
#### Abstract

Active stabilization logic is synthesized to hold a feed at the focus of a spacecraft antenna dish. The feed support structure is modeled as a tetrahedron made up of flexible bars and connected to the dish by six short legs containing force actuators. Using the symmetry of the structure, the model can be decomposed into four uncoupled subsystems: (1) pitch/forward motions with four degrees of freedom (DOF) and two controls, (2) roll/lateral motions with four DOF and two controls, (3) vertical motions with three DOF and one control, and (4) yaw motion with one DOF and one control. This greatly simplifies the synthesis of control logic.


## INTRODUCTION

A spacecraft consists of a massive central body with a large antenna dish at one end; the feed for this antenna is mounted to the dish with a flexible support structure consisting of twelve bar-like members. (See fig. 1.) Six of the bars form a regular tetrahedron, with the feed at the apex. Two legs connect each of the three joints at the base of the tetrahedron to the antenna-dish/spacecraft, which we shall approximate as an inertial frame of reference due to its large mass. The mass of the structure will be lumped at the four joints of the tetrahedron, and the bars will be approximated as springs with axial deformation only.

The design objective is to control the four lowest frequency vibration modes that involve lateral motions of the feed so that they are at least 10 percent critically damped.

## SEPARATION INTO SYMMETRIC AND ANTISYMMETRIC MOTIONS

Motions symmetric with respect to $y-z$ plane involve seven degrees of freedom:

$$
y_{1}, z_{1}, x_{2}=-x_{3}, \quad y_{2}=y_{3}, \quad z_{2}=z_{3}, y_{4}, z_{4}
$$

Motions antisymmetric with respect to $y-z$ plane involve five degrees of freedom:

$$
x_{1}, \quad x_{2}=x_{3}, \quad y_{2}=-y_{3}, \quad z_{2}=z_{3}, x_{4}
$$

Three of the symmetric modes involve only vertical ( $z_{1}$ ) motions of the apex, and one antisymmetric mode is symmetric about the $z$ axis (a yaw mode), producing zero motion of the apex. The remaining eight modes consist of two sets of four modes that have identical frequencies, but one set involves symmetric motions and the other set involves antisymmetric motions.

The actuator forces can be arranged into six sets, one of which controls only the yaw mode, another that controls only $z_{1}$ motions, and two sets of two that control the remaining symmetric and antisymmetric modes, respectively. Thus the stabilization problem may be reduced to two almost identical problems of controlling four modes with two controls.

## EQUATIONS OF MOTION

Let $\vec{r}_{i}$ be displacement vector of ith joint, $\vec{m}_{i j}$ be position vector from ith joint to $j$ th joint, and $k_{1}, k_{2}, k_{\ell}$ be equal to $E A / \mathrm{mL}^{3}$ for base members, vertical members, and legs, respectively. Then

