
DECOUPLING AND OBSERVATION THEORY APPLIED TO 

CONTROL OF A LONG FLEXIBLE BEAM 

IN ORBIT 

Harold A. Hamer 
NASA Langley Research Center 

Hampton, Virginia' 

9 

https://ntrs.nasa.gov/search.jsp?R=19830013987 2020-03-21T03:46:29+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42852897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


INTRODUCTION 

Decoupling theory is a convenient tool for devising control laws for 
structures with a large number of state variables because it allows independent 
control of each state. Complete decoupled control requires that the number of 
control actuators equal the number of modes in the system, which is a basic 
limitation in applying decoupling theory to the control of large space structures. 
Complete decoupled control is usually not achievable in practical application 
because a large space structure may have an infinite number of flexible modes; 
hence, procedures must be developed which maintain control of the structure with 
a small number of control actuators. Reduced-order systems must be utilized 
wherein only a few modes are included in the math model of the structure when 
calculating the gains for the feedback control law. In addition, some of the 
modes in the math model itself may be exempt from the control law if the number 
of actuators selected is less then the number of modeled modes. In both cases 
the control system must be designed to avoid serious problems associated with 
observation and control spillover effects caused by residual modes, which could 
result in poor performance or an unstable system. 

The present analysis presents techniques which use decoupling theory and 
state-variable feedback to control the pitch attitude and the flexible-mode 
amplitudes of a long, thin beam. An observer based on the steady state Kalman 
filter has been incorporated into the control-design procedure in order to 
estimate the values of the modal-state variables required for the feedback 
control law. 
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EQUATIONS OF MOTION 

Figure 1 shows the linearized equations of motion used for the decoupled- 
controlLanalysis of a 450-m long, thin, flexible beam in low Earth orbit. The 
equations are in modal form. The first equation represents the rigid-body 
(pitch) mode and includes the gravity-gradient effect, where w is the orbital 

C 

frequency. In the second equation n represents the number of flexible modes 
included in the math model, plus the residual modes. The damping term 2 <w A 
is included inasmuch as the residual modes require a small amount of damping 
for stability. The objective is to design a control system which provides 
independent control for each of the decoupled variables. 

d20 -- + TP 
dt2 

3wEe = J 

d2An dA E 
-+ 2TnWn -$ + 
dt2 

u; An = $ 
n 

n = 1, 2, 3, . . . 

Figure 1 
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BASIC EQUATIONS 

Figure 2 shows the basic equations used in the decoupled-control design. 
The equations are in state-vector form where the states x are the modal ampli- 
tudes and rates and include the residual modes. In the decoupling control law, 
u, the quantity v is the input command vector. The matrices F and G are the 
feedback and feedforward gains, respectively, which are calculated by the 
decoupling procedure. The estimator equation calculates the estimates of the 
modeled states ^x which are required by the control law. (The primes indicate 
modeled modes only.) The estimator utilizes the observation equation y and 
Kalman gains K which are precomputed by the steady state Kalman filter. The 
observation matrix senses attitude at two locations on the beam, where the $I 
values are the corresponding slopes of the mode shapes. 

SYSTEM: 

i = Ax+Bu+v 

u = Fx^ + Gv 

Y = cx+cd 

ESTIMATOR: 

* = A?+B;+K(y-C??) 

= (A-KCj?+KCx+B& 

OBSERVATION MATRIX: 

r 1 $1 @2 o3 - - - - an 0 0 0 o----o 

c = 

L 1 4;' 0;' +'; - - - -4; 0 0 0 o----o 1 
Figure 2 
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COMPOSITE EQUATIONS 

Figure 3 shows the basic equations in composite form as a 20th order system. 
These equations are used to produce simulated time histories of system responses 
for various control input commands. The upper set of equations represents the 
system equations and includes four modeled modes and two residual modes. The 
lower set represents the estimator equations, which incorporate estimates only 
of the modeled modes. It is apparent that the control and observation spillover 
effects are caused by the matrices B12x2 and C2x12. 

In the present analysis two torque actuators are used; each is one-sixth 
the distance from the end of the beam. One attitude sensor (e.g., star tracker) 
is at an actuator location, the other at one-third the distance from the end 
of the beam. Analyses were also performed by (1) replacing the latter sensor 
with a rate sensor, and (2) by moving this attitude sensor to the location of 
the other actuator; in both cases, however, overall performance was not as 
good as for the original setup. 

