General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

WAVE PROPAGATION IN GRAPHITE/EPOXY LAMINATES DUE TO IMPACT

by
T.M. Tan and C.T. Sun December, 1982

* For sale by the National Yechnical Information Service. Springiield. Virginia 22161

ORIGINAL PAGE IS
 OF POOR QUALITY

TABLE OF CONTENTS

Page
TABI_E OF CONTENTS 111
LIS'T OF TABLES v
LIST OF FIGURES vi
LIS'T OF SYMBOLS Ix
CHAPTER i - INTRODUCTION 1
CHAPTER 2 - STRESS WAVE IN A LAMINATED PLATE 5
2.1 Laminate Theory with Transverse shear effects 6
2.1.1 Lamina Constitutive Equations 6
2.1.2 Plate Strain-Displacement Relations 9
2,1.3 Stress-Resultants and Laminate Constitutive Equations 12
2.1.4 Plate Equations of Motion 16
2.2 Propagation of Harmonic Waves 18
2.3 Propagation of Wave Front 23
2.3.1 Kinematic Conditions of Compatibility on the Wave Front 25
2.3.2 Dynamical Conditions on the Wave Front 27
2.3.3 Propagation Velocity of the Wave Front 32
2.3.4 Wave Surface and Ray 35
CHAPTER 3 - STATICAL INDENTATION LAWS 48
3.1 Specimens and Experimental Procedure 52
3.2 Experimental Results 53
3.2.1 Loading Curves 53
3.2.2 Unloading Curves 57
3.2.3 Reloading Curves 71
3.3 Discussion 71
CHAPTER 4 - IMPACT EXPERIMENTS 80
4.1 Experimental Procedure 81
4.2 Calibration of Imr:act-Force Transducer 84
4.3 Finite Element Analysis 94
4.3.1 Plate Finite Element 104
4.3.2 Modeling of Projectlle 97
44 Results and Discussion 100
CHAPTER 5 - SUMMARY AND CONCLUSION 113
LIST OF REFERENCES 116
APPIENDIX: COMPUTER PROGRAM AND USER INSTRUCTIONS 119

LIST OF TABLES

Table

Page

3.1 Contact coefficient k of loading law $F=k \alpha^{15} \ldots . .$.
4.1 Speciflcations for Model 200A05 Impact-Force
Transducer... 85

LIST OF FIGURES

Figure
Page
2.1 Lamina reference axes and laminate reference
axes... .. 8
2.2 Laminate displacement componants for a
cross-section perpendicular to the y-ax|s......... 10
2.3 Stress-resultants and geometry of a typlcal
N-layer laminate.. 14

2.5 Frequency curves for flexural waves
propagating in the $0^{0}-45^{0}-$ and $90^{0}-$
directions... 24
2.6 A deformed volume V divided by a travelling
surface $\Omega . ~$ 29
2.7 Normal velocities of in-plane wave fronts......... 36
2.8 Normal velocities of flexural wave fronts......... 37
2.9 Wave front pos!tions at different times and
rays for in-plane extensional mode.................. 43
2.10 Wave front positions at different times and
rays for in-plane shear mode........................... 44
2.11 Wave front positions at different times and
rays for bending mode................................... 45
2.12 Wave front positions at different times and
rays for twisting mode................................... 46
3.1 Schematical diagram for the indentation test. .. 54
3.2 Loading curve of $\left[0^{\circ} / 45^{\circ} / 0^{\circ} /-45^{0} / 0^{\circ}\right]_{25}$
specimans with 0.5 inch indenter $(n=3 / 2) \ldots \begin{aligned} & 55\end{aligned}$
3.3 Loading curve of $\left[90^{\circ} / 45^{\circ} / 90^{\circ} /-45^{\circ} / 90^{\circ}\right]$ specimens with 0.5 Inch Indenter ($n=3 / 2$ 56
3.4 Loading curve of $\left[0^{\circ} / 45^{\circ} / 0^{\circ} /-45^{\circ} / 0^{\circ}\right]_{25}$ specimens with 0.75 Inch indenter ($n=3 / 2$) 58
3.5 Loading curve of $\left[90^{\circ} / 45^{\circ} / 90^{\circ} /-45^{\circ} / 90^{\circ}\right]_{2}$ s specimens with 0.75 inch indenter ($n=3 / 2$) 59
3.e Relation between permanent indentation and maximum Indentation 61
3.7 Unloading curves of $\left[0^{\circ} / 45^{\circ} / 0^{\circ} /-45^{\circ} / 0^{\circ}\right]_{25}$ specimens with 0.5 inch indenter ($q=2.2$). 63
3.8 Unloading curves of $\left[90^{\circ}, 145^{\circ} / 90^{\circ} /-45^{\circ} / 90^{\circ}\right]_{25}$ specimens with 0.5 inch indenter ($q=2.2$) 64
3.9 Unloading curves of $\left[0^{\circ} / 45^{\circ} / 0^{\circ} /-45^{\circ} / 0^{\circ}\right]_{2}$ specimens with 0.75 Inch Indenter ($q=1.8$) 65
3.10 Unloading curves of $\left[90^{\circ} / 45^{\circ} / 90^{\circ} /-45^{\circ} / 90^{\circ}\right]_{25}$ specimens with 0.75 inch Indenter ($q=1=8$) 66
3.11 Unloading curves of $\left[0^{\circ} / 45^{\circ} / 0^{\circ} /-45^{\circ} / 0^{\circ}\right]_{2}$ s specimens with 0.5 inch indenter ($q=2.5$). 67
3. 12 Unloading curves of $\left[90^{\circ} / 45^{\circ} / 90^{\circ} /-45^{\circ} / 90^{\circ}\right]_{25}$ specimens with 0.5 inch indenter ($q=2.5$) 68
3.13 Unloading curves of $\left[0^{\circ} / 45^{\circ} / 0^{\circ} /-45^{\circ} / 0^{\circ}\right]_{25}$ specimens with 0.75 inch indenter ($q=2.0$). 69
3.14 Unloading curves of $\left[90^{\circ} / 45^{\circ} / 90^{\circ} /-45^{\circ} / 90^{\circ}\right]_{25}$ specimens with 0.75 inch indenter ($q=2.0$) 70
3.15 Reloading curve of $\left[0^{\circ} / 45^{\circ} / 0^{\circ} /-45^{\circ} / 0^{\circ}\right]_{2}$ s specimen with 0.5 inch indenter ($p=1.5$) 72
3.16 Reloading curve of $\left[90^{\circ} / 45^{\circ} / 90^{\circ} /-45^{\circ} / 90^{\circ}\right]_{2 s}$ specimen with 0.5 inch indenter ($p=1.5$) 73
3.17 Reloading curve of $\left[0^{\circ} / 45^{\circ} / 0^{\circ} /-45^{\circ} / 0^{\circ}\right]_{2 s}$ specimen with 0.75 inch indenter ($p=1.5$) 74
3.18 Reloading curve of $\left[90^{\circ} / 45^{\circ} / 90^{\circ} /-45^{\circ} / 90^{\circ}\right]_{2 \text { s }}$ specimen with 0.75 inch indenter ($p=1.5$) 75
3.19 Unloading rigidity s as function of maximum indentation 78
4.1 Laminate dimension and straln gage locations 82
4.2 Graphical illustration of impact projectile 82
4,3 Schematical diagram for the impact experimental set-up. 83
4.4 Experimental set-up for the callbration of Impact-force transducer 86
4.5 Typical output voltages from transducer and accelerometer 88
4.6 Relation between V_{F} and V_{a} 88
4.7 Assumed exponential Impulsive loading and the response history at the mldpolnt of the rod. 90
4.8 Accelerations of rod for assumed exponentlal impulsive loading 92
4.9 Assumed sine-function impulsive loading and the response history at the midpolnt of the rod. 93
4.10 9-node isoparametric plate element 95
4.11 Finlte element mesh for laminated plate and projectile 101
4.12 Straln response history at gage No. 1 103
4. 13 Straln response history at gage No. 2 104
4.i4 Strain response history at gage No. 3 105
4. 15 Straln response history at gage No. 4 106
4.16 Straln response history at gage No. 5 107
4.i7 Strain response hlstory at gage No. 6 108
4.18 Transducer response and contact force historles from experimental and finite element results 109
4.19 Transducer response historles from experimental and finlte element results up to 800 mlc coseconds 111
4.20 Deformed configurations of lamináted plate after impact 112

LIST OF SYMBOLS

A	Cross-sectional area of the projectile
$A_{1 J}, B_{1 J}, D_{1 J}$	Laminate stiffnesses
E_{s}	Young's modulus of the steel Indenter
E_{1}	Young's modulus of laminar in the fiber direction
E_{2}	Young's modulus of laminar in the transverse direction
F	Contact force
F_{m}	Maximum contact forse
G	Shear modulus
$\left[K_{p}\right],\left[K_{r}\right]$	Stiffness matrices
$\left[M_{p}\right],\left[M_{r}\right]$	Mass matrices
M	Stress couples of laminate
N	Stress resultants of laminate
$\left\{P_{p}\right\},\left\{P_{r}\right\}$	Assembled global load vectors
Q	Transverse shear force of laminate
Q ${ }_{1 J}$	Reduced stiffnesses
$\bar{Q}_{1 J}$	Transformed reduced stiffnesses
R_{s}	Radius of steel indenter
S_{1}	Shape functions of plate element
V_{F}	Output voltage of the force transducer
V_{a}	Output voltage of the accelerometer

a	Acceleration
c	Phase velocity
c_{a}	Sensitivity of the accelirometer
c_{F}	Sensitivity of the impact-force transducer
c_{n}	Normal veloclty mif wave front
F_{1}	Shape functions of rod element
〔f】	Discontinulty of \% across quve front surface
h	Laminate thickness
k	Wave number
k	Contact coefficlent
k_{1}	Reloading rigidity
$\left[K_{p} .1,\left[K_{r}\right]\right.$	Element stiffuness matrices
[$\left.m_{p}\right],\left[m_{r}\right]$	Element mass matrices
n	Power index of loading law
n	Unlt normal on the wave front
P	Power Index of reloading law
p_{1}	Slowness vector
$\left\{p_{p}\right\}_{0},\left\{p_{r}\right\}_{0}$	Element load vectors
q	Power Index of unloading law
$\left\{q_{p}\right\},\left\{a_{r}\right\}$	Assembled global displacement vectors
$\left\{q_{p}\right\}_{0},\left\{q_{r}\right\}_{0}$	Element displacement vectors
s	Unloading rigidity
t	Time
t*	Non-dimensional time
$u, \mathrm{v}, \mathrm{w}$	Displacement components of laminate
u^{0}, v^{0}, w^{0}	Midpiane displacement components

x, y, z	Laminate coordinate system
x_{1}, x_{2}, x_{1}	Laminar coordinate system
Ω	Wave front surface
α	Indentation depth
α_{0}	Permanent Indentation
α_{m}	MaxImum indentation
$\alpha_{c r}, \alpha_{p}$	Critical indentations
$\boldsymbol{\nu}$	Shearing strain
ϵ	Normal strain
$K_{X}, K_{Y}, K_{X Y}$	Rotatlon gradients
λ	Wave length
$\underline{\nu}$	Polsson's ratio
ν_{s}	Polsson's ratio of the steel Indenter
ξ, η	Normalized local coordinates of plate element
ρ	Mass density of laminate
σ	Normal stress
τ	Shearling stress
ϕ_{X}, ϕ_{y}	Rotations of cross-sections of laminate
ω	Frequency

ORIGINAL PRGE B OF POOR QUALITY

CHAPTER 1

INTRODUCTION

Advanced fiber-relnforced composite materlals such as boron/epoxy and graphlte/epoxy have been successfully empioyed as structural materlals in alrcrafts, missiles and space vehicles in recent years, and the performance of these composites has shown thelr superlority over metals in applications requiring high strength, high stiffness as well as iow welght. The advantages of these composites, however, are overshadowed by their relatively poor resistance to the Impact loadings, which has prevented the application of these materlals to turbine fan bladings. Many other reports dea: ing with the responses of advanced composites to varlous typas of impact have further increased the need for a better understanding of the problem so that the survivabllity of these composites can be improved.

It is obvious that impact produces damage and consequently reduces the strength of composite materlals. The damage modes usinally include local permanent deformations, breakage of fibers, delamlnations, etc.. While the cause of these damages are stlll unkri,wn and may not be simple in nature, in general, the impact of a soft objact could give a longer contact duration, and the dynamic
response of the whole structure is of Importance. The hard object Impact usually gives a short contact time and resuits In the inltial transmisson of impact energy into a local region of the structure. This inltial energy will propagate Into the rest of the structure in the form of stress waves. Far fleld damage away from the impact area could result from the reflection of stress waves. It is generally agreed that the cause of the sudden fallure must be examined from the polnt of transient wave propagation phenomena.

Flexural waves induced by dynamic loads in laminated composites are more complicated than those in homogeneous and isotropic plates due to the anisotropic and nonhomogeneous properties in the laminate. Moreover, beciause of the low transverse shear modulus in fiber composites, the effect of transverse shear deformation becomes significant and should be considered in the formulation. In Chapter 2, the laminate theory which includes the transverse shear deformation effect is reviewed, and harmonic waves in a graphite/epoxy laminated plate are studled. The propagation of wave front which, for a given time after impact, bound the stressed region surrounding the impact point, is also investigated.

A survey of wave propagation and impact in composite materials has been given by Moon [1]. Many analytical [25], numerical [6-7] and experimental [8-10] methods have been employed to study the transient impact problems. The
respone of a laminated plate can be analyzed using these methods províded the applied load history is prescribed. How iser if the dynamic load results from an impact of an objuct on the laminated plate, then the resulting contact force must be determined first. An accurate account of the consact behavior becomes the most important step in analyzing the impact response problems.

A classical contact law between two elastic spheres was derived by Hertz [11]. When letting the radius of one of the spheres go to infinity, one obtains the contact law betiveen an elastic sphere and an elastic half-space. Many authors have used the Hertzian contact law for the study of Impact on metals and composites. [12-13]. Recently, Yang and Sun [14] performed statical indentation tests on graphite/ eposisy composite laminates using spherical steel indenters of dif::erent sizes and found that the Hertzian law of contact was not adequate. In particular, they found that significant permanent Indentations existed and that the unloading paths were very different from the loading path. Noting that energy dissipation takes place during the process of impact, Yang and Sun [14] suggested that thls energy is responsible for the local damage of the target materlals. The unloading curves and permanent indentations obtained from the statical indentation tests may provide a use:-ul information in estimating the amount of damage due to impact since this energy is simply the area enclosed by the
loading-unloading curves. In this study, similar statical Indontation tests were conducted and the results are presented in Chapter 3.

Wang [15] has performed a number of impact tests on graphite/epoxy laminated beams and plates. It was shown that the strain responses calculated using finite element metliod and the statically determined contact laws from [i4] agroed with the experimental measurements quite well. This Indicates that the statical indentation law is reasonably adequate in the dynamical impact analysis. It was also suggested that the contact force should be measured exparimentally to provide an additional basis for comparison with the finlte element solution which could allow further evaluation the applicabllity of the contact laws in impact analysis. Chapter 4 describes an impact experiment on graphlte/epoxy lamlnated plate using an impact-force transducer with a spherical steel cap as the impactor. The contact force history and strain responses at varlous polnts on the plate were measured by means of the transducer and surface straln gages, respectively, and were compared with the predictions of finite element analysis using the statically determined contact law.

Chapter 5 summarizes the results obtalned in Chapter 2, 3 and 4 .

CHAPTER 2

STRESS WAVE IN A LAMINATED PLATE

A laminated plate theory which includes the effects of transverse shear deformation and rotatory inertla was devoloped by Yang, Norrls and Stavsky [16] in a way suggested by Mindlin [17] for homogeneous Isotrople plates. It was shown that the frequency curves for the propagation of harmonic waves fif an lifinlte two-layer Isotropic plate In plane strain agreed with the predictions of the exact solution obtalned from theory of elasticlty vary well. A simllar laminated plate theory was developed by Whithey and Pagano [i8] and was employed in the study of static bending and vibration for antisymmetric angle-ply composite plates with particular layer proportios. It was found that the effect of shear deformation can be quite slgnificant for composite plates with span-tomdepth ratio as high as 20. Good agreement was alsc observed in riumspical results for plate bending as comparing with exact solutions of elasticity. In this study, the laminate theory developed by Whitney and Pagano was used for its simplicity yet quite satisfactory in describing the harmonic wave propagation [19].

2.1 Laminate Theory with Transverse Shear Effects

2.1.1 Lamina Constitutive Equations

A laminated plate of constant thickness h consists of a number of thin laminas of unidirectionally fiber-reinforced composite perfectly bonded together. Each lamina, whose flber may orlent in any arbitrary direction, can be regarded as a homogeneous orthotroplc solld. Consider a typlcal k-th lamina. A coordinate system (x_{1}, x_{2}, x_{3}) is chosen in such a way that the $x_{1}-x_{2}$ plane colncides with the midplane of lamina, and x_{1} and x_{2} axes are parallel and perpendicular to the fiber direction, respectively. if a state of plane stress parallel to the $x_{1}-x_{2}$ plane is assumed, then the inplane stress-strain relations are given by

$$
\left\{\begin{array}{l}
\sigma_{11} \tag{2-1}\\
\sigma_{22} \\
\tau_{12}
\end{array}\right\}^{k}=\left[\begin{array}{lll}
Q_{11} & Q_{12} & 0 \\
Q_{12} & Q_{22} & 0 \\
0 & 0 & Q_{66}
\end{array}\right]\left\{\begin{array}{l}
\epsilon_{11} \\
\epsilon_{22} \\
\sigma_{12}
\end{array}\right\}^{k}
$$

The transverse shear stress-strain relations are given by

$$
\left\{\begin{array}{l}
\tau_{29} \tag{2-2}\\
\tau_{19}
\end{array}\right\}^{k}=\left[\begin{array}{ll}
Q_{44} & 0 \\
0 & Q_{55}
\end{array}\right]\left\{\begin{array}{l}
\gamma_{23} \\
\gamma_{13}
\end{array}\right\}^{k}
$$

in which

$$
\begin{array}{ll}
Q_{11}=E_{1} /\left(1-\nu_{12} \nu_{21}\right) & \text { ORIGINAL MAE } \\
Q_{22}=E_{2} /\left(1-\nu_{12} \nu_{21}\right) & \text { OF POOR QUALITY } \\
Q_{12}=\nu_{12} E_{2} /\left(1-\nu_{12} \nu_{21}\right)=\nu_{21} E_{1} /\left(1-\nu_{12} \nu_{21}\right) \\
Q_{66}=G_{12} & \\
Q_{44}=G_{23} & \\
Q_{55}=G_{13} & \tag{2-3}
\end{array}
$$

are the so-called reduced stiffnesses, where E, G and ν are Young's modulus, shear modulus and Poisson's ratio, respectively, and subscripts 1 and 2 denote the directions parallel to x_{1} and x_{2} axes, respectively.

The coordinate system for an arbitrarily oriented lamina does not, in general, coincide with the reference axes (x, y, z) of laminated plate (see Figure 2.1). Using the coordinate transformation laws for stress and strain, we obtain the stress-strain relations in laminate reference system as

$$
\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\tau_{x y} \\
\tau_{y z} \\
\tau_{x z}
\end{array}\right\}^{k}=\left[\begin{array}{lllll}
Q_{11} & \bar{Q}_{12} & \bar{Q}_{16} & 0 & 0 \\
\bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} & 0 & 0 \\
\bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66} & 0 & 0 \\
0 & 0 & 0 & \bar{Q}_{44} & \bar{Q}_{45} \\
0 & 0 & 0 & \bar{Q}_{45} & \bar{Q}_{55}
\end{array}\right]\left\{\begin{array}{l}
\epsilon_{x x} \\
\epsilon_{y y} \\
\gamma_{x y} \\
\gamma_{y z} \\
\gamma_{x z}
\end{array}\right\}^{k}
$$

In which $\bar{Q}_{1 /}$ are given by

$$
\bar{Q}_{11}=Q_{1,} m^{4}+2\left(Q_{12}+2 Q_{66}\right) m^{2} n^{2}+Q_{22} n^{4}
$$

ORIGWAD PA
OF POOR QUALTI

(X_{1}, X_{2}, X_{3} - Lamina Reference Axes
(X, Y, Z) - Laminate Reference Axes

Figure 2.1 Lamina reference axes and laminate reference axes

$$
\begin{aligned}
& Q_{22}=Q_{1} n^{4}+2\left(Q_{12}+2 Q_{66}\right) m^{2} n^{2}+Q_{22} m^{4} \\
& \bar{Q}_{12}=\left(Q_{11}+Q_{22}-4 Q_{6 B}\right) m^{2} n^{2}+Q_{12}\left(m^{4}+n^{4}\right) \\
& \bar{Q}_{16}=\left(Q_{11}-Q_{12}-2 Q_{66}\right) m^{3} n+\left(Q_{12}-Q_{22}+2 Q_{B 6}\right) m n^{5} \\
& Q_{26}=\left(Q_{14}-Q_{12}-2 Q_{6 B}\right) m n^{3}+\left(Q_{12}-Q_{22}+2 Q_{66}\right) m^{3} n \\
& Q_{65}=\left(Q_{11}+Q_{22}-2 Q_{12}-2 Q_{56}\right) m^{2} n^{2}+Q_{66}\left(m^{4}+n^{4}\right) \\
& Q_{44}=Q_{44} m^{2}+Q_{55} n^{2} \\
& Q_{45}=\left(Q_{44}-Q_{55}\right) m n \\
& Q_{55}=Q_{44} n^{2}+Q_{55} m^{2}
\end{aligned}
$$

where

$$
m=\cos \theta \quad n=\sin \theta
$$

and θ is the angle between x-axis and x_{1}-axis measured from x to x_{1} counterclockwise as shown in Figure 2.1.

2.1.2 Plate Strain-Displacement Relations

The displacement components of the laminated plate are assumed to bo of the form [16]

$$
\begin{align*}
& u(x, y, z)=u^{0}(x, y)+z \phi_{x}(x, y) \\
& v(x, y, z)=v^{0}(x, y)+z \phi_{y}(x, y) \tag{2-6}\\
& w(x, y, z)=w^{0}(x, y)=w(x, y)
\end{align*}
$$

where u^{0}, v^{0} and w^{0} are the midplane displacement components In the $x-, y$ - and z-directions, respectively, and ϕ_{x} and ϕ_{y} are rotations of cross-sections perpendicular to $x-$ and $y-$ axis, respectively (see Figure 2.2). In Equation (2.6) we

- ORIGINAL FRCE: OF POOR QUALTI:

Figure 2.2 Laminate displacement components for a crosssection perpendicular to the y-axis
have assumed that u and v vary ilnearly in the thickness direction, whlle w is constant through the thickness.

The straln components for a point in k-th lamina of the laminated plate with a distance z from the midplane can be computed as

$$
\begin{align*}
& \epsilon_{x x}^{k}=\epsilon_{x}^{0}+z k_{x} \\
& \epsilon_{y y}{ }^{k}=\epsilon_{y}^{0}+z k_{y} \\
& \gamma_{x y}=\gamma_{x y}{ }^{0}+z k_{x y} \tag{2-7}\\
& \gamma_{y z}^{k}=\partial w / \partial y+\partial v / \partial z=\partial w / \partial y+\phi_{y}=\gamma_{y z}{ }^{0} \\
& \gamma_{x z}=\partial w / \partial x+\partial u / \partial z=\partial w / \partial x+\phi_{x}=\gamma_{x z} 0
\end{align*}
$$

where

$$
\begin{align*}
& \nu_{x}^{0}=\partial u^{0} / \partial x \\
& \nu_{y}^{0}=\partial v^{0} / \partial y \tag{2-8}\\
& \nu_{x y^{0}}=\partial u^{0} / \partial y+\partial v^{0} / \partial x
\end{align*}
$$

are the in-plane strain components of midplane, and

$$
\begin{align*}
& k_{x}=\partial \phi_{x} / \partial x \\
& k_{y}=\partial \phi_{y} / \partial x \tag{2-9}\\
& k_{x y}=\partial \phi_{x} / \partial y+\partial \phi_{y} / \partial x
\end{align*}
$$

are the rotation gradients.