$$
\begin{aligned}
& \ddot{\vec{r}}_{1}=-k_{2} \vec{m}_{1,2} \vec{m}_{1,2} \cdot\left(\vec{r}_{1}-\vec{r}_{2}\right)-k_{2} \vec{m}_{1}, 3^{\vec{m}_{1}}, 3 \cdot\left(\vec{r}_{1}-\vec{r}_{3}\right)-k_{2_{2}} \vec{m}_{1,4} \vec{m}_{1,4} \cdot\left(\vec{r}_{1}-\vec{r}_{4}\right) \\
& \ddot{\vec{r}}_{2}=-k_{2} \vec{m}_{1,2} \vec{m}_{1,2} \cdot\left(\vec{r}_{2}-\vec{r}_{1}\right)-k_{1} \vec{m}_{2,3} \vec{m}_{2,3} \cdot\left(\vec{r}_{2}-\vec{r}_{3}\right)-k_{1} \vec{m}_{2,4} \vec{m}_{2,4} \cdot\left(\vec{r}_{2}-\vec{r}_{4}\right) \\
& -\mathrm{k}_{\ell} \overrightarrow{\mathrm{m}}_{2,5} \overrightarrow{\mathrm{~m}}_{2,5} \cdot \overrightarrow{\mathrm{r}}_{2}-\mathrm{k}_{\ell} \overrightarrow{\mathrm{m}}_{2,6} \overrightarrow{\mathrm{~m}}_{2,6} \cdot \overrightarrow{\mathrm{r}}_{2}+\overrightarrow{\mathrm{m}}_{2,5}{ }^{\mathrm{f}} 2,5+\overrightarrow{\mathrm{m}}_{2,6} \mathrm{f}_{2,6} \\
& \ddot{\vec{r}}_{3}=-k_{2} \vec{m}_{1,3} \vec{m}_{1,3} \cdot\left(\vec{r}_{3}-\vec{r}_{1}\right)-k_{1} \vec{m}_{2,3} \vec{m}_{2,3} \cdot\left(\vec{r}_{3}-\vec{r}_{2}\right)-k_{1} \vec{m}_{3,4} \vec{m}_{3,4} \cdot\left(\vec{r}_{3}-\vec{r}_{4}\right) \\
& -k_{\ell} \vec{m}_{3,7} \vec{m}_{3,7} \cdot \vec{r}_{3,7}-\mathrm{k}_{\ell} \vec{m}_{3,8} \overrightarrow{\mathrm{~m}}_{3,8} \cdot \overrightarrow{\mathrm{r}}_{3}+\vec{m}_{3,7} \mathrm{f}_{3,7}+\vec{m}_{3,8} \mathrm{f}_{3,8} \\
& \ddot{\vec{r}}_{4}=-k_{2} \vec{m}_{1,4} \vec{m}_{1,4} \cdot\left(\vec{r}_{4}-\vec{r}_{1}\right)-k_{1} \vec{m}_{2,4} \vec{m}_{2,4} \cdot\left(\vec{r}_{4}-\vec{r}_{2}\right)-k_{1} \vec{m}_{3,4} \vec{m}_{3,4} \cdot\left(\vec{r}_{4}-\vec{r}_{3}\right) \\
& -k_{l} \vec{m}_{4,9} \vec{m}_{4,9} \cdot \vec{r}_{4}-k_{\ell} \vec{m}_{4}, 10 \vec{m}_{4,10} \cdot \overrightarrow{\mathrm{r}}_{4}+\vec{m}_{4,9}{ }_{4}, 9+\vec{m}_{4,10}{ }_{4}, 10
\end{aligned}
$$

For nominal configuration,

$$
\begin{aligned}
& \mathrm{k}_{1}=\frac{(1)(1000)}{(2)(10)^{3}}=0.5 \\
& \mathrm{k}_{2}=\frac{(1)(100)}{(2)(10)^{3}}=0.05 \\
& \mathrm{k}_{\ell}=\frac{(1)(100)}{(2)(2 \sqrt{2})^{3}}=2.2097
\end{aligned}
$$

## COMPUTER CODE "TETRA"

Calculates $12 \times 12 \mathrm{~K}$ matrix, where

$$
\frac{d^{2}}{d t^{2}}\left[\begin{array}{c}
r_{1} \\
\cdots \\
r_{2} \\
\cdots \\
r_{3} \\
\cdots \\
r_{4}
\end{array}\right]=-K\left[\begin{array}{c}
r_{1} \\
\cdots \\
r_{2} \\
\cdots \\
r_{3} \\
\cdots \\
r_{4}
\end{array}\right]+G f
$$

Calculates $7 \times 7 \quad \mathrm{~K}_{\mathrm{S}}$ matrix and $5 \times 5 \quad \mathrm{~K}_{\mathrm{A}}$ matrix, where

