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SUMMARY 

This   paper   addresses   the  issues  of mot ion/v isua l   cue ing   f ide l i ty   requi rements  
for   vortex  encounters   during  s imulated  t ransport   v isual   approaches and landings.  
Four s imula tor   conf igura t ions  were ut i l ized  to   provide  object ive  performance  measures  
dur ing   s imula ted   vor tex   pene t ra t ions ,  and sub jec t ive  comments from p i l o t s  were co l -  
l ec ted .  The configurations  used were as fo l lows:   f ixed   base   wi th   v i sua l   degrada t ion  
(de lay) ,   f ixed   base   wi th  no v isua l   degrada t ion ,  moving base  with  visual   degradat ion 
(de l ay ) ,  and moving base  with no v isua l   degrada t ion .  

The ob jec t ive  measures w e r e  chosen a s  a method  of comparing  performances  during 
touchdown and as a  method of  comparing  performances  during  the  period  immediately 
following  the  vortex  encounter,   based on the   hypo thes i s   t ha t   v i sua l /mot ion   e f f ec t s  
may be more eas i ly   d i sc r imina ted  when p i lo t -veh ic l e   s t ab i l i t y   marg ins   a r e   sma l l .  

The s t a t i s t i c a l  comparisons of the  objective  measures and t h e   s u b j e c t i v e   p i l o t  
op in ions   ind ica ted   tha t   a l though  bo th  minimum v isua l   de lay  and motion  cueing  are 
recommended f o r   t h e   v o r t e x .   p e n e t r a t i o n   t a s k ,   t h e   v i s u a l - s c e n e   d e l a y   c h a r a c t e r i s t i c s  
were n o t   a s   s i g n i f i c a n t  a f i d e l i t y   f a c t o r   a s  was the  presence of motion  cues. How- 
e v e r ,   t h i s   i n d i c a t i o n  was app l i cab le   t o  a r e s t r i c t e d   t a s k  and t o   t r a n s p o r t   a i r c r a f t .  

Although  they  were s t a t i s t i c a l l y   s i g n i f i c a n t ,   t h e  magnitudes of t h e  e f f e c t s  of 
v i sua l   de l ay  and  motion  cueing on the  touchdown-related  measures were cons idered   to  
be of  no p r a c t i c a l  consequence. 

INTRODUCTION 

Most c u r r e n t   e f f o r t s   d i r e c t e d  toward  improving  the  capacity of fu ture   h igh-  
density  terminal  areas  are  'dependent on a s o l u t i o n  of vortex-imposed  separation 
requirements   ( ref .  1 ) .  Consequently,   extensive  research  has begun on wake vortex '  
c h a r a c t e r i s t i c s  and on the  behavior of a i r c ra f t   du r ing   vo r t ex   encoun te r s .  (See 
r e f s .  2, 3, and 4.)  This concent ra t ion  of a c t i v i t y  and i n t e r e s t   h a s   a l s o  spawned the  
requirement   for ,  and the   capabi l i ty   o f ,   p rovid ing   rea l - t ime  man- in- the- loop   f l igh t  
s imula tors   for   vor tex   s tud ies .  

A s  i s  t h e   c a s e   i n  most e f f o r t s   t o   d e v e l o p  a f l i g h t   s i m u l a t o r   t o  meet a s t a t e d  
requirement,  the issues of the  numerous t rade-offs   between  s imulat ion  f idel i ty   and 
t h e   a s s o c i a t e d   c o s t s  of avai lable   s imulat ion  devices   have  surfaced,  as we l l   a s   t he  
i n t e r r e l a t e d   i s s u e  of s imula tor   va l ida t ion .   Has t ings  e t  a l .   ( r e f s .  5 and 6) con- 
ducted a r e c e n t   i n v e s t i g a t i o n  of simulated wake vor tex   pene t ra t ion  a t  NASA Langley 
Research  Center  that   successfully  addressed  the  issue of s imula tor   va l ida t ion .   This  
i n v e s t i g a t i o n   r e s u l t e d  i n  c l o s e l y   c o r r e l a t e d   d a t a  from the  Langley  Vortex  Research 
F a c i l i t y ,  from a c t u a l   f l i g h t  tests, and  from the  Langley  Visual/Motion  Simulator. 
The f l i g h t   s i m u l a t o r   u t i l i z e d  i n  t ha t   s tudy  was configured  with  visual  and  motion 
cueing  devices   that ,   a l though commonly available  as  standard  devices,   have  undergone 
seve ra l   yea r s  of concentrated and  documented  improvement in   bo th  dynamic c h a r a c t e r i s -  
tics and dr ive  techniques.   (See  refs .  7 to 11.)  