In Equation (2-7), since w, ϕ_{x} and ϕ_{y} are independent of z, it follows that the transverse shear strains are constant through the thlckness of the plate.

Equation (2-7) can be written in concise matrix form as

$$
\left\{\begin{array}{l}
\epsilon \tag{2-10}\\
\nu
\end{array}\right\}^{k}=\left\{\begin{array}{l}
\epsilon_{x} \\
\varepsilon_{y} \\
\nu_{x y} \\
\nu_{y z} \\
\nu_{x z}
\end{array}\right\}^{k}=\left\{\begin{array}{l}
\epsilon_{x}{ }^{0} \\
\epsilon_{y}{ }^{0} \\
\nu_{x y} 0 \\
\nu_{y z} 0 \\
\nu_{x z} 0
\end{array}\right\}+z\left\{\begin{array}{l}
\kappa_{x} \\
\kappa_{y} \\
\kappa_{x y} \\
0 \\
0
\end{array}\right\}=\left\{\begin{array}{l}
\epsilon \\
\nu \gamma
\end{array}\right\}+z\left\{\begin{array}{l}
k \\
0
\end{array}\right\}
$$

Thus, the strain components at any point in the plate can be determined from the extensional strain components of the midpisne, the rotation gradients of the plate and the distarice z from the midplane.
2.1.3 Stress-Resultants and Laminate Constitutive Equations

Substitution of Equation (2-10) in Equation (2-4) gives the stress components for a point in the k-th lamina as:

The stress-resultants acting on a laminate can be obtained by integration of the stresses In each lamina through the laminate thickness. Specifically, the in-plane
stress-resultants are given by

$$
\left\{\begin{array}{l}
N_{x} \tag{2-12}\\
N_{y} \\
N_{x y}
\end{array}\right\}=\int_{-h / 2}^{h / 2}\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\gamma_{x y}
\end{array}\right\} d z=\sum_{k=1}^{N} \int_{h_{k-1}}^{h_{k}}\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\tau_{x y}
\end{array}\right\}^{k} d z
$$

the stress couples are given by

$$
\left\{\begin{array}{l}
M_{x} \tag{2-13}\\
M_{y} \\
M_{x y}
\end{array}\right\}=\int_{-h / 2}^{h / 2}\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y v} \\
\sigma_{x y}
\end{array}\right\} z d z=\sum_{k=1}^{N} \int_{h_{k-1}}^{r_{k}}\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y v} \\
\tau_{x y}
\end{array}\right\}^{k} z d z
$$

and the transverse shear forces are given by

$$
\left\{\begin{array}{l}
Q_{y} \tag{2-14}\\
Q_{x}
\end{array}\right\}=\int_{-h / 2}^{h / 2}\left\{\begin{array}{l}
\tau_{y z} \\
\tau_{x z}
\end{array}\right\} d z=\sum_{k=1}^{N} \int_{h_{k-1}}^{h_{k}}\left\{\begin{array}{l}
\tau_{y z} \\
\tau_{x z}
\end{array}\right\}^{k} d z
$$

The sign convention for these stress-resultants along wlth the geometry of a typlal N-layer laminated plate are shown in Figure 2.3.

Substituting Equation (2-11) into the right hand sides of the above three equations and performing the integrations, we obtaln

(a) STRESS RESULTANTS OF A LAMINATE

(b) GEOMETRY OF ANN-LAYER LAMINATE

Figure 2.3 Stress-resultants and geometry of a typleal N -layer laminate

$$
\begin{align*}
& \left\{\begin{array}{l}
M_{x} \\
M_{y} \\
M_{x y}
\end{array}\right\}=\left[\begin{array}{lll}
B_{11} & B_{12} & B_{18} \\
B_{12} & B_{22} & B_{28} \\
B_{16} & B_{26} & B_{B B}
\end{array}\right]\left\{\begin{array}{l}
\epsilon_{x}{ }^{0} \\
\epsilon_{y}{ }^{0} \\
\gamma_{x y}{ }^{0}
\end{array}\right\}+\left[\begin{array}{lll}
D_{11} & D_{12} & D_{18} \\
D_{12} & D_{22} & D_{2 B} \\
D_{16} & D_{26} & D_{8 B}
\end{array}\right]\left\{\begin{array}{l}
\kappa_{x} \\
\kappa_{y} \\
\kappa_{x y}
\end{array}\right\}(2-16) \\
& \left\{\begin{array}{l}
Q_{y} \\
Q_{x}
\end{array}\right\}=\left[\begin{array}{ll}
A_{44}^{*} & A_{45}^{*} \\
A_{45}^{*} & A_{55}^{*}
\end{array}\right]\left\{\begin{array}{l}
\gamma_{y z} \\
\gamma_{x z}
\end{array}\right\} \tag{2-17}
\end{align*}
$$

where

$$
\begin{equation*}
\left(A_{1 J}, B_{1 J}, D_{1 j}\right)=\int_{-h / 2}^{h / 2} \nabla_{1 J}\left(1, z, z^{2}\right) d z \quad 1, j=1,2, l \tag{2-18}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{*}{ }_{1 J}=\int_{-h / 2}^{h / 2} \nabla_{1 J} d z \quad 1, j=4,5 \tag{2-19}
\end{equation*}
$$

Equations (2-15) through (2-17) are usually written symbolically as

$$
\left\{\begin{array}{l}
N \tag{2-20}\\
M \\
Q
\end{array}\right\}=\left[\begin{array}{lll}
A & B & 0 \\
B & D & 0 \\
0 & 0 & A^{*}
\end{array}\right]\left\{\begin{array}{l}
\epsilon^{0} \\
K \\
\gamma
\end{array}\right\}
$$

which is the laminate constitutive equation with transverse shear effect included.
2.1.4 Plate Equations of Motion

The stress-equations of motion for the k-th lamina are glven by

$$
\begin{align*}
& \sigma_{x x, x}+\tau_{x y, y}+\tau_{x z, z}=\rho \dot{u} \\
& \tau_{y y, x}+\sigma_{y y, y}+\tau_{y z, z}=\rho \ddot{v} \tag{2-21}\\
& \tau_{x z, x}+\tau_{y z y y}+\sigma_{z z, z}=\rho \ddot{W}
\end{align*}
$$

where ρ is the mass density. Integrating Equation (2-21) through the thickness of laminate and then substituting Equation (2-12), (2-14) and (2-6) in, we obtaln

$$
\begin{align*}
& N_{x: x}+N_{\tilde{x} y, y}=P \dot{\underline{U}}^{0}+R \ddot{\phi_{x}} \\
& N_{x y}+x+N_{y}, y=P \ddot{v}^{0}+R \dot{\phi}_{y} \tag{2-22}\\
& Q_{x, x}+Q_{y, y}+q=P \ddot{W}
\end{align*}
$$

where q is the normal traction on the plate. Multiplying the first two equations of Equation (2-21), Integrating through the thlckness of laminate and then substituting Equatlons (2-13), (2-14) and (2-5) in, we obtaln

$$
\begin{align*}
& M_{x, x}+M_{x y: y}-Q_{x}=R \ddot{u}^{0}+I \ddot{\phi}_{x} \tag{2-23}\\
& M_{x y \cdot x}+M_{y, y}-Q_{y}=R \ddot{v}^{0}+I \ddot{\phi}_{y}
\end{align*}
$$

in which P, R and I are defined as

$$
\begin{equation*}
(P, R, I)=\int_{-h / 2}^{1 / 2} \rho\left(1, z, z^{2}\right) d z \tag{2-24}
\end{equation*}
$$

Equations (2-22) and (2-23) are the plate equations of
motion. Substitution of Equation (2-20) and then the strain-displacement relations in these two equations yield the equations of motion in terms of midplane displacements and rotations of the plate.

A graphite/epoxy laminated plate provided by NASA Lewis Research Center was used throughout thls study. This laminate is a $\left[0^{\circ} / 45^{\circ} / 0^{\circ} /-45^{\circ} / 0^{\circ}\right]_{2 \text { s }}$ graphite/epoxy composite with 0.0053 inch ply thickness and the following ply properties [15]:

$$
\begin{aligned}
E_{1} & =17.5 \times 10^{6} \mathrm{psi} . \\
E_{2} & =1.15 \times 10^{6} \mathrm{ps} 1 . \\
G_{12} & =G_{13}=G_{23}=0.8 \times 10^{6} \mathrm{psi} . \\
\nu_{12} & =0.30 \\
\rho & =0.000148 \mathrm{ib}-\mathrm{sec}^{2} / \mathrm{ln}^{4}
\end{aligned}
$$

For symmetrically laminated composite plate, $\mathrm{B}_{1 \mathrm{j}}=0$ and $R=0$. In addition, by choosing the x-axis of the laminate reference system to coincide with the 0° fiber direction, we obtain $A_{16}=A_{26}=0$ and $D_{16}=D_{26}$. Further, In this study, we assume $G_{13}=G_{23}=G_{12}$, and consequently, $A_{45}=0$ and $A_{44}^{*}=A_{55}$. For this particular laminate, the displacement-equations of motion are given by

$$
\begin{aligned}
& A_{11} \partial^{2} u^{0} / \partial x^{2}+A_{66} \partial^{2} u^{0} / \partial y^{2}+\left(A_{12}+A_{66}\right) \partial^{2} v^{0} / \partial x \partial y=P u^{0} \\
& \left(A_{12}+A_{66}\right) \partial^{2} u^{0} / \partial x \partial y+A_{66} \partial^{2} v^{0} / \partial x^{2}+A_{22} \partial^{2} v^{0} / \partial y^{2}=P \ddot{v^{0}}
\end{aligned}
$$

$$
\begin{aligned}
& D_{1}, \partial^{2} \phi_{x} / \partial x^{2}+2 D_{; B} \partial^{2} \phi_{x} / \partial x \partial y+D_{B 6} \partial^{2} \phi_{x} / \partial y^{2} \\
& \quad+D_{1 B}\left(\partial^{2} \phi_{y} / \partial x^{2}+\partial^{2} \phi_{y} / \partial y^{2}\right)+\left(D_{12}+D_{6 B}\right) \partial^{2} \phi_{y} / \partial x \partial y \\
& -A_{A 4}^{*}\left(\partial w / \partial x+\phi_{x}\right)=1 \phi_{x}
\end{aligned}
$$

$$
D_{1 B}\left(\partial^{2} \phi_{x} / \partial x^{2}+\partial \phi_{x} / \partial y^{2}\right)+\left(D_{12}+D_{B 6}\right) \partial^{2} \phi_{x} / \partial x \partial y
$$

$$
+D_{58} \partial^{2} \phi_{y} / \partial x^{2}+2 D_{18} \partial^{2} \phi_{y} / \partial x \partial y+D_{2 z} \partial^{2} \phi_{y} / \partial y^{2}
$$

$$
-A^{*}{ }_{4}\left(\partial w / \partial y+\phi_{y}\right)=I \phi_{Y}
$$

$$
A_{A}^{*}{ }_{A}\left(\partial^{2} w / \partial x^{2}+\partial^{2} w / \partial y^{2}+\partial \phi_{x} / \partial x+\partial \phi_{y} / \partial y\right)+q=P \ddot{w}
$$

In Equation (2-26), the first two equations govern the in-plane motion whlle the last three equations govern the flexural motion.

2.2 Propagation of Harmonic Waves

Consider a infinitely large laminated plate governed by the equations of motion (2-26). We assume plane harmonic waves in the form

$$
\begin{align*}
u^{0} & =U \exp [1 k(\eta-c t)] \\
v^{0} & =v \exp [1 \mathrm{ik}(\eta-c t)] \\
\mathbf{w} & =W \exp [1 \mathrm{l}(\eta-c t)] \tag{2-27}\\
\phi_{x} & =\Phi_{x} \exp [1 \mathrm{ik}(\eta-c t)] \\
\phi_{y} & =\Phi_{v} \exp [1 \mathrm{ik}(\eta-c t)]
\end{align*}
$$

propagating over the plate, where U, V, W, Φ_{x} and Φ_{Y} are constant amplitudes, k is the wave number, c. is the phase
volocity and η is given by

$$
\begin{equation*}
\eta=x \cos \alpha+y \sin \alpha \tag{2-28}
\end{equation*}
$$

CRIEINA PAGE
OF POOR QUALITY

In which α is the angle between the direction of wave propagation and x-axis.

Substitution of Equation (2-27) Into Equation (2-26) with $q=0$ ylelds a system of five homogenous equations for the five constant amplitudes. In order to have a nontrivial solution, the determinant of the coofficient matrix is set oqual to zero. Since the equations are uncoupled into two groups, the determinantal oquation can be seperated Into two aquations as

$$
\begin{equation*}
\left|a_{1}\right|=0 \tag{2-29}
\end{equation*}
$$

for the inmplame extensional and Inmplane shear waves, and

$$
\begin{equation*}
\left|b_{1 J}\right|=0 \tag{2-30}
\end{equation*}
$$

for the floxural waves. In Equations (2-29) and (2-30) the coefficlents $a_{1 J}$ and $b_{1 J}$ are given by

$$
\begin{align*}
& a_{11}=A_{11} \cos ^{2} \alpha+A_{B 6} \sin ^{2} \alpha-P_{C}{ }^{2} \\
& a_{12}=a_{21}=\left(A_{12}+A_{01}\right) \sin \alpha \cos \alpha \tag{2-31}\\
& a_{22}=A_{00} \cos ^{2} \alpha+A_{22} \sin ^{2} \alpha-P_{C}^{2}
\end{align*}
$$

and

$$
\begin{aligned}
b_{11}= & D_{1,} k^{2} \cos ^{2} \alpha+2 D_{10} k^{2} \sin \alpha \cos \alpha+D_{0 \theta} k^{2} \sin ^{2} \alpha \\
& +A_{44}-1 k^{2} c^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ORIGINAL PREp E } \\
& \text { OF POOR QUALITY } \\
& b_{12}-b_{21}-D_{1} k^{2} \cos ^{2} \alpha+\left(D_{12}+D_{6 t}\right) k^{2} \sin \alpha \cos \alpha \\
& +D_{1} k^{2} \sin ^{2} \alpha \\
& b_{1 a}=b_{31}=\mid A^{*}{ }_{4} k \cos \alpha \\
& b_{22}=D_{0} k^{2} \cos ^{2} \alpha+2 D_{18} k^{2} \sin \alpha \cos \alpha+D_{22} k^{2} \sin ^{2} \alpha \\
& +A^{*} 4-1 k^{2} c^{2} \\
& b_{29}=b_{92}=\mid A^{*}{ }_{41} k \ln \alpha \\
& b_{3}=-A^{*} A_{A} k^{2}+P k^{2} c^{2}
\end{aligned}
$$

Expanding Equation (2-29) we obtain a quadratic equation $\ln c^{2}$ as

$$
\begin{equation*}
c^{4}-d_{1} c^{2}+d_{2}=0 \tag{2-33}
\end{equation*}
$$

where

$$
\begin{align*}
& d_{1}=\left(A_{1}, \cos ^{2} \alpha+A_{22} \sin ^{2} \alpha+A_{B B}\right) / P \tag{2-34}\\
& d_{2}=\left|\begin{array}{ll}
A_{1}, \cos ^{2} \alpha+A_{B} \sin ^{2} \alpha & \left(A_{12}+A_{B B}\right) \ln \alpha \cos \alpha \\
\left(A_{12}+A_{B B}\right) \sin \alpha \cos \alpha & A_{B} \cos ^{2} \alpha+A_{22} \sin ^{2} \alpha
\end{array}\right|
\end{align*}
$$

It is noted that the phase velocity c does not depend on the wave number k, thus these waves are nondispersive. In studyIng of transverse Impact problem where Inmplane deformation is neglIgible, this nondispersive property has no significant affect. Should In-plane deformation become Important, higher order approximation of displacement
components u and v must be assumed and the dispersive property of these $\mid n-p l a n e$ waves could be included.

From Equation (2-34) it is evident that there exist two phase velocities corresponding to two modes of wave. Although these two waves invalve both in-plane extensional deformation as well as $\mid n-p l a n e$ shear, from the eigenvectors we are able to tell which one is dominant. Thus we label the two waves as $|n-p l a n e ~ e x t e n s i o n a l ~ w a v e ~ a n d ~| n-p l a n e ~$ shear wave accordingly.

The determinantal equation given by Equation (2-30) yields three positive roots in c^{2} indicating that three flexural waves exist. These phase velocitles are functions of the wave number k, thus they are dispersive. Among these three modes of wave, only the lowest one corresponding to the transverse shear wave has a finite velocity as $k \rightarrow 0$ or as the wave length becomes infinlte. The dispersion curves for the waves of the lowest mode propagating in the directions of $0^{\circ}, 45^{\circ}$ and 90° respectively are plotted in Figure 2.4 with the non-dimensional phase velocity vs. the nondimensional wavelength λ / h. It can be seen that they all approach the value of $\sqrt{\mathrm{G}_{13} / \rho}$ as the wavelength becomes shorter. The phase velocitles for the two higher modes, however, approach different values in different propagation directions when $\lambda \rightarrow 0$. For laminated composite which are anisotropic in general, the phase velocity varles from one direction to another. As a result the wave surface will

ORIGINAL PNGE R OF POOR QUALITY

Figure 2.4 Dispersion curves for plane harmonic waves propagating in the $0^{\circ}-45^{\circ}$ and $90^{\circ}-$ directions
become a rather complicated shape as it propagates. This wlll be discussed in the next section.

Substitution of $\omega=k c$ in Equation (2-32) yields a set of frequency equations for flexural waves. Figure 2.5 shows the frequency curves of these waves for $\alpha=0^{\circ}, 45^{\circ}$ and 90°, respectively, with the non-dimensional frequency vs. the non-dimensional wavelength. The cutoff frequencles for the two higher modes have a value of $\sqrt{12 G_{13} / p} / h$. Comparing with the exact cutoff frequency $(\pi / h) \sqrt{G_{13} / p}$, it can be seen that If the shear correction factor $\pi^{2} / 12$ is introduced, this theory will predict the correct cutoff frequency.

2.3 Propagation of Wave Front

Impact of forelgn objects on a laminated plate with a very short duration could generate weak shock waves which wlll propagate Into the rest of the structure with finlte velocities, and the positions of the wave fronts define the regions being disturbed at any instant after impact. Damages to the laminated plate may possibly occur as the first wave front hits the weakest part. It is hence Important to investigate the propagation of these shocks in the plate. There have been works dealing with the propagation of wave front: In anlsotropic elastlc media [2022]. Moon [23] presented an analysis of wave surfaces in a laminate by treating it as an equivalent homogeneous

Flgure 2.5 Frequency curves for flexural waves propagating in the $0^{\circ}-45^{\circ}$ - and 90° diractions
orthotropic plate. The acceleration waves and their wave fronts were investigated. The propagation of shock waves in more general laminates which exhiblt the bending-extensional coupling were studied by sun [2]. The ray theory was employed to construct the wave front surface. The growth and decay of the shock strength were also discussed. In this section, the analytical procedures developed by Sun [2] were applled on a $\left[0^{\circ} / 45^{\circ} / 0^{\circ} /-45^{\circ} / 0^{\circ}\right]_{2}$ s graphlte/apoxy lamlnated plate.
2.3.1. KInematic Conditions of Compatibillty on the Wave Front

A wave front, which will be denoted by Ω, is defined as a surface travelling over the plate as time varlas continuously, and across which there may exist a discontinulty in the stress, particle velocity and their derivatives.

Consider a discontinuous surface Ω passing some observation point in a medium at a certain time t. Let f^{-} be the value of a field function $f\left(x_{1}, t\right)$ (e.g. stress, particle velocity, etc.) behind the surface Ω, and F^{+}be the value of f in front of $i t$, then the discontinulty of function f can be expressed as

$$
\begin{equation*}
[f]=f^{+}-f^{-} \tag{2-35}
\end{equation*}
$$

In which the right hand side is to be evaluated at the time and location on Ω passing the observation polnt, and the Jump across the wave front is denoted by square bracket.

Surface Ω may be expressed mathematically by an aquation of the form

$$
\begin{equation*}
\Psi\left(x_{1}, t\right)=0 \tag{2-36}
\end{equation*}
$$

or, by making t explicit, as

$$
\begin{equation*}
\Psi\left(x_{1}, t\right)=F\left(x_{1}\right)-t=0 \tag{2-37}
\end{equation*}
$$

which represents a famlly of surfaces in x_{1}-space with t as a parameter. By, evaluating f^{+}and $f^{-\prime}$ at $t=F\left(x_{1}\right)$, the jump of f across the wave front becomes

$$
\begin{equation*}
\left[f\left(x_{1}\right)\right]=f^{+}\left(x_{1}, F\left(x_{1}\right)\right)-f^{-}\left(x_{1}, F\left(x_{1}\right)\right) \tag{2-38}
\end{equation*}
$$

The rate of change of $[f]$ for an observer moving with Ω is given by

$$
\begin{align*}
d[f] / d t & =\left(\partial f^{+} / \partial x_{1}-\partial f^{-} / \partial x_{1}\right) d x_{1} / d t+\left(\partial f^{+} / \partial t-\partial f^{-} / \partial t\right) \\
& =c_{1}\left[\partial f / \partial x_{1}\right]+[\partial f / \partial t] \tag{2-39}
\end{align*}
$$

where $t=F\left(x_{1}\right)$ is substituted, and $c_{1}=d x_{1} / d t$ are velocity components of wave front relative to the material.

If the laminate theory introduced in previous section is used, then the plate displacement components are u^{0}, v^{0}, w, ϕ_{x} and ϕ_{y}, while the spatial varlables are $x_{1}=x$ and $x_{2}=$ y. It is assumed that the integrity of the material is not
affected by the propagation of the stress wave front, then these displacement components will remain continuous. Consequently, we have

$$
\begin{equation*}
\left[u^{0}\right]=\left[v^{0}\right]=[w]=\left[\phi_{x}\right]=\left[\phi_{y}\right]=0 \tag{2-40}
\end{equation*}
$$

across the wave front. Applying the general condition of Equation (2-39) on u°, together with Equation (2-40), we obtain

$$
\begin{equation*}
\left[\partial u^{0} / \partial x_{\jmath}\right] c_{\jmath}+\left[\dot{u}^{0}\right]=0 \quad J=1, \alpha \tag{2-41}
\end{equation*}
$$

Let c_{n} and n_{j} be the normal velocity and the unit normal on the wave front, respectively, it follows that

$$
\begin{equation*}
n_{J} c_{J}=c_{n} \tag{2-42}
\end{equation*}
$$

and Equation (2-41) becomes

$$
\begin{equation*}
\left[\partial u^{0} / \partial x_{j}\right]=-\left[\dot{u}^{0}\right] n_{j} / c_{n} \quad J=1,2 \tag{2-43}
\end{equation*}
$$

Similar relations can be derived for the other displacement components v^{0}, w, ϕ_{x} and ϕ_{v}. Together they specify the kinematic conditions of compatibility on the wave front.

