.

STRUCTURAL DESIGN FOR DYNAMIC RESPONSE REDUCTION

Brantley R. Hanks NASA Langley Research Center Hampton, Virginia

OBJECTIVE: STUDY STIFFNESS AUGMENTATION BY MATHEMATICAL DESIGN

APPROACH: APPLY LINEAR REGULATOR THEORY WITH PROPORTIONAL FEEDBACK

JUSTIFICATION: STIFFNESS IS READILY AVAILABLE TO DESIGNER AS PREDICTABLE PASSIVE CONTROL

TIME-INVARIANT LINEAR REGULATOR---GENERAL

SYSTEM:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} + \mathbf{D}\mathbf{w}$$

CONTROLLED VARIABLES:

y = Cx

OBJECTIVE:

$$\underset{\mathbf{u}}{\operatorname{Min } J} \quad \text{where } \quad \mathbf{J} = \mathbf{x}_{\mathbf{f}}^{\mathsf{T}} \mathbf{S}_{\mathbf{f}} \mathbf{x}_{\mathbf{f}} + \left(\begin{array}{c} \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \end{array} \right) \left[\mathbf{y}^{\mathsf{T}} \mathbf{Q} \mathbf{y} + \mathbf{u}^{\mathsf{T}} \mathbf{R} \mathbf{u} \right] d\mathbf{t}$$

OPTIMAL CONTROL (ASSUMING w IS RANDOM):

 $u = -R^{-1} B^{T} Px$

WHERE P IS SOLUTION TO

$$\dot{\mathbf{P}} = -\mathbf{P}\mathbf{A} - \mathbf{A}^{\mathsf{T}}\mathbf{P} + \mathbf{P}\mathbf{B}\mathbf{R}^{-1} \mathbf{B}^{\mathsf{T}}\mathbf{P} - \mathbf{C}^{\mathsf{T}}\mathbf{Q}\mathbf{C} \qquad \mathbf{P}(\mathsf{t}_{\mathsf{f}}) = \mathsf{S}_{\mathsf{f}}$$

IF $t_{f} \rightarrow \infty$, GET <u>STEADY-STATE</u> P (AND U) FROM

 $0 = -PA - A^{T}P + PBR^{-1} B^{T}P - C^{T} QC$

POSITIVE DEFINITE P EXISTS IF

- A IS DETECTABLE IN C, STABILIZABLE IN B
- RESPONSE WEIGHTING MATRIX, Q, IS POSITIVE SEMIDEFINITE
- CONTROL WEIGHTING MATRIX, R, IS POSITIVE DEFINITE

LINEAR REGULATOR ADAPTED TO STRUCTURES

SYSTEM:

$$\begin{cases} \dot{\mathbf{x}} \\ \dot{\mathbf{x}} \end{cases} = \begin{bmatrix} \mathbf{o} & \mathbf{I} \\ -\mathbf{M}^{-1}\mathbf{K} & -\mathbf{M}^{-1}\mathbf{G} \end{bmatrix} \begin{cases} \mathbf{x} \\ \dot{\mathbf{x}} \end{cases} + \begin{cases} \mathbf{o} \\ \mathbf{M}^{-1}\mathbf{B} \end{cases}^{\mathbf{u}} + \begin{cases} \mathbf{o} \\ \mathbf{M}^{-1}\mathbf{D} \end{cases}^{\mathbf{w}} \qquad \mathbf{w} \sim \mathbf{N}(\mathbf{0}_{\mathbf{1}}\sigma^{2})$$

OBJECTIVE FUNCTION:

$$J = \int_{0}^{t} f \left[\begin{pmatrix} x^{T} & \dot{x}^{T} \end{pmatrix} \begin{bmatrix} K & 0 \\ 0 & M \end{bmatrix} \begin{cases} x \\ \dot{x} \end{cases} + \begin{pmatrix} u^{T} \end{pmatrix} \begin{bmatrix} R \end{bmatrix} \begin{pmatrix} u \\ u \end{pmatrix} \right] dt$$