This   paper   addresses   the  issues  of motion/visual   cueing  f idel i ty   requirements  
for   vortex  encounters   during  s imulated  visual   approaches and landings   o f   t ranspor t  



a i rp l anes .  Data are presented  and compared for   the  fol lowing  combinat ions of 
degraded  cueing  configurat ions:   f ixed  base  with  visual   degradat ion  (delay) ,   f ixed 
base  with no v isua l   degrada t ion ,  moving base  with v i sua l  degrada t ion   (de lay) ,  and 
moving base  with no v isua l   degrada t ion .  The la t ter  conf igu ra t ion  w a s  u t i l i z e d  pre- 
v ious ly  by Hastings e t  al. Prior t o  the   p re sen ta t ion  of these comparisons, a b r i e f  
desc r ip t ion  of   the   s imula tor   charac te r i s t ics  and the  experimental   task,  as w e l l  as 
some a d d i t i o n a l   v a l i d a t i o n   d a t a ,  are presented. 

SYMBOLS 

- 
C mean aerodynamic  chord, m 

9 g r a v i t a t i o n a l   c o n s t a n t ,  9.81 m/sec2 

s i n k   r a t e ,  m/sec 

minimum a l t i t u d e   a c h i e v e d   b e f o r e   s i n k - r a t e   a r r e s t ,  m h m i  n 

X l o n g i t u d i n a l   p o s i t i o n   a t  touchdown a s  measured  from  glide-path  intercept 
po in t ,  m 

Y lateral  p o s i t i o n  a t  touchdown as measured  from  runway c e n t e r l i n e ,  m 

i n i t i a l  extrema r o l l   u p s e t   a n g l e ,  deg 

second  extrema ro l l   ang le ,   deg  

i n i t i a l  extrema ro l l - ra te   upse t ,   deg/sec  

second  extrema roll  rate, deg/sec 

SIMULATOR CHARACTERISTICS . 

Airnlane  Mathematical-Model C h a r a c t e r i s t i c s  

The mathematical model of a Boeing 737-100 a i rp lane   inc luded  a nonl inear   da ta  
package  for a l l  f l i g h t   r e g i o n s ;  a nonl inear   engine model;  and nonl inear  models of 
s e rvos ,   ac tua to r s ,  and spoi ler   mixers .  The s imula t ion  of the   bas ic   a i r f rame was 
v a l i d a t e d   p r i o r   t o  its u s e   i n  numerous s t u d i e s .  

For t h i s   i n v e s t i g a t i o n ,   t h e   s i m u l a t e d   a i r c r a f t  was i n  the  landing-approach  con- 
f igu ra t ion   w i th   t he   approx ima te   f l i gh t   cha rac t e r i s t i c s   p re sen ted   i n  table I. The 
manual mode w a s  used  €or f l i g h t   c o n t r o l .  

A d d i t i o n s   t o   t h e   a i r c r a f t   f o r c e  and moment equations  caused by vortex  flow 
f i e l d s  were made based on a s t r i p   t h e o r y   t e c h n i q u e   d e s c r i b e d   i n   r e f e r e n c e  12.  Vali-  
da t ion   da ta   demonst ra t ing   the   successfu l   appl ica t ion  of th i s   t echnique   for   impos ing  
vortex-induced  forces and moments on t h e   b a s i c   p e n e t r a t i n g   a i r c r a f t  dynamics a r e  
presented i n  re ferences  5 and 6. Figure 1 p r e s e n t s   a d d i t i o n a l   v a l i d a t i o n   d a t a  
obta ined   dur ing   the   p resent   s tudy  by comparing p i lo t ed   s imula to r   da t a   w i th   f l i gh t  
data .  The f l i g h t   d a t a  from re fe rence  13 show the  time response of a p i l o t e d  
B-737-100 a i r p l a n e   a s  it encounters a clockwise  vortex,   shed by a B-747 in-ground 
e f f e c t  a t  a sepa ra t ion   d i s t ance  of 1.8 n.mi. The p i l o t   s t a b i l i z e d   t h e  B-737-100 
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a i rp l ane   a f t e r   comple t e   pene t r a t ion  and i n i t i a t e d  a go-round.  In the  s imulated  case,  
the   separa t ion   d i s tance  w a s  1.75 n.mi., and t h e   p i l o t  maneuvered  back t o   t h e  runway 
and  continued  his  approach to  a successful  landing.  (The  simulator  data are repre- 
s e n t a t i v e  of f i v e  similar approaches  with  the same encounter  geometries.)  

Computer Implementation 

The mathematical model of t he   a i rp l ane ,   t he   i nc lus ion  of the  vortex  modifica- 
t i o n s   t o   t h e   a i r p l a n e  model,  and the  s imulat ion  hardware  dr ives  were  implemented  on 
t h e  Langley F l ight   S imula t ion  Computing Subsystem. This subsystem,  consisting  of a 
Control D a t a  CYBER 175 computer and associated  interface  equipment ,   solved  the  pro-  
grammed equat ions 32 times per  second. The average time delay from i n p u t   t o   o u t p u t  
( 1 . 5  times the  sample pe r iod )  w a s  approximately 47 msec. 