2 Control Actuators 
2 Attitude Sensors 
4 Controlled Modes 
2 Residual Modes 

B 12x2 F2x8 

K 8x2'2~ ' A' - K8x2C;x8 + BS'x2F2x8 12 ; 8x8 - 

Figure 3 

13 



DYNAMIC CHARACTERISTICS 

The dynamics of the system are shown in figure 4. The natural (open loop) 
frequencies and damping ratios are given in the second column. The value of 
0.001 for u8 is the orbital angular velocity (orbital frequency). Small values 
of damping were assumed for the flexible modes, starting at a low value of 0.005 
and increasing each successive mode by 10 percent. The fourth and fifth modes 
are taken as the residual modes. Some damping is required in these modes to 
avoid producing a system with constant oscillatory responses. 

The last two columns show values selected for the closed-loop dynamics 
for two decoupled control cases. In the FAST PITCH case the commanded pitch 
attitude is reached in about 40 seconds; in the SLOW PITCH case about 2 minutes 
are required. In the first case, the two actuators are used to decouple the pitch 
attitude and first flexible mode. The symmetric arrangement of the actuators 
produces an interaction between all four modeled modes such that a full-order F 
matrix is achieved; i.e., feedback control is available for all 4 modes in the 
math model. This condition exists only because the absolute values of the 
control-influence coefficients are the same in both columns of the B matrix. 
For other control arrangements, techniques have been developed in which the 
control-influence coefficients and/or the feedback gains are adjusted to produce 
simplified procedures for achieving overall control of the system. The current 
analysis also included model errors of up to + 15 percent in the control- 
influence matrix, with no apparent detrimental effect on the overall system 
performance. 

In the SLOW PITCH case, the same two actuator locations were employed; 
however, the control-influence coefficients were slightly changed so that the 
decoupling control law provided control for two modes only. In this case it 
was necessary to perform two separate decoupling calculations: (1) the pitch 
and first flexible modes were decoupled, and (2) the second and th.ird flexible 
modes were decoupled. The feedback gains obtained from both calculations were 
then combined to provide control for all four modeled modes. 
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DYNAMIC CHARACTERISTICS 
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CLOSED-LOOP EIGENVALUES 

The symbols in figure 5 depict the eigenvalues of the closed-loop system, 
assuming perfect knowledge of the state variables. Also shown are the loci of' 
closed-loop eigenvalues for the observer as the Kalman gains are increased. 
The observer (based on the steady-state Kalman filter) was designed to have a 
certain stability margin. This was attained by adding a positive scalar term 
to the diagonal elements of the system matrix A'. The gains were changed by 
varying this scalar. (The A matrix in the composite equations shown in figure 3, 
of course, is not altered.) In calculating the Kalman gains, the objective is 
to produce an observer whose response is faster than that of the closed-loop 
system with perfect knowledge of the state vector (eigenvalue real parts more 
negative than those of the closed-loop system). As shown in figure 5, there is 
no problem in meeting this condition for the filter eigenvalue corresponding 
to the pitch mode. (Hence, estimates of the pitch attitude should be very 
accurate.) However, for the flexible modes, large Kalman gains are required to 
drive the eigenvalues past the corresponding closed-loop values. In fact, it was 
found that Kalman gains which produced eigenvalues with real parts less than 
about -0.1 resulted in poor performance; i.e., excessive control forces and/or 
excessive overshoot in the flexible-mode response. An example of this is shown 
in a subsequent figure.' 
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ZERO COMMAND-FAST PITCH 

Figure 6 is an example of an instantaneous zero command (FAST PITCH case) 
to null arbitrary initial disturbances of -0.01 in pitch and O.Oi5, -0.005, and 
-0.02 in the first, second, and third flexible modes, respectively, and 0.01 in 
the residual modes (4th and 5th flexible modes). The Kalman gains used to 
determine the estimates of the modal variables (shown in 2nd column of time 
histories) correspond to real eigenvalues = -0.1, as previously discussed. It 
is assumed that instantaneous control torques Tl and T2 are available at time = 0, 
with initial estimates of 90 percent in pitch attitude and 80 percent in the three 
modeled flexible mode amplitudes; that is, the control actuators are not turned 
on until these estimates are established by the observer. Analysis has shown that 

: without the effect of the controls, these estimates are achieved in about 100 
seconds. The values of initial disturbances and initial estimates quoted here 
are used for all figures which follow, except where noted. All figures except 
figure 13 pertain to the FAST PITCH case. 