ASSUME:

- RANDOM INITIAL CONDITIONS
- COMPLETE STATE FEEDBACK WITH NO ROTATIONAL COUPLING
- $t_{f} \rightarrow \infty$ (TIME-INVARIANT STRUCTURAL CHANGE)

CONTROL:

$$\begin{cases} 0 \\ M^{-1}B \end{cases} u = \begin{bmatrix} 0 & 0 \\ -M^{-1}BR^{-1}BT & M^{-1}T_{P_{21}} & -M^{-1}BR^{-1}BT & M^{-1}T_{P_{22}} \end{bmatrix} \begin{cases} \mathbf{x} \\ \mathbf{\dot{x}} \end{cases}$$

WHERE P21 AND P22 ARE SOLUTIONS TO

$$P_{21}^{\mathsf{T}} A_{21} + A_{21}^{\mathsf{T}} P_{21}^{\mathsf{T}} - P_{21}^{\mathsf{T}} M^{-1} BR^{-1}B^{\mathsf{T}}(M^{-1})^{\mathsf{T}}P_{21} + C_{1}^{\mathsf{T}}Q_{1}C_{1} = 0$$
(1)

AND

$$P_{22}A_{22} + A_{22}^{T}P_{22} - P_{22}M^{-1}BR^{-1}B^{T}(M^{-1})P_{22} + (P_{21} + P_{21}^{T} + C_{2}Q_{2}C_{2}) = 0$$
(2)

IN THESE EQUATIONS $A_{21} = M^{-1} K$ and $A_{22} = M^{-1} G$ NOTE THAT (1) IS NOT SYMMETRIC; ALSO THAT (1) IS INDEPENDENT OF (2).

143

Q WEIGHTING MATRIX CONSIDERATIONS

$$\begin{split} \underset{\mathbf{u}}{\overset{\mathbf{Min J}}{\mathbf{u}}} \quad \mathbf{where } \quad \mathbf{J} &= \int_{0}^{\infty} \begin{bmatrix} \mathbf{y}^{\mathrm{T}} \mathbf{Q} \mathbf{y} + \mathbf{u}^{\mathrm{T}} \mathbf{R} \mathbf{u} \end{bmatrix} \mathrm{d} \mathbf{t} \\ \mathbf{y}^{\mathrm{T}} \mathbf{Q} \mathbf{y} &= \begin{pmatrix} \mathbf{x}^{\mathrm{T}} & \dot{\mathbf{x}}^{\mathrm{T}} \end{pmatrix} \begin{bmatrix} \mathbf{c}_{11}^{\mathrm{T}} & \mathbf{c}_{21}^{\mathrm{T}} \\ \mathbf{c}_{12}^{\mathrm{T}} & \mathbf{c}_{22}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \mathbf{Q}_{11} & \mathbf{Q}_{12} \\ \mathbf{Q}_{21} & \mathbf{Q}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{11} & \mathbf{c}_{12} \\ \mathbf{c}_{21} & \mathbf{c}_{22} \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \dot{\mathbf{x}} \end{pmatrix} \end{split}$$

• If rate and displacement considered independently and Q chosen so as not to couple x and x

$$\mathbf{y}^{\mathrm{T}}\mathbf{Q}\mathbf{y} = \left(\mathbf{x}^{\mathrm{T}} \ \dot{\mathbf{x}}^{\mathrm{T}}\right) \begin{bmatrix} \mathbf{c}_{11}^{\mathrm{T}} \ \mathbf{Q}_{11} \ \mathbf{c}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{c}_{22}^{\mathrm{T}} \ \mathbf{Q}_{22} \ \mathbf{c}_{22} \end{bmatrix} \begin{cases} \mathbf{x} \\ \dot{\mathbf{x}} \end{cases}$$

- For design, selection of C is governed by desired minimum response points. Hence, C and Q may be assigned similar functions.
- Diagonal C and Q minimizes weighted square response at selected coordinates.
- Choice of $Q_n = K$ and $Q_{22} = M$ minimizes sum of strain and kinetic energy at locations determined and (optionally) weighted by C.