S-imulator CoCkDit 

The general-purpose  cockpit  of  the  Langley  Visual/Motion  Simulator (VMS) w a s  
configured  as  a t r anspor t   cockp i t .  The primary  instrumentat ion  consis ted  of   an a t t i -  
tude   d i rec t ion  indicator ( i n c l u d i n g   a c t i v e   f l i g h t   d i r e c t o r   b a r s  and speed  bug), a 
ver t ica l - speed   ind ica tor ,  a ho r i zon ta l - s i t ua t ion   i nd ica to r ,  an a l t i m e t e r ,   a i r s p e e d  
ind ica to r s   (bo th   i nd ica t ed  and t r u e ) ,  angle-of-attack and angle-of-sideslip  meters,  
and  a turn-and-slip indicator. A s t e r e o  sound sys t em was used to   s imula te   engine  
noise .  

c 

The con t ro l   fo rces  on wheel,  rudder  pedals, and  column  were provided by a 
hydraul ic  system coupled  with  an  analog  computer. The system a l lows   for   the   usua l  
v a r i a b l e - f e e l   c h a r a c t e r i s t i c s  of s t i f f n e s s ,  damping, backlash, Coulomb f r i c t i o n ,  
b reakout   forces ,   de ten ts ,  and i n e r t i a .  The s t i f f n e s s   ( f o r c e   g r a d i e n t )  was provided 
by t h e   d i g i t a l  computer used to   so lve   t he   a i r c ra f t   ma themat i ca l  model. Se l ec t ion  of 
the  values of the  parameters  of the  control   loading  system was inc luded   in   the   ex ten-  
s ive   va l ida t ion   p rocess   fo r   t he  737-100 f l i g h t   s i m u l a t i o n .  

Visual  Display 

The VMS is provided  with  an  "out-the-window"  virtual-image  system of the  beam- 
splitter, re f lec t ive-mir ror   type .  The system,  located  nominally 1.27 m from the  
p i lo t ' s   eye ,   has  a nominal f i e l d  of  view 48O wide and 36O high and uses a 525-line TV 
raster system. The display  system  provides  a 46O by 26O i n s t an taneous   f i e ld  of v i e w .  
The system  supplies a c o l o r   p i c t u r e  of un i ty   magni f ica t ion   wi th  a r e so lu t ion  on t h e  
order  of .9 minutes  of arc. 

The scene  depicted  in  the  virtual-image  system w a s  obtained from a t e l e v i s i o n -  
camera transport   system  used  in   conjunct ion  with a t e r r a i n  model board. The model 
board, 7.32 m by 18.3 m, o f f e r s   t e r r a i n  and  an a i r p o r t  complex a t  a 1500:l scale, 
complete   with  taxi   l ights ,   v isual   approach slope i n d i c a t o r s  ( V A S I ) ,  runway end  iden- 
t i f i e r   l i g h t s -  (REILS), and so for th .   Provis ion is made for  day,  dusk,  and  night 
s cenes ,   i nc lud ing   a i rp l ane   l and ing   l i gh t s   du r ing   n igh t   l and ings .  The  maximum hor i -  
zon ta l   speed   capab i l i t y  of the  system is  444 knots ,   wi th  a ve r t i ca l - speed   capab i l i t y  
of +30 000 f t/min. 

The approximate  second-order  transfer-function  parameters  for  the camera t r ans -  
p o r t  system are p resen ted   i n   r e f e rence  10 and show t r a n s l a t i o n a l   s t e a d y - s t a t e  time 
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l a g s  of 15 msec o r  less and r o t a t i o n a l   l a g s  of 22 msec or less. 'Ihe average t o t a l  
visual  delay,   including  computational  throughput  delay,  w a s  thus less than 70 msec. 

An added v i sua l   de l ay  of  126.5 msec, producing a to ta l  de lay  of about 200 msec, 
w a s  imposed fo r   t he   deg raded   v i sua l   f i de l i t y   f ac to r .  Thus, two l e v e l s  of v i s u a l  
f i d e l i t y  were examined, t he  VMS with i t s  p r e s e n t   c a p a b i l i t i e s   a n d  one with  longer 
de lay ,   in tended   to   genera l ly   represent  CGI (computer  generated  image)  delay 
c h a r a c t e r i s t i c s .  