$$
\begin{aligned}
& \ddot{\mathrm{d}}_{\mathrm{S}}=-\mathrm{K}_{\mathrm{S}} \mathrm{~d}_{\mathrm{S}}+\mathrm{G}_{\mathrm{S}} \mathrm{f}_{\mathrm{S}} \\
& \ddot{\mathrm{~d}}_{A}=-\mathrm{K}_{A} \mathrm{~d}_{A}+\mathrm{G}_{A} \mathrm{f}_{\mathrm{A}} \\
& \mathrm{~d}_{\mathrm{S}} \triangleq\left[\mathrm{y}_{1}, \mathrm{z}_{1}, \frac{\mathrm{x}_{2}-\mathrm{x}_{3}}{2}, \frac{\mathrm{y}_{2}+\mathrm{y}_{3}}{2}, \frac{z_{2}+z_{3}}{2}, \mathrm{y}_{4}, \mathrm{z}_{4}\right]^{\mathrm{T}} \\
& \mathrm{~d}_{A} \triangleq\left[\mathrm{x}_{1}, \frac{\mathrm{x}_{2}+\mathrm{x}_{3}}{2}, \frac{\mathrm{y}_{2}-\mathrm{y}_{3}}{2}, \frac{\mathrm{z}_{2}-\mathrm{z}_{3}}{2}, \mathrm{x}_{4}\right]^{\mathrm{T}} \\
& \mathrm{f}_{\mathrm{S}} \triangleq\left[\frac{\Delta \mathrm{H}_{2}-\mathrm{H}_{3}}{2}, \frac{\mathrm{~V}_{2}+\mathrm{V}_{3}}{2}, \mathrm{~V}_{4}\right]^{\mathrm{T}} \\
& \mathrm{f}_{\mathrm{A}} \triangleq\left[\frac{\mathrm{H}_{2}+\mathrm{H}_{3}}{2}, \frac{\mathrm{~V}_{2}-\mathrm{V}_{3}}{2}, \mathrm{H}_{4}\right]^{\mathrm{T}}
\end{aligned}
$$

Note actuator forces resolved into vertical and horizontal components $\left(V_{i}, H_{i}\right)$ at joints $\mathbf{i}=2,3,4$, which makes the determination of $G_{S}, G_{A}$ quite simple.


20 FEM * FIHIS STIFFHESE MATFIK GIVEH
G REM W TOIHT COORIINATES \& MEMEER
$\therefore$ FEM * ETIFFHESEES FOF TETFHHEDIROH
59 EEM * DH LEGE; THEH FIHIS STIFFHESS
GU REM * MATEICES FDR STM HETEIE \&
76 EEM : FH HI -STHUETEIC MOTIOHS.


























3SE FETHTFHECECI. TO): :HEMTJ:FEIHT:HEMTI
34G FRIHTTAEC1G): "LOMEF: FIGHT GUAHEFHT"























FEEFIT'.

## PRINT-OUT FROM "TETRA"



Using computer code "MODALSYS", the symmetric and antisymmetric equations of motion were put into modal form. Sketches of these mode shapes are given in figures 2 through 4. Only four modes involve fore-aft ( $y_{1}$ ) motions of the apex (fig. 2). Another four modes involve only lateral ( $x_{1}$ ) motions of the apex (fig. 3). Another three modes involve only vertical $\left(z_{1}\right)$ motions of the apex (fig. 4). One mode involves no motion of the apex (fig. 5).

## SEPARATION INTO FOUR SUBSYSTEMS

Only two linear combinations of actuator forces enter into the $y_{1}$ apex motions. (See first example of modal controllability matrix.) We shall call them fpitch and $f_{f w d}$. Two different linear combinations of actuator forces enter into the $x_{1}$ apex motions. (See second example of modal controllability matrix.) They will be referred to as $f_{r o l l}$ and $f_{f l a t}$. One different linear combination of actuator forces enters into the $z_{1}$ apex motions. It is called $f_{\text {vert. }}$. One different linear combination of actuator forces involves no apex motion, and is called $f$ yaw . The equations of motion for these four subsystems are given elsewhere in this paper.

## ANALYSIS OF TETRAHEDRON WITH CONSTRAINED MOTION

Symmetric Tetrahedron
Constraints

$$
\begin{aligned}
& x_{1}=x_{4}=0, x_{3}=-x_{2}, y_{3}=y_{2}, z_{3}=z_{2} \\
& h_{3}=-h_{2}, v_{3}=v_{2}, h_{4}=0
\end{aligned}
$$

System equations

$$
\begin{aligned}
& x=\left(y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, y_{4}, z_{4}\right) \\
& u=\left(H_{2}, v_{2}, v_{4}\right) \\
& y=\left(y_{1}, y_{2}\right) \\
& x=F x+G u+G_{A} v \\
& y=H x
\end{aligned}
$$

where

Urites m : Eec


Modal Analysis
Eisernelues are:

| Fegl | Imasingus | Mode no. |
| :---: | :---: | :---: |
| $-151.8372+$ | . 6068 | 12 |
| - $85.592+$ | - 6098 | 10 |
| $-23.3724+$ | . 6006 | 9 |
| $-21.7350+$ | . 606 c | 7 |
| E.745E + | . 6060 | 4 |
| $7.4730+$ | - 09010 | 3 |
| $1.8069+$ | . 6106 | 1 |