2.3.2 Dynamical Conditions on the Wave Front

Consider a finite volume V of a material medium and denoted by S the boundary or surface of V. For a continuous and differentiable function $f\left(x_{1}, t\right)$ in V, it can be shown
[23] that

$$
\begin{equation*}
\frac{d}{d t} \int_{V} f\left(x_{1}, t\right) d V=\int_{V} f, t d V+\int_{0} G f d S \tag{2-44}
\end{equation*}
$$

under deformation of the medium, where G is the normal velocity of the surface S. In the case where the deformation of the volume V is determined solely by the motion of materlal particles, we have

$$
\begin{equation*}
G=\dot{u}_{1} n_{1}=\dot{u}_{n} \tag{2-45}
\end{equation*}
$$

where u_{1} is the displacement components, n_{1} is the outward normal on S, and \dot{u}_{n} is the normel velocity of materlal particle on S. If there exists a discontinulty surface (or wave front) travelling with velocity c_{1} in the medlum, by choosing this surface as the boundary of V, we have

$$
\begin{equation*}
G=c_{1} n_{1}=c_{n} \tag{2-46}
\end{equation*}
$$

where c_{n} is the normal velocity of wave front.
Suppose that a volume V whose motion is determined by the deformation of the material medium, is divided by a travelling surface Ω Into two volumes V^{-}and V^{+}as shown in Figure 2.6. The surface S is also divided into two portilons S^{-}and S^{+}which form parts of the boundaries of $V^{\prime \prime}$ and V^{+}, respectively. The remalning part of the boundary is formed by Ω_{0} which is a segment of Ω. In Figure 2.6, n_{1} denotes the unit normal of Ω in the direction of travelling, and n_{1} * denotes the unlt outward normal of S.

or roon qualry

Figure 2.6 A deformed volume V divided by a traveliling
surface Ω

Taking $m \rho \dot{u}_{1}$ in Equation (2-44) and using equation (245) and (2-46), we obtaln

$$
\begin{align*}
& \frac{d}{d t} \int_{V} \rho \dot{u}_{i} d V=\int_{V}\left(\rho \dot{u}_{i}^{-}\right)_{t} d V+\int_{0_{0}} \dot{u}_{n}^{-} \rho \dot{u}_{i} d S+\int_{n_{0}} c_{n} \rho \dot{u}_{i} d \Omega \tag{2-47}\\
& \frac{d}{d t} \int_{V_{t}} \rho \dot{u}_{i}^{+} d V=\int_{V^{t}}\left(\rho \dot{u}_{i}^{+}\right)_{t} d V+\int_{a^{+}} \dot{u}_{n}^{+} \rho \dot{u}_{i}^{+} d S-\int_{n_{0}} c_{n} \rho \dot{u}_{i}^{+} d \Omega \tag{2-48}
\end{align*}
$$

where \dot{u}_{i}^{-}and \dot{u}_{i}^{+}are the velocity components of materlal particle in V^{-}and V^{+}, respectively, Combining the above two equations gives

$$
\begin{gather*}
\frac{d}{d t} \int_{V} \rho \dot{u}_{1} d V=\int_{V}\left(\rho \dot{u}_{1}\right)_{t} d V+\int_{0-} \dot{u}_{n}^{-} \rho \dot{u}_{i}^{+} d S+\int_{0+} \dot{u}_{n}^{+} \rho \dot{u}_{i}^{+} d S \\
\quad+\int_{n_{0}} c_{n} \rho\left(\dot{u}_{i}^{-}-\dot{u}_{1}^{+}\right) d \Omega \tag{2-49}
\end{gather*}
$$

From theory of elasticity we have

$$
\begin{equation*}
\frac{d}{d t} \int_{V} p \dot{u}_{1} d V=\int_{0} \sigma_{1} \jmath n_{\jmath} d S \tag{2-50}
\end{equation*}
$$

If we let the volume V approach zero at a fixed time In such a way that it wlll pass into Ω_{0}, then the volume integral in Equation (2-49) will evidently approach zero; however

$$
\begin{equation*}
\int_{0+} \dot{u}_{n}^{+} \rho \dot{u}_{i}^{+} d S \rightarrow-\int_{n_{0}} \dot{u}_{n}^{+} \rho \dot{u}_{i}^{+} d \Omega \tag{2-51}
\end{equation*}
$$

$$
\begin{align*}
& \int_{\sigma-} \dot{u}_{n} \rho \dot{u}_{i} d S-\int_{n_{0}} \dot{u}_{n}^{-} \rho u_{i} d \Omega \quad \text { of } \tag{2-52}\\
& \int_{0} \sigma_{i \jmath} r_{i \jmath} d S-\int_{n_{0}}\left(\mid \dot{H}_{j}-\sigma_{i \jmath}\right) n_{\jmath} d \Omega \tag{2-53}
\end{align*}
$$

where $\sigma_{i j}^{-}$and $\sigma_{i j}^{+}$are the stress components on the sides of Ω_{0}, respectively.

Substituting Equations (2-50) through (2-53) Into Equation (2-49) gives

$$
\int_{n_{0}}\left(\sigma_{1 \jmath}^{+}-\sigma_{i \jmath}^{-}\right) n_{\jmath} d \Omega=\int_{n_{0}} \rho \dot{u}_{1}^{-}\left(c_{n}-\dot{u}_{n}^{-}\right) d \Omega-\int_{n_{0}} \rho \dot{u}_{1}^{+}\left(c_{n}-\dot{u}_{n}^{+}\right) d \Omega \quad(2-54)
$$

Using $\left[\sigma_{1,}\right]$ and $\left[\dot{u}_{1}\right]$ to represent the Jumps of stress and particle velocity across the wave front, and utilizing the fact that $c_{n} \gg \dot{u}_{n}$, we obtaln

$$
\begin{equation*}
\int_{n_{0}}\left[\sigma_{1} J\right] n_{J} d \Omega=-\int_{\Omega_{0}} \rho c_{n}\left[\dot{u}_{1}\right] d \Omega \tag{2-55}
\end{equation*}
$$

Since this condition is independent of the extent of the surface integration Ω_{0}, it follows that

$$
\begin{equation*}
\left.\left[\sigma_{1}\right]\right] n_{j}=-\rho c_{n}\left[\dot{u}_{1}\right] \tag{2-56}
\end{equation*}
$$

In the case of laminated plate, $1=x, y, z$ and $J=x, y$.
Substitution of Equation (2-6) Into Equation (2-56) ylelds

$$
\begin{array}{ll}
\left.\left[\sigma_{1}\right\rfloor\right] n_{\jmath}=-\rho c_{n}\left\{\left[\dot{u}^{0}\right]+z\left[\phi_{x}\right]\right\} & \text { ORIGINAL PAGB } \\
{\left[\sigma_{2} J\right] n_{\jmath}=-\rho c_{n}\left\{\left[\dot{v}^{0}\right]+z\left[\dot{\phi}_{y}\right]\right\}} & \tag{2-57}\\
\left.\left[\sigma_{s}\right\rfloor\right] n_{J}=-\rho c_{n}[\dot{W}] &
\end{array}
$$

Integrating Equation (2-57) over the thickness of plate gives

$$
\begin{align*}
& {\left[N_{x}\right] n_{x}+\left[N_{x y}\right] n_{y}=-P c_{n}\left[\dot{u}^{0}\right]-R c_{n}\left[\dot{\phi}_{x}\right]} \\
& {\left[N_{x y}\right] n_{x}+\left[N_{y}\right] n_{y}=-\operatorname{Pc}_{n}\left[\dot{v}^{0}\right]-\operatorname{Rc} n\left[\dot{\phi}_{y}\right]} \tag{2-58}\\
& {\left[Q_{x}\right] n_{x}+\left[Q_{y}\right] n_{y}=-\operatorname{Pc} n[w]}
\end{align*}
$$

Multiplying the first two equations of Equation (2-57) by z and then integrating over the thickness, we obtaln two more equations

$$
\begin{align*}
& {\left[M_{x}\right] n_{x}+\left[M_{x y}\right] n_{y}=-\operatorname{Rc} c_{n}\left[\dot{u}^{0}\right]-I c_{n}\left[\dot{\phi}_{x}\right]} \tag{2-59}\\
& {\left[M_{x y}\right] n_{x}+\left[M_{y}\right] n_{y}=-\operatorname{Rc} c_{n}\left[\dot{v}^{0}\right]-I c_{n}\left[\dot{\phi}_{y}\right]}
\end{align*}
$$

where P, R and I have been defined in Equation (2-24)

The five equations given by Equations (2-58) and (2-59) are the dynamical conditions on the wave front for the laminated plate.

2.3.3 Propagation Velocity of the Wave Front

Across the wave front, the laminate constitutive relations given by Equation (2-20) can be written as

$$
\left\{\begin{array}{l}
{[\mathrm{N}]} \tag{2-60}\\
{[M]} \\
{[\mathrm{Q}]}
\end{array}\right\}=\left[\begin{array}{ccc}
A & B & 0 \\
B & D & 0 \\
0 & 0 & A^{*}
\end{array}\right]\left\{\begin{array}{l}
{[\epsilon]} \\
{[\kappa]} \\
{[\gamma]}
\end{array}\right\}
$$

ORIGINAL PAEE FG OF POOR QUALITY

where

$$
\begin{align*}
& \{[N]\}^{\top}=\left\{\left[N_{x}\right],\left[N_{y}\right],\left[N_{x y}\right]\right\} \\
& \{[M]\}^{\top}=\left\{\left[M_{x}\right],\left[M_{y}\right],\left[M_{x y}\right]\right\} \tag{2-61}\\
& \{[Q]\}^{\top}=\left\{\left[C_{x}\right],\left[Q_{y}\right]\right\}
\end{align*}
$$

are the jumps of the stress resultants, and

$$
\begin{align*}
& \{[\varepsilon]\}^{\top}=\left\{\left[\partial u^{0} / \partial x\right],\left[\partial v^{0} / \partial y\right],\left[\partial u^{0} / \partial y\right]+\left[\partial v^{0} / \partial x\right]\right\} \\
& \{[\kappa]\}^{\top}=\left\{\left[\partial \phi_{y} / \partial x\right],\left[\partial \phi_{v} / \partial y\right],\left[\partial \phi_{y} / \partial y\right]+\left[\partial \phi_{y} / \partial x\right]\right\} \tag{2-62}\\
& \{[\gamma]\}^{\top}=\{[\partial w / \partial y],[\partial w / \partial x]\}
\end{align*}
$$

are the jumps of the strain components. In Equation (2-62), the conditions $\left[\phi_{x}\right]=\left[\phi_{y}\right]=0$ are substituted.

Substituting of Equation (2-43) and the similar relations for other Kinematic varlables in Equation (2-60), we can express the Jumps of the stress resultants in terms of the Jumps of the time derivatives of the displacement components $u^{0}, v^{0}, w, \phi_{x}$ and ϕ_{v}. These relations are then substituted in Equations (2-58) and (2-59), which results in five homogeneous equations. For $\left[0^{\circ} / 45^{\circ} / 0^{\circ} /-45^{\circ} / 0^{\circ}\right]_{2 s}$ graphitel epoxy laminated plate which is symmetrical and balanced (i.e. $B_{1 j}=0, A_{16}=A_{26}=0, R=0$ and $D_{16}=D_{26}$), these five equations are uncoupled into three groups as

$$
\begin{align*}
& {\left[a_{1 \jmath}\right]\left\{\begin{array}{l}
{\left[\dot{u}^{0}\right]} \\
{\left[\dot{v}^{0}\right]}
\end{array}\right\}=0} \tag{2-63}\\
& {\left[b_{1,}\right]\left[\begin{array}{l}
{\left[\phi_{K}\right]} \\
{\left[\phi_{N}\right]}
\end{array}\right\}=0} \tag{20.64}\\
& \left(A_{44}^{*}-P c_{n}{ }^{2}\right)[\omega]=0
\end{align*}
$$

In which [$\left.a_{1}\right]$ and $\left[b_{1}\right]$ are both two by two symmetrle matrices, and their entrles are given by

$$
\begin{align*}
& a_{11}=n_{x}^{2} A_{11}+n_{Y}^{2} A_{B}-P C_{n}^{2} \\
& a_{12}=a_{21}=n_{Y} n_{Y}\left(A_{12}+A_{B B}\right) \\
& a_{22}=n_{x}^{2} A_{B B}+n_{Y}^{2} A_{22}-P C_{n}^{2} \\
& b_{11}=n_{x}^{2} D_{11}+2 n_{x} n_{Y} D_{10}+n_{Y}^{2} D_{B 8}-1 c_{n}^{2} \\
& b_{12}=b_{21}=D_{10}+n_{x} n_{Y}\left(D_{12}+D_{B B}\right) \tag{2-67}\\
& b_{22}=n_{x}^{2} D_{00}+2 n_{x} n_{Y} D_{18}+n_{Y}^{2} D_{22}-1 c_{n}^{2}
\end{align*}
$$

It can be seen that Equation (2-63) deseribos the Inm plane extensional and the $\mid n-p l a n e$ shear wave fronts, Equation (2-64) describes the bending moment and the twisting moment wave fronts and Equation (2-65) deseribas the transverse shear wave front.

From Equation (2-65), we abtaln the normal veloclty with which the transverse shear wave front propagates as

$$
\begin{equation*}
c_{n}{ }^{2}=A_{4}^{*} / P \tag{2-68}
\end{equation*}
$$

It is noted that this velocity is independent of the direction of propagation, and is called diractionally

Isotrople wave front.

Equations (2-63) and (2-64) yleld non-trivial solutions only if the determinant of the coefficients matrlces vanlsh, 1.e.

$$
\begin{align*}
& \left|a_{1 \jmath}\right|=0 \tag{2-69}\\
& \left|b_{1 J}\right|=0 \tag{2-70}
\end{align*}
$$

Each of the above equations can be expanded Into a quadratla equation of $c_{n}{ }^{2}$. For $\left[0^{\circ} / 45^{\circ} / 0^{\circ} /-45^{\circ} / 0^{\circ}\right]_{2 s}$ graphite/epoxy laminated plate, the normal velocitlas of wave fronts corresponding to the inmplane modes and flexural modes are plotted in Figure 2.7 and 2.8, respectively, it Is noted that the normal velocities of the in-plane
 x-axis and y-axis, whlle there is no such symmetry for the bending moment and twisting moment modes.

2.3.4 Wave Surface and Ray

From Figure 2.7 and 2.8 , it can be seen that for laminated cumposites which are anisotropic in general, the |n-plane and flexural wave fronts travel with different normal velocities In different directions. In other words, the initial shape of a wave surface will be distorted after It propagates. However, Equations (2-66) and (2-67) show

ORIEINAL PAGE IS OF POOR QUALITY

Figure 2.7 Normal velocities of in-plane wave fronts

ORNGMAD What
 of poon ginlity

Figure 2.8 Normal velocities of flexural wave fronts
that for any fixed normal direction n_{1}, c_{n} is a constant. Connecting the points having the same unlt normals to the travelling wave front surface, we obtaln a famlly of lines which are called rays. Thus, along a ray, the normal velocity of wave front remalns unchanged. By using the ray theory which has been well establlshed in the fleld of geometrical optlcs, we are able to construct the wave front surface.

Recall Equation (2.37)

$$
\begin{equation*}
F\left(x_{1}\right)-t=0 \quad 1=1,2 \tag{2-37}
\end{equation*}
$$

which represents a famlly of wave fronts propagating over the plate with t as a parameter. It follows that

$$
\begin{equation*}
d F / d t=\left(\partial F / \partial x_{1}\right)\left(d x_{1} / d t\right)=\left(\partial F / \partial x_{1}\right) c_{1}=1 \tag{2-71}
\end{equation*}
$$

By putting

$$
\begin{equation*}
p_{1}=\partial F / \partial x_{1}=\nabla F \tag{2-72}
\end{equation*}
$$

Equation (2-71) becomes

$$
\begin{equation*}
p_{1} c_{1}=1 \tag{2-73}
\end{equation*}
$$

Since p_{i} is normal to the surface $F_{\text {, it }}$ it can be written as

$$
\begin{equation*}
p_{1}=\left|p_{1}\right| n_{1} \tag{2-74}
\end{equation*}
$$

where $\left|p_{1}\right|$ denotes the length of p_{1}. Combining (2-73) and (2-74), we obtain

$$
\begin{equation*}
\left|p_{1}\right| n_{1} c_{1}=\left|p_{1}\right| c_{n}=1 \tag{2-75}
\end{equation*}
$$

from which we obtaln

$$
\begin{equation*}
p_{1}=n_{1} / c_{n} \tag{2-76}
\end{equation*}
$$

In Equation (2-76), p_{1} is called the slowness vector which has the direction normal to the wave front with the magnitude belng equal to the inverse of normal velocity c_{n}.

Subsitituting Equation (2-76) in Equation (2-69) and (270: , we obtaln two equations in terms of p_{1}

$$
\begin{aligned}
& \left|\begin{array}{ll}
p_{x}^{2} A_{11}+p_{Y}^{2} A_{5}-p & p_{x} p_{Y}\left(A_{12}+A_{B 6}\right) \\
p_{x} p_{Y}\left(A_{12}+A_{B B}\right) & p_{x}^{2} A_{B G}+p_{V}{ }^{2} A_{22}-p
\end{array}\right|=0 \\
& \left|\begin{array}{lll}
p_{X}{ }^{2} D_{11}+2 p_{X} P_{Y} D_{1 \sigma}+p_{Y}{ }^{2} D_{G G}-1 & D_{1 \sigma}+p_{X} P_{Y}\left(D_{12}+D_{G G}\right) \\
D_{1 G}+p_{X} P_{Y}\left(D_{12}+D_{B g}\right) & P_{X}{ }^{2} D_{B G}+2 p_{X} P_{Y} D_{1 G}+p_{Y}{ }^{2} D_{22}-1
\end{array}\right|=0
\end{aligned}
$$

which can be written in a general form as

$$
\begin{equation*}
g\left(p_{1}\right)=0 \quad 1=1,2 \tag{2-77}
\end{equation*}
$$

In view of Equation (2-72), we recognlze that Equation (2-77) may be regarded as a set of first-order partlal differential equation for F. A standard method of solving first-order partial differentlal equation is by means of characteristics [24], which reduces the equation to a system of first-order ordinary differentlal equations. In our case, Equation (2-77) then is equivalent to the following

$$
\begin{array}{ll}
d x / d s=\partial g / \partial p_{x} & d y / d s=\partial g / \partial p_{y} \\
d p_{x} / d s=-\partial g / \partial x & d p_{y} / d s=-\partial g / \partial y \tag{2-79}
\end{array}
$$

where s is a parameter. These equations, together with Equation (2-77) describe the ray geometry and the normal direction of the wave front propagsting along the ray.

From Equation (2-78), we have

$$
\begin{equation*}
d y / d x=\left(\partial g / \partial p_{y}\right) /\left(\partial g / \partial p_{x}\right) \tag{2-80}
\end{equation*}
$$

Since the normal direction of wave front along a ray is constant, it can be seen from Equation (2-76) that pi is also constant along a ray. For laminated composite which is assumed to have homogeneous materlal propertles, Equation (2-77) shows that $g\left(p_{1}\right)$ does not depend on x_{1}, consequently, $\partial g / \partial p_{x}$ and $\partial g / \partial p_{y}$ are all constants along a ray. Thus, the solution of Equation (2-80) is then given by

$$
\begin{equation*}
y=\zeta\left(x-x_{0}\right)+y_{0} \tag{2-81}
\end{equation*}
$$

where x_{0} and y_{0} are the initlal values of x and y at $t=0$, and $\zeta=\left(\partial g / \partial p_{y}\right) /\left(\partial g / \partial p_{x}\right)$. This equation shows that the rays in a homogeneous solld are stralght lines.

From Equations (2-73) and (2-77), we have

$$
\begin{align*}
& c_{1} d p_{1}=0 \tag{2-82}\\
& d g=\left(\partial g / \partial p_{1}\right) d p_{1}=0 \tag{2-83}
\end{align*}
$$

Eliminating dp, from these equations ylelds.

$$
\begin{equation*}
d x_{1} / d t=c_{1}=\left(\partial g / \partial p_{1}\right) /\left(p_{\mathrm{J}} \partial g / \partial p_{\mathrm{J}}\right) \tag{2-84}
\end{equation*}
$$

where summation over J is understood.
Equation (2-84) can be solved to obtain the position of Wave front at time t. Agaln, since $\partial g / \partial p_{1}$ and p_{1} are all constant along a ray, we obtain the solution of Equation (284) as

$$
\begin{align*}
& x=\left(\partial g / \partial p_{x}\right) t /\left(p_{j} \partial g / \partial p_{j}\right)+x_{0} \tag{2-85}\\
& y=\left(\partial g / \partial p_{\gamma}\right) t /\left(p_{j} \partial g / \partial p_{j}\right)+y_{0} \tag{2-86}
\end{align*}
$$

where x_{0} and y_{0} denote the inltial wave position at $t=0$.
Consider at $t=0$, a wave front forms a circle given by

$$
\begin{align*}
& x_{0}=h \cos \alpha \tag{2-87}\\
& y_{0}=h \sin \alpha
\end{align*}
$$

At this instant, the normal directions to the wave front coincide with the radial directions. Due to the different velocities of propagation in directions, this initlal shape would be distorted. By using Equations (2-85) and (2-86), the subsequent positions of the wave front can be determined. Figures 2.9-2.12 show the wave front positions at two consecutive instants after $t=0$ for the $i n-p l a n e$ extensional, in-plane shear, bending moment and twisting moment modes, respectively, for the $\left[0^{\circ} / 45^{\circ} / 0^{\circ} /-45^{\circ} / 0^{\circ}\right]_{2 s}$
graphite/epoxy laminated plate. It is noted that for symmetrical laminates, the in-plane modes are uncoupled from the bending modes. The rays along which the normal directions to the wave front are $0^{\circ}, 45^{\circ}$ and 90°, respectively, are also shown in the figures. It is seen that the wave fronts of the in-plane extensional and the inplane shear modes possess symmetry with respect to x-axis and y-axis. The wave fronts of the bending and twisting moments, however, lose their original symmetry with respect to x-axis and y-axis. This is an indication that in performing analysis of flexural deformation of this laminate, one can not take a quadrant for analysis, a practice followed by many authors dealing with homogeneous and Isotropic plates.

From Figures 2.9-2.12, it is also interesting to note that ray geometries for these two groups of wave fronts are quite different. For the in-plane extensional and $\mid n-p l a n e$ shear wave fronts, the rays colnclde with the normal directions when $\alpha=0^{\circ}$ and 90°. Along other directions, the direction of the ray devlates from the normal direction of the wave front. It was discussed in [2] that the degree of spreading of rays is proportional to the decay of the stress amplitude at the wave front. Thus, from Figures 2.9 and 2.11, one can conclude that the strength of the $\mid n-p l a n e$ extensional and bending moment wave fronts decay more rapidly in the y-direction than in the x-direction.

Figure 2.9 Wave front positions at different t imes and rays for $\mid n-p l a n e$ extenslonal mode

ORIGINAL PAGE EK
OF POOR QUALITY OF POOR QUALITY

Figure 2.10 Wave front positions at different $t 1$ mes and rays for $\ln -\mathrm{pl}$ lanr shear mode

ORIGINAL PAGE 1 IS OF POOR QUALITY

Figure 2.11 Wave front positions at different times and rays for bending mode
 of pact ongmity

Figure 2.12 Waya front positions at different times and rays for twisting mode

A photoelastic study of anisotropic waves in a fiber relnforced composite has been done by Dally et al. [9]. The waves was produced by a explosive charge in a small hole on the plate. The result showed clearly an elliptic-like stress wave front pattern. This indicates that stress waves in anisotroplc materlals propagate with different velocities in different directions.