Motion  Svs tem 

The motion  performance limits of the  six-degree-of-freedom VMS are shown i n  
f i g u r e  2. These limits are for  single-degree-of-freedom  operation.  Conservatism 
must  be  exercised i n  the  use of t he   pos i t i on  limits, because  they  change as t h e   o r i -  
e n t a t i o n  of the  synergis t ic   base  var ies .   References 7 and  14 t o  16 document the  
c h a r a c t e r i s t i c s  of the  system, which possesses   s teady-s ta te  time lags of less than 
15 msec. Thus, the  average  total   motion  delay,   including  computat ional   throughput ,  
is  l e s s   t han  70  msec ( ignoring  the  lead  introduced by washout) and is q u i t e  compat- 
ib le   wi th   the   v i sua l   de lays .  The washout  system  used t o   p r e s e n t   t h e  motion-cue com- 
mands t o   t h e  motion  base is nonstandard  (conventional  washout  systems  are  l inear).  
It w a s  conceived  and  developed a t  NASA Langley  Research  Center and is documented i n  
r e fe rences  8, 9, and 17. The nonl inear   adapt ive   washout   f i l t e rs  of t h i s  washout 
method a r e  based on the  opt imizat ion  techniques of cont inuous steepest descent .  

Motion was r e s t r i c t e d   t o   f i v e   d e g r e e s  of freedom  because of the   ob jec t ionable  
hydraulic  noise  induced by t h e   v e r t i c a l  motion of t he   syne rg i s t i c   base ,  and  because 
only a small amount of v e r t i c a l  cue was ava i lab le .  The smal l  amount of v e r t i c a l -  
acce le ra t ion   cue   ava i lab le  w a s  due t o  a combination  of  posit ion limits of the  motion 
base  and  the  short-period  frequency of t he  737-100 airplane  in   the  landing-approach 
conf igura t ion .  The cue a v a i l a b l e   f o r  heave ( v e r t i c a l   a c c e l e r a t i o n )  under  these  con- 
d i t i o n s  was less   than  0.059, which is the  product  of amplitude (0.4572 m )  and the  
square of frequency  (frequency was less than 1 rad/sec) .   Therefore ,   the   heave  axis  
w a s  not  used. 

EXPERIMENTAL D E S I G N  

Five NASA r e s e a r c h   p i l o t s   p a r t i c i p a t e d   i n   t h e   f u l l - f a c t o r i a l   e x p e r i m e n t .  Each 
p i l o t   r e p e a t e d   t h e   t a s k   f i v e  times for   each  experimental   condi t ion.  

The two f a c t o r s  of two leve ls   each   resu l ted   in   four   exper imenta l   condi t ions .  
These  conditions  were,   in terms of  cue f ide l i ty   conf igura t ions ,   f ixed   base   wi th   v i s -  
u a l  degradat ion  (delay) ,   f ixed  base  with no v i sua l   deg rada t ion ,  moving base  with 
v i sua l   deg rada t ion   (de l ay ) ,  and moving base  with no v i s u a l  degradation. A t r a i n i n g  
per iod w a s  conducted   for   each   f ide l i ty   conf igura t ion   to   reduce   l earn ing   e f fec ts .  

Approach,  Flare,  and 'Ibuchdown l2sk  

The s imula ted   a i rp lane  w a s  trimmed i n  a 3' descent  a t  an  a i rspeed of  125 knots 
on the   g l ide   s lope  and l o c a l i z e r  a t  a range of 1.44 km from the  runway threshold.  
The aim p o i n t  on the  runway w a s  305 m beyond the   th reshold .  The pilot 's  task was to 
fly  the  approach  through  the  vortex  encounter,  which  always  occurred a t  a n   a l t i t u d e  
of 61 m. The v o r t e x   c h a r a c t e r i s t i c s  were iden t i ca l   fo r   each   run  ( 1 2 2  m long, no 
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ground e f f e c t ,  1.75-n.mi. s e p a r a t i o n   d i s t a n c e ) ,  and the   vor tex  w a s  a l igned  with the 
a i r c r a f t   a t t i t u d e  a t  the  time of the   encounter   to   p roduce   ident ica l   d i s turbances .  
The only   var iance   in t roduced   in to   th i s   p rocess  was the  random change  of t he   s ign  of 
t h e   d i s t u r b a n c e   t o   c a u s e   e i t h e r   a n   i n i t i a l  right-wing-down or  left-wing-down  upset. 
The p i t c h   u p s e t  w a s  always  negative  and  required a n  immediate e l eva to r   i npu t   t o   avo id  
a c ra sh .   Af t e r   s t ab i l i z ing   t he   a i r c ra f t ,   t he   p i lo t   a t t empted   t o   r ega in   t he  runway 
cen te r l ine ;   t hen ,   wh i l e   con t ro l l i ng   speed ,   t he   p i lo t  would complete  the  apprqach and 
then   f l a r e   v i sua l ly  and  touch down. 

Time-history  comparisons from a typ ica l   run   fo r  a f ixed   base   condi t ion   wi th  no 
v isua l   degrada t ion  and  from a typ ica l   run   fo r  a moving base  condi t ion  with no v i s u a l  
degradat ion are presented i n  f i g u r e  3. 

