
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19830013574 2020-03-21T03:51:38+00:00Z



Regular Paper

22nd CDC

CDC presentation only

APR PIS

B&I&ED

(

OF POOR Qumm

Linear Approximations of

Nonlinear Systems

(NASA-CH-170036) LINEAR 1PPHOYIBATIOUS OF
NONLINEAR S?STEBS (Texas Technoiogical
Univ.) 15 p HC NO2/DF 1101	 CSCL 12A

N83-218~5

a ncla s
G3/64 03198

L. R. Hunt
Department of Mathematics
Texas Tech University
Lubbock, Texas 79409
(806)742-1427

Renjeng Su
Department of Electrical Engineering
Texas Tech University
Lubbock, Texas 79409
(806)742-3716

.,e 
-1.



oft IAI PAGE 0
OF pW QUAIL

--

Linear Approximations of

Nonlinear Systems

L.R. Hung and Renjeng Su

Abstract

A method for designing an automatic flight controller for

short and vertical take off aircraft is presently being developed

at NASA Ames Research Center. This technique involves transforma-

tions of nonlinear systems to controllable linear systems and takes

into account the nonlinearities of the aircraft. In general, the

transformations cannot always be given in closed form. Using

partial differential equations, an approximate linear system

c<<lled the modified tangent model, was recently introduced. A

linear transformation of this tangent model to Brunovsky canonical

form can be constructed, and from this the linear part (about

a state space point x0 ) of an exact transformation for the nonlinear

system can be found. Here we show that a canonical expansion in

Lie brackets about the point x 0 yields the same modified tangent

model.
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I. Introduction

Suppose we have a nonlinear plant for which we are to design

a control scheme. For example, George Meyer [11,[21,[3],141,[51,
[6] at NASA Ames Research Center is presently developing an auto-

matic flight controller for the UH-1H helicopter which takes into

account the nonlinearities involved. His design technique depends

on a theory giving nricessary and sufficient conditions for a non-

linear system to be transformed to a controllable linear system

[7),[81,[9],[l0],[llj. In other words state and control coordinate

changes can be implemented to simplify the problem. Thus the i

method is to move
1
3
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from the nonlinear model of the plant to the linear system in

Brunovsky 1121 canonical form. To have the helicopter fly a

prescribed trajectory, no gain scheduling is needed in Meyer's

technique, because through on-line computations of the transformation

and its inverse, we always see the same trivial linear system.

Meyer's nonlinear system is in block triangular form, and

it is not difficult to find a transformation and its inverse.

However, the transformation theory in [8) applies to systems which

are much more general than block triangular. Formally, the

desired transformations can be constructed by considering a system

of partial differential equations, which can be reduced to ordinary

differential equations. It is not always possible to solve such

equations in closed form, but cases where this can be accomplished

are presented in the Ph.D. thesis of H. Ford [131. Numerical

techniques for conctructing approximate transformations in certain

situations (e.g. under the conditions due to Brockett [141) are

introduced in [131.

It is appropriate to develop a method to build an approximate

transformation in all cases. In (151 we considered this problem

in view of the partial differential equations from [8]. We found

a related set of partial differential equations, the solution of

which yielded a linear approximation to an actual transformation.

In fact, given a point x0 in state space, we are able to construct

a mapping which is the linear part of an actua' transformation about xp,

without knowing the transformation itself. In this process we

introduce an approximatinq linear system called the modified tangent

model. If one is working around an equilibruim point of the drift

term in our nonlinear system, this modified tangent model is the
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linear system we obtain by truncating the Taylor series of our

nonlinear system about the point. However, if we are away from such

an equilibruim point, the modified tangent model can provide a

different system than the usual linearization (an example is

presented in [15]). If one is interested in tracking a certain

trajectory, then modified tangent models are constructed at various

points along the trajectory.

The purpose of this paper is to show how one obtains the

modified tangent model by an expansion which parallels, but is

unequal to in most case., the Taylor approach. This technique

is included in an article 1161 by the authors giving canonical

forms and canonical expansions for nonlinear systems.

We show that the partial. differential equations and canonical

expansion yield the same approximate controllable linear system.

Moreover, the form of the approximate linear system and knowledge

about nonlinear control theory convince us that it is the appropriate

model for designing a controller for many nonlinear plants.

II. Expansions and the Tangent Model

In order that a nonlinear system be transformable to a linear

system as in (8], it must be of the form

m
(1)	 x(t) = f(x(t)) + icl ui(t)gi(x(t))

where f, g l , ... ,gm are ^ 	 vector fields on Qt n , and gl'92,...,gm

are linearly independent (this is assumed for convenience). Now

the results from [8] are local in nature («local theorems are

presented in [91), but for the sake of simplicity we assume that



(2)
	

y(t) = ADy + 9ov.

and with Kroneck er indices K 1 > K > ... > Km.