CHAPTER 3

STATICAL INDENTATION LAWS

A brief introduction of the historical development on Impact problem involving homogeneous isotropic materials was given by Goldsmlth [12]. Hertz [11] was the first to obtain a satisfactory solution on contact law for two isotroplc elastic spherlcal bodies. When letting the radius of one of the spheres go to infinity, this law then describes the contact behavior between a sphere and an elastic half-space. The Hertzlan law, in spite of being static and elastic in nature, has been widely applled to impact analyses where permanent deformations were produced. The use of thlo law beyond the elastic limlt has been justified on the basis that it appears to predict accurately most of the Impact parameters that can be experimentally verified.

In studying impact responses of laminated composites, the problem becomes extremely complicated. One may easily realize that the Hertzian contact law which was derived based on homogeneous isotropic materlals may not be adequate In describing the contact behavior of laminated composites due to their anisotropic and nonhomogeneous properties. Moreover, most of the laminated composites have finite thickness which can not be represented by a half-space. In
many existing analytical works [25], loadings to the laminates wer: assumed known, and the responses of the laminates were assumed elastic.

Willis [26] obtalned explic!: formulas for Hertzian contact law for transversely isotropic half-space pressed by a rigid sphere, and extended it to the application of Impact problems. It was shown that

$$
\begin{equation*}
F=k \alpha^{n} \tag{3-1}
\end{equation*}
$$

with $n=3 / 2$ is valid for the contact force F and the indentation α, where k is a contact coefficient whose value crepends on the materlal properties of the target and the sphere, and the radius of sphere.

A modifled contact law with

$$
\begin{equation*}
k=(4 / 3) \frac{\mathrm{R}_{\mathrm{s}}{ }^{1 / 2}}{\frac{1-\nu_{s}{ }^{2}}{E_{s}}+\frac{1}{E_{t}}} \tag{3-2}
\end{equation*}
$$

was used [13] in an analytical study on impact of laminated composites. In Equation (3-2), R_{s}, ν_{s} and E_{s} are the radlus, Polsson's ratio and Young's modulus of the sphere, respectively, and E_{t} is the Young's modulus of the laminates in thlckness direction. It was also suggested by Sun et al. [27] that the value of k can be experimentally determined.

Recently Yang and Sun [14] have conducted static Indentation tests on the $\left[0^{\circ} / 45^{\circ} / 0^{\circ} /-45^{\circ} / 0^{\circ}\right]_{2 s}$ graphite/ epoxy laminates using spherical steel indenters of 0.25 ln . and 0.5 in . dlameters. The results were fitted into Equation (3-1) and were found that the $3 / 2$ power is valld. In addition, it was also observed that even for small amounts of load there were significant permanent Indentations. This implies that the unloading curve has to be different from the loading curves. In order to account for the permanent deformation, the equation

$$
\begin{equation*}
F=F_{m}\left(\frac{\alpha-\alpha_{\overline{0}}}{\alpha_{m}-\alpha_{0}}\right)^{a} \tag{3-3}
\end{equation*}
$$

proposed by Crook [28] was used to model the unloading path where F_{m} is the contact force at which unloading begins, α_{m} is the indentation correspanding to F_{m}, and α_{0} denotes the permanent indentation in an unloading cycle. Equation (3-3) can be rewritten as

$$
\begin{equation*}
F=s\left(\alpha-\alpha_{0}\right)^{a} \tag{3-4}
\end{equation*}
$$

in which

$$
\begin{equation*}
s=F_{m} /\left(\alpha_{m}-\alpha_{0}\right)^{q} \tag{3-5}
\end{equation*}
$$

is called unloading rigidity. In order to simpilify the modeling of the unloading law, it was assumed [14] that the value of s for all the unloading curves remalns the same.

Consequently, a constant $\alpha_{c r}$ given by

$$
\begin{equation*}
\alpha_{c r}=k / s \tag{3-6}
\end{equation*}
$$

Was introduced. It was also shown that $q=5 / 2$ fitted the unloading path very well, and the permanent indentation α_{0} was then related to α_{m} by

$$
\begin{array}{ll}
\alpha_{0} / \alpha_{m}=1-\left(\alpha_{c r} / \alpha_{m}\right)^{2 / 5} & \text { as } \alpha_{m}>\alpha_{c r} \tag{3-7}\\
\alpha_{0}=0 & \text { as } \alpha_{m} \leq \alpha_{c r}
\end{array}
$$

The value of $\alpha_{c r}$ was found to be independent of the size of the indenter and hence can be regarded as a materlal constant.

It was also mentioned in [14] and [29] that there were some practical difficulties in performing the tests. Since the indentation was measured step by step using a dlal gage and readings on the gage were taken about 10 to 20 seconds after the load was increased by one step, the creep effect may cause an appreclable error to the results. Another important problem was that it was almost impossible to measure the permanent Indentation accurately using the dial gage. In order to overcome these problems, a Linear Varlable Differentlal Transformer (LVDT) was used in this study to measure the Indentation.

The LVDT is an electromechanical transducer that produces an electrical output proportional to the displacement.

ORIGINAL PAGE
 OF POOR QUALITY

Connecting this output and the one from the straln Indicator which is used to measure the applied loading to a $X-Y$:plotter, one can obtaln a continuous loading-unloading ourve. By changing the loading rate which can be applied as fast as $50 \mathrm{lb} . / \mathrm{sec} .$, it $i s$ possible to examine the significance of creep effect on the contact law. The starting point and final point of a loading-unloading cycle, which rippresent respectively the instants of contact and separation of the Indenter and the specimen, can be easlly determined from the curve. Thus, the measurements of permanent indentations are much more accurate than those using the dial gage.

3.1 Specimens and Experimental Procedure

Two groups of test specimens were prepared from a $\left[0^{\circ} /\right.$ $\left.45^{\circ} / 0^{\circ} /-45^{\circ} / 0^{\circ}\right]_{2 \text { s }}$ graphite/epoxy lamlnate. They were cut in the way such that the longitudinal axis of the beam specimen of the first group was parallel to the 0^{0} fiber direction while the second one was perpendicular to it. The latter then becomes $\left[90^{\circ} / 45^{\circ} / 90^{\circ} /-45^{\circ} / 90^{\circ}\right]_{2 s}$ laminated beams. The thickness of the beam was 0.106 in . and the width was approximately $1.25 \mathrm{in} .$. In all tests, the specimens were clamped at both ands. It was shown in [14] that the span of the specimen in the range of 2 in . to 6 in . has little effect on the contact law. Hence, only one span, i.e. 2 In., was used In the test.

The experimental set-up is shown schematically in Figure 3.1. LVDT was mounted on a ' C ' bracket flxad to tha loading plston so that only the relative movement between the Indenter and the specimen was recorded. The load was applled pneumaticallt by a plunger and it was measured using a load cell and a strain indicator. Outputs from L.VDT and strain indicator were fed Into an $X-Y$ plotter so that a continuous force-indentation curve can be obtained. Two spherical steel Indenters of dlameters 0.5 ln . and 0.75 ln . were used.

3.2 ExperImental Results

3.2.1 Loading Curves

The experimental curves were first digitized into some discrete data polnts and then fitted into Equation (3-1) using least-squares method, Figures 3.2 and 3.3 show the test data and the fitted curves for 0.5 in . diameter Indenter. It can be seen from these flgures that the $3 / 2$ power index gives very good results. However, the contact coefficient k of $\left[0^{\circ} / 45^{\circ} / 0^{\circ} /-45^{\circ} / 0^{\circ}\right]_{2 \text { s }}$ specimen is less than the one of $\left[90^{\circ} / 45^{\circ} / 90^{\circ} /-45^{\circ} / 90^{\circ}\right]_{2 \text { s }}$ specimen by about 7%. During the test, larger deflections were observed for the second group of specimen due to their lower flexural rigidity. This means that the contact area is also larger and the Indentation under same amount, of loading should be

Figure 3.1 Schematical diagram for the indentation test

ORIGINAL PAGE EG OF POOR QUALITY

ORIGINAL PAGE: IS OF POOR QUALITY

smaller comparing with the first group of specimens. Consequently, the higher value of k for the $\left[90^{\circ} / 45^{\circ} / 90^{\circ} /-\right.$ $\left.45^{\circ} / 90^{\circ}\right]_{2 \text { s }}$ specimens is reasonable.

The results for 0.75 in . dlameter Indenter are presented In Figures 3.4 and 3.5. Again, good agreement between the experimental data and fitted curves indicates that the $3 / 2$ power Index for loading law is valld. The values of k for both Indentzrs are summarized in Table 3.1. It should be noted that the average value of k obtalned from the two groups of specimens was used later in finite element analysis of impact responses.

3.2.2 Unloading Curves

By choosing a sultable value for q, it can be seen from Equation (3-5) that once the relation between α_{0} and α_{m} is established, the unloading rigidity s is then determined. Tist results show that the permanent indentations α_{0} and the corresponding maximum indentations α_{m} exhibit a rather linear relationship. The equation given by

$$
\begin{equation*}
a_{0}=s_{p}\left(\alpha_{m}-\alpha_{p}\right) \tag{3-8}
\end{equation*}
$$

Is obtalned from the test data for both 0.5 in . and 0.75 in. Indenters using least-squares fitting method, and are plotted in Figure 3.6. In Equation (3-8), α_{p} can be considered as a critical value of indentation. Once the amount of Indentation exceeds α_{p}, permanent deformation will occur.

ORIGINAL PAGE EA
OF POOR QUALITY

ORICNA PMers U
of poor evality

OF POOR QUALITY

Table 3.1
Contact coefficient k of loading law $F=k \alpha^{1.5}$

Size of Indenter (In)	0.5		0.75	
Specimen	Group 1^{+}	Group 2 \ddagger	Group 1^{+}	Group 2 \ddagger
$k\left(1 \mathrm{~b} / \ln ^{1.5}\right)$	1.284×10^{6}	1.376×10^{6}	1.833×10^{6}	1.990×10^{6}
Average k	1.330×10^{6}		1.912×10^{6}	
Ref. $[14]$	9.694×10^{6}			

$+\left[0^{\circ} / 45^{0} / 0^{\circ} /-45^{\circ} / 0^{0}\right]_{2 \text { a }}$ specimens
$\ddagger\left[90^{\circ} / 45^{\circ} / 90^{\circ} /-45^{\circ} / 90^{\circ}\right]_{2 \text { s }}$ specimens

Figure 3.6 Relation between permanent indentation and

Substitution of Equation (3-8) and (3-1) Into Equation (3-5) ylelds

$$
\begin{array}{ll}
s=\frac{k \alpha_{m}{ }^{3 / 2}}{\left[\left(1-s_{p}\right) \alpha_{m}+s_{p} \alpha_{p}\right]^{q}} & \text { if } \alpha_{m} \geq \alpha_{p} \\
s=\frac{k \alpha_{m}{ }^{3 / 2}}{\alpha_{m}{ }^{q}} & \text { if } \alpha_{m}<\alpha_{p} \tag{3-10}
\end{array}
$$

These two equations along with Equation (3-4) are then used to fit the experimental unloading curves in finding the value of q.

Yang [14] has shown that $q=2.5$ fits the test results for both 0.25 in . and 0.5 in . Indenters quite well. In this study, however, the values of 2.2 and 1.8 were four: 4 to give the best fltting for 0.5 in . and 0.75 in . indenters, respectively using the aforementioned method (Figures 3.73.10). For conventence, $q=2.5$ was used for 0.5 in . Indenter whlle $q=2.0$ was chosen for $3 / 4 \mathrm{in}$. Indenter. The results of the curve-fitting are presented in Figures 3.11-3.14. Further discussions on the unloading law wlll be given In Section 3,3.

ORGMTURI PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS
 OF POOR QUALITY

OBGGRAR phes is
OF roon ounaity

ORIGINAL PAGE IS OF POOR QUALITY

ORIGNAD PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGNAR BMEE R OF POOR QUALITY

The equation

$$
\begin{equation*}
F=k_{1}\left(\alpha-\alpha_{0}\right)^{p} \tag{3-11}
\end{equation*}
$$

suggested by Yang [14] was used to model the reloading curve, where k_{1} is called reloading rigidity and $p=3 / 2$ was found to fit the experimental data quite well. It was also observed that the reloading curve always returns to where the unloading began, and hence the reloading rigldity can be determined by

$$
\begin{equation*}
k_{1}=F_{m} /\left(\alpha_{m}-\alpha_{0}\right)^{3 / ?} \tag{3-12}
\end{equation*}
$$

In other words, the reloading test is not necessary provided the unloading sondition is specifled. Some reloading curves obtained following Equations (3-11) and (3-12), and the experimental data are presented in Figures 3.15-3.18.

3.3 Discussion

As mentioned before, due to creep the loading rate may affect the contact law (l.e. the value of k). A serles of tests with different loading rates was performed to examine this point. The maximum loading rate the test equipment can apply without exceeding it's capacity is about $50 \mathrm{lb} / \mathrm{sec} .$. It was found that in the range of $5 \mathrm{lb} / \mathrm{sec}$. to $50 \mathrm{lb} / \mathrm{sec}$., the values of k showed very little scatter, and the effect

Figure 3.16 Reloading curve of $\left[90^{\circ} / 45^{\circ} / 90^{\circ} /-45^{\circ} / 90^{\circ}\right]_{25}$

due to local material nonhomogenelty in the composite may be even greater than the one due to the loading rate. However, an appreclable decrease of the value k was observed when the loading rate was lower than $1 \mathrm{lb} / \mathrm{sec}$. . In some extreme cases where loadings were applled as slow as $10 \mathrm{lb} / \mathrm{min}$. , the average value of k for 0.5 in . Indenter was very close to the one obtained previously by Yang [14] using dial gage to measure the "Indentation. In this study, the loading rates for all tests were approximately equal to $10 \mathrm{lb} / \mathrm{sec} .$.

Unlike the exponent n of the loading law for which the value of $3 / 2$ seems to yield good agreement with all experimental data, the exponent q of the unloading law (Equation 3-3 or 3-4) reveals much wider deviation for different sizes of Indenter. Value of $q=3 / 2$ corresponding to an elastlc recovery according to the Hertzian theory was previously used by Crook [28] in a study of impacts between metal bodies. The experimental results from [14] and present study show that the value of q varies from 1.5 to 2.5. Local plastic cieformation, anisotropic properties of composite material and unloading rate are all possible causes for this deviation. Obviously, an analytical study to determine the value of q as function of aforementioned factors is impracticable. Since the purpose of this study is to establish a contact law that can be used in the analysis of impact, the validity of this law must be verified from impact experiment. This will be investigated

From Equation (3-3) or (3-4), it can be seen that α_{0} plays an essential role in the unloading law and hence the value of it must be estimated accurately. Both of Equation (3-7) used by Yang [14] and Equation (3-8) used in this study for calculating α_{0} were obtained experimentally, in which $\alpha_{c r}$ and α_{p} are considered to be material constants and were determined using α_{0} and α_{m} from test data. However, it was pointed out in [14] chat the values of α_{0} might not be the true permanent indentations. They were the values which could make the power law given by Equation (3-4) fit the total data under the unloading path. In fact, the load corresponding to the value of $\alpha_{c r}=3.16 \times 10^{-3} \mathrm{in}$. obtained In [14] is about 200 lb . for 0.5 in . Indenter, which is apparently too high . The value of $\alpha_{p}=6.564 \times 10^{-4} \mathrm{in}$. obtained in this study, which corresponds to about 20 lb of loading, seems more reasonable as a critical value in indentation. For comparison, the relations between unloading rigidity s and maximum indentation α_{m} using Equation (3-7) with $\alpha_{c r}=3.16 \times 10^{-3} \mathrm{in}$. and Equation (3-8) with $\alpha_{p}=6.564 \times 10^{-4} \mathrm{in}$., respectively, are plotted in Figure 3.19. It is interesting to see that these two equations give almost the same values of s up to $\alpha_{m}=4 \times 10^{-3}$ in. which is approximately the maximum indentation before failure could occur to the specimen. The advantage of using Equation (3-7) for the formulation of the unloading law is

ORIGINAL PAGE IS OF POOR QUALITY

that the value of s is constant for any α_{m} once the the Indentation passes $\alpha_{c r}$, and only one unloading test is necessary to determine $\mathcal{Q}_{\text {cr }}$ provided the load is high enough to produce permanent indentations. The use of Equation (39) needs performing many tests to obtaln a proper relation between α_{0} and α_{m} according to Equation (3-8). However, it should be noted that Equation (3-7) is valid only if $q=5 / 2$ is used in the unloading equation (3-4), while Equation (38) has no such restriction.

ORIGINAL PACE IS
OF POOR QUAIITY

CHAPTER 4
 IMPACT EXPERIMENTS

High velocity impacts usually result in very small contact time and the material under impact loadings may behave differently from static contact due to the strain rate effect. The statically determined contact laws presented in the previous chapter thus must be verified experimentaliy before it can be applied to the impact analysis. Wang [15] has conducted many Impact experiments on laminated composite beams and plates using spherical steel balls as impacters. The straln response historles at various points on the specimens were recorded and compared with the finlte element analysis with which the contact laws obtalned by Yang [14] was incorporated. The results showed that the test data agreed with the predictions using the statical indentation laws quite well. In this chapter, an attempt was made to measure the contact force directly so that the applicability of statical contact laws in impact analysis can be further evaluated.

4.1 Experimental Procedure

A 6 in . by 4 in . laminated plate cut from a $\left[0^{\circ} / 45^{\circ} / 0^{\circ} /-\right.$ $\left.45^{\circ} / 0^{\circ}\right]_{2 s}$ graphite/epoxy panel was used as the impact target. The 0^{0}-direction was arranged to parallel the long slde of the plate. Seven straln gages (Mlcro Measurement Company TYPE EA-13-062 AQ 350) were placed at different locations as shown in Figure 4.1 to record the dynamic straln histories. One of the gages was placed on the surface directly opposite to the impact point to trigger the oscllloscope. This plate was hung with two strings at two corners to achleve the free boundary condition.

The projectile was made of an impact-force transducer With a spherical steel cap of 0.75 inch in diameter glued on the impact side and a steel rod of $5 / 8$ inch in diameter glued on the other side as shown in Figure 4.2. It was then attached to a thin rod to form a pendulum which could produce impact velocities up to $150 \mathrm{in} / \mathrm{sec}$. The total mass of the projectile is $0.000181 \mathrm{lb-sec} 2 / \mathrm{In}$.

The schematic diagram for this impact experimental set-up is shown in Figure 4.3. Signals from gages and transducer were amplified by a 3A9 Textronix amplifier and displayed on the screen of an oscilloscope.

Figure 4.1 Laminate dimension and strain gage locations

Figure 4.2 Graphical illustration of Impact projectile

Figure 4.3 Schematical diagram for the impact

4.2 Callbration of Impact-Force Transducer

The impact-force transducer used was Modal 200A05 marketed by PCB Plezotronics Inc, Some of it's spectfications are shown in Table 4.1 [30]. The structure of thls transducer contalns two thin quartz disks operating In a thlckness compression mode and sandwiched between hardened steel cylindrical members. A bulit-in amplifier can reduce the high impedance of the voltage from the quartz element and provides an output voltage which can be read out on oscllloscope, recorder, etc.. The impact force is then computed using the equation,

$$
\begin{equation*}
F=V_{F} / c_{F} \tag{4-1}
\end{equation*}
$$

where V_{F} is the output voltage and c_{F} is the sensitivity of the transducer. Since the value of c_{F} in Table 4.1 was obtained under quasi-static condition [30], it must be verifled under Impact condition first so that later the results from impact experiment can be correctly interpreted.

A circular cylindrical steel rod of 2 inch in diameter and 1.19 inch long hung on strings was used as the impact target to callbrate the transducer. The acceleration of the rod was measured by using a Model 302A accelerometer which was mounted on the end of the rod opposite to the impacted end as shown in Figure 4.4. The total welght of the target Is 1.105 lb .