Objective  Performance  Measures 

Analyses of var iance were p lanned   for   the   f ive   encounter - re la ted   ob jec t ive  per- 
formance  measures shown i n   f i g u r e  3, as w e l l  a s  on the  measures of  touchdown per for -  
mance ( l o n g i t u d i n a l  and lateral  touchdown pos i t i ons  on the  runway,  and s ink  rate a t  
touchdown). The encounter-related  objective  measures were chosen t o  be extrema  that  
occurred  during,  or  because  of,   the  upset,   based on the   hypo thes i s   t ha t  motion 
e f f e c t s  may be more eas i ly   d i sc r imina ted  when the   p i lo t /veh ic l e   s t ab i l i t y   marg ins   a r e  
small. The measures used i n  f i g u r e  3 are   as   fol lows:  

$1 

$2 

$1 

$2 

h m i  n 

i n i t i a l  extrema r o l l   u p s e t   a n g l e ,  deg 

second  extrema ro l l   ang le ,   deg  

i n i t i a l  extrema  roll-rate  upset,   deg/sec 

second  extrema r o l l  rate, deg/sec 

minimum a l t i tude   ach ieved   before   s ink- ra te  arrest, m 

EXPERIMENTAL RESULTS 

Table I1 is a summary  of the   ana lyses  of var iance  for   the  e ight   performance 
measures. The d iscuss ion  of t h e s e   o b j e c t i v e   r e s u l t s  is i n  t w o  p a r t s .  The f i r s t   p a r t  
concerns  the  encounter-related measures, and the  second  part   concerns  the touchdown- 
related d a t a .   S u b j e c t i v e   r e s u l t s  are p r e s e n t e d   l a s t .  

Analysis of Object ive  Resul ts  

Encounter-Related Measures 

The resul ts  are p resen ted   i n   f i gu re  4 and table I11 for   the   encounter - re la ted  
measures i n  terms of t h e   v i s u a l  by motion i n t e r a c t i o n ,  which con t r a s t s   t he   fou r  cue 
f i d e l i t y   c o n f i g u r a t i o n s .  The d iscuss ion  of t h e s e   r e s u l t s ,  however, fol lows  the sta- 
t i s t i c a l l y   s i g n i f i c a n t   s o u r c e s  of v a r i a n c e   i d e n t i f i e d   i n   t a b l e  11. 

Pi lo ts . -  The-main e f f e c t  of p i l o t   v a r i a b i l i t y  w a s  h i g h l y   s i g n i f i c a n t   f o r  a l l  
measures  except $,. This measure r e f l e c t s   t h e   s e v e r i t y  of the i n i t i a l  r o l l - r a t e  
upset of the  vortex  encounter ,  and  very l i t t l e  p i l o t   r e a c t i o n   t o   t h a t   u p s e t   t a k e s  
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place before  the maximum value is obtained.  Therefore,  it is  n o t   s u r p r i s i n g   t h a t  no 
p i l o t   d i f f e r e n c e s  were de tec t ed   w i th   t h i s  measure.  For the  other  measures,  as i n  
most tasks   border ing  on s t a b i l i t y   b o u n d a r i e s  of p i lo t -veh ic l e   sys t ems ,   t he   p i lo t  
e f f e c t  is la rge .   (See   re f .  14.  ) 

Visual.- The e f f e c t  of  degraded v i s u a l - f i d e l i t y ,   o r   a d d i t i o n a l   v i s u a l   d e l a y ,  w a s  
d e t e c t a b l e   i n  $, i n   t h e   r e l a t e d  measure I$~ ,  and i n   t h e   a l t i t u d e  measure. The 
a d d i t i o n a l   v i s u a l   d e l a y   r e s u l t e d   i n  a somewhat l a r g e r   i n i t i a l  bank angle  due t o  
de layed   p i lo t   reac t ion .   Therefore ,   there  w a s  a l a r g e r  r o l l  rate t o   o f f s e t   t h a t  bank 
angle. A lower a l t i t u d e  measure,  caused by delayed p i l o t  r eac t ion ,  w a s  a l so   ev iden t .  
Although  these  differences were d e t e c t a b l e   s t a t i s t i c a l l y ,   f i g u r e  4 i n d i c a t e s   t h a t  
deg raded   v i sua l   f i de l i t y  is probably  not   crucial   to   acceptable   performance,   espe-  
c i a l l y   i f  motion is present .   Visual   delays of the  magnitude imposed i n   t h i s   s t u d y  
have a s u b s t a n t i a l   e f f e c t ,  however, on f i g h t e r   a i r c r a f t   s i m u l a t i o n s .  (See r e f s .  18 
and 19.) 