Eisenvetor Metrio, $T$ is:


Inverge af the Eisermector Motrix is:




## Antisymmetric Tetrahedron

## Constraints

$$
\begin{aligned}
& x_{3}=x_{2}, y_{3}=-y_{2}, z_{3}=-z_{2}, z_{1}=0, y_{1}=0, y_{4}=0, z_{4}=0, \\
& h_{3}=h_{2}, v_{3}=-v_{2}, v_{4}=0
\end{aligned}
$$

System equations

$$
\begin{aligned}
& x=\left(x_{1}, x_{2}, y_{2}, z_{2}, x_{4}\right) \\
& u=\left(h_{2}, v_{2}, h_{4}\right)
\end{aligned}
$$

Modal amplitudes

$$
\begin{aligned}
& q=\left[m_{12}, m_{10}, m_{9}, m_{7}, m_{4}, m_{3}, m_{1}\right] \\
& \ddot{q}=F_{q} q+G_{q} u+G_{A q} v \\
& y=H_{q} q
\end{aligned}
$$

where
Uriite in , EEG

$-2.509+2.560+1.443+4.692+.060$
$+1.250-18.169-14.718-2.041+12.500$
$+.721-14.715-51.177-1.176+21.651$
$+2.041-2.041-1.176-21.011+.0010$
$+.601+25.900+43.362+.060-42.677$
Eontrol Distribution MEtris, $G, i \equiv$ :
$+.006+.804+.060$
$-.509+.004+.010$
$+.860+.000+.060$
$+\quad 400+1.0100+\quad .090$
$+.006+.060+1.000$
Feedberk Geir metri* $\bar{C}$, is:
$+.000+.060+.060+.000+.000$
$+.000+.000+.000+.0004+.0000$

$+1.000+.000+.006+.000+.0000$

$+1.000$
$+.0101$
$+.010$
$+\quad .016$
$+.6010$
Eistruslues are: Pegl Imasirivrn Mode no.
$-85.55+$ - 6164011
$-21.7356+.6040 \quad 8$
$-17.675+.6646$
$-8.742+.00645$

- $1.0609+.00602$

Ei Eeruector Metris, T, is:
$\mathrm{x}_{1}+.625-.2265-.0601-.2761+1.0010$
$-.359+.1309-.4998+1.6080+.1188$
$-.7640-.0669+.8659+.067+.0165$
$-.0264+1.6006+.0004-.2207+.0920$
$z_{2}+1.0606+.1469+1.6010+.8493+.0961 \mathrm{~m}_{2}$
Inveree of the Eizenueotor Metrix is:
$+.0163-.287-.663-.0212+.4619$
$-.1685+.1234-.0165+.9496+.0669$

```
-.0606 - . 353 + .5774 + .0002 + .38%4
-.0949 + .6875 + .0601 - . 1518 + .2916
+ .9487 + . 2254 + .0313 + .1757 + .0855
```





$+.04014+.0606+.0604-8.7462+.06180$
$+.6046+.0604+.00160+.0069-1.8669$
The Model Controllability Matrix. Iruct)das is:

- . $4020-.0212+.4019$
$-.0673+.9496+.0663$
$+.0667+.0062+.3334$
$-.2917-.1518+.2916$
$-.0655+.1757+.0855$
The Model Obserughility Metris. H*T, is:
$+.0256-.2266-.0601-.2761+1.0006$
The Model Ilisturbabilits Matrix Irouctid(GH), is:
$+. \operatorname{ecs}$
-. 1685
- . 6060
- . 0949
$+.9467$

- . $0163+.0154-.0606+.065-.0855$
$-.0105-.2171+.0609+.0419+.1757$
$+.0163-.0153-.0060-.0655+.0655$
Fesidues; $\mathrm{H} l \mathrm{l}$ Outputs: Mist. 1. Theri Iist. 2. Eto. $+.0602+.6248+.0610+.0262+.9487$