Table 4.1
Specifications for Model 200405 Impact-Force Transducer

Range, Compression (5V output)	1 b .	5,000
Maximum Compression	1 b .	10,000
Resolution (200 $\mu \mathrm{V}$ p-p nolse)	1 b .	0.2
Stiffness	$1 \mathrm{~b} / \mu \mathrm{ln}$	100
Sensitivity	$\mathrm{mV} / 1 \mathrm{~b}$	1.0
Resonant Frequency (no load)	Hz	70,000
Rise Time	$\mu \mathrm{sec}$	10
```DIscharge Time Constant (T.C.)```	sec	2,000
Low-Frequency ( $-5 \%$ )	Hz	0.0003
Linearity, B.F.S.L.	\%	1
Output Impedance	ohms	100
Excltation (thru C.c.diode)	$\mathrm{VDC} / \mathrm{mA}$	+18 to $24 / 2$ to 20
Temperature Coefficlent	\%/ ${ }^{\circ} \mathrm{F}$	0.03
Temperature Range	${ }^{\circ} \mathrm{F}$	-100 to +250
Shock (no load)	g	10,000



Figure 4.4 Experimental set-up for the calibration of
$c-2$

Using Equation (4-1) and

$$
\begin{align*}
& a=V_{a} / c_{a}  \tag{4-2}\\
& F=m a \tag{4-3}
\end{align*}
$$

we obtaln

$$
\begin{equation*}
c_{F}=\left(c_{a} / m\right)\left(V_{F} / V_{a}\right) \tag{4-4}
\end{equation*}
$$

where $V_{n}$ and $c_{a}$ are the output voltage and the sensitivity of the accelerometer, respectively, a is acceleration of the target, and $m$ is the mass of the target.

When impacting a metal projectile on a metal target with no pad on the impact surface, a high frequency ringing can be seen at the output of the transducer. In order to obtain smooth output curves, a soft pad was placed on the impact region of the target to ellminate the high frequency ringing. The cause of this ringing phenomenon will be discussed later. Typical output voltages of transducer and accelerometer read from the oscilloscope are shown in Figure 4.5. Values of $V_{F}$ were plotted vs the corresponding values of $V_{n}$ taken from these two curves at several discrete polnts in time and then fitted into a straight line as shown in Flgure 4.6. The slope of this line represents the ratio of $V_{F} / V_{a}$ which is then substicuted in Equation (4-4) to calculate the sensitivity $c_{F}$.


Figure 4.5 Typleal output vol tages from transducer and accelerometer


Figure 4.6 Relation between $V_{F}$ and $V_{a}$

Assuming the sensitivity of the accelerometer $c_{n}$ is correct, and using Equation (4-4) and the test data, the average value of $c_{F}$ calculated was $0.494 \mathrm{mV} / \mathrm{lb} . . \quad \mathrm{A}$ comparison with the value of $1.0 \mathrm{mV} / \mathrm{lb}$ from Table 4.1 shows that the test result has more than $50 \%$ error. Hewever, since the quartz elements are located at the center of the prolectlle whlle the impact force is applled at the end, we were not certain that the force history picked up by the quartz elements did represent the real history of the impact force. The following simple analysis was performed to examine this uncertalnty.

Consider a 1 in . long steel rod with free-free boundary conditions. For a impulse loading given by

$$
\begin{equation*}
\left.F(t)=F_{0} \operatorname{EXP}\left[-(t-\tau)^{2} / 4 b^{2}\right)\right] \tag{4-5}
\end{equation*}
$$

at one end, the force history at the midpolnt of the rod, $F_{m}(t)$, was computed and plotted in Figure 4.7 together with the applied force history. It should be noted that the values of $F_{0}=1000 \mathrm{lb}, \tau=200 \times 10^{-6} \mathrm{sec}$. and $\mathrm{b}=40 \times 10^{-6}$ sec. were chosen in Equation (4-5) so that the applled force history is similar to the experimental loading histroy. From Figure 4.7, it can be seen that $F_{m}(t)$ is only about half of the applied force $F(t)$. The average ratio of $F_{m}(t) / F(t)$ was obtained to be 0.498 , which is very close to the value of $c_{F}$ obtalned previously. The accelerations at the two ends and the midpoint of the rod were also

ORICINAL PACES
OF POOR QUALITY


Figure 4.7 Assumed exponential impulsive loading and the response history at the midpoint of the rod
calculated and plotted in Figure 4.8. It shows that the magnltudes of acceleration at any position of the rod have virtually no difference. This indicates that the acceleromater did masure the real acceleration of the target whlle the impact-force transducer only pleked up the force history at the point of it's own position. In other words, the wave motion in the projectlle can not be neglected, hence it must be treated as an elestic body,

Repeating the provious analysis by changing the impulse loading of Equation (4-5) to

$$
\begin{equation*}
F(t)=F_{0} \sin (\pi t / b) \tag{4-6}
\end{equation*}
$$

and letting $F_{0}=1000 \mathrm{lb}$. and $b=400 \times 10^{-6} \mathrm{sec}$, we obtaln the force history at the midpoint of the rod as shown in Figure 4.9. Comparing Figure 4.9 with Figure 4.8, It is clear that the initial slope of the impulse forcing function would affect the amplitude of ringing. The steeper the Initial slope is, the higher the ampl|tude of ringing will be. When impacting the steel projectile on graphite/epoxy surface, thls ringing phenomenon was also observed.

## ORIGINAL PRGE IS OF POOR QUALITY



Figure 4.8 Accelerations of rod for assumed exponentlal Impulsive loading


Figure 4.9 Assumed sine-function Impulsive loading and the response history at the midpoint of the

### 4.3 Finlte Element Analysis <br> ORICNAL PAGE IS <br> OF POOR QUALITY

### 4.3.1 Plate Finite Element

A 9-node isoparametric plate finite element (see Figure 4.10) developed by Yang [31] based upon the laminate thaery of Whitney and Fagano [18] was used to model the dynamic motion of the laminated plate. At each node there are flve degrees of freedom. Among them, $u^{0}, v^{0}$ and $w$ are displacement components of mid-plane in the $x-, y-$ and $z=$ direction, respectively, and $\phi_{x}$ and $\phi_{y}$ are rotations of the cross-sections perpendicular to the $x-$ and $y$-axis, respectively. For symmetric laminates; the flexural deformation is uncoupled from the inmplane extensional and shear deformations, and hence, the degrees of freedom corresponding to $u^{0}$ and $v^{0}$ can be neglected in the transverse Impact problem.

The isoparametrie plate finite element is developed using the following shape functions;

For corner nodes:

$$
\begin{equation*}
S_{1}=(1 / 4)\left(1+\xi_{0}\right)\left(1+\eta_{0}\right)\left(\xi_{0}+\eta_{0}-1\right)+(1 / 4)\left(1-\xi^{2}\right)\left(1-\eta^{2}\right) \tag{4-7}
\end{equation*}
$$

For nodes at $\xi=0$ and $\eta= \pm 1$ :

$$
\begin{equation*}
s_{1}=(1 / 2)\left(1-\xi^{2}\right)\left(\eta_{0}+\eta^{2}\right) \tag{4-8}
\end{equation*}
$$

For nodes at $\xi= \pm 1$ and $\eta=0$;

Onvinuman bute OF POOR QUALITY


Figure 4.10 9-node isoparametric plate element

$$
\begin{array}{ll}
S_{1}=(1 / 2)\left(\xi_{0}+\xi^{2}\right)\left(1-\eta^{2}\right) & \text { ORIGINAL PAGE IS }  \tag{4-9}\\
& \text { OF POOR QUALITY }
\end{array}
$$

For the center node:

$$
\begin{equation*}
S_{1}=(1 / 2)\left(1-\xi^{2}\right)\left(1-\eta^{2}\right) \tag{4-10}
\end{equation*}
$$

In the above shape functions, $\xi$ and $\eta$ are normalized local coordinates, and

$$
\begin{equation*}
\xi_{0}=\xi \xi_{1}, \quad \pi_{0}=\eta \eta_{1} \tag{4-11}
\end{equation*}
$$

where $\xi_{1}$ and $\eta_{1}$ are the natural coordinates of node 1 (Figure 4.10).

Using the shape functions, the plata displacements $\omega_{i} \phi_{\pi}$ and $\phi_{y}$ are approximated by

$$
\left\{\begin{array}{l}
w \\
\phi_{x} \\
\phi_{y}
\end{array}\right\}=\sum_{\mid=1}^{9}\left[s_{1}\right]\left\{q_{p}\right\}_{1}
$$

where $\left\{q_{p}\right\}_{1}$ is the nodal displacement vector at node 1 and

$$
[S]_{1}=S_{1}^{3 \times 3}
$$

The stiffness and mass matrices are obtained by numerical Integration using Gauss quadrature. Following standard finite element procedures, the system stiffness matrix $\left[K_{p}\right]$ and mass matrix $\left[M_{p}\right]$ are assembled from the element matrices. The equations of motion are expressed in matrix

$$
\begin{equation*}
\left[M_{p}\right]\left\{\ddot{q}_{p}\right\}+\left[K_{p}\right]\left\{q_{p}\right\}=\left\{p_{p}\right\} \tag{4-14}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\{P_{p}\right\}^{\top}=\{0, \cdots, F, \cdots, 0\} \tag{4-15}
\end{equation*}
$$

Is the force vector in which $F$ is the contact force assoclated with the degree of freedom corresponding to the w-displacement at the Impact polnt. The subscript $p$ in Equations (4-12) through (4-15) denotes those are quantitles corresponding to laminated plate.

### 4.3.2 Modelling of Projectlle

In Section 4.2 we showed that in order to interpret the experimental transducer response, it is necessary to treat the projectile as an elastic body. A higher order rod finlte element developed by Yang and Sun [32] was used to model the projectile. This element has two degrees of freedom at each node, namely the axial displacement $u$ and it's first deirivative $\partial u / \partial x$. It has been shown that thls higher order element is far more superlor than the elements with less degrees of freedom in the analysis of dynamic problems. The displacement function is taken as

$$
\begin{equation*}
u=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3} \tag{4-16}
\end{equation*}
$$

where $a_{1}$ are constant coefficients. Solving these coefficients In terms of the nodal degrees of freedom and substituting into Equation (4-16), we obtain

$$
\begin{equation*}
u=\{N\}^{\top}\left\{q_{r}\right\}_{0} \tag{4-17}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\{q_{r}\right\}_{9}{ }^{\top}=\left\{(u)_{1},(\partial u / \partial x)_{1},(u)_{2},(\partial u / \partial x)_{2}\right\} \tag{4-18}
\end{equation*}
$$

Is the vector of element nodal degrees of freedom, and

$$
\begin{equation*}
\{N\}^{\top}=\left\{f_{1}(x), f_{2}(x), f_{3}(x), f_{n}(x)\right\} \tag{4-19}
\end{equation*}
$$

in which

$$
\begin{aligned}
& f_{1}(x)=(1-x / L)^{2}(1+2 x / L) \\
& f_{2}(x)=x(1-x / L)^{2} \\
& f_{3}(x)=x^{2} L^{2}(3-2 x / L) \\
& f_{4}(x)=x^{2} / L(x / L-1)
\end{aligned}
$$

are shape functicns. The subscript $r$ in Equation (4-17) denotes quantitles corresponding to the rod.

Using varlational principle, the equations of motion for one element are obtalned as

$$
\begin{equation*}
\left[m_{r}\right]\left\{\ddot{q}_{r}\right\}_{\theta}+\left[k_{r}\right]\left\{q_{r}\right\}_{\theta}=\left\{p_{r}\right\}_{\theta} \tag{4-20}
\end{equation*}
$$

where $\left\{p_{r}\right\}_{e}$ is the vector of the generallzed forces associated with the nodal degrees of freedom $\left\{q_{r}\right\}_{e},\left[m_{r}\right]$ is the element mass matrix whose entries are given by

$$
\begin{equation*}
\left(m_{r}\right)_{1 J}=\rho A \int_{0}^{L} f_{1} f_{j} d x \quad 1, j=1,2,3,4 \tag{4-21}
\end{equation*}
$$

and $\left[k_{r}\right]$ is the element stiffness matrix whose entries are given by

$$
\begin{equation*}
\left(k_{r}\right)_{1 J}=E A \int_{0}^{L} f_{1} f_{j} f^{\prime} d x \quad 1, j=1,2,3,4 \tag{4-22}
\end{equation*}
$$

In Equations (4-21) and (4-22), $\rho, E$ and $A$ are mass denslty, Young's modulus and cross-sectional area of the projectlle, respectively, and $L$ is the length of the element. The explicit forms of $\left[k_{r}\right]$ and $\left[m_{r}\right]$ are given by

$$
\left[k_{r}\right]=\frac{E A}{30 L .}\left[\begin{array}{cccc}
36 & 3 L & -36 & 3 L  \tag{4-23}\\
3 L & 4 L^{2} & -3 L & -L^{2} \\
-36 & -3 L & 36 & -3 L \\
3 L & -L^{2} & -3 L & 4 L^{2}
\end{array}\right]
$$

and

$$
\left[m_{r}\right]=\frac{\rho A L}{420}\left[\begin{array}{cccc}
156 & 22 L & 54 & -13 L  \tag{4-24}\\
22 L & 4 L^{2} & 13 L & -3 L^{2} \\
54 & 13 L & 156 & -22 L \\
-13 L & -3 L^{2} & -22 L & 4 L^{2}
\end{array}\right]
$$

Following the usual manner, the system stiffness and mass matrices are assembled from the element stiffness and mass matrices, and the system equations of motion are expressed as
where

$$
\begin{equation*}
\left\{P_{r}\right\}^{\top}=\{F, 0, \cdots, 0\} \tag{4-26}
\end{equation*}
$$

In which $F$ is the contact force applied at the impacting end of the projectile.
:
4.4. Results and Discussion

The 6 in . by 4 in . graphite/epoxy laminate was modelad by 140 ( $14 \times 10$ mesh) plate elemerits whlle the projectile was modeled by 20 rod elements (see Figure 4.11). The thn sets of equations (4-14) and (4-25) along with the contact laws given by Equations (3-1), (3-3) and (3-11) were solved simultaneously. The finite difference method with $\Delta t=0.2$ msec. was used to integrate the time varlable. A coarser finite element mesh for plate was used and it was found that the present mesh yielded converged solutions. A 3Dimensional analysis using 112 axisymmetric finite elements to model the projectile was also performed, and the results showed the the response at the midpoint of the projectile to have no significant difference comparing with the one obtalned by using rod elements.

An Impact velocity of $115 \mathrm{in} / \mathrm{sec}$ was used in the experiment. Figures $4.12-4.17$ show the strain response histories at the six locations plcked up by the strain

(a) Plate

(b) Projectile

Figure 4.11 Finite element mesh for lamlanted plate and projectile
gages. The results obtalned using the finlte element methods and the contact laws are also shown in these figures. It is evident that the finite element solutions agree with the experimental data very well.

In Figure 4.18, the experimental transducer responses and the computed transducer responses using fin|te element are plotted against time as curve I and curve II, respectively. The computed contact force history is also plotted as curve III. It can be seen that the magnltudes of curve 1 and curve 11 agree falrly well. The frequencles of ringing for these two curves, however, are quite different. For the finite element resuits, the time interval between two consecutive peaks of ringing is approximately equal to the time that the longltudinal stress wave needed to travel the distance between two ends of the projectile. This Indicates that the ringing is simply caused by the transient wave travelling back and forth in the projectile.

From Figure 4.18 we can see that curve 1 has exact 9 peaks in 180 microseconds, and the time interval between two consecutive peaks is about 20 mlcroses onds. It is noted that this transducer has a rise time of 10 mlcroseconds (see Table 4.1), which is the time it needs to reach the maximum response. Any input signal with period smaller than twice of this value will be smoothed out by the transducer, and the output signal may appear to have lower frequency. In other words, the period of the output signal will be at


Flgure 4.12 Straln response history at gage No. 1


Figure 4.13 Straln response history at gage No. 2


Figure 4.14 Strain response history at gage No. 3


Figure 4.15 Strain response history at gage No. 4


Figure 4.16 Strain response history at gage No. 5

ORKIMAS Butay
OF POOR QUMMTY


Figure 4.17 Strain response history at gage No. 6

ORIGINAL PARE F OF POOR QUALITY


Figure 4.18 Transducer response and contact force histories from experimental and finite element results
least 20 microseconds. This might explain the lower frequency of ringing in the output voltage from the transducer.

The total duration of contact for this impact test is about 800 microseconds, and multiple contact is also observed from the test data. Figure 4.19 shows the experimental transducer responses and the computed transducer responses up to 800 mlcroseconds. Although these two results do not matched very well after the end of the first contact, it is evident that the finlte element analysis does predict the multiple contact phenomenon, and the calculated total duration of contact is also approximately the same as the test result.

Figure 4.20 presents a number of deformed configurations of the laminated plate after impact. It is seen that at the point of impact, there is a strong discontinuity in slope of the transverse displacement Indicating the presence of a significant transverse shear deformation.

ORIGMAL BRGE Th
of poon ojality


Figure 4.19 Transducer response historles from experimental and finlte element results up to 800 mlcroseconds


TIME $=10 \mu$ SEC.


TIME $=20 \mu S E C$.


TIME $=30 \mu \mathrm{SEC}$.

TIME $=40 \mu \mathrm{SEC}$.


TIME $=50 \mu \mathrm{SEC}$.



TIME $=60 \mu$ SEC.


TIME $=70 \mu$ SEC.


Figure 4.20 Deformed configurations of lamlnated plate after impact

## ORIGINAL PAGE IS

OF POOR QUALITY

## CHAPTER 5 <br> SUMMARY AND CONCLUSION

The laminate theory developed by Whitney and Pagano was employed for studies of harmonic wave and propagation of wave front in a $\left[0^{\circ} / 45^{\circ} / 0^{\circ} /-45^{\circ} / 0^{\circ}\right]_{2 s}$ graphlte/epoxy laminate. The dispersion propertles of flexural waves were Investigated. The wave front surface was constructed using ray theory. It was shown that due to the anlsotropic properties of composite laminate, the translent wave would propagate with different velocities in different directions. The growth and decay of the wave front strength were also discusted.

The contact laws between 0.5 Inch and 0.75 Inch spherical steel Indenters and the graphlte/epoxy laminate were determined experimentally by means of a statical Indentation test. Loading, unloading and reloadling curves were fitted Into power equations. Linear relation was found between the permanent indentation and the maximum indentation at unloading, which is seen to be Independent of the size of Indenters. This relation was then used to determine the coefficiant of the unloading law. It was demonstrated that there was no need to perform reloading experlments once the loading and unloading laws were establlshed. Test results
showed loading and reloading curves followed the power laws with power Indices of 1.5 very well, whlle the power indices for unloading curves varled from 1.5 to 2.5 .

The statically determined contact laws were incorporated into an existing 9-node isoparametric plate finite element program to study the dynamic response of a graphite/epoxy laminated plate subjected to Impact of a hard object. An impact experiment was conducted to verify the valldity of statical contact laws in the dynamical impact analysis. It was shown that the strain responses predicted using the finlte element method agreed with the test results very well. The contact force history of the impact test was measured by an Impact-force transducer, which was also seen to match the finlte element result in magnitude as well as contact duration.

The Indentation tests have been used ever since the beginning of the century to determine the static and dynamic hardnesses of metals in'terms of the applled loading, the size of the indenter, and the chordal diameter of the permanent Indentation [33]. If similar systematic Indentation tests are performed on the laminated composite materlals, then the relations between contact coefficients and the sizes of the indenters could be determined more rigorously, and the usefulness of the contact laws could be Further extended.

> ORIGINAL PAGE IS
> OF POOR QUALITY

As the verification of the contact laws has been limited to low velocity impacts in thls study, thelr accuracy under high veloclty impact conditions is not clear. Besides the contact behavlor which may be signiflcantly different from the static one, the damage Induced by waves could be quite extensive which needs to be included In the analysis. While the present study tried to establish experimentally contact laws whlch can be used in the analysls of low vilocity Impact, the damage of laminate due to Imyact loadilng has not been discussed. It is apparent that more work needs to be done so that the fallure mechanism In laminated composites due to Impact can be better understood. Stress waves propagating in thlckness direction, which may be responsible for the delamination of laminates, is one of the Important subjects that should be investigated. Strength and fatigue Ife degradations of laminates after impact, which have been examined briefly by Wang [15], also need more extensive study.

ORIGINAL PAGE IS ©F POOR CUALITY

## LIST OF REFERENCES

[1] Moon, F,C., "A Critical Survey of Wave Propagation and Impact in Composite Materlal", NASA CR-121226, 1973.
[2] Sun, C.T., "Propagation of Shock Waves in Anisotropic Composite Plates", Journal of Composite Materlals, Vol.7, 1973, pp.360̄-382.
[3] Moon, F.C., "Wave Surfaces Due to Impact on Anisotroplc Plates", Journal of Composite Materlais, Vol.6, 1972, pp.62-79.
[4] Chow, T.S., "On the Propagation of Flexural Waves in an Orthotropic Laminated Plate and Its Response to an Impulsive Load", Journal of Composite Materlals, Vol.5, 1971, pp.306-319.
[5] Greszczuk, L.B., "Response of Isotroplc and Composite to Particle Impact", Foreign Object Impact Damage to Composite, ASTM STP 568, American Soclety for Testing and Materlals, 1975, pp.183-211.
[6] Sun, C.T. and Huang, S.N., "Transverse Impact Problems by Higher Order Beam Finite Element", Computers \& Structures, Vol.5, 1975, pp.297-303.
[7] KIm, B.S. and Moon, F.C., "Impact Induced Stress Waves In an Anisotropic Plate", AIAA Journal, Vol.17, No.10, 1979, pp.1126-1133.
[8] Danlel, I.M., Llber, T. ana LaBedz, R.H., "Wave Propagation in Transversely Impacted Composite Laminates", Experimental Mechanics, January 1979, pp.916.
[9] Dally, J.W., Link, J.A. and Prabhakaran, R., "A Photoelastic Study of Stress Waves in Flber Reinforced Composites", Developments in Mechanics, Vol.6, Proceedings of the 12th Midwestern Mechanics Conference, 1971, pp.937-949.
[10] Takeda, N. Slerakowskl, R.L. and Malvern, L.E., "Wave Propagation ExperIments On Ballistically Impacted Composite haminates", Journal of Composite Matorlals, Vol.15, 1981, pp.157-174.
[11] Hertz, H., "Uber die Beruhrung foster elastlscher Korper", Journal Relne Angle Math, (Crelle), Vol.92, 1881, p. 155.
[12] Goldsmith, W., Impact, Edward Arnold, London, 1960.
[13] Sun, G.T., "An Analytical Mathod for Evaluation of Impact Damage Enargy of Lamlnated Composites", ASTM STP 617. Amerlcan Socloty for Tosting and Materlals, 197\%, pp. 427-440.
[14] Yang, S.H. and Sun, C.T., "Indentation Law for Composite Laminates", NASA CR-165460, July 1981, also to appear In ASTM STP serios, American Soclaty for Tosting and Materlals.
[15] Wang, T., "Dynamic Response and Damage of Hard Object Impact on a Graphite/Epoxy Laminate", Ph.D. Dissertation, Purdue University, i9 $\overline{8} \overline{2}$.
[16] Yang, P.C., Norrls, C.H. and Stavsky, Y., "Elastic Wave Propagation in Heterogeneous Plates", International Journal of Sollds and Structures, Vol. ${ }^{2}$, 1966. Pp.665-683.
[17] Mindiln, R.D., "Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates", Journal of Applled Mechanlos, Vol.18, 1951, pp. 31-38.
[18] Whitney, J.M. and Pagano, N.J., "Shear Deformation In Heterogeneous Anlsotropic Plates", Journal of Applled Mechanles, Vol.37, 1970, pp.1031-1036.
[19] Sun, C.T, and Whitney, J.M., "On Theorles for the Dynamic Response of Laminated Plates", Proceedings AIAA/ASME/SAE 13 th Structures, Structural Dynamics, and Materlals Conference, 1972, AIAA Paper No. 72-398.
[20] Kraut, E., "Advances in the Theory of Anisotropic Elastic Wave Propagation", Reviow of Geophysios, Vol.1, No.3, 1963, pp.401-448.
[21] Keller, H.B., "Propagation of Stress Discontinulties In Inhomogeneous Elastle Media", SIAM Revlew, Vol.6, No. $4,1964, ~ \mu p .356-382$.
[22] Vlaar, N.J., "Ray Theory for an Anisotrople Inhomogeneous Elastic Medlum", Bulletin of the Selsmological Soclety of Amerlca, Vol.58, No.6, 1968 , pp.2053-2072.
[23] Thomas, T.Y., Plastic Flow and Fracture in Solide, Academic Press, 1961, P. 10.
[24] Courant, R. and Hilbert, D., Methods of Mathematical Physics, Vol.II, Interscience Publishers, 1962.
[25] Foreign object Impact Damage to Composite, ASTM STP 568, American Society for Testing ar Materlals, 1973.
[26] Willis, J.R., "Hertzian Contact of Anisotropic Bodies", Journal of Mechanics and Physics of Solids, Vol.14, 1966, Pp.163-176.
[27] Sun, C.T. and Chattopadhyay, S., "Dynamic Response of Anisotroplc Laminated Plates Under Initial Stress to Impact of a Mass", Journal of Applied Mechanics, Vol.42, 1975, pp.693-698.
[28] Crook, A.W., "A Study of Some Impacts Between Metal Bodies by a Plezoelectric Method", Proceedings of Royal Soclety, London, A 212, 1952, p. 377.
[29] Sun, C.T., Sankar, B.V. and Tan, T.M., "Dynamic Response of SMC to Impact of a Steel Ball", Advances In Aerospace Structures and Materials, The Winter Annual Meeting of the Amerlcan Soclety of Mechanical Englneers, Washington,D.C., 1981.
[30] Operating Instructions, Model No. 200405 Transducer, PCB Plezotronlcs, INC.
[31] Yang, S.H., "Static and Dynamic Contact Behavior of Composite Laminates", Ph.D. Dissertation, Purdue University, 1981.
[32] Yang, T.Y. and Sun, C.T., "Finite Elements for the Vibration of Framed Shear Walls", Journal of Sound and Vibration, Vol.27, No.3, 1973, pp.297-311.
[33] Tabor, D., Tine Hardness of Metal, Oxford University Press, 1951.
[34] Zienklewicz, O.C., The Finlte Element Method, 3rd edition, McGraw-Hill, 1977, Chapter 24, PP. 677-757

# ORIGINAL PAGE IG OF POOR QUALITY 

## APPENDIX <br> COMPUTER PROGRAM AND USER INSTRUCTIONS

The computer program used in this research was written following the program by Professor R. L. Taylor [34] with some necessary modification in order to solve the impact problems of laminated plates. A brief instruction of the input data for solving the impact problem specified in Chapter 4 of this report is given in this apppendix. The detalled descriptions of data input as well as the macro instructions for solving varlous types of problems can be found in [34]. The listing of input is shown at the end of this appendix, followed by the listing of program.
I. Title and control information:

1. Title card-Format(20A4)

Columns Description
1-4 Muミt contain FECM
5-80 Alphanumeric information to be printed with output as page header.
2. Control information card-Format(6I5)

Columns Description
1-5 Number of nodes (NUMNP)
6-10 Number of elements (NUMEL)

11-15 Number of layers (LAYER) OF POOR QUALITY
16-20 Spatial dimension (NDM)
21-25 Number of unknowns per node (NDF)
26-30 Number of nodes per element (NEN)
II. Mesh and Initial information:

The input of each segment in this part of data is controlled by the alphanumeric value of macros, which must be followed immedlately by the approprlate data. Except for the END card which must be the last card of this part, the data segeinnts can be in any order. Each segment is terminated with blank card(s). The meaning of each macro is given by the following:

Macro	Data to be input
COOR	Coordinate data
ELEM	Element data
BOUN	Boundary condition data
MATE	Material data
ROD	Inltial condition of the projectile
EXPE	Experimental indentation laws data
END	Must be the last card of this part, terminates
	mesh and initial information input.

1. Coordinate data-Format (215,2F10.0)

Columns Description
1-5 Nodal number
6-10 Generation Increment
ORIGINAL PAGE IS
11-20 $X$-coordinate
OF POOR QUALITY

```21-30 \(Y\)-coordinate
2. Element data-Format(1115)
```

Columns Description
1-5 Element number
6-10 Node 1 number
11-15 Node 2 number
etc.