P i l o t  by v i sua l   i n t e rac t ion . -  There were s i g n i f i c a n t   i n t e r a c t i o n s  between p i l o t s  
and v i s u a l   f i d e l i t y   f o r  and hmir?. N o  d e l a y   e f f e c t  w a s  apparent   for   four  of t h e  
f i v e   p i   l o t s   w i t h   t h e  4 1 ~  measure.  Visual  delay was accompanied by a l a r g e r  bank 
a n g l e   f o r   t h e   s i n g u l a r   p i l o t .   I n   t h e  case of t h e   a l t i t u d e  measure, f o r  which the  
main e f f e c t s   ( p i l o t s  and v i s u a l )  were s i g n i f i c a n t ,   t h e   i n t e r a c t i o n  w a s  a l s o   s i g n i f -  
i c a n t  and i s  i n t e r p r e t e d   t o  mean t h a t   t h e   v i s u a l   d e l a y   e f f e c t  w a s  more pronounced f o r  
th ree  of t h e   p i l o t s .  It was p r e s e n t   t o  a lesser degree   fo r   t he   o the r  two p i l o t s .  

Motion.- The motion e f f e c t  w a s  s i g n i f i c a n t   f o r  a l l  the  encounter-related mea- 
sures .  Motion cueing  produced  smaller   values   for   the  la teral-axis  measures than   fo r  
the  fixed-base  performance,  and  the  minimum-altitude  measures were higher.  These 
r e s u l t s  imply t h a t  motion  cues  have  an  alert ing  function  and  supply  lead  information 
during  the  occurrence of a vortex  encounter.  The magnitudes  of  the  differences 
between the  f ixed-base and  moving-base  performances shown i n   f i g u r e  4 are l a r g e  
enough, p a r t i c u l a r l y   w i t h   v i s u a l   d e l a y s   p r e s e n t ,   t o   s u g g e s t  a need f o r  motion  cueing. 

P i l o t  by motion in t e rac t ion . -  Th$ i n t e r a c t i o n  between p i l o t s  and  motion was 
s i g n i f i c a n t   f o r  a l l  measures  except I$~. This   ind ica tes  a more pronounced  motion 
e f f e c t   f o r  some p i l o t s .  (Motion  cueing  affected a l l  pi lots  i n   t h e  same d i r e c t i o n . )  
These p i lo t -dependent   e f fec ts  were n o t   c o n s i s t e n t  across the  measures,  however, w i t h  
the   ranks of p i l o t   s e n s i t i v i t i e s   c h a n g i n g  from measure t o  measure. 

V i s u a l  by motion in t e rac t ion . -  The v i s u a l  by mot ion   in te rac t ion  is  presented  
g r a p h i c a l l y   i n   f i g u r e  4 f o r  a l l  the  encounter-related  measures. However, t h e   i n t e r -  
ac t ion  was s i g n i f i c a n t   o n l y   f o r   t h e   i n i t i a l  maximum bank ang le  I$, . For t h i s  mea- 
sure ,   the   p resence  of motion  cues made t h e   v i s u a l   d e l a y   e f f e c t  less not iceable .  The 
v i s u a l   d e l a y   e f f e c t  was constant   across   motion  condi t ions  for   the  other   measures   for  
which it w a s  s i g n i f i c a n t .  

General  conclusions.-  Although  both minimum v i s u a l   d e l a y  and  motion  cueing  are 
recommended f o r   t h i s   s i m u l a t i o n   t a s k ,   t h e   v i s u a l   d e l a y   c h a r a c t e r i s t i c s  were n o t   a s  
s i g n i f i c a n t  a f i d e l i t y   f a c t o r  as w a s  the  presence  or   absence of  motion  cues. 

Touchdown-Related Measures 

The r e s u l t s  from the   ana lyses  of t he  touchdown d a t a   ( t a b l e  11) are n o t   i n c i -  
d e n t a l   t o   t h e   f i d e l i t y   i s s u e s  of   vortex  encounter   s imulat ion when t h e   p o s s i b i l i t y   o f  
runway occupancy s t u d i e s   i n  a vortex  environment is considered.  In  such  studies,  
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which  most  of ten  deal   wi th  high-speed runway e x i t s ,  t h  
runway are though t   t o  be cr i t ical  s tudy  parameters. 

le i n i t i  a1 condi t ions on t h e  

The s i n k - r a t e   r e s u l t s   f o r   t h e   f i d e l i t y   c o n f i g u r a t i o n s  are p r e s e n t e d   i n   f i g u r e  5 
and table IV.  

Pi lots . -  P i lo t  d i f f e r e n c e s  were a g a i n   h i g h l y   s i g n i f i c a n t   f o r  a l l  measures. (See 
t a b l e  11.1 

Visual . -   Visual   delay  effects  were evident   only  in   the  s ink-rate   measure,   wi th  
s l i g h t l y   h i g h e r  touchdown rates (about 0.2 m/sec) a s soc ia t ed   w i th   i nc reased   v i sua l  
de  lay.  