PITCH/FORWARD TRANSLATION SUBSYSTEM

$$
\begin{aligned}
& \ddot{\mathrm{m}}_{1}=-(1.342)^{2} \mathrm{~m}_{1}+0.1907 \mathrm{f}_{\mathrm{p}} \\
& \ddot{\mathrm{~m}}_{4}=-(2.957)^{2} \mathrm{~m}_{4}+0.6652 \mathrm{f}_{\mathrm{F}} \\
& \ddot{\mathrm{~m}}_{7}=-(4.662)^{2} \mathrm{~m}_{7}-0.9848 \mathrm{f}_{\mathrm{p}}+0.7914 \mathrm{f}_{\mathrm{F}} \\
& \ddot{\mathrm{~m}}_{10}=-(9.251)^{2} \mathrm{~m}_{10}-0.1320 \mathrm{f}_{\mathrm{p}}-0.5788 \mathrm{f}_{\mathrm{F}}
\end{aligned}
$$

where
$\left[\begin{array}{l}y_{1} \\ z_{1} \\ x_{2} \\ y_{2} \\ z_{2} \\ y_{4} \\ z_{4}\end{array}\right]=\left[\begin{array}{llll}1 & -0.2629 & 0.1979 & -0.0317 \\ 0 & 0 & 0 & 0 \\ 0.0165 & 0.0832 & 0.0057 & 0.9673 \\ 0.0997 & 0.8557 & -0.1190 & -0.6753 \\ 0.0534 & -0.1214 & -0.5000 & 0.0188 \\ 0.1283 & 1 & -0.1090 & 1 \\ -0.1069 & 0.02424 & 1 & -0.0376\end{array}\right] \quad\left[\begin{array}{l}m_{1} \\ m_{4} \\ m_{7} \\ m_{10}\end{array}\right]$
and

$$
\left[\begin{array}{l}
\mathrm{H}_{z} \\
\mathrm{~V}_{2} \\
\mathrm{~V}_{4}
\end{array}\right]=\left[\begin{array}{cc}
0.02602 & 1 \\
0.5000 & -0.4872 \\
-1 & 0.9744
\end{array}\right]\left[\begin{array}{c}
\mathrm{f}_{\mathrm{p}} \\
\mathrm{f}_{\mathrm{F}}
\end{array}\right] \begin{aligned}
& \mathrm{H}_{3}=-\mathrm{Hz} \\
& \mathrm{~V}_{3}=\mathrm{V}_{2} \\
& \mathrm{H}_{4}=0
\end{aligned}
$$

ROLL/LATERAL TRANSLATION SUBSYSTEM

$$
\begin{aligned}
& \ddot{\mathrm{m}}_{2}=-(1.342)^{2} \mathrm{~m}_{2}+0.2202 f_{\mathrm{R}} \\
& \ddot{\mathrm{~m}}_{5}=-(2.957)^{2} \mathrm{~m}_{5}+0.5482 f_{\mathrm{L}} \\
& \ddot{\mathrm{~m}}_{8}=-(4.662)^{2} \mathrm{~m}_{8}+0.9845 f_{R}-0.5925 f_{L} \\
& \ddot{\mathrm{~m}}_{11}=-(9.251)^{2} \mathrm{~m}_{11}+0.1880 \mathrm{f}_{\mathrm{R}}+0.6184 \mathrm{f}_{\mathrm{L}}
\end{aligned}
$$

where

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
y_{2} \\
z_{2} \\
x_{4}
\end{array}\right]=\left[\begin{array}{llll}
1 & -0.2761 & -0.2286 & 0.0256 \\
0.1188 & 1 & 0.1300 & -0.3579 \\
0.0165 & 0.0874 & -0.0068 & -0.7840 \\
0.0926 & -0.2207 & 1 & -0.0264 \\
0.0901 & 0.8483 & 0.1409 & 1
\end{array}\right]\left[\begin{array}{l}
m_{2} \\
m_{5} \\
m_{8} \\
m_{11}
\end{array}\right] \begin{aligned}
& x_{3}=x_{2} \\
& y_{3}=-y z \\
& z_{3}=z_{2}
\end{aligned}
$$

and

$$
\left[\begin{array}{l}
\mathrm{H}_{2} \\
\mathrm{~V}_{2} \\
\mathrm{H}_{4}
\end{array}\right]=\left[\begin{array}{ll}
-0.1735 & -0.5000 \\
1 & -0.7299 \\
0.3470 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{f}_{\mathrm{R}} \\
\mathrm{f}_{\mathrm{L}}
\end{array}\right] \quad \begin{aligned}
& \mathrm{H}_{3}=\mathrm{Hz} \\
& \mathrm{~V}_{3}=-\mathrm{V}_{z} \\
& \mathrm{v}_{4}=0
\end{aligned}
$$