```46-50 Node 9 number
```

51-55 Generation increment
3. Boundary condition data-Format(715)
Columns Description
1-5 Node number
6-10 Generation Increment
11-15 DOF 1 boundary code
16-20 DOF 2 boundary code
21-25 DOF 3 boundary code
26-30 DOF 4 boundary code
31-35 DOF 5 boundary code

```4. Initial condition of the projectile-Format( \(215, F 10.0\) )
```

Columns Description
1-5 The node at which the projectile hits
6-10 DOF corresponding to the direction of impact
11-20 Initlal impact velocity
5. Experimental indentation laws data-Format(4F10.0)

Columns Description
1-10 Contact coefficlent $K$
11-20 Critical indentation $\alpha_{p}$
21-30 Constant $s_{p}$ of Equation 3-9
31-40 Power Index $q$ of the unloading law
6. Materlal data

Card 1-format (315,F10.0)
Columns Description
1-5 Order of Gauss quadrature for the numerical
integration of the bending energy
6-10 Order of Gauss quadrature for the numerical
Integration of the transverse shear energy
11-15 Order of Gauss quadrature for strain outputs at Gauss polnts if $>0$
at nodal points if <0
16-25 Total thlckness of the laminate
Card 2-Format(7F10.0)
Columns Description
1-10 Mass density
11-20 Polsson's ratio $\nu_{12}$
21-30 Longitudinal Young's modulus $E_{1}$
31-40 Transverse Young's modulus $\mathrm{E}_{2}$
41-50 Shear modulus $G_{12}$
11-20 Shear modulus $G_{13}$
11-20 Shear modulus $G_{2 s}$

Card 3,4, ‥ Format(15,F5.0,F10.0)
Columns Description
ORIGINAL PAEE :
1-5 Layar number OF POOR QUALITY

6-10 Fiber angle
11-20 Thlckness of the layer
III. Macre Instructions:

The first instruction must be a card with MACR in columns 1 to 4. The macro instructions needed to solve the problem specified in Chepter 4 of this report are shown in the listing of input. Cards must be input in the precise order. The following is the axplanation of each macro:

Columns $1-4$	$\begin{aligned} & \text { Columns } \\ & 5-10 \\ & \hline \end{aligned}$	Columns $11-15$	Description
LMAS			Lumped mass formulation
DT		V	Set time increment to value V
LOOP		N	Execute $N$ times the instructions between this macro and macro NEXT
TIME			Advance time by DT value
RODP		N	Integration of the equations of motion using the finite difference method. Contact force, Indentation and element strain will be stored stored every $N$ steps in loop
DISP		$N$	Nodal displacements will be stored every $N$ steps in loop
NEXT			End of loop instructions

## IV. Termination of progrem execution

A card with STOP In columns 1 to 4 must be supplied at the end of the Input data in order to proparly terminato tho execution.

The values of contact force, indentation, element strain, nodal displacement and the response of the projectile at each requested output time step are storad in progrem filos which can be saved (say, copy to a magnetic tape) at the end of execution. Thres program fllas, $1 . \overline{0} . ;$ tapes, tapes and tape9 are used for data saving:

Tape3: Nodal displacement - Format (6E12.4)
Nodal displacements, from node 1 to node NUMNP, are saved on tape3 at each requested output time step according to the format.

Tape8: Element straln - Format (216,5E12.4)
Element stralins, from element 1 to element NUMEL, and then from node 1 to node NEN of each element, are saved on on tape 8 at each requested output time step.

Coiumns Data saved
1-6 Element number
7-12 Node number of olement
13-24 Bending strain $k_{x}$
25-36 Bending strain $k_{y}$

37-48 BendIng strain $K_{x y}$
49-60 Transverse shearing straln $\gamma_{y z}$
49-60 Transverse shearing straln $\gamma_{x}$

Tape9: Contact force, Indentation and the reisponse of the projectlle - Format(6E12.4)

The following information is saved on tape9 at each requested output time step:

Columns Data saved
1-12 Contact force
13-24 Indentation
25-36 'Transducer' response (see Chapter 4)
37-48 Displacement of the projectile at the Impacted end
37-48 Velocity of the projectile at the impacted end
37-48 Acceleration of the projectlle at the Impacted end

## LISTING OF INPUT DATA




MMAS		ORICINAL PAGE
${ }_{\text {DT }}^{\text {DTOOP }}$	.2E-6 ${ }_{10}$	OF POOR QUALITY
TIME		
${ }_{\text {RODP }}^{\text {disp }}$	5	
MEXT		
SND		

LOGICAL PCDMP
COMMON /PRSIZE/ MAX
COMMON /CTDATA/ D,HEAD(20),NUMNP,NUMEL,LAYER,NEQ,IPR MAIN
COMMON /LABELS/ PDIS(6), $\mathrm{A}(6), \mathrm{BC}(2), D I(6), C D(3), F D(3)$ MAIN
COMMON LODATA/ NDF, NDM, NEN,NST,NKM MAIN
MAIN
COMMON /PARATS/ NPAR(14), NEND MAIN
DIMENSION TITL(20),WD(3) MANN
MAIN 10
COMMDN G(39000)
MAIN
DIMEMSIDN M(39000)
MAIN
$100 \mathrm{DO} 101 \mathrm{I}=1,20$
101 HEAD (I) $=\rceil$ ITL (I)
MAIN 23
,
WRITE (6,2000) HEAD, MUMNP, NUMEL, LAYER, NDM, NDF, NEN
$\operatorname{PDIS}(2)=A(N D M)$
NST $=$ FYEN*NDF
MAIN 26
MAIN 27
DO $110 \quad I=1,14$
$110 \operatorname{NPAR}(I)=1$
$\operatorname{NPAR}(1)=1$
$\operatorname{NPAR}(2)=\operatorname{NPAR}(1)+3 * N S T * I P R$
MAIN 29
$\operatorname{NPAR}(3)=\operatorname{MPAR}(2)+N D M+N E N * I P R$
$\operatorname{NPAR}(4)=\operatorname{NPAR}(3)+\operatorname{NST}$
30

NPAR(5)=NPAR(4)+NST*IPR
NPAR (6) $=$ NPAR (5) + NENWNUMEL
$\operatorname{NPAR}(7)=\operatorname{MPAR}(G)+N D F * N U M N F$
$\operatorname{MPAR}(8)=\operatorname{MPAR}(7)+N D M * N U M M P * I P R$
MAIN 24
MAIN 25

NPAR (9) $=\operatorname{NPAR}(8)+N D F * N U M N P * I P R$
NFAR (10) $=\operatorname{NPAR}(9)+$ NDF $H$ NUMNP
MAIN 31
MAIN 32
MAIN 33
MAIN 34
MAIN 35

CALL SETMEM(NPAR(9))
CALL $\operatorname{PZERO}(G(1), N P A R(9))$
MAIN 36
MAIN 37
MAIN 38
MAIN 39
MAIN 40

CALL PMESH(M(NPAR(3)), $\operatorname{Li}(\operatorname{NPAR}(2)), \operatorname{M(NPAR(5)),M(NPAR(6)),~}$
1 G(NPAR(7)),G(NPAR(8)),M(NPAR(9)),NDF,NDM,NEN,NKM)
MAIN 41
MAIN 42
$\operatorname{NPAR}(10)=\operatorname{NPAR}(9)+N E Q$
$\operatorname{NPAR}(11)=\operatorname{NPAR}(10)+N D F+N U M N P * I P R$
MAIN 43
MAIN 44
MAIN 45
MEND=NFAR (11)+NEQ:IPR
NE = NEND
MAIN 46
ME=MEMD
MAIN 47

CALL PZERO(G(NPAR(10)), NE-NPAR(10))
GO TO 999
$200 \mathrm{CALL} \operatorname{FMACR}(G(\operatorname{NPAR}(1)), G(\operatorname{NPAR}(2)), M(N P A R(3)), G(N P A R(4))$,
1 M(NPAR(5)), M(NPAR(G)),G(NPAR(7)),G(NPAR(8)),M(NPAR(9)),
2 G(NPAR (10)),G(NPAR(11)),G(NE), NDF,NDM, NEN,NST)
MAIN 49
MAIN 50
MAIN 51

CALL PZERO(G, MAX)
GO TO 999
MAIN 52
MAIN 53
MAIN 54

1000 FORMAT (20A4)
1001 FORMAT(16I5)
MAIN 55
MATN 56
2000 FORMAT(1H1.
MAIN 57
2000 FORMAT $1 \mathrm{H}_{1}, 20 \mathrm{~A} 4 /$ /


ORIGINAL PAGE
OF POOR QUALITY OF POOR QUALITY

C****	BLDCK data	BLOC 1
	BLOCK DATA	BLIOC
	COMMON CTDATA O, HEAD (20), NUMNP, NUMEL, LAYER, NEQ, IPR	BLOC 3
	COMMON LABELS/ PDIS(6), A(G), BC( 2$), \mathrm{DI}(6), C D(3), F D(3)$	BLOC 4
	IATA 0/IHIMIPR/1/	BLDC 5
	DATA PDIS $/ 4 \mathrm{H}(\mathrm{I} 10,2 \mathrm{H}, 4 \mathrm{HF13.,4H4}, \mathrm{}, \mathrm{4HEE13,4H.4)/}$	BLOC 0
	DATA APe 2 , $1,2 \mathrm{H}, 2,2 \mathrm{H}, 3,2 \mathrm{H}, 4,2 \mathrm{H}, 5,2 \mathrm{H}, \mathrm{6}$,	BLOC
	DATA BC/AH B, C, 2 H .	BLUC 8
	DATA DI/4H DIS, 2HPL, 4H UEL, 2HOC. 4 H ACC, 2HEL/	EDr: 9
	DATA CD/4H COD, 4 HRDIN, 4 HATES/	ELOC 10
	DATA FD/4H FOR, AHCE/D, 4 HISPL/	BLOC If
	END	BLOC 18
	SUBROUTINE PMACR(IJL,XL,LD,P,IX,ID, X,F,JDIAG,DR,B,CT,NDF,NDM,	FMnc ${ }_{\text {PMRE }}$
C\#\#樢	MACRO INSTRUCTION ROUTINE	PMAC 3
	LOGICAL PLillf	PMOC I
	COMMON G(1)	PMAC 5
	DIMEIYSIGN M(1)	PHAC ${ }^{\text {a }}$
	EQUIUALENCE (G(1),M(1))	PMnc: ?
	COMMION CCTDATA O, HEAD (20), NUMNP, NUMEL, LAYER, NEG, IPR	PMAC 8
	COPIMON PRROLOD PROP	FNAC 9
	COMMON TMDATA TIML, DT, DDT, FORCE, ALPHA	PMAC 10
	COMTION /ISNIDX/ ISW	PMAC 11
	LOMMON/PARATS/ NFAR(14), NEMD	FMAC 12
	COMMON RRODPTA UR,IO, NDS	PITAC 13
	DIMENSION UL(1), XL (1),LD(1), P(1),IX(1),ID(1),K(1),F(1),	PMAC 14
	$\sim$ JIIAR(1), DR(1) PB(1)	PTAEC IS
	DIMENSION WD ( 9 ), CT (4,16), LUE (9)	PMAC 16
	DATA 'ND/4HLODP, 4HNEXT, 4HDT , 4HPROP, 4HLMAS, 4HRODP,	PMAC 17
	1 4HSTRE, 4HDISP, 4HCHEC/	PMAC 18
	DATA NWD/9/, ENDM/4HEND/	PMARC 19
	INITIALIZATION	PMAC 20
C....	$\mathrm{DT}=0.0$	PMAC 21
	$\mathrm{PROP}=1.0$	PNIAC CL
	TIME $=0.0$	PMAC 23
	NNEQ = NDF NUMMP	PMIAC 24
	NPLD $=0$	PMAC 25
	FORCE $=0$.	PMAC 26
	ALPHA $=0$.	PMAC 2 ?
	WRITE (6,2001) D, HEAD	PMAC 28
	$L L=1$	PMIAC 29
	LMAX $=16$	PMAC 30
	CALLL SETMEM (NEND+LMAX*4*IPR)	PMAC 31
	$\operatorname{CT}(1,1)=\omega D(1)$	PMAC 32
	$C T(3,1)=1.0$	PMAC 33
100	$L L=L L+1$	PMAC 34
	IF (LL.LT.LMAX) GO TO 110	PMAC 35
	LMAX $=$ LMAX + 16	FHIAC 36
	CALL SETMEM (NEND+LMAX 3 (4*FPR)	PVIAC 37
110	$\operatorname{READ}(5,1000)(C T(J, L L), J=1,4)$	PMAC 38
	WRITE (6, 2000) (CT (J,LL), J=1,4)	PNIAC 35
	IF (. NOT. PCDMP (CT (1,LL. ), ENDM ) GD TO 100	PMAC 40
	$\operatorname{CT}(1, L L)=W D(2) \quad$ -	PMRC 41
	NEND $=$ MEND +LMAX 4 4 $4 \times I P R$	PMAC 42
	$L X=L L-1$	PMAC 43
	DO $230 \mathrm{~L}=1, \mathrm{LX}$	PMAC 44
		PMAC 45
	$J=1$	PMAC 46
	$K=L+1$	PMAC 47
	DO $210 \mathrm{I}=\mathrm{K}, \mathrm{LL}$	PMAC 48
	$\operatorname{IF}(\operatorname{PCOMP}(\operatorname{CT}(1, I), \operatorname{WD}(1))) J=J+1$	PMAC AS
	IF (J.GT. 9) G0 TO 401	PMATC
	$I F(P C O M P(C T(1, I), W D(2))) J=J-1$	PliAC 51
210	IF (J.EQ.0) GO TO 220	FHrat lic
	GO TO 400	PINAC
220	$\operatorname{CT}(4, I)=1$	Frric is
	$\operatorname{CT}(4, L)=I$	PMAC 55
230	continue	PMAC 56

##  <br> OF POOR QUALITY

```
 Jm0
 DO 240 L=1:LL
 IF(PCOMP(CT(1,L),WD(1))) J=J m 1
 240 IF{PCOMP(CT(1,L),WD(2))) J m J - L
 IF(J.NE.0) CO TO 400
 LU E O
 L. - 1
 299 n0 300 J=1, NWD
 300 WF(PCOMP(CT(L,L),WD(J))) EO TO 310
 G0 70 330
 310 1 = L - 1
 G0 ro (1, 2, 3,4,E,6,7,8,9),J
C.... SET LOOP START INDICATORS
 1LU=LU + I
 LX = CT(A,L)
 LUE(LU) = LX
 Cr(3,LX) = 1.
 CO T0 330
C.... LOOP TERMINATOR CONTROL
 2N=CT}(4,L
 \GammaT(3.L) = CT(3,L) + 1.0
 IF(CT(3,L),GT,CT(3,N))LU=LU-1
 IF(CT(3,L).LE.CT(3,N))L=N
 C0 T0 330
 SET TIME INCRENENT
 3 Dr = CT(3,L)
 DDT= DT*DT
 CO TO 330
C.... INPUT PROPORTIONAL LOAD TABLE
 4 NPLD = CT(3,L)
 PROP = PROPLD(O. . NPLD)
 GO TO 330
C...g FORM LUMPED MASS MATRIX
 5 ISNmO
 CALL KMLIIB
 GO TD 330
C.... IMPACT
 G NDS=CT(3,L)
 IF(NDS.EO,O) NDS=1
 CALL RODIPCT
 G0 T0 330
C.... PRINT STRESS/STRAIN UALUE
 % ISW=4
 LX = LUE(LU)
 IF(ANOD(CT(3,LX), AMAX1(CTT(3,L),1.))) 330,71,330
 F1 CALL FGTKLA(UL, XL,LD,P,IK,ID,X,F,JDIAG, DR, D,NDF,NDM,NEN,NST,NNEQ)
 00 T0 330
C.... FRINT DISPLACEMENTS
 8 L.X = LUE(LU)
 IT(AIIOD(CT(3,LK), AlAX1(CT(3,L),1.2)) 330,81,330
 Q. CALL FRTDIS(UL,ID, XPD,F,DR,NDNIONDF)
 G0 T0 330
C.... CHECK
 9 NRITE(G,5001) NEND, JDIAG(NEQ)
 RETURN
 330 LEL+1
 IF(L.GT.LI.) RETURNN
 G0 70 234
C.... FRSINT ERRDR FORMATS
 400 HRITE (G.4000)
 RETURN
 401 NRITE (6,4001)
 RETURN
C...* INFUTEOUTPUT FDRMATS
 1000 FORNAT(NA, 1X,A4, 1X,2F5.0)
 2000 FONNAT (10X,A4,1X, A4, 1X, 2G15.5)
 200. FORFIAT (A1, 20A4//,5X,18HMACRO INSTRUCTIONS//5X,15HMACRO STATEMENT
 ~ SK: 1OHUARIMBILE 1,5K,1OHUARIABLE 2)
 4000 FORIAT(SX;4GH::%PIACR ERROR O1:H: UNBALANCED LOOC,iAKXT MACROS)
 4001 FORNAT(SK,4SHIHPMACR ERROE O2## LOOPS NESTED DEEPER THAN 8)
```



## ORIGINAL PAGETS <br> OF POOR QUALITY

$5001$	FORMAT (1H1, ///fSX, 32HCHECK MESH DATA AND MEMORY SPACE// 10K. $12 H$ NEND $m, I 10 / / 10 X, 12 H J D Y A G(N E Q) m, I 10)$	PMACLET   PMAC128
	END	PMACLES
C		
	SUBROUTINE PZERO(U, MN)	PCER 1
C****	ZERO REAL ARRAY	PRER ${ }^{\text {P }}$
	DIMENSION U(NN)	PEER 3
	DO $100 \mathrm{~N}=1 . \mathrm{NH}$	Pepr a
100	$U(N)=0.0^{\circ}$	pget 5
	RETURN	PRER 6
	END	PEER ${ }^{\text {a }}$
C SUPROUTINE SETMEM( 1 ) SETM 1		
	SUBROUTINE SETMEM( ${ }^{\text {S }}$ ) MEMORY TN BLANK COMMON	SETM 1
C\#art	MIONITOR GUAIABLE MEMORY IN BLANK COMMON COMMON /PRSIZE/ MAX	SETH $\frac{1}{3}$
		SETH 4
	IF (K.LE, MFX) RETURN	GETII ${ }^{\text {S }}$
	WRITE(6,1000) K. HAX	SETM ${ }^{\text {SG }}$
	STOF	SETII ''
1000	FORMAT (5K, 4GH**SETMEN ERROR 01** INSUFFICIENT STORACE IN BLANK*	SETH
		SET1 1
	END	SETII 11
C		
CH**	LOGICAL COHPARISCN	FCOM
CNu*	IF ( $\mathrm{A}-\mathrm{B}) 10,20.10$	PCOM 3
10	PCOIP $=$.FALSE.	PCOM a
	retury	PCOM 5
20	PCOMP = .TRUE.	PCOM 6
	RETUAFN	Penm is
	END	P60\% it
	SUBRDUTINE ACTCOL (A, B, JDIAG, NEQ, AFAC, BACK, ISS)	ACTE 1
Can*	ACTIUE COLUMN PROFILE SYMMETRIC EQUATIUN SOLUER	ACTL
	LOGICAL AFAC, BACK, FLAG	ACTC 3
	DIMENSION $A(1), B(1), J D I A G(1) ~$	ACTC 4
C....	FACTOR A TO UTwDw, REDUCE B	ACTC S
	FLAGE.FALSE.	ACTC 6
	JR $=0$	ACTC ?
	DO 600 $\mathrm{J}=1$, NEQ	ACTC §
	$J D=J D I A G(J)$	ACTC ${ }^{\text {A }}$
	$J H=J \mathrm{~J}-\mathrm{JR}$	ACTC 10
	$I S=J-J H+2$	ACTC 11
	IF (JH-2) 600,300, 100	ACTC 12
100	IF (.NOT. AFAC) GO TO 500	ACTC 13
	$I E=J-1$	ACTC 14
	$K=J R+2$	ACTC 15
	ID $=$ JDIAG( $15-1$ )	ACTC 16
C....	REDUCE ALL EOUATIOAS EXCEPT DIACONAL	ACTC 17
	DO 200 ImIS, JE	ACTC 18
	IR $=$ ID	ACTC 19
	$I D=J$ IAAG (I)	ACTC 20
	$I H=\operatorname{MINO}(I D-I R-1, I-I S+1)$	ACTC 21
	IF (IH,GT, O) $A(K)=A(K)-D O T(A(K-I H), A(I D-I H), I H)$	ACTC 2e
200	$K=K+1$ ( ${ }^{\prime}$	ACTC 23
$\text { C. } 300$	REDUCE DIGOMAL TERM	ACTC ${ }^{\text {a }}$
	IF (.NDT. AFAC) GO TO 500	ACTC 25
	$I R=J R+1$	ACTC 26
	$I E=J D, 1$	ACTC EP
	$K=J-J D$	ACTC 28
	DO $400 \mathrm{I}=1 \mathrm{R}$, IE	ACTC 29
	$I D=J$ IAAC (K+I)	ACTC 30
	IF(A) ID ) 301,400,301	ACTC 31
301	$D=A(I)$	ACTC 32
	$A(I)=A(I) / A(I D)$	ACTC 33
	$A(J D)=A(J D)-D H A(I)$	ACTC 37
400	COMTINUE	ACre 3,
	If ( A ( JD ) $) 450,450,500$	ACTC 36
450	IF (ISS.NE. 0 ) GO TO 500	ACTC 37
	IF (FLAG) G0 T0 465	ACTC 38