Motion.- The presence  of  motion  cues w a s  d e t e c t a b l e   s t a t i s t i c a l l y  a t  s l i g h t l y  
lower s ink  rates (about 0.2 m/sec) and s l igh t ly   longer   l andings   (about  100 m l onge r ) .  

P i l o t  by motion  interact ion.-  'Itro of t h e   p i l o t s  made  much longer  landings  with 
motion  cues  than  with  the  f ixed-base  condition,  and  the  motion  effect  w a s  less pro- 
nounced ( b u t  still p r e s e n t )   f o r   t h e   o t h e r   p i l o t s .  These r e s u l t s  are r e f l e c t e d   i n   t h e  
s ign i f i cance  of t h i s   i n t e r a c t i o n  term f o r   t h e   l o n g i t u d i n a l  measure. 

P i l o t  by v i s u a l  by motion  interact ion.-  The s i g n i f i c a n c e  of t h i s   i n t e r a c t i o n ,  
a f t e r   f u r t h e r   a n a l y s i s ,   i n d i c a t e s   t h a t   t h e   v i s u a l   d e l a y   e f f e c t  on s ink rate w a s  more 
pronounced u n d e r  f ixed-base   opera t ion   for   th ree  of t h e   p i l o t s .  !the e f f e c t s  were 
i n c o n s i s t e n t   f o r   t h e   o t h e r  two p i l o t s .  

General   conclusions.-   Although  the  visual  delay  effects and the  presence or 
absence of  motion  cues were s t a t i s t i c a l l y   s i g n i f i c a n t   i n  some of the touchdown- 

Subject ive  Resul ts  

Uns t ruc tured   p i lo t  comments recorded dur ing   the   exper iment   ind ica te   tha t   the  
d e g r a d a t i o n   i n   t h e   v i s u a l   f i d e l i t y  w a s  b a r e l y   d i s c e r n i b l e ,  and the  contrast   between 
fixed  base  and moving base w a s  most  pronounced. All t h e   p i l o t s   f e l t   t h a t  motion  cues 
were not   on ly   des i rab le ,   bu t   a l so   p robably   necessary   for   reasonable   vor tex   encounter  
s imula t ions .   In   add i t ion   t o   t he   a l e r t i ng   func t ions   (bo th   occu r rence   and   d i r ec t ion ) ,  
motion  provided  information  that   a l lowed  the  pi lot   to  damp the  dis turbance more 
r a p i d l y   a f t e r   t h e   i n i t i a l   u p s e t  had  occurred. 

CONCLUDING REMARKS 

The sa t i s fac tory   occur rence  of agreement  between  objective  measures  and  subjec- 
t i ve   op t ions  is e v i d e n t   i n   t h e   r e s u l t s  of t h i s   v i sua l /mot ion   cue ing   f i de l i t y   s tudy .  
These r e s u l t s   s u g g e s t   t h a t ,   i n   t h e   s i m u l a t i o n  of vortex  encounters by transport air- 
craf t   dur ing  visual   approach  and  landing,   a l though  both minimum visual   delay  and 
motion  cueing are recommended, the v i sua l - scene   de l ay   cha rac t e r i s t i c s  are no t  as 
s i g n i f i c a n t  a f i d e l i t y   f a c t o r  as is the  presence  of  motion  cues. However, t h i s   i n d i -  
c a t i o n  is a p p l i c a b l e   t o  a r e s t r i c t e d   t a s k  and t o   t r a n s p o r t   a i r c r a f t .   V i s u a l   d e l a y s  
are known t o  have  pronounced e f f e c t s  on f i g h t e r   a i r c r a f t   s i m u l a t i o n s .  
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The r e su l t s   a l so   sugges t   t ha t   a l t hough   t he   v i sua l   de l ay   e f f ec t s  and the  presence 
or  absence of motion  cues  were s t a t i s t i c a l l y   s i g n i f i c a n t  i n  some of the  touchdown- 
re la ted   measures ,   the   d i f fe rences  were not   l a rge  enough t o   r e q u i r e   p r a c t i c a l  
cons idera t ion .  

Langley  Research  Center 
National  Aeronautics  and  Space  Administration 
Hampton, VA 23665 
February 16, 1983 
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TABLE I.- LINEAR APPROXIMATIONS  OF  THE  FLIGHT  CHARACTERISTICS 
OF  THE B-737-100 AIRPLANE  AT 125 KNOTS 

Weight, N ................................................................... 400 341 

Center o f   g r a v i t y  ............................................................. 0 . 3 1 ~  
- 

F l a p   d e f l e c t i o n ,   d e g  .......................................................... 40 

Landing  gear  .................................................................. Down 

Damping r a t io  f o r  - 
S h o r t   p e r i o d  ................................................................ 0.562 
Long p e r i o d  ................................................................. 0.089 
Dutch roll  .................................................................. 0.039 