VERTICAL SUBSYSTEM

$$
\begin{aligned}
& \ddot{\mathrm{m}}_{3}=-(2.734)^{2} \mathrm{~m}_{3}+0.6208 \mathrm{f} v \\
& \ddot{\mathrm{~m}}_{9}=-(4.835)^{2} \mathrm{~m}_{9}+0.8476 \mathrm{f}_{\mathrm{v}} \\
& \ddot{\mathrm{~m}}_{12}=-(12.322)^{2} \mathrm{~m}_{12}+0.0192 \mathrm{f}_{\mathrm{v}}
\end{aligned}
$$

where
\(\left[$$
\begin{array}{l}y_{1} \\
z_{1} \\
x_{2} \\
y_{2} \\
z_{2} \\
y_{4} \\
z_{4}\end{array}
$$\right]=\left[$$
\begin{array}{lll}0 & 0 & 0 \\
1 & -0.7307 & 0.0512 \\
0.0107 & -0.0275 & -0.8659 \\
0.0064 & -0.0160 & -0.5000 \\
0.2440 & 0.9994 & -0.0193 \\
-0.0120 & 0.0316 & 1 \\
0.2440 & 1 & -0.0193\end{array}
$$\right]\left[\begin{array}{l}m_{3} <br>
m_{9} <br>

m_{12}\end{array}\right] \quad\)| $x_{3}=-x_{2}$ |
| :--- |
| $y_{3}=y_{2}$ |
| $z_{3}=z_{2}$ |

and

$$
\left[\begin{array}{l}
\mathrm{v}_{2} \\
\mathrm{v}_{3} \\
\mathrm{v}_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad[\mathrm{f} \mathrm{v}]
$$

YAW SUBSYSTEM
$\ddot{m}_{6}=-(4.204){ }^{2} m_{6}+1.000 f_{Y}$
where
\(\left[$$
\begin{array}{l}x_{1} \\
x_{2} \\
y_{2} \\
z_{2} \\
x_{4}\end{array}
$$\right]=\left[\begin{array}{l}0 <br>
-0.5000 <br>
0.8660 <br>
0 <br>

1.000\end{array}\right]\left[$$
\begin{array}{l}m_{6}\end{array}
$$\right] \quad\)| $x_{3}=x_{2}$ |
| :--- |
| $y_{3}=-y z$ |

and
\(\left[$$
\begin{array}{l}\mathrm{H}_{2} \\
\mathrm{H}_{3} \\
\mathrm{H}_{4}\end{array}
$$\right]=\left[$$
\begin{array}{l}1 \\
1 \\
1\end{array}
$$\right]\left[\begin{array}{l}\mathrm{f} <br>

\mathrm{Y}\end{array}\right] \quad\)| $\mathrm{V}_{2}=0$ |
| :--- |
|  |
| $\mathrm{~V}_{3}=0$ |
| $\mathrm{~V}_{4}=0$ |

Figure 6 shows the combinations of controls that control only modes 1 and 4 (and also modes 7 and 10). Figure 7 shows the combinations of controls that control modes 2 and 5 (and also 8 and 11). Figure 8 shows the combinations of controls that control the vertical and yaw modes.


Rear view


Top view

Figure 1.- Antenna feed tower,


Figure 2.- Modes that involve only $y$ motions of the apex.
(2)




$$
\omega^{2}=21.73
$$




Rear view
$\omega^{2}=85.6$


Top view

Figure 3.- Modes that involve only $x$ motions of the apex.



Side view


Top view

Figure 4.- Modes involving only $z$ motions of the apex.


Figure 5.- Antisymmetric mode involving no motion of apex.


Figure 6.- Pitch and forward translation controls.

(a) Mode $m_{2}$ (roll) controls ( $f_{R_{R}}$ ).


Rear view


Top view
(b) Mode $\mathrm{m}_{5}$ (lateral translation) controls ( $\mathrm{f}_{\mathrm{L}}$ ).

Figure 7.- Roll and lateral translation controls.


Figure 8.- Vertical and yaw controls.