```
 WRITE (6, 460)
 460 FORMAT(//50H*HRCTCOL ERROR O1** STIFFNESS MATRIK NOT POSITIUE ,
 1 &HDEFINITE)
 FLAG=.TRUE.
 465 WRITE (G,46G) J,A(JD)
 GEG FORMAT(32H) NUNPOSITIUE PIUOT FOR EQUATIGN ,I4,5X,7HPOUIT =,
 * EC己O.10)
C.... REDUCE RHS
 500 IF(BACK) B(J) = B(J) - DOT(A(JR+1),B(IS-1),JH-1)
 600 JR=JD
 IF(FLAG) STOP
 IF(.NOT.BACK) RETURN
C.... DIUIDED BY DIAGONAL PIUOTS
 DO 7OO I=1, NEO
 ID = JDIAG(I)
 IF(A(ID)) 650,700,650
 650 B(I) = B(I)/A(ID)
 700 CDNTINUE
C.... BACK SUBSTITUTE
 J= NED
 JD = JDLAG(J)
 800 D = B(J)
 J= J-1
 IF(J.LE.0) RETURN
 JR=JDIAG(J)
 IF(ND-JR.LE.1) EO TO 1000
 IS = J-JD + JR + 2
 K=JR - IS + I
 00 300 I=I5,j
 900B(I)=B(I)-A(I+K)*D
 1000 JD = JR
 G0 T0 800
 END
C
 SUBROUTINE ADDSTF(A,S,P,JDIAG,LD,YST,NEL,FLG)
C%*** ASSEMBLE GLOBAL ARRAYS
 LOGICAL FLG
 DIMENSION A(1),S(NST,1),P(1),JDIAG(1),LD(1)
 DO 200 J=1,NEL
 K=LD(J)
 IF(K.EO.O) GO TO 200
 IF(FLG) GO TO 50
 A(K)=A(K)+P(J)
 GO TO 200
 5OL= JDIAG(K)-K
 IO 100 I=1,NEL
 M=LD(I)
 IF(M.GT.K .OR. M.EQ.O) GO TO 100
 M=L+M
 A(N)=A(M)+S(I,J)
 100 CONTINUE
 200 CONTINUE
 RETIJRN
 END
c
 FUNCTION DOT(A,B,N)
C***** UECTOR DOT PRODUCT
 DIMENSION A(1),B(1)
 DOT = 0.0
 DO 100 I=1,N DOT
 100 DOT = DOT + A(I)*B(I)
 RETURN
 END
C
 SUBROUTINE PLOAD(ID,F,B,NN,P)
CM%**
 FORM LOAD UECTOR IN COMPACT FORM
 IIMENSION ID(1):F(1;,B(1)
 DO }100\textrm{N}=1,\textrm{NN
 J=T.D(N)
 IF(J.GT.0) B(J)=F(N)«P
```

ACTC 39
ACTC 40
ACTC 41
ACTC 42
ACTC 43
ACTC 44
ACTC 45
ACTC 46
ACTC 47
ACTC 48
ACTC 49
ACTC 50
ACTC 51
ACTC 52
ACTC 53
ACTC 54
ACTC 55
ACTC 5
ACTC $5 ?$
ACTC 58
ACTC 59
ACTC GO
ACTC E.
ACTC 62
ACTC 63
ACTC 64
ACTC E5
ACTC ES
ACTC 67
ACTC 68
ACTC 69
ACTC 70
ACTC 71
ADDS
ADDS ADDS
ADDS ADDS
ADDS
ADDS
ADDS 8
ADDS 9
ands 10
ADDS 11
adds 12
ADDS 13
ADDS 14
ADDS 15
ADDS 15
ADDS 17
ADDS 18
ADDS 19
ADDS 20
DOT
DOT
DOT
DOT
DOT
DOT
DOT
DOT
PLOA
PLoA
PLOA
ploa
PLOA
PLOA

	ORIGINAL PAGE IS OF POOR QUALITY	134
	RETURN END	PLOA
C END PLOA		
	FUNCTION PKOPLD（T，J）	Prop
CH2木具＊	PROPORTIONAL LOAD TABLE（ONE LOAD CARD ONL Y）	frop
	COMMIN $\mathcal{C T D A T H / ~ O , H E A D ~ ( 2 0 ) , ~ N U M N P , ~ N U M E L , ~ L A Y E R , ~ N E Q , ~ I P R ~}$	PROP
	DIMEMSIDN A（S）	PROP
		prop
C．．．．	INPUT TABLE OF PROPORTIONAL LOADS	Prep
	$I=1$	Prop
	READ（5，1000）K，L，THIN，TMAX，$(A)(K K K), K K K=1,5)$	prop
	WRITE（G，2000）D，HEAD，Y，K，L，TMIN，TMAM，（A KKK），KKK＝1，5）	PRoP
	RETURIY	FROP 10
$\text { C. } 200$	COMPUTE UALUE AT TIME T	FROP 11
	PROPLD $=0.0$	Frop 12
	IF＇（T．LT，TMIN ，OR，T，GT，TMAX）RETURN	PROP 13
	$L=1 / 4 \mathrm{XO}$（L，1）	FROP 14
	PROFLD $=A(1)+A(2) * T+A(3) *(S I N(A(4)+T+A(5))) * * L$	Prop in
	RETURN	Prop 16
$\begin{aligned} & 1000 \\ & 2000 \end{aligned}$	FORMATC（2I5，FF 10．0）	PROP 17
		PROP 14
	1 43H TYPE EXP．MINLMUM TIME MAXIMUM TIIME，13X，2HAL，13X，	Prop 4
		PROF 20
	END	Proup in！
C	SUBROUTINE PRTDIS（UL，ID，$X, B, F, T, N D M, N D F)$	PRTL 1
	OUTPUT MDDAL UALUES	PRTD
	LOGICAL PCOMP	PRTD 3
	CDİITOIY PRROLQD／PROF	PRTJJ 4
	COMMON／CTIJATA O，HEAD（20），NUMMP，NUMEL，LAYER，MEQ，IPR	PRTD
	COMMON $\angle A B E L S / ~ P D I S(G), A(6), B C(2), D I(G), C D(3), F D(3)$	PRTD
	COMMON TMMDATA	PRTD 7
	DIMENSION X（NDM，1），B（1），UL（G），ID（NDF，1），F（NDF，1），T（ 1 ）	PRTD 8
	DATA BL／4HBLAN／	PRTD ${ }^{\text {P }}$
	DO $102 \mathrm{~N}=1 . \mathrm{NUMNP}$	PRTD 10
	IF（PCOMP（ $X(1, N), B L)$ ）GO TO 101	PRTD 11
	DD $100 \mathrm{I}=1, \mathrm{NDF}$	PRTD 12
	$U L(I)=F(I, N)+P R Q P$	PRTD 13
	$K=$ IABS $(1 D(I, N))$	PRTD 14
100	IF（K．GT．0）UL（ 1 ）＝B（K）	PRTD 15
	$T(N)=U L(3)$	PRTD 16
101	CONTINUE	PRTD 17
102	continue	PRTD 18
	WRITE（3，2001）（T（I），I＝1，NUMNP）	PRTD 19
	RETURN	PRTD 20
2001	FGRMAT（6E12．4）	PRTD 21
	END	PRTD 22
		FSTR 1
Cれが为	NST，NNEQ）	FSTR 2
	ELEMENT ROUTINE	FSTR 3
	COMIION／CTDATA／O，HEAD（20），NUMNP NUMEL，LAYER，NEQ，IPR	FSTR 4
	COMIMON／ELDATA／N，NEL，MCT	FSTR 5
	COMMON／ISWIDX／ISW	FSTR G
	COMMON／PROLOD PROP	FSTR 7
	DIMENSION UL（NDF，1），XL（NDM，1），LD（NDF，1），P（1），IX（NEN，1），	FSTR 8
	1 ID（NDF，1）， $\mathrm{K}^{(N D M, 1), F(N D F, 1), \operatorname{JDIAG}(1), D R(1), B(1), S(1)}$	FSTR 9
	IF（ISW．EQ．5）CALL PLOAD（ID，F，DR，MNEQ，PROP）	FSTR 10
	MCT $=0$	FSTR 11
	$\mathrm{DO} 110 \mathrm{~N}=1$ ，NUMEL	FSTR 12
	CALL PFORM（UL，XL，LD，IX，ID，X，F，B，NDF，NDM，NEN，ISW）	FSTR 13
	CALL ELMMTO1（UL，XL，IX（1，N），P，NDF，NDM，NST，ISW）	FSTR 14
	IF（ISW．NE．4）CALL ADDSTF（DR，S，P，JDIAG，LD，1，NEL＊NDF，．FALSE，）	FSTR 15
110	CONTINUE	FSTR 16
	RETURN	Fgite
	END	FSTR 10
C SUBPOUTTHE PFOPM（UL		
	SUBRUUTTINE PFORMKUL，XL，LD，IK，ID，$X, F, U, N D F, N D M, N E N, I S W)$	PFOr， 1
C＊＊＊＊	FORM LOCAL ARRAYS   COMMON／ELDATA／NoNEL．MCT	FFOR ：
	COMMON／ELDATA／NPNEL．MCT	PFOR 3

135

```
 COMMON /PROLOD/ PROP
 DIMENSION UL(NDF,1),XL(NDM, 1),LD(NDF,1),IX(NEN,1),ID(NDF,1),
 X(NDM, 1),F(NDF,1),U(1)
 DO 108 I=1, NEM
 II = IX(I,N)
 IF(II .NE. 0) GO TO 105
 110 103 Ja1.NDH
 103
 104
 KL(J,I) = 0.
 1O 104 J=1,NDF
 UL(J,I) = 0.
 LD(J.I) & 0
 CO TO 108
 105 IID = IINNDF - NDF
 NEL =I
 DO 106 J=1,NDM
 106 XL(J,I) m X(J,II)
 DO 107 J=1,NDF
 K=IABS(ID(J,II))
 UL(J,I) = F(J,II)#PROP
 IF(K.GT.0) UL(J,I)=U(K)
 IF(ISW.EG.G) K=IID+J
 107 LD(N,I) = K
 108 CONTINUE
 RETURN
 END
C
C**** LINEAR ELASTIC IN-PLANE ^ BENDING ELEMENT ROUTINE
 SUBROUTINE ELMTO1(UL,XL,IX,P,NDF,NDM,NST,ISW)
 LOGICAL TAN
 COMMON EELDATA/ N.NEL, NCT
 COMHON FMTDATA, RHO:UH12,EI,E2,G12,G13.G23,THK,WIDTH
 COMMON /COMPST/ ABD(G,6),DS(2,2),OBR(3,3,25),0BS(2,2,25),
 ^ TH(25), 2K(25)
 COMMON /DNIATIX/ D(10),DB(6,6),LINT
 CONION /TMDATA/ TIME,DT,DDT,FORCE, ALPHA
 COMNON rGAUSSP/ SG(16),TG(1G),WG(16)
 COHMON /EXTRAS/ TAN
 DINENSION UL (NDF,1), XL(NDM, 1), IX(1),P(1),SHP(3,12),
 1 SIGT(3),SIGB(3),SIGS(2),EPT(3),EPB(3),EPS(2)
C
 DO 2O L=1,NST
 20 P(L) = 0.0
 C.... COMPUTE NEUTRAL STRAINS AND STRESS RESULTANTS
 L=D(1)
 IF(ISN.EO.4) L=D(3)
 CALL PGAUSS(L,LINT)
 DO GOO LEL,ImNT
C .. COMPUTE ELENENT SHAPE FUNCTIONS
 CALL SHAPE(SG(L),TG(L),XL,SHP,XSJ,NDM,NEL,IX, FALSE.)
c .. COHFUTE gTRAINS AND COORDINATES
 DO 410 IE1,3
 EPT(I) =0.0
 410 EPB(I) = 0.0
 DO 420 I=1.2
 420 EPS(I) = 0.0
 XX=0.0
 YY =0.0
 DO 430 J=1,NEL
 XX = XX + SHP(3,J)#XL(1,J)
 YY = YY + SHP(3,J)*XL(2,J)
 IN-PLANE STRAINS
 EPT(1) = EPT(1) + SHP(1;J)&UL(1,J)
 EPT(2) = EPT(2) + SHP(2,J)+UL(2,J)
 EPT(3)=EPT(3)+SHP(1,J)NUL(2,J) + SHP(2,J)*UL(1,J)
 BENDING CURUATURES
 EPB(1) = EPB(1) - SHP(1,J)#UL(4,J)
 EPB(2)=EPB(2)-SIPP(2,j)MUL(5,j)
 EPB(3)=EPB(3)-SHP(1,J)*UL(5,J)-SHP(2,J)*UL(4,J)
C ..
 SHEARING STRAINS
 EPS(1)=EPS(1)+\operatorname{SHP}(1;J)*UL(3,J)-SHP(3;J)*UL(4,J)
```

```
 430 EPS(2) = EPS(2) + SHP(2,J)MUL(3,J) - SHP(3,J)*UL(5,J)
 IF(ISW.EQ.S.AND.TAN)
 ^ WRITE(9,9001) N,L,(EPB(II),IIm1,3),(EPS(II),I=1,2)
9001 FORMAT(PIG.5EIE.4)
C .. CONPUTE STRESS RESULTANTS
 10 440 I=1,3
 SICT(I) = 0.
 SICB(I) =0.
 10 440 J=1.3
 SIMT(I) = SIGT(I) + ABD(I,J)NEPT(J) + ABD(I, J+3)HEPB(J)
 440 SIGB(I) = SIGB(I) + ABD(I+3,J)MEPT(J) + ABD(I+3, J+3) WEPB(J)
 n0 450 I=1,0
 SIGS(I) =0.
 DO 450 J=1,2
 450 SIGS(I)=SIGS(I) + DS(I.J)*EPS(J)
 IF(ISW.GT.4) GO TO G20
C .. QUTPUT STRESS RESULTANTS AND STRAINS
 MCT : MCT - 2
 IF(NCT.GT.0) GO TO 47O
 WRITE(G,2001) TINE
 MCT Ez 50
 4TO WRITE(G,5OD2) N, XX,YY,EPT,EPB,EPS,SIGT,SIGB,SIGS
 60 T0 600
C.... COMPUTE INTERAL FORCES
 G20 DU = XSJNWC(L)
 J1=1
 DO G10 J=1,NEL
 P(J1) = P(J1) - (SHP(1,J)*SIGT(1)+SHP(2,J)#SJGT(3))*DU
 P(J1+1)=P(J1+1) - (SHP(2,J)HSIGT(2)+SHP(1, J)*SIGT(3))#DU
```



```
 P(\sqrt{}{\prime}+3)=P(J1+3)+{SHP(1,J)NSIGGB(1)+SHP(2,J)+SIGB(3)+SHP(3,N)
 *SIGS(1)) #DU
 P(J1+4)=P(J1+4) + (SHP(2,J)+SIGB(2)+SHP(1:J)HSIGB(3)+SHP(3,J)
 n
 610 J1 = J1 + NDF
 GOO CONTINUE
 RETURN
C
 2001 FORMAT(1H1,/)
 \ 5X.GHTINE =,E12.3//5X.33HELEMENT STRAINS/STRESS RESULTANTS//
 1 GH ELEMENT, 3X,7H1-CODRD; 3X,7H2-COORD,4X, GNXX-STRAIN, 4X,
 2 GHYY-STRAIN, 4K, SHXY-STRAIN, 3X, 1OHKXX-STRAIN, 3X,
 3 1OHKYY-STRAIN, 3X, 1OHKXY-STRAIN, 4X, SHSX-STRAIM, 4X,
 4 SHSY-STRAIN/28K, 8(GX.7H-STRESS)/)
 2002 FORMAT (IB,2F10.4,8E13.4/28X,8E13.4)
 END
C
C**** SUBRQUTINE PGAUSS(LL,LINT)
 COMMON /GAUSSP/ SG(1G),TG(16),WG(16)
 DIMENSION LIR(9),LZ(9),LH(9),WR(2),GR(2),GC(2)
 DATA LRR - 1,1,1,-1,0,1,0,-1,0人,LZ,<-1,-1,1,1,-1,0,1,0,0,
 DATA LW/4#25,4*40,64/
 DATA GR/0.861136311594053,0.339981043584856/
 DATA GC/1.0.0.3333333333/
 DATA INR/0.347854845137454,0.652145154862546,
 LINT = LLLHLL
 L=IABS(LL)
 GO TO (1,2,3,4),L
C.... IXI INTEGRATION
 1 SG(1)=0.
 TG(1)=0.
 WG(1) = 4.
 RETURN
C.... EXE INTEGRATION
 2G=1./SORT(3.)
 IF(LL.LT.0) Ged.
 DO 21 I=1,4
 SG(I) = G*LR(I)
 TG(I) = G*LZ(I)
```

ELMT 45
ELMT 45
ELMT AT
ELMT 4E
ELMT 49
ELAT fir
ELMT as
Elat b:c
ELIT LS
El, HT :
ELITT
CLHT :
ELIT $\mathrm{H}^{\prime}$
Ebill ta
ELITT : 2
Elat 6
ELITT CI
ELAT $\mathrm{B}_{2}$ ?
ELMT
ELHT G:
ELIIT O:
ELii
ELMT $6{ }^{\circ}$
ELHT OE
ELMT (:i)
ELMT Pu
ELIIT P1
ELMT PB
ELH1 3
ELHT Tif
ELMT 75
ELMT 76
ELHT $7 i^{\circ}$
ELHT TO
ELIMT 7
ELMT 80
ELMT 131
ELMT EA?
ELHT 83
ELMT 84
ELMT 日K
ELMT 96
ELMT 07
ELMT 83
ELMT 89
ELMT 90
PGAU
PGAL
PGAU
PGAU
PGAL
PGAU
PGAL
PGAU 8
PGAU 9
PGALI 10
PGAL 11
PGAU 12
PGAU 13
PGAU 14
PGAU 15
PGAU 16
PGAU 17
PGAU 18
PGAU 10
PGAU 20
PCol ćl.
PGAU 22
PGAU 23

```
 21.HG(I) 1. PGAU 24
 RETURN
C.... 3X3 INTEGRATION
 G = SORT(0.6)
 IF(Ll.,LT,0) G=1.
 H=1./81.
 DO 31 Im1,9
 SG(I) = G*LR(I)
 TG(I) =G*LZ(I)
 31 HG(I) = H+LH(I)
 RETURN
C.... }4\times4\mathrm{ INTEGRATION
 DO 41 I=1,4
 II = 1+MOD(I+1,2)
 I2 =1
 IF(I.GT.2) IE =2
 DO 41 J=1,4
 J = (I-1)*4+J
 SG(JJ)=LR(J)#GR(II)
 IF(LL.LT.0) SG(JJ)=LR(J)*GC(II)
 TG(JJ)=LZ(J)*GR(I2)
 IF(LL.LT.0) TG(JJ) m LZ(J)*GC(I2)
 4 1
 WG(JJ) = WR(II)#WR(IE)
 RETURN
 END
C
 SUBROUTINE SHAPE(SS,TT,X,SHP,XSJ,NDM,NEL,IX,FLGG)
C##*H SHAPE FUNCTION ROUTINE FOR TWD DIMENSIONAL ELEMENTS
 LOGICAL FLG
```



```
 DATA S/ -0.5,0.5,0.5,-0.5/,T/-0.5,-0.5,0.5,0.5/
C.... FORM 4-NODE QUADRILATERIAL SHAPE FUNCIIONS
 DO 100 I=1,4
 SHP(3,I)=(0.5+S(I)*SS)*(0.5+T(I)*TT)
 SHP}(1,I)=S(I)+(0.5+T(I)*TT
 100 SHP(2,I)=T(I)*(0.5+S(I)*SS)
 IF(NEL,GE,4) CO TO 120
C.... FORM TRIANGLE BY ADDING THIRD AND FOURTH TOGETHER
 DO 110 I=1,3
 110 SHP(I,3)=SHP}(1,3)+SHP(1,4
C.... ADD QUADRATIC TERMS IF NECESSARY
PGAU 25
PGAU
pgal
PGAU 27
PGAU 28
PGAL 29
PGAU 30
PGAU 31
PGAL 32
PGAU 33
PGAU 34
PGAU 35
PGAU 36
PGAU 37
PGAU 38
PGAU 39
PGAU 40
PGAU 41
PGAU 42
PGAU 43
PGAU 44
PGAU 45
PGAU 46
PGAL 47
PGAU 48
SUBROUTINE SHAPE (SS,TT, X, SHP, XSJ, NDM, NEL, IX, FLG)
CH\#* SHAPE FUNCTION ROUTINE FOR TWO DIMENSIONAL ELEMENTS LOGICAL FLG
```



```
DATA SR-0. \(0.0 .0 .5,-0.5,1,-0.5,-0.5,0.5,0.5\)
DO \(100 \mathrm{I}=1,4\)
\(\operatorname{SHP}(3, I)=(0.5+S(I) * S 5) *(0.5+T(I) * T T)\)
\(\operatorname{SHP}(1, I)=S(I)+(0.5+T(I) * T T)\)
IF (NEL.GE,4) CO TO 120
C.... FORM TRIANGLE BY ADDING THIRD AND FOURTH TOGETHER
DO \(110 \quad I=1,3\)
C.... ADD QUADRATIC TERMS IF NECESSARY
SHAP 1
SHAP
SHAP
SHiHf
SHAP
SHAP
SHAP
SHAP
SHAP
SHAP 10
SHAP 1
SHAP 12
SHAP 1
SHAP 14
120 IF (NEL.CTT. 4 . AND. NEL.LT. 10) CALL SHAPD(SS,TT,SHP, IX, NEL)
C.... ADD CUBIC TERMS IF NECESSARY
SHAP 1
SHAP 16
SHAP 17
IF (NEL,GT.9) CALL SHAP3(SS,TT,SHP, IX, NEL)
C.... CONSTRUCT JACOBIAN AND ITS INUERSE
DO \(130 \mathrm{I}=1\), NDM
DO \(130 \mathrm{~J}=1,2\)
\(X S(I, J)=0.0\)
DO \(130 \mathrm{~K}=1\), NEL
130 KS(I, J) \(=X S(I, J)+K(J, K) * S H P(I, K)\)
XSJ \(=\) XS(1,1) \(3 久 5(2,2)-X S(1,2) * X S(2,1)\)
IF (YSJ.GT, 0,00000001) GO TO 135
WRITE (G.2000) IK
C STOp
135 IF (FLG) RETURN
\(5 \times(1,1)=X S(2,2) / X S J\)
\(5 x(2,2)=x 5(1,1) / x 5\rfloor\)
\(5 \times(1,2)=-x 5(1,2) / X 5 J\)
SX(2,1) \(=-\times 5(2,1) / 85\rfloor\)
C.... FORM GLOBAL. DERIUATIUES
DO \(140 \mathrm{I}=1\), NEL
SHAP 18
SHAP 19
SHAP 20
SHAP 21
SHAP 22
SHAP 23
SHAP 24
SHAP 25
SHAP \(2 G\)
SHAP 27
SHAP 28
SHAP 29
SHAP 30
SHAP 31
SHAP 32
SHAP 33
SHAP 34
SHAP 35
\(T P=\operatorname{SHP}^{(1, I)}(1, I S X(1,1)+S H P(2, I)=5 X(2,1)\)
\(\operatorname{SHP}(2, I)=\operatorname{SHP}(1, I)+S X(1,2)+S H P(2, I) \sharp S X(2,2)\)
140
\(\operatorname{SHP}(I, I)=T P\)
RETURN
SHAP 3
SHAP 37
SHAP 30
SHAP 39
2000 FORMAT(5K, G7H*HSHAPE ERROR O1** ZERD OR NEGATIUE JACOBIAN DET. FOR ヘELEMENT NODES: /20X,12I4)
END
SHAP 40
SHAP 41
SHAP 42
C
SLBRROUTINE SHAPZ(S,T,SHP,IX,NEL)
SHAP