Per iod ,  sec, f o r  - 
S h o r t   p r i o d  ................................................................. 6.30 
Long p e r i o d  ................................................................. 44.3 
Dutch r o l l  .................................................................. 5.12 
S p i r a l   d i v e r g e n c e  ........................................................... 24.0 
R o l l   s u b s i d e n c e  ............................................................. 0.53 
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TABLE 11.- SUMMARY OF ANALYSES OF VARIANCE 

Factor 

(a) 

P 
V 
P x v  
M 
P X M  

V X M  

P X V  X M  

Repetitions 
Error 

Degrees 
of 

freedom 

4 
1 
4 
1 
4 
1 
4 
4 

76 

Significanceb of performance  measures 

Ehcounter-related 

hmi n 

** 
** 
** 
** 
** - - - 

Touchdown-related 

aFactors are as follows: P - pilot; v - visual; M - motion. 
bSignificance shown as follows: - not  significant at levels considered. 

* significant  at 5-percent level. 
** significant  at 1-percent level. 
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TABLE 111.- MEANS AND STANDARD  DEVIATIONS FOR ENCOUNTER-RELATED MEASURES 
ACROSS CUEING FIDELITY CONDITIONS 

Performance 
measures 

~~ ~. .. "" ~ ~ 
~ ~~~ 

Fixed-base  configuration 

Mean I Standard 
dev ia t ion  

34.04 

20.86 

34.38 

39.71 

24.56 

4.56 

5.03 

2.23 

4.1 8 

4.69 

V i  sua 1 
degradation 

Standard 
dev ia t ion  

Moving-base conf igu ra t ion  I 
N o  visual  V i s u a l  

degradat ion  degradat ion I 
Mean 
- 
29.44 

18.52 

31.57 

37.07 

29.91 - 

Standard 

6.34  30.34  5.65 

d e v i a t i o n  dev ia t ion  
Standard Mean 

7.30 6.73 19.36 

2.69 

5.78  29.02 4.33 

5.10  38.33 5.44 

2.81 31.29 

TABLE 1V.- MEANS AND STANDARD  DEVIATIONS FOR SINK RATE AT TOUCHDOWN 
ACROSS CUEING FIDELITY CONDITIONS 

I Fixed-base  configuration I Moving-base configurat ion I 
N o  v i sua l  V i  sua 1 Visua l  No v i sua l  

degradat ion  degradat ion degradat ion  degradat ion 
~~ ~ ~ 

Mean 1 
1.08 I 0.53 1.34 0.55 1 .06 0.55 0.92  0.63 

Standard 
dev ia t ion   dev ia t ion   dev ia t ion  dev ia t ion  
Standard Mean Standard Mean Standard Mean 

. "_ ____ . ~ .  ~ 
-~ ~ ~- ~ .~ 

~- - ~. ___" 
~~ 
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Figure 1.- Encounter w i t h  clockwise  vortex  in-ground  effect .  



P o s i t i o n   V e l o c i t y   A c c e l e r a t i o n  

P i t c h  +30, -20' f15   deg/sec   f50   deg/sec '  
Roll f 2  20 f15   deg/sec   f50   deg/sec  

2 

Yaw *32O k l 5  deg/sec f50 deg/sec2 
Vertical +0.762,  -0.991 m f0.610 m/sec fO 6g 
Lateral k1.219 m k0.610 m/sec k0 *6g 
L o n g i t u d i n a l  +1 .245,  -1.219 m k0.610 m/sec fO 0 %  

L-79-312 
Figure  2.- Motion  performance limits of the  Langley  Visual   Motion  Simulator .  
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Figure 3.-  Time h i s t o r i e s  of typical   f ixed-base and  moving-base vortex  encounters.  
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Figure 3 .- Concluded. 
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Figure 4.- Visual by motion  interact ions  for   encounter-related  measures .  
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Figure 5.- V i s u a l  by m o t i o n   i n t e r a c t i o n  
for s i n k  rate a t  touchdown. 
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lected.  The configuratons  used were as follows:  fixed  base  with  visual  degradation 
(delay),  fixed  base  with no visual  degradation, moving base  with  visual  degradation 
(de lay) ,  and moving base  with no visual  degradation. The s ta t i s t ica l  comparisons of 
the  objective measures and .the subjective  pilot   opinions  indicated  that   al though  both 
minimum visual   delay and motion cueing are recommended for  the  vortex  penetration 
task,   the  visual-scene  delay  characterist ics were not as s ign i f i can t  a f ide l i t y   f ac -  
t o r  as w a s  the  presence of motion cues. However, th i s   ind ica t ion  w a s  appl icable   to  a 
r e s t r i c t ed   t a sk ,  and t o   t r a n s p o r t   a i r c r a f t .  Although they were s t a t i s t i c a l l y  s ign i f -  
i can t ,   t he   e f f ec t s  of visual  delay and motion cueing on the  touchdown-related mea- 
sures were considered t o  be of no practical  consequence. 
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