As shown in figure 6, the four modeled mode responses (first column of time 
histories) are nulled after about 40 seconds. As for the residual modes, there 
is some effect on A5 during the first few seconds; however, responses in both 
modes gradually die out due to natural damping. It should be noted that, with 
the controls operating, the observer obtains good estimates of the first three 

) modes, but fails in estimating A3 due to observation spillover caused by the 
residual modes. Attempts to improve this estimate by varying the Kalman filter 
gains are shown in the next two figures. 
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FILTER GAINS REDUCED 

For the zero command in figure 7 the Kalman gains were reduced so that the 
real eigenvalues, corresponding to the flexible modes, were close to zero. 
This resulted in slowly damped oscillations in the three modeled flexible modes 
due to poor estimates in all these modes. 
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FILTER GAINS INCREASEL) 

The Kalman gains were increased for the zero command case in figure 8 so 
that the real eigenvalues, corresponding to the flexible modes, were approxi- 
mately -0.2. Here again, estimates were poor in A2 and AS. More notable is the 
poor performance as exemplified by the incre,ased control torques and the peak 
overshoots in the flexible mode responses, which far exceeded the initial 
disturbances. Large control spillover effect is also evident in the residual 
A5 - Attempts were made to improve the performance for this case, as shown in 
the next two figures. 
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FEEDBACK GAINS ADJUSTED 

Figure 9 is similar to figure 8, except the decoupling feedback gain matrix 
was changed by deleting the gains for the three flexible-mode amplitude displace- 
ments. Hence, the control system included feedback gains only for the pitch 
attitude and rate and the three flexible-mode amplitude rates. As shown by the 
lower control torques and peak responses, some improvement in performance was 
accomplished. Also, note the large reduction in the AS residual response. The 
system performance, however, is still unacceptable; the following figure shows 
a further attempt to improve this performance. 
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1st ORDER LAG: TAU = 5 SEC 

For figure 10, in addition to the feedback gain adjustment, a first order 
lag (time constant = 5 set) was included in the control system. This condition 
more closely resembles practical operational procedures because some lag will 
always be present in a control system. The results show further improvement 
in performance (especially in control requirements); however, it appears that 
the Kalman gains must be reduced for acceptable response in the flexible modes. 
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NO PITCH DISTURBANCE 

Figure 11 shows a zero command case similar to that of figure 6, except 
with no initial pitch disturbance. Comparison of the two figures shows the large 
effect of pitch disturbance on nulling the system. With no pitch to consider 
(and consequently no error in the initial estimate in pitch), figure 11 shows 
considerably lower control torques and a much better response in the third 
flexible mode. 
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NO RESIDUAL DISTURBANCES 

Figure 12 is similar to figure 6, except there are no initial disturbances 
in the residual modes. Comparison of the two figures shows that the responses 
in the modeled modes are not materially affected by the motions of the residual 
modes. Also, the control requirements are about the same in both cases, except 
for the small lingering oscillations in figure 6. 
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ZERO COMMAND-SLOW PITCH 

Figure 13 is an example of a zero command for the SLOW PITCH case. The 
results are similar to the FAST PITCH case (figure 6). Although not shown, 
about two minutes are required to null the pitch attitude. Also, the maximum 
control torque is reduced by about one-half, as are the response amplitudes 
in the residual A 5’ 
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ONE CONTROL INOPERATIVE 

Figure 14 is an example of a zero command (FAST PITCH case) where one of 
the control actuators is considered to be inoperative. The feedback gains for 
the remaining actuator were not altered. The time histories show adequate 
responses in nulling the system. In contrast to the two-actuator case (figure 6), 
0 and A, require about three times as much time to null 
scale).' 
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FEEDBACK GAINS ADJUSTED, LAG INCLUDED 

Figure 15 illustrates the 
decoupling feedback gains were 
figure 9 and a first-order lag 

same case as the previous figure, except that the 
changed in the same manner as in the case of 
(tau = 5 set) was included in the control system. 

