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ACTIVE CONTROL OF A FLEXIBLE BEAM 

Because of inherent low damping and high flexibility, large space structures 
may require some form of active control of their dynamics. Because of the apparent 
inability to accurately model the dynamics of these structures, methods for 
parameter adaptive control are now being developed at Langley. The process 
currently being studied is shown in the block diagram below. This approach uses a 
digital computer to process discrete sensor data, identify modal parameters, 
calculate modal control gains, and then convert the modal.forces to real forces. 
The last two blocks are the topic of this presentation. Some of the problems con- 
sidered are: (1) the possibility that there may be many modes to control with 
limited amounts of hardware, and (2) the required accuracy of identified structural 
parameters. 

BACKGROUND: 

- NEED TO CONTROL FLEXIBLE MOTION OF LARGE SPACE STRUCTURES 

- ABILITY TO ACCURATELY MO,DEL THE DYNAMICS OF THESE STRUCTURES IS UNCERTAIN 

- THEORY NOW BEING DEVELOPED FUR PARAMETER ADAPTIVE CONTROL OF THESE STRUCTURES 

PARAMETERS I 

I I 
-------,------------,A 

PROBLEMS: . 
- POSSIBLY MANY NODES TO CONTROL 

- LIMITED HARDWARE (CUMPUTAT I OR, SENSORS, ACTUATORS) 

- HOW WELL STHUCTURAL PAHAMETEHS MUST BE IDENTIFIED FOR CONTROL 
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RESEARCEI TASK 

The specific research task was to design a digital control scheme to suppress 
vibration of a homogeneous free-free beam. A qigital computer simulation algorithm 
was then used to test (1) the effects of controlling more modes than available 
actuators, and (2) the sensitivity to identified structural parameters. 

l DESIGN A DIGITAL CONTROL SCHEME TO SUPPRESS VIBRATION OF A 
HOMOGENEOUS FREE-FREE BEAM 

o EXAMINE EFFECT ON STABILITY OF: 

- FEWER ACTUATORS THAN CONTROLLED NODES 

- ERRORS IN STRUCTURAL MODEL PARAMETERS 

o TEST WITH AN EXISTING SIMULATION ALGORITHM 
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MATHEMATICAL MODEL 

The continuous beam was modeled by using the SPAR finite element algorithm 
which generates mode shapes and frequencies. These were used to write a modal 
representation of the beam dynamics which was used to design the control gains. 

o CONTINUOUS MODEL 

o FINITE ELEMEN.T MODEL OF-BEAM 

- MODE SHAPES AND FREQUENCIES FOR 25 ELEMENT MODEL ARE 
GENERATED BY SPAR 

o MODAL REPRESENTATION 

x = [Elq 

- SET OF 50 UNCOUPLED ZND-ORDER SYSTEMS 

e CONTROL SYSTEM DESIGNED USING THIS fiODAL REPRESENTATION OF THE 
STRUCTURAL DYNAMICS 
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DISCRETF. TIP& MODEL 

In order to simplify the digital simulation and prepare for eventual digital 
implementation, the modal equations of motion were discretized. This results in 
the scalar equation which shows the present modal amplitude to be a function of the 
past two amplitudes and the past two controls. There is a discrete time transforma- 
tion analogous to the Laplace transform which results in a characteristic polynomial 
in 2. The roots of this polynomial may be plotted in the complex plane with 
stability represented by magnitudes of less than 1. Analysis of the control system 
will be done primarily in this z-plane. 

o NECESSAKY FOR: 

- DESIGN OF DIGITAL SIMULATION 

- EVENTUAL DIGITAL IMPLEMENTATION 

l D1SCRET.E EOUATIUN OF MOTION: 

q(k) = *l q(k-l) + *2 q(k-2) + '1 '(k-1) + '2 "(k-2j 

where A = f(w ,T), T = sampling interval, 

B = f(w ,c,T), e = mode shapes. 

a DISCRETE TIME TRANSFORM (ANALOGOUS TO LAPLACE TRANS.) RESULTS Time 

IN A CHARACTERISTIC POLYNOMIAL IN Z: 
0 = i c. ,i-1 

i=l ' 

S-PLANE 
d Z-PLANE 

CONTINUOUS TIME DISCRETE 
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CONTROL DESIGN APPR0ACH 

The modal control design approach is to choose desired closed-loop roots from 
which the modal controller gains can be calculated. The modal control forces may 
be calculated directly, and the actual control forces can be calculated using a 
pseudo-inverse. 

CHOOSE DESIRED CLOSED LOOP ROOTS FOR EACH MODE 

CALCULATE MODAL CONTROLLER GAINS 

CALCULATE MODAL CONTROL FORCES 

CONVERT MODAL FORCES TO ACTUATOR FORCES 
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DIGITAL CONTROL OF ONE mDE 

The con t ro l  of one mode is achieved by using the  minimum order control  law 
required f o r  pole placement. This i s  of the  same form as t h e  modal equation of 
motion. The closed loop c o n t r o l l e r  has  a fourth-order c h a r a c t e r i s t i c  equation a s  
shown. The c o e f f i c i e n t s  of this equation are determined from t h e  desired closed- 
loop roots  and a r e  funct ions  of t h e  mode and control  coef f i c ien t s  i n  the  p lan t  and 
control  modal equations. The con t ro l  object ive  is t o  achieve the  desired roots  
defined by (a,b,c,d) by solving f o r  the  con t ro l l e r  gains cC1, C2, Dl, D2). 