REGULATOR FOR STRUCTURES--MODAL COORDINATES

TRANSFORMATION $\mathbf{x} = \phi \mathbf{q}$ WHERE $\mathbf{q} = \mathbf{q}_{\mathbf{k}} \mathbf{e}^{\left(\sigma_{\mathbf{i}} + \mathbf{j}\omega_{\mathbf{i}}\right)\mathbf{t}}$ WHERE ϕ IS NORMALIZED $\phi^{\mathsf{T}}\mathsf{M}\phi = \mathbf{I}$ AND $\sigma_{\mathbf{i}}$ IS ASSUMED PROPORTIONAL TO $\omega_{\mathbf{i}}$ (I.E., $\sigma_{\mathbf{i}} = -2\xi_{\mathbf{i}}\omega_{\mathbf{i}}$ OR $\phi^{\mathsf{T}}G\phi = \begin{bmatrix} -2\xi_{\mathbf{i}}\omega_{\mathbf{i}} \end{bmatrix}$) OBJECTIVE FUNCTION BECOMES

$$J = \int_{0}^{t} f \left[\begin{pmatrix} q^{\mathsf{T}} \dot{q}^{\mathsf{T}} \end{pmatrix} \begin{bmatrix} \phi^{\mathsf{T}} K \phi & 0 \\ 0 & \phi^{\mathsf{T}} M \phi \end{bmatrix} \begin{cases} q \\ \dot{q} \end{cases} + \begin{pmatrix} u^{\mathsf{T}} R u \end{pmatrix} \right] dt$$

NOTE THAT

$$\phi^{\mathsf{T}} \mathbf{K} \phi = \left[\begin{array}{c} \omega_{\mathbf{i}}^{2} \\ \mathbf{i} \end{array} \right] = \left[\begin{array}{c} \Omega^{2} \\ \Omega^{2} \\ \mathbf{i} \end{array} \right]$$
HENCE, WEIGHTING MATRIX Q =
$$\left[\begin{array}{c} \Omega^{2} \\ \Omega \\ \mathbf{i} \\ \mathbf{i} \end{array} \right]$$

RICCATI EQUATIONS BECOME

$$P_{21}^{\mathsf{T}} \,\,\Omega^2 + \,\Omega^2 \,\,P_{21} + P_{21}^{\mathsf{T}} \,\mathcal{B} \,\mathcal{R}^{-1} \,\mathcal{B}^{\mathsf{T}} P_{21} - C_1^{\mathsf{T}} \Omega^2 \,C_1 = 0 \tag{3}$$

AND

$${}^{P}_{22}\left[{}^{2}\xi\Omega_{}\right] + \left[{}^{2}\xi\Omega_{}\right]{}^{P}_{22} + {}^{P}_{22}{}^{BR^{-1}}{}^{B^{T}}{}^{P}_{22} - \left({}^{P}_{21} + {}^{P^{T}}_{21} + {}^{C^{T}}_{2}{}^{C}_{2}\right) = 0 \quad (4)$$

WHERE ^P, ^B, ^R, AND ^C ARE MODAL EQUIVALENTS OF P, B, R, AND C. BY CHOOSING P, B, R, AND C DIAGONAL, WE DECOUPLE THE SOLUTION AND GET PURE "MODAL CONTROL."

