | oo

80 RAYLEI PRESO, PRES 2 (2F10.4)
81 OZONE NOZ ,NPROF , NO3W1,NO3W2 (415)
82 OZONE WAVC1,WAVC2 (2F8.4)
pa-1s3 | ozowe [0y Otenl, npkor) | FELe
154 OZONE (O3MAX (IP) , IP=1,NPROF) (10E13.6)
155-169 OZONE (WAVO3 (I) ,A(I),I=1,NO3W}|(F7.0,E11.4)
(NOTE :NO3W=NO3Wl + NO3W2)§




INPUT FILE ON LOGICAL UNIT 4

TABLE 1 (Cont.)

ORIGINAL PAGE IS

FOR USE BY ATMSFR OF POOR QUALITY
(CONTINUED)
LINE NO. IN ROUEINE INPUT VARIABLES FORMAT

170 OZONE NOP (4I5)
_171 THICK NTEX (12)

177 THICK (WAVEX (I) ,TAUEX(I) ,I=1,NTEX)| (2F8.4)

178 PARAMS FSCAT (10F8.6)

179 AERO NAER,MPROF ,NUZ ,MAXG /51I5)

180 AERO IPROF (IS)
181~184 AERO (WAVAER(I) ,RIN(I) ,I=1,NAER)| (10F8.4)
185-230 AERO ((ZUNI‘(‘égg:ggiifgéé;’;,12=l, (F7.0,E11.4)
231-258 AERO (X(1),z(1),I=1,MAXG) (F7.0,E11.4)

259 ATMSFR PHID,PHIM,PHIS (2I3,F6.3)

SENDFILE
29
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The user must also define the center wavelengths (um) of the
multispectral scanner and the corresponding values of the surface
background albedo (values from zero to one). Also, the center
wavelength3 (um) of the surface radiometers and the corresponding
optical thicknesses must be known. It should be noted that the
opticai thicknesses used should be those measured as closely as
possible in time with the multispectral data.

5.4 MODEL CALCULATIONS

In this section we present several examples of the radiances
for the various components. Because our main interest is in the
radiance components as a function of scan angle and visibility, we
will presert the results of the calculations in terms of these
parameters.

Figure 19 depicts the variation in the singly-scattered
reflected sky radiance at the sensor as a function of the nadir
scan angle and visibility. 1In this example the solar zenith
angle is 45° and the scan plane is perpendicular to the solar plane.
The curves which result are a combination of the variation of the
sky radiance, the transmittance from the surface to the rfensor, and
the Fresnel reflectance of the water surface. For a practical
scanner with a maximum scan angle of about 45° the curves indicate
that one would not observe the large radiance peaks at the large
angles.

In Figure 11 we display the corresponding path radiance as a
result of singly-scattered radiation from the reflection of the
sun in the water. In this case the radiance peaks do not exist at
the large scan angles.

In Figure 12 we illustrate the relative magnitudes of the
various radiation components as a function of scan angle for a
moderately hazy atmosphere. The virtual sun path radiance is
the smallest value and the multiply scattered sky radiance is the
largest \.lue.
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Figure 12.
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Lvp = virtual sun path radiance:
Lsxyng = reflected sky radiance;
Lpss = singly scattered path radiance;

LpMs = multiply scattered path radiance:
Lpror = Lyp + LskYRE * Lpss *+ LpMs-

SURFACE AND PATH RADIANCE COMPONENTS DETECTED BY

SENSOR AT OPTICAL DEPTH OF 1 = 0.346 AS A FUNCTION

OF SCAN ANGLE, 8SCAN. SCAN PLANE | SOLAR PLANE,

eguN = 30°, X = 0.55 utt, PHASE FUNCTION = CONTI-

NENTAL REFRACTIVE INDEX 1.5 = 0.01i, VISIBILITY = 10 KM.




.

In Figure 13 we indicate the variation in the ratio of the
singly-scattered sky radiance to the singly-scattered path radi-
ance as a function of the optical depth 1 of the sensor. As the
curves illustrate, the reflected sky radiance component is rela-
tively more important for the larger optical depths.

Figure 14 illustrates the variation in the ratio of the
virtual sun path radiance to the singly-scattered path radiance
with scan angle for four optical depths.

Figure 15 depicts the large ratio of the multiply-scattered
component to the singly-scattered path radiance component as a
function of optical depth and scan angle.

Because optical thickness or visibility is of major importance
in remote sensing investigations, we want to consider the variation
of the radiance components with respect to visibility. This effect
is 1llustrated in Figure 16 for three different atmospheres. We
chose the continental aerosol because it more nearly representi the
type which would be found over the Great Lakes. The three refrac-
tive indices are: 1.5-0.0i which corresponds to a "clean" haze, i.e.,
one where there is no absorption; 1.5-0.01i which corresponds to
a haze with some aerosol absorption; and 1.5-0.1i, a complex index
of refraction which corresponds to a haze with more absorption. As
the curves indicate, an absorbing haze or one which corresponds t»
considerable air pollution gives rise to a large ratio of reflec ed
sky radiance relative to the singly-scattered path radiance.