For vector fields f and g, [f,g) denotes the well known

Lie bracket, and

(ad 0f ,9) = g

(ad 1 f,g) = [f,9]

(ad 2f ,9) = [f, [f,9) ]

kf,g)	
[f^(adk-l

(ad	 f,g)).

We define

C = ig 1 , [ f ,9 1 ), ... , ( aaKl-1f , gl ), g2 . [ f , g2 ], ... ,(ad'?-1f,92),

... ' gm ,If, gm l, ... ,(ad Km-1f'gm)}

C j = f g l , [ f ,9 1 ) , ... , (ad j -2 f,g l ) , g 2 , [f,9 2 ) , ... , (ad K j -2f ,9 2 ) ,

... ,(ad
s:. -2

f,g ) )forTr

In [8) it is shown that system (1) is transformable to system (2)

if and only if (with possible .reordering of g l ,g 2 , ... ,gm)

1) the n vector fields in C are linearly independent,

2) the sets Cj are involutive for j=1,2,...,m, and

3) tho span of C j equals the span of C j n C for j=1,2,...,m.

We assume that our system (1) satisfies these three condi-
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tions. using the partial differential equations approach from

[8) we introduced the modified tangent model about a point x 0 in

x-space

(3) x(t) = f(x0 ) - Ax  + Ax + Bu.

It is shown in [15) how to construct an approximate transformation

using this model. Here A is an nxn matrix and B = (blob 2# ... ,bm)

is an rn tuple of n vectors that satisfy the equations (take +

for k even and - for k odd)

Akbl = + (ad k f,g l )(x0 ), k = 0,1, ... ,K.l

(4) Akb2	 ± (ad k f, g2 ) (x0 ) , k = 0,1, ... ,K2

ke _ + ( adA

	

	 f,gm)(x0), k = 0,1, ... ,K m.
m

Equations (4) are nonlinear, but there is a simple method for

computing A and B. Let D be the set of vector fields

f (adKl f,g l ) (x0 ) ,adrl-l f, g l ) (x 0 ) , ... . (adK2 f, g l ) (x0 ) ,

(ad' 2 f, g 2 ) (x0 ) , (ad'c2-l f, g l ) (x0 ) , (adK2-l f,g2 ) (x0 ) , ... ► (ad K3f,g3) (x0 ) ,

... ,9 1 (x0 ), 9 2 (x0 ), ... ,gm(x0)). Before forming this set

checks such as ti  = K 2 or K  > K 2 , etc, should be made and no

duplications should be included.

Now we introduce an interesting (n+m)x(n+m) matrix E. Let

the first column be (ad rl f,g l )(x0 ) followed by m zeroes, the second

column will be the second element of D followed by m zeroes, ...

the nth column be the nth element of D followed by m zeros, the

(n+l) th column be g l (x0 ) and m zeros, ... , the last column be

gm (x0 ) and m zeros.

Ignoring the last m components, the first column of E is + A`'lbl,
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the second 
+AK1

-lb l , ... , the nth +Abm , ... , and the last bm. It

is shown in 1131 that there is an orthogonal coordinate change on Rn

so that all entries above the first m superdiagonals are zero

and the elements below the nth row remain unchanged. For our
M..t n eels
tJ ke	 purpose we can assume that E is initally in this "generalized lower

Snia here Hessenberg" form, because knowing A and b in these coordinate,

we can return to the original A and b through an orthogonal change

of coordinates.

Hence we have by (4)

0 0 0

bm bm_ 1 ... b1 =

0 0
*

* *

where * indicates a possible nonzero entry (recall that

gm' gm-1' ... g l were assumed to be linearly independent) and

the first * in b  is in the (n-m + 1) th row.

We examine from (4)

Abm = -(f, gm 1 (x0) 4

0

0
*

*
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with the first in the column being at the %'n-m) th level. This is

... 0 0a ll	 alt	 aln
a 0

a 21	 a22 ...
2

0
and	 ant	 ...	 ann * rr

and we easily compute 
a ln' a2n' " ' ' ann• Similarly,

Abm-1	 -(f'gm-1)(x0) yields al(n- 1)'a2(n-1)' ... 'an(n-1)' ... ,

Abl = -(f,gl ) (x0) yieldsa
l(n_m+l)' a'2(n-m+l)' — •an(n-m+l)'

Next we consider

A2bm = (ad 2f,nm(x0)

if the vector field on the right is in the set D. Writinq this

as

A`bm	 A(AbM I r- (ad 2f,`7m) (x0)'

and knowinq AbM and (ad ` f ,rim ) (x0 ) , 
we can compute al (n-m) 'a2(n-m)'

'an(n-m)' C:ontinuinq in this way we can solve for every entry

in A, and the method of solution is readily implemented on a

computer (or by hand). We remark that the above equations can be

salved because of our assumption that the set of vector fields in

the set C are linearly independent.Q

Now we show the canonical expansions like those in 1161 Clive

us the modified tangent model. First we rewrite the set C so that
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C - f ( adKl-lf , g l ), (ad Kl-2f , gl),	 ,(adK2-lffgl), ( adK2-lf,g2),

(ad k' 2-2 f , g l )  ( adK2-2 f, g2 ) , ... , (adK3-1 f,g l ) , ( adK3-1f,92 ) , (ad K3-lf'93)
(adK3-2f,g l ) , ( adK3-2f ' 9 2 ),(ad~3-2 f , 9 3 )1 "' • g l '9 2 , "' , gm).