CANTILEVER BEAM MODEL

ASSUMED:

- CONSISTENT MASS FINITE ELEMENTS
- UNIFORM INITIAL STIFFNESS & MASS DISTRIBUTION
- FIRST NATURAL FREQUENCY = .047 Hz (.297 rad/sec)

PHYSICAL IMPLEMENTATION OF STIFFNESS CONTROL

146

CONTROL WEIGHTING EFFECTS ON DESIGN

	INITIAL FREQ., <u>RAD</u>	FINAL FREQUENCY, RAD/sec						
MODE		R = 10I	R = I	R = .1 I	R = .01 I			
1	.297	. 359	.557	.972	1.725			
2	1.867	1.880	1.989	2.619	4.538			
3	5.262	5,267	5,309	5,684	7.711			
4	10.382	10.384	10.406	10.615	12.233			

UNDAMPED NATURAL FREQUENCIES

DAMPING RATIOS

MODE	INITIAL DAMPING	FINAL DAMPING, % C/C _{CR}					
	% C/C _R	R = 10I	R = I	R = .1 I	R = .01 I		
1	2	59.3	108	176	298		
2	2	12.0	35.0	78.1	131		
3	2	4,7	13.4	38.6	82.9		
4	2	2.9	7.1	21.0	55.4		

*NOTE: SOLUTIONS OBTAINED SEPARATELY FOR STIFFNESS AND DAMPING COMPARED EXACTLY TO FULL ORDER CONTROLLER SOLUTION

STIFFNESS MATRIX COMPARISON (ASSUMED CONSTANT MASS)

			0	RIGINAL	K			
X ₁	θ	x ₂	θ2	X ₃	θ3	X4	θμ	
125	-1250	-125	-1250	0	0	0	0]	X ₁
	16667	1250	8333	0		0	0	θ
		250	0	-125	-1250	0	0	x ₂
			33333	1250	8333	0	0	θ ₂
				250	0	-125	-1250	X ₃
	ω	=.297	1 rad sec		33333	1250	8333	θ ₃
1						250	0	X ₄
-							33333	θ4

FINAL K FOR R = .1 I

129.7	-1261	-127.8	-1241	-1.74	-3,83	166	71]	X ₁
	16719	1254	8278	6.41	12,85	.84	2.94	θ
		260.3	-5.22	-127	-1239	1 -1.58	-3.84	x ₂
			33528	1236	8249	2.45	4.58	θ2
		1		246.3	-2.06	-124.6	-1239	X ₃
	$\omega = $	972 Vallser			33540	1234	8252	θ ₃
						268	-3.37	X ₄
							33543	θ4

R WEIGHTING EFFECT ON STIFFNESS MATRIX (FIRST ROW ONLY SHOWN)

Orig. K _{ij}	125	-1250	-125	-1250	0	0	0	
R = 10 I	125.1	-1250	-125	-1250	008	009	002	005
R = I	125.7	-1252	-125.1	-1249	21	27	06	13
R = .1 I	129.7	-1261	-127.8	-1241	-1.74	-3.83	-17	71
R = .01 I	150.8	-1310	-150,3	-1220	-3.19	-24.0	-1.8	-2.9

RELATED SPONSORED RESEARCH

- KAMAN AEROSPACE CORPORATION AUTOMATED MATH MODEL IMPROVED FOR MATCHING EXPERIMENTAL DATA.
- INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING - IDENTIFICATION OF EQUIVALENT PDE SYSTEMS TO MATCH MEASURED DATA.

SUMMARY

- COMPUTER PROGRAM FOR REDESIGNING STRUCTURAL MODES TO REDUCE RESPONSE HAS BEEN INITIATED,
- LINEAR REGULATOR APPROACH IN MODAL COORDINATES HAS BEEN IMPLEMENTED. TRANSFORMATION OF SOLUTION TO PHYSICAL STRUCTURE IS A MAJOR PROBLEM.
- SOLUTION OF STIFFNESS EQUATIONS AND DAMPING EQUATIONS CAN BE DONE SEPARATELY AS NXN SET OF (MATRIX RICCATI) EQUATIONS,

PLANNED EFFORT FOR '82

• INCLUDE MASS OF CONTROL

- STUDY WEIGHTING TO MINIMIZE OR SELECT CROSS-TERMS
- IMPLEMENT PHYSICAL COORDINATE SOLUTION
- STUDY POTENTIAL FOR "BENEFICIAL" CROSS TERMS