The effect of the complex index of refraction is also evident
in the ratio of the virtual sun path radiance ta the singly-scattered

path radiance as indicated in Figure 17.

Finally, we illustrate in Figure 18 the variation of various

combinations of ratios in terms of the visibility for a refractive
index of 1.5-0.011i.
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FIGURE 13.

SCAN ANGLE, 6ScaN (%)

RATIO OF REFLECTED SINGLY SCATTERED SKY RADIANCE
TO SINGLY SCATTERED PATH RADIANCE AS A FUNCTION

OF SCAN ANGLE, 6scaN, FOR OPTICAL DEPTH, 1, OF

THE SENSOR OF 0.132, 0.175, 0.225 and 0.346. SCAN
PLANE l SOLAR PLANE, PHASE FUNCTION = CONTINENTAL
REFRACTIVE INDEX 1.5 = 0.0l1i, VISIBILITY = 10 KM,
0.55 uM, 8syn = 30°.
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SUN, Lyp, TO SINGLY SCATTERED PATH RADI?V'CE, LpSS, AS A
FUNCTION OF SCAN ANGLE, 6scanN, FOR OPTICAL DEPTHS, 1, OF
THE SENSOR OF A) 0.132, B) 0.175, C) 0.225 AND D) 0.346.
SCAN PLANE _l_ SOLAR PLANE, PHASE FUNCTION CONTINENTAL
REFRACTIVE INDEX¥ 1.5 - 0.01i, VISIBILITY 10 KM, )\ =
0.55 uM, 6syn = 30°.
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FIGURE 15. RATIO OF MULTIPLY SCATTERED PATH RADIANCE, LpMs, TO
SINGLY SCATTERED PATH RADIANCE, Lpss, AS A FUNCTION
OF SCAN ANGLE, 6scan, FOR OPTICAL DEPTHS, 1, OF TH
SENSOR OF 0.132, 0.175, 0.229, 0.346. SCAN PLANE

SOLAR PLANE, VISIBILITY = 10 KM, PHASE FUNCTION =

CONTINENTAL REFRACTIVE INDEX 1.5 - 0.01i, A = 0.55 uM,
8SUN = 30°.
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RATIO OF SINGLY SCATTCRED PATH RADIANCE FRO! THL
VIRTUAL SUM, Lyp, TO SINGLY SCATTERED PATH RADI-
ANCE, Lpss, AS A FUNCTIOU OF ATMOSPHERIC VISIBIL-
ITY FOR THREE CONTINENTAL ALCROSOL !MODELS WITH
REFRACTIVZ INDICES OF a) 1.5 - 0.0i, b) 1.5 - 0.011i,
and ¢) 1.5 - 0.1i. A = 0.55 uM, 6synN = 30°,

6scan = 0°.
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6
CONCLUSIONS AND RECOMMENDATIONS

The problem of developing an atmospheric correction algorithm
for remote sensing is an old and difficult one. The main difficulty
lies in not being able to have available sufficient data which '
can be used to specify the values of the relevant atmospheric para-
meters The problem is all the more difficult in the case of the
remote sensing of water bodies because of the low signal-to-noise
ratio involved. 1In this investigation we have extended an existing
computer algorithm so as to include additional radiation components.
The original algorithm included the path radiance which arises
from the singly-scattered solar radiation in the atmosphere. We
have now included the radiance which arises from the sky radiation
which is reflected by the water surface and is then attenuated as
it propagates from the surface to the sensor. 1In addition, we
have included the path radiance component which arises from the
single scattering of radiation as a result of a virtual sun, i.e.,
of the sun's reflection in the water. It should be realized that
this component is always present regardless of the scan plane,

i.e., it does not only occur when the scanner is looking at the
specular angle. In addition to these components, we have also
included a multiple-scattering approximation. It should be
realized, however, that the multiple scatterirg applies only to

an atmosphere with the sun as a source. 2nother multiple scattering
calculation should be performed to include the effect due to the
virtual sun.

The general result of all these calculations indicates that
the various components are all about equal in magnitude but that
there is considerable variation with respect to scan angle and
visibility. Also, it appears that the multiply-scattered component

is of major significance.




It must be pointed out that the objective of this investigation
is to provide an algorithm for the correction of remotely sensed
data for atmospheric effects so that one can extract from the multi-
spectral data the radiance which is characteristic of the water
itself. 1In our investigation we have dealt with the water surface
as a flat, specular reflector, which in general is not true. A
wind-roughened surface will be characterized bv a complex wave
structure which leads to a more complicated representation of the
reflected and virtual sun radiances than presented in this report.

A further investigation should be conducted to model the water
surface in terms of wind speed and a stochastic representatior

of the reflecting facets of the water surface. 1If this is done,
then a more realistic model could be developed which should provide
better values for the sky-reflected and the virtual sun path
radiances. It may even be possible to establish a method for the
determination of wind speed by observing the average radiance as

a function of the instantaneous field of view.

A further recommendation is to improve the accuracy of the
algorithm by including a more detailed calculation of the multiply-
scattered path radiance, both for the direct sun as a source and

for the wvirtual s..:n as a source.
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