Comparison with figure 14 shows better response characteristics for 8 and Al, 
as well as a large reduction in control requirements. Also, note that the 
observer obtains good estimates of A3 after about 30 seconds. 
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TWO ZERO-COMMAND PROCEDURE 

The following four figures demonstrate a practical procedure for nulling 
initial disturbances with two separate zero-commands. Figure 16 represents the 
first zero-command and differs from the one in figure 6 in that actuator lag 
(tau = 5 set) is included and the closed-loop pitch frequency has been doubled. 
Because of the increased pitch response, all disturbances are essentially nulled 
within 30 seconds. The control actuators are then turned off (observer remains 
on) at this time as shown in the next figure. 
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CONTROLS OFF - OBSERVER ON 

The results of turning off the controls at time 30 seconds are shown in 
figure 17. The actuators were turned off in order to avoid the oscillating 
control torques which are shown to persist over a long time period in figure 16. 
As shown in figure 17, the disturbances have not been completely nulled, but 
fairly good estimates of these disturbances are obtained after 30 more seconds. 
(Note that tiithout the controls operating the observer is able to obtain a good 
estimate of A3.) The next step, then, is to apply the second zero command at 
this time. The resulting responses are shown in the next figure. 
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SECOND ZERO COMMAND AT 60 SEC 

The modal responses in figure 18 are essentially nulled after 30 seconds. 
Here, the control actuators are turned off for the final time, again to avoid 
the oscillating control torques which would be required over a long time period. 
The final results of the two-zero command procedure are shown in the next figure. 
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CONTROLS OFF AT 90 SEC 

The results of turning off the actuators after the second zero command' are 
shown in figure 19. The remaining disturbances are practically zero and will 
eventually die out through natural damping, 
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PITCH COMMAND - NO DISTURBANCES 

The next two figures illustrate examples of pitch commands whereby a pitch 
attitude of 0.01 radian is commanded. For the case in figure 20, there are no 
initial dusturbances, and hence no errors in the initial estimates. The commanded 
pitch attitude is reached in about 40 seconds, with only a small coupling effect 
on the second flexible mode. 
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INITIAL PITCH DISTURBANCE - ESTIMATE AT 90 PERCENT 

For the pitch command in figure 21, there is an initial pitch disturbance 
of -0.005 radian which is known only to an accuracy of 90 percent. The results 
illustrate the large effect of the initial estimate on the three modeled flexible 
modes. Also, the control-torque requirements are substantially increased over 
those of the previous figure. Doubling the error in the initial estimate 'would 
double the magnitude of these effects. 
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CONTROL REQUIREMENTS 

Figure 22 compares the maximum peak actuator torques (absolute values) required 
for pitch and zero commands, assuming no lag in the system. The data apply to a 
four-actuator control system but are representative of any control arrangement. 
For the pitch-command data, there is an initial disturbance of -0.005 radian and 
the commanded value is 0.01 radian. The zero-command data pertain only to nulling 
initial disturbance in the flexible modes; i.e., no pitch disturbance. Except 
where noted, the peak torques occurred after the initial time. 

As would be expected, the control requirements are essentially linearly related 
to the initial estimate. Also, the pitch commands require the higher control 
torques. Further, the results show that the requirements for zero commands increase 
as the accuracy of the initial estimate increase, while the opposite is true for 
pitch commands. 
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SENSOR LOCATION ERROR, 5 PERCENT TOWARDS LEFT 

Figure 23 is similar to the zero command shown in figure 6, except for sensor- 
location error; i.e., the attitude sensors have been placed at locations other 
than those (nominal) used for the observer in calculating the Kalman gains. In 
this case the sensor locations have been moved 22.5 meters (5 percent of beam 
length), both in the same direction from nominal. Comparison with figure 6 shows 
that, except for As, this error produced negligible effects on system performance. 

.02 .02 

.Ol .Ol - 

E E 

-? 0 c-2 
0 -1 

-.Ol -.Ol - 

-.02 -.02 II 

I' 

-.02,1 -50 . ..JI 

‘:!&;~~ 5; 
0 20 40 60 0 20 40 60 

Time. set Time. set Time. set 

Figure 23 

35 



SENSOR LOCATION ERROR, 5 PERCENT TOWARDS ENDS 

The case in figure 24 is the same as that for the previous figure, except 
the two sensors are moved in opposite directions, where the mode-slope differences 
from nominal (for example, sign changes) are more pronounced. Even though the 
system is eventually nulled, the performance is decreased as evidenced by the 
increased oscillations in A3 and in the control actuators. These results can 

be attributed to the poor estimates in the three modeled flexible modes. 
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SENSOR LOCATION ERROR, 10 PERCENT TOWARDS ENDS 

Relocation of the sensors 10 percent off the nominal position and in opposite 
directions leads to instability; this may be seen in figure 25. 
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