Note that k1 > k- 2 or 
k- 1 

= K 2 , etc, should be checked before this

set is formed. For example if K1 = '2 , the first element is

(ad' l-l f,g l ), the second (adK2-l f,g 2 ), etc.

We introduce new independent variables sits 2F ... ,s n such

that s0 = (s 10 ,s20" " ' ' s 
n
o) is the same point as

x0	 (x 10' x20' " ' ' xno) is our state space. The parameter s 1 is

alone the integral c:urvr3 of the first vector field (adki-lf,gl)
in C, s 2 is along the integral curves of the second vector field

in C, s 3 is along the curves of the third, ... , and s  is along the

integral curves of y m . Notice that our system (1) is linear

T=^

in the controls u l , u2' ... , um an-1 thes

treated at the same level at the sits 21

linearization we do not want terms like

these are not considered to be linear.

e control variables are

... 's 
n' 

That is, in our

u I s 1' u1 s2' etc, because

In the following process

all terms of degree greater than one in u l , u2 , "' , um' s l' s 2' ..• 'sn

are included in the notation + ... . In taking infinite expansions

f and g are required to be real analytic, but we are only interested

in finite truncations of such expansions.

First we rewrite our nonlinear system (1)

	

(5) ac = 9  (sits 2P ... , sn ) u 1 +9 2 (s l ,s 2 ,	 'sn)u2 + ... +

	

ym (s l ,s 2 , ... ,sn )um + f (S it s 2 ,	 ,sn).

Now we expand in the s  vzr.iable along the integral curves of

(ad"l-1f,gl)
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2 0 ... ,an )u 1 + g 2 ( a lO f s 2 , ... ,sn )u2 + ... +

gm ( a1Q , s20 , ... ,sn )um + f ( a 10 , s 2 , ... ,an) +

[f, (ad' l-1 f , gl ) ) (s10,s2, ... ,an) (s 1 - 810 ) + ...

Expansion alona the integral curves of the second vector field in

C, which we assume is (ad KI-2 f,g l ), gives

X	 g l ( s 10 I s20 ,	 , sn ) u 1 + g 2 ( s 10 . s 20 , ... , sn ) u2 + ... +

9m (s 10 ,s 20 0 ... ,sn)um + f(a 10 , a20" ... , sn ) +

[ f , (ad' i-2 f,Q l ) l (a10,a20' ... 'an) (s2-s20) +
[f, (adR_l-1 f,91) l ( s 10 , s 20 1

 ... ,an) (sl-a10) + .. .

Continuinq in this way, we arrive at our last step which is an

expansion in the an variable that provides ( with s0 =

(slo's20,... 'an0))

x = gl(s0)ul + g 2 (a 0 )u 2 + ... + gM (a 0 )um +f(a0 ) +

(6) (ad s'- l f,g l ) (s0 ) (s l -s 10 ) + (ad Kl-l f,gl ) (s0) (s2-s20) + ... +

[ f , gm ) ( s o ) ( sn- sn0 ) + ...

Since s 0 corresponds to x0 , the important Lie brackets are

9 1 (x0 ) ,9 2 (x 0 ) , ... ,gm (x 0 ) , [f ' 9 l l (x 0 ) , [f, g 2 l (x0 ) , ... , (ad' l f,9 1 ) (x 0 ) .

Another way to find this set is to take the elements of C evaluated

at x0 plus (ad 'm f,9m ) (x o ) , (ad "m-l f, gm-1 ) (xo ) , ... , (ad'`l f, g i ) (x0 ) .

Thus if we wish to find a linear system

(7) x - f (x0 ) - Ax  + Ax +Bu

that emphasizes the linear part of the system in (6) we would need
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to solve

A k b 1 = + ( ad kf,gl) (x0) , k - 0,1, ... ,K 1

Akb 2 = + (ad k f,g 2 ) ( x0 ), k = 0, 1, ... ,K2

Akbm 	± (ad k f, gm ) ( x0 ) , k = 0 1 1, ... ,K m)

where B = (blob 2, ... ,bm) and + is for k even and 	 is for k odd.

Thus (7) is exactly the modified tangent model that we defined

in terms of the partial differential equations.

III. Conclusion

Given a nonlinear system (1) we can use expansions of the

system about a point x0 in terms of variables associated with the

vector fields in the set C to produce an approximate linear system.

This resulting linear system is the modified tangent model that

is found by considering the partial differential equations that are

solved in constructing an exact transformation of the nonlinear

system to a controllable linear system.

.vff
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