MINIMUM ORDER CONTROL LAW FOR..POLE PLACEMENT 

( k  ‘ q ( k - l )  + C 2  y k - 2 )  * l ' ( k -1 )  ' D2 l ' (k -2 )  

- NOTE SAME FORM AS P L A N T  MODEL 

[ q ( k )  ' A 1  y k - 1 )  + A 2  q ( k - 2 )  + =I l ' ( k - 1 )  + '2 ' ( k - 2 ) '  
- C ' S  8 D's ARE FOUR CONTROL G A I N S  

a CLOSED LOOP CONTROLLER 
MODAL 

CONTROL qJJ 
- H A S  D I S C R E T E  T I M E  C H A R A C T E R I S T I C  E Q U A T I O N  

z 4 + a z 3 + b z 2 + c z + d  = O  

where { a  ,b ,c , d  1 = f ( A  ,B ,C ,D ). 

CONTROL OB JECTI VE : 

- A C H I E V E  D E S I R E D  C L O S E D  L O O P  ROOTS ( A S  D E F I N E D  BY a , b , c , d )  
BY C A L C U L A T I N G  THE CONTROL G A I N S ,  



The control problem is shown in the block diagram below. The parameter 
uncertatities affect the calculation,of the modal controller gains and a pseudo- 
inverse results- in a least squares type-error in the actual forces applied to the 
beam. A typical set of closed-loop roots is shown in each of the two complex 
plane plots. The design criterion is to place the roots of the controlled modes on 
a constant damping l&e in the s-plane. This line maps onto a constant-radius 
circle on the complex z-plane, wztth uncontrolled roots on the unit circle. 

o CONTROL PROBLEM 

SARAMETER UNCERTAINTY 
I 

o REPRESENTATION OF CLOSED LOOP DYNAMICS 

Z-PLQNE 
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RESULTS - CASE 1 

A baseline set of results is shown below. Exact parameters are used to 
calculate the control'gaius and five inodes are controlled with five actuators. 
Note that all roots are c&kulated exactly so that all modal amplitudes have the 
same decay envelope. Also,'mode sti, which is not controlled, does show "minor" 
excitation and continues to "rfng",after control to the other modes is stopped. 
This is not evfden't from'the figure. 

o CASE+ EQUAL NUMBER OF ACTUATORS AND CONTROLLED MODES 
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RESULTS - CASE II 

This. next case illustrates an attempt to control more modes.than available 
actuators. Here it is no longer pos&'ble to solve exactly for the desired roots, 
and one root does be&me un&aIile,'as shoti by the increasing amplitude of the 
fourth mode. 

-o CASE .I I : FEWER ACTUATORS THAN CONTROLLED MODES - UNSTABLE 

5 CONTROLLED 

Li ACTUATORS 

Z-PLFINE 

7 lH 8 OESIREO _^. ^... m-, 

2.5- 

llorx 4 
AMPLlTUDE o'"~"~"A"n"A"~"A~A"AA/\"A A A A 

-2.5- 
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RESULTS - CASE III 

In the third case it is shown that attempting to control more modes than 
available actuators does not necessarily mean the system will be unstable. Note 
here that the calculated roots are closer to the desired roots and that, while the 
fourth mode is near the unit circle, it now is slightly stable. This can be 
explained by considering that the additional actuator and mode provide one more 
data point for the least squares fit. 

l CASE III: FEWER ACTUATOriS Tli.IN CONTROLLED MODES - STABLE 

6 CONTROLLED 

5 ACTUATORS 

Z-PLFINE 

In 
I o DESIRED 

a CQLCULRTED 

245 



PARAMETER ERROR SENSITIYITY 

The results of the parameter error sensitivity study are shown below. Error 
was placed on the modal frequency and damping parameters of the modes selected for 
control. Experixntal results show that the parameter estimator may have errors on 
the order of 25 percent. The locus of roots calculated using a parameter error 
range of 220 percent is plotted below. The magnitude of the error at which the 
modes became unstable is summarized in the table. Note that as the mode number 
increases, the sensitivity decreases for the first three modes. The high sensi- 
tivity of mode six in case III is unexplained at this time. 

o ERROR ON MODAL FREQUENCY AND DAMP 
91k) = 5 ‘(k-1) + &q(k-2) 

ING PARAME TERS ONLY 

+ ‘; “(k-l) + ‘: “(k-2) 

a NO ERROR ON RIGID BODY PARAMETERS 

l BASED ON EXPERIMENTAL PARAMETER ESTIMATE ERRORS OF f 5% 

5 COHJROLLED 

5 ACJIJAIORS 

Z-PLQNE Z-PLQNE 

l'RU= iO3125 SEC 

s CFlLCULRTEO s CFlLCULRTEO 

\: I- I L, AC-T. 
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CONCLUSIONS 

1, LIMITED ACTUATORS: 

- THIS DESIGN PROCESS YIELDS UNDESIRABLE CLOSED LOOP DYNAMICS 
WHEN THE NUMEER OF CONTROLLED MODES EXCEEDS THE NUMBER OF 
AVAILABLE ACTUATORS, 

2, PARAMETER ERROR: 

- ERRORS WITHIN THE RANGE OF EXPERIMENTAL RESULTS CAN CAUSE 
INSTABILITY, 

- CONTROL SYSTEM MUST BE MADE MORE TOLERANT OF PARAMETER ERROR, 
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