138
\begin{tabular}{|c|c|c|}
\hline CW\#** & ADD QUADRATIC FUNCTIONS AS NECESSARY DIMENSION IX(9), SHP (3, 12) & \begin{tabular}{l}
SHAP \\
SHAP \\
\\
\hline
\end{tabular} \\
\hline & St \(=(1,-5+3)<2\). & SHAP 4 \\
\hline & T2 \(=(1 .-T * T) / 2\). & SHAP S \\
\hline & DO 100 Im 5 , NEL & SHAP 6 \\
\hline & DO \(100 \mathrm{~J}=1.3\) & SHAP ? \\
\hline 100 & SHP(J, I) = 0.0 & CHAP 0 \\
\hline C.... & MIDSIDE NODES (SERENDIPITY) & SHAP 9 \\
\hline & IF (IX 5).EQ.0) C0 TO 101 & SHAP 10 \\
\hline & \(\operatorname{SHP}(1,5)=-S^{*}(1,-T)\) & SHAF 11 \\
\hline & \(\operatorname{SHP}(2,5)=-52\) & SHAP 12 \\
\hline & \(\operatorname{SHP}(3,5)=52 H(1 .-T)\) & SHAP IS \\
\hline 101 & IF (NEL.LT. 6) G0 TO 107 & SHAP 14 \\
\hline & IF (IX(G).EQ,0) CO TO 102 & SHAP 15 \\
\hline & \[
S H P(1,6)=T 2
\] & SHAP 16 \\
\hline & SHP \((2,6)=-T+(1 .+5)\) & SHAP 17 \\
\hline & \(\operatorname{SHP}(3,6)=T 2 H(1,+5)\) & SHGF 16 \\
\hline 102 & IF (NEL.LT. 7) CO TO 107 & SHAP 19 \\
\hline & IF (IX (7).EO, O) GO TO 103 & SHAP CO \\
\hline & SHP (1, 7) \(=-54(1,+T)\) & SHAP 21 \\
\hline & SHP \((2,7)=52\) & SHAR \({ }^{\text {S }}\) \\
\hline & SHP \((3,7)=\operatorname{S2H}(1 .+T)\) & SHAF 23 \\
\hline 103 & IF (NEL.LT. 8) 60 TO 107 & SHAF \({ }^{\text {at }}\) \\
\hline & IF (IX \({ }^{(8), E Q, 0) ~ G O T O ~} 104\) & SHAP E5 \\
\hline & \(\operatorname{SHP}(1,8)=-T 2\) & SHAP 25 \\
\hline & \(\operatorname{SHP}(2,8)=-T+(1,-S)\) & SHAP 2 P \\
\hline & \(S H P(3,8)=T 2 \#(1,-5)\) & SHAP E\% \\
\hline C. . . & INTERIOR NODE (LAGRANGIAN) & SHAP 29 \\
\hline 104 & IF (NEL.LT.9) 60 T0 107 & SHAP 30 \\
\hline & IF (IX (9).EQ.0) GO TO 107 & SHAP 31 \\
\hline & \(\operatorname{SHP}(1,9)=-4 . * S H T 2\) & SHAP 32 \\
\hline & SHP (2,9) \(=-4\). *T\#S2 & SHAP 33 \\
\hline & \(\operatorname{SHP}(3,9)=4,452 * T 2\) & SHAP 34 \\
\hline C.... & CORRECT EDGE NODES FOR INTERIOR NODE(LAGRANGIAN) & SHAP 35 \\
\hline & DO \(106 \mathrm{~J}=1,3\) & SHAP 36 \\
\hline & DD \(105 \mathrm{I}=1,4\) & SHAP 37 \\
\hline 105 & \[
S H P(J, I) \equiv S H P(J, I)-0.254 S H P(J, 9)
\] & SHAP 38 \\
\hline & DO \(106 \mathrm{I}=5,8\) & SHAP 39 \\
\hline 106 & IF (IX (I).NE.0) SHP (J, I) \(=\operatorname{SHP}(J, I)-0.5 * S H P(J, 9)\) & SHAP 90 \\
\hline C.1.: & CORRECT CORNER NODES FOR PRESENCE OF MIDSIDE NODES & SHAP 41 \\
\hline 107 & \(K=8\) & SHAP AC \\
\hline & D0 \(109 \mathrm{I}=1.4\) & SHAP 43 \\
\hline & \(L=I+4\) & SHAP 44 \\
\hline & D0 \(108 \mathrm{~J}=1,3\) & SHAP 45 \\
\hline 108 & \(\operatorname{SHP}(J, I)=\operatorname{SHP}(J, I)-0.5 *(S H P(J, K)+\operatorname{SHP}(J, L))\) & SHAP 46 \\
\hline 109 & \(K=L\) & \[
\text { SHAP } 47
\] \\
\hline & RETURN & SHAP 48 \\
\hline & END & SHAP 49 \\
\hline C & & \\
\hline & SUBROUTINE SHAP3(S,T,SHP,IX,NEL) & SHAP I \\
\hline C**** & ADD CUBIC FUNCTIDN AS NECESSARY (SERENDIPITY) DIMENSION IX(12), SHP \((3,12)\) & \(\begin{array}{ll}\text { SHAP } & 2 \\ \text { SHAP } & 3\end{array}\) \\
\hline & DO \(100 \mathrm{I}=5\), NEL & SHAP 4 \\
\hline & \[
\text { DO } 100 \quad j=1,3
\] & SHAP 5 \\
\hline 100 & \[
\operatorname{SHP}(J, I)=0.0
\] & SHAP G \\
\hline 100 & IF(IX(5).EQ.0) GO TO 101 & SHAP ? \\
\hline & \(51=-1.13\). & SHAP 8 \\
\hline & T \(1=-1\). & SHAP 9 \\
\hline & CALL CSHAPE (S, T, S1, T1, SHP, 1,5) & SHAP 10 \\
\hline 101 & IF (IX (6), EQ.0) CO TO 102 & SHAP 11 \\
\hline & \(51=1\). & SHAP 12 \\
\hline & \[
T 1=-1 . / 3 .
\] & SHAP 13 \\
\hline & CALL CSHAPE (S, T, S1, T1, SHP, 2,6) & SHAP 14 \\
\hline 102 & IF (IX(7).EQ.0) CO TO 103 & SHAP 15 \\
\hline & \(\mathrm{S} 1=1.13\), & SHAP 16 \\
\hline & \(\mathrm{T}=1\). & SHAP 17 \\
\hline & CALL CSHAPE (S, T, S1, T1, SHP, 1, 7) & SHAP 13 \\
\hline 103 & IF(IX(8).EQ.0) GO TO 104 & SHAP 19 \\
\hline & \[
S_{1}=-1
\] & SHAP 20 \\
\hline & \[
T 1=1 . / 3 .
\] & SHAP 21 \\
\hline
\end{tabular}

139
```

    CALL CSHAPE(5,T,S1,T1,SHP,2,8)
    104 IF(IX(9).EQ.0) GD TO 105
    SI=-1,
    T1=-1,/3.
    CALL CSHAPE (S,T,S1,T1,SHP,2,9)
    105 IF(NEL.LTT.10) GO TO 200
    IF(IK(10).EO.0) CO TO 106
    S1=1./3.
    \eta'1=-1.
    CALL CSHAPE(S,T,S1,T1,SHP,1,10)
    106
    IF(NEL.LT.11) GO TO 200
    IF(IX(11).EQ.0) GO TO 107
    S1=1.
    T1=1,/3.
    CALL CSHAPE(S,T,S1,T1,SHP,2,11)
    107 IF(NEL.LT.12) GO TD 200
    IF(IX(12).EQ.0) GO TO 200
    S1=-1./3.
    T1=1.
    CALL CSHAPE(S,T,S1,T1,SHP,1,12)
    C.... CORRECT CORNER MODES
200 DO 210 I=1,4
II=I+4
I2=I+8
IF(I.EQ.1) IB=I+T
IF(I,GT,1) I3=I+3
IF(I.LY'.4) I4=I+9
IF(I,EQ,4) I4=I+5
10 210 d=1;3
210 SHP(J,I)=SHP(J,I)-2./3.*(目P(J,II)+SHP(J,Ita))-1./3.*(SHP(J,I3)
n +SHP(J, I4))
RETURN
END
C
C*\#**
SUBROUTINE CSHAPE(S,T,S1,T1,SHP,K,L)
SUPPLEMENTAL ROUTIME FOR THE SHAPE FUNCTIONS
DIMENSION SHP(3,12)
C=9./32.
GO TO (1,2),K
\& SHP(1,L)=C*(1.+T1*T)*(9.*S1-2.*S-27.*S1*S*S)
SHP(2,L)=C*T1**(1.-S*S)*(1.+9.*S1*S)
SHP(3,L)=C*(1.+T1*T)*(1,-S*S)*(1.+9.*S1*S)
RETURN
2
SHP}(2,L)=C*(1.+51\#S)*(5.*T1-2.*T-27.*T1*T*T)
SHP(3,L)=C*(1.+S1*S)*(1.-T*T)*(1.+9.*T1*T)
RETURN
END
SUBROUTINE PMESH(IDL,XL,IY,ID,X,F,JDIAG,NDF,NDM,NEN,NKM)
C****
INPUT MESH DATA
LOGICAL PRT,ERR,PCOMP
COMMON /CTDATA/ O,HEAD(20), NUMNP,NUMEL,LLAYER,NEQ, IPR
COMMON MTDATA/ RHD,UU12,E1,E2,G12,G13,GE3,THK,WIDTH
COMMOH \ABELSS PDIS(G),A(G),BC(2),DI(G),CD(3),FD(3)
COIMON /EXDATA' OLAW(4)
COMMON /RODATAR UR,IO,NDS
DIMENSION IDL(E),XL(Y),IX(NEN,1),ID(NDF,1),X(NDM,1),
F(NDF,1),DUM(1),WD(13),JDIAG(1)
AHEND , 4HPRIN, 4HNOPR, 4HPAGE, 4HEXPE/
DATA BL/4HBLAN/,LIST/11/,PRT/.TRUE./
INITIALIZE ARPAYS
ERR = .FALSE.
DO 501 I=1,4
501 OLRW(I)=0.
DO 502 M=1,NUMNP
DO 502 I=1,NDF
ID(I,N)=0
F(I,N)=0.

	0	
	$\underline{10}$	
		$0$

```

\section*{502 CONTINUE}
C. ... READ A CARD AND COMPARE WITH MACRO LIST
\(10 \operatorname{READ}(5,1000) \mathrm{CC}\)
DO 20 I*I,LIST
20 IF(PCOMP(CC, \(\mathrm{HD}(\mathrm{I})\))) GO TO 30
GO to 10
30 CO TO (\(1,2,3,4,5,6,7,8,9,11,12\)), I
C.... NODAL CDORDINATE DATA INPUTT

DO \(102 \mathrm{~N}=1\), NUMNP
\(102 X(1, N)=B L\)
CALL GENUEC(NDM, XL, \(X, C D, P R T, E R R\))
GO TO 10
C...... ELEMEMT DATA INPUT

DO \(20 \mathrm{I}=1\), \(\mathrm{HL} M \mathrm{MEL}, 50\)
IF (PRT) WRTKE (G,2001) O, HEAD, (K,K=1, NEN)
\(J=\) HINO (IUMMEL. I +49)
DO \(206 \mathrm{M}=\mathrm{I}\), J
IF (L-N) 200,202, 203
\(200 \operatorname{READ}(5,1001) \mathrm{L},(I D L(K), K=1\), NEN \(), L X\)
IF(L.EG.0) L=NUMEL +1
IF (LX.EQ.0) \(L X=1\)
IF \((L-H)\) 201,202,203
201 WRITE (6,3001) L,N
ERR = TRUE.
60 TO 206
\(202 N X=L X\)
DO \(20 \% \mathrm{~F} k=1\), NEN
207 IX (K,L) \(=\operatorname{IDL}(K)\)
GO TO 205

DO \(204 K=1\), MEN
\(I X(K, N)=I X(K, N-1)+N X\)
\(204 \operatorname{IF}(I X(K, N-1), E Q, 0) I X(K, N)=0\)
205 IF (PRT) WRITE (G, 2002) \(\mathrm{N}_{\mathrm{D}}(I X(K, N), K=1, N E N)\)
20 g CONTINUE
GO TO 10
C.... MATERIAL DATA INPUT

3 WRITE (G, 2004) D, HEAD
Call matlib
GO TO 10
C... 4 READ IN THE RESTRAINT CONDITIONS FOR EACH NODE

4 IF (PRT) WRITE (6,2000) D, HEAD, (I, BC, I=1, NDF)
\(N=0\)
\(N G=0\)
\(420 L=N\)
\(L G=N G\)
READ (5,1001) N,NG, IDL
IF(N.LE. 0 OR. N.GT.NUMNP) GO TO 50
Do \(41 \mathrm{I}=1\), NDF
\(\operatorname{ID}(1, N)=\operatorname{IDL}(\mathrm{I})\)
\(41 \mathrm{IF}(\mathrm{L} \cdot \mathrm{NE}, 0\). AND. IDL(I).EQ. 0 .AND. ID(I,L),LT.0) ID(I,N) \(=-1\)
LG \(=\) ISIGN(LG,N-L)
\(42 L=L+L G\)
IF (\((N-L)\) mLG .LE. 0\()\) GO TO 420
DO \(43 \mathrm{I}=1\), NDF
\(43 \mathrm{IF}(\operatorname{ID}(\mathrm{I}, \mathrm{L}-\mathrm{LG})\).LT. 0\() \quad \mathrm{ID}(\mathrm{I}, \mathrm{L})=-1\)
co to 42
50 DO \(48 \mathrm{~N}=1\), NUMMP
DO \(46 I=1\), NDF
46 IF (ID(I,N) .NE, 0) GOTO 47 GO TO 48
\(47 \operatorname{IF}(P R T)\) WRITE (6,2007) \(\mathrm{N},(\mathrm{ID}(\mathrm{I}, \mathrm{N}), I=1, \mathrm{NDF})\)
48 CONTINUE
GO TO 10
C.". 5 CALL GENUECCNDF, DATA INPUT

GO TO 10
C.... END OF MESH DATA INPUT
c.... CDMPUTE THE PROFILE OF GLOBLE ARRAYS

```

ORICINAL FTMRIN
OF POOR QUALITY

```
 7 IF(ERR) STOP
```

    7 IF(ERR) STOP
    CALL PROFIL(JJIIRG, ID, IX,NDF, NEN,HKM, PRT)
    CALL PROFIL(JJIIRG, ID, IX,NDF, NEN,HKM, PRT)
    RETURN
    RETURN
    CAum PRENT OPTION
CAum PRENT OPTION
O PRT = ,TRUE.
O PRT = ,TRUE.
GO TO 10
GO TO 10
C.... MOPRINT OPTION
C.... MOPRINT OPTION
OPRT FALSE.
OPRT FALSE.
GO TO }1
GO TO }1
t.... REGD IN PAPER EJECTION OPYION
t.... REGD IN PAPER EJECTION OPYION
Li RERD(5.2000) O
Li RERD(5.2000) O
50 TO 10
50 TO 10
C.... INPUT EXPERINENTAL INDENNATIUN LAW
C.... INPUT EXPERINENTAL INDENNATIUN LAW
12 READ(5,1007) (GLAW(I), IF1,4)
12 READ(5,1007) (GLAW(I), IF1,4)
WRTTE(G,2008) D,HEAD,(OLAW(I),I=1,d)
WRTTE(G,2008) D,HEAD,(OLAW(I),I=1,d)
G0 TO }1
G0 TO }1
C.,.: INPUT INITIAL INPACT CONDITION
C.,.: INPUT INITIAL INPACT CONDITION
3) WRTYE'(G, 2009) O,HEAD
3) WRTYE'(G, 2009) O,HEAD
READ(S, 1002) NQ, INDF,UR
READ(S, 1002) NQ, INDF,UR
WRITE(G,2010) NG,INDF,UR
WRITE(G,2010) NG,INDF,UR
F(INDF,N(N)=4.0
F(INDF,N(N)=4.0
IO=ID(TNDF, N(i)
IO=ID(TNDF, N(i)
GO TO 10
GO TO 10
C.... INFUYGOUTRUT FORMATS
C.... INFUYGOUTRUT FORMATS
1000 FaRNAT(A4,YSK,AJ)
1000 FaRNAT(A4,YSK,AJ)
1001 FORMAT(1GI5)
1001 FORMAT(1GI5)
100E FOMMAT(ETSNF10.0)
100E FOMMAT(ETSNF10.0)
1007 FORNAT(4F10.0)

```
```

    1007 FORNAT(4F10.0)
    ```
```




```
```

    2001 FORMAT (AL, EOAM//SX, BHELENENTS%/GX, HHELETEHT,
    ```
```

    2001 FORMAT (AL, EOAM//SX, BHELENENTS%/GX, HHELETEHT,
        ~ 14(13,5H NODE)P(2OX, 14(13.5H MODE)))
        ~ 14(13,5H NODE)P(2OX, 14(13.5H MODE)))
    2002 FORNAT(110,1418/(10X,1418))
    2002 FORNAT(110,1418/(10X,1418))
    EOO4 FORMAT(AL.2OA4//5X, LSHMATERIAL PROPERY'LES)
    EOO4 FORMAT(AL.2OA4//5X, LSHMATERIAL PROPERY'LES)
    2007 FORMAT(T10.GI13)
    2007 FORMAT(T10.GI13)
    2008 FORNAT(A1, 2OA4//5X, WEXPERINENTAL INDENTATION LAWWE//
    2008 FORNAT(A1, 2OA4//5X, WEXPERINENTAL INDENTATION LAWWE//
        I IOX, XCONTACT COEFFICIENT: M, EIE.4,
        I IOX, XCONTACT COEFFICIENT: M, EIE.4,
                1OX,WCRITICAL INDENTATSON: EJE.4'
                1OX,WCRITICAL INDENTATSON: EJE.4'
                10x, #ONSTANT S: % #NE.4/
                10x, #ONSTANT S: % #NE.4/
        4 10%, #POLER INDEX OF UNLOADING LAW:X F12.3)
        4 10%, #POLER INDEX OF UNLOADING LAW:X F12.3)
    300. FORMATS5X, ESHMFPMESH ERROR OL** ELENENT, IS.
    300. FORMATS5X, ESHMFPMESH ERROR OL** ELENENT, IS.
    Z ZEH ARPEARS AFTER ELEMEMT,I5)
    Z ZEH ARPEARS AFTER ELEMEMT,I5)
    cODS FORNAT{AL,2OA4,%/5X, MTMPACT OF LAMINATED PLATEEN
    cODS FORNAT{AL,2OA4,%/5X, MTMPACT OF LAMINATED PLATEEN
    2OLO FORNATS/10X, mIMPACT NODAL POINT: m,110/
    2OLO FORNATS/10X, mIMPACT NODAL POINT: m,110/
        n IDN, WINPGCT D.O.F:% M, MIO/
        n IDN, WINPGCT D.O.F:% M, MIO/
        END 1OX,FXNITIAL INPACT UELOCITY:N,EL2.4)
        END 1OX,FXNITIAL INPACT UELOCITY:N,EL2.4)
    C
C
SUBROUTINE GENUEC(NDM,XL, K,CD,PRT,ERR)
SUBROUTINE GENUEC(NDM,XL, K,CD,PRT,ERR)
CH\#** GENERATE: REFL IATA AIRRAYS BY LINEAR INTERPOLATION
CH\#** GENERATE: REFL IATA AIRRAYS BY LINEAR INTERPOLATION
LGGICAL PRT,ERR,PCONP
LGGICAL PRT,ERR,PCONP
CONMON CTIBATAY OPHEAD(2O),NUMNP,NUMEL,LAYER, NEQ, IPR
CONMON CTIBATAY OPHEAD(2O),NUMNP,NUMEL,LAYER, NEQ, IPR
DIMENSIOH X(MDM, 1),XL(P),CD(3)
DIMENSIOH X(MDM, 1),XL(P),CD(3)
DATA BL/AHBLAN/
DATA BL/AHBLAN/
N}=
N}=
NG=O
NG=O
102
102
l.ceng
l.ceng
REMD(5,1000) N,NG,XL
REMD(5,1000) N,NG,XL
IF(N.LE.O .OR. N.GT.NUMNP) GO TO 108
IF(N.LE.O .OR. N.GT.NUMNP) GO TO 108
DO }103\mathrm{ I=1,NDM
DO }103\mathrm{ I=1,NDM
103 X(I,N)mXL(I)
103 X(I,N)mXL(I)
IF(LG) 104,102,104
IF(LG) 104,102,104
104 LGmISMGN(LG,N-L)
104 LGmISMGN(LG,N-L)
LIm(IABS(N-L+LG)-1)/IABS(LG)
LIm(IABS(N-L+LG)-1)/IABS(LG)
DO 105 I=1,NDM
DO 105 I=1,NDM
105 XL(I)m(X)I;N)=N(INL))んLI
105 XL(I)m(X)I;N)=N(INL))んLI
105 LEL+LLG
105 LEL+LLG
IF((N-L)+LG .LE. O) 60 TO 102
IF((N-L)+LG .LE. O) 60 TO 102
IF(L.LE:O .OR, L.GT.NUNNP) GO TO 110
IF(L.LE:O .OR, L.GT.NUNNP) GO TO 110
DO 10% IOL,NDM

```
 DO 10% IOL,NDM
```

HF(ERR) GTOp
C

```SUBRROUTINE GENUEC(NDM, XL, X,CD, PRT, ERRS
```105 LeLtLC
```

IF ($(N-L)+H_{L G}$.LE. O) GO TO 102
DO 107 IEL, NDM

```LOGICAL PRT, ERR, PCOMP
```

DIMENSIOH X(ADM, 1), XL(7) $\operatorname{CD}(3)$ 4
5

```\(\mathrm{N}=0\)L.Ceng-
```

PMES 92PHES 93PMES 94PNES 95PHES 95PNES 97
PMES 98PMES 99PMES100
PMESIO1PMESSLO2PMESL03
FMESS104PMESI05PMES106
PMESLDO
PIUES109PMESII
PMESLI2
PNESL13
PNES 1.4PMESII:
PMESLIGPMESLIPPMESLIBPresils
PMES 120
PMEDI2:PMESL2e
pMESIE3
PNISSI24PMESI2SPMESIC?
pMESLe8pHESI2s
PMESI30presial
PMESI32pHES134PNESI35
PMES 136PMESIOTgenuCENU
genu 1912367GENU 20GENU 21GENU 22eGENU 23

```
    107 X(I,L)mX(I,L-LG)+XL(I)
    GO TO 10G
    110 WRITE(G,3000) L,(CD(I),I*1,3)
        ERR m TRUE,
        GO TO 102
    108 DO 109 ImI, NUNMP,50
        IF(FRT) NRITE(G,2000)D,HEAD, (CD(L),Lm1,3),(L,CD(1),CD(2),Lsm,NDN)
        N= MINO(NUMNP,I+4S)
        DO 1CG JmI,N
    IF (PCOMP(X (1, J),BL) , AND. PRT) WRITE (G,200g) N
    IF(.NOT.PCOMP(X(1,J),BL).AND,PRT) WRITE(G,2009) J, (X(L,J),L=1,NDM)
    RETURN
1000 FORMAT(2I5,7F10.0)
2000 FORMAT(A1, 2OA4//SK, 5HNODAL, 3A4//GX, 4HMODE,9(IT,A4,A2))
2CJB FORMAT(5X,21H*HGENUEC WARNING OL*H,I1O,
    O 32H HAS NOT BEEN INPUT OR GENERATED)
2009 FORMAT(I 10,9F13.4)
3000 FORMAT'SX,44H*#GENUEC ERROR O1H*ATTEMPT TO GENETATE NODE,IS;
    LENO 3H INY, 3A4)
C
C****
    SUBROUTINE PROFIL.(JDIAG,ID,IX,NDF,NEN,NKM, PRT)
    COMPUTE PROFILE DF GLOBAL ARRAYS
        LOTILCAL PRT
        COMMON /CTDATA/ O,HEAD(2O), NUMNP, NUMEL, LAYER, NEO, IPR
        DIMENSION JDIAG(1),ID(NDF,1),IX(NEN,1), EQ(2)
        DATA EO/4H DOF, EH./
C.... SET UP THE EQUATION NUMIBERS
    NEG 0
    DO 50 N=1, NUMNP
    DO 40 Im I,NDF
        J=ID(IeN)
        IF(J) 30,20,30
    2O NEQ = NEO + 1
    ID(I,N) = NEQ
    JDIAG(NEO)=0
    GO TO 40
    30 ID(I,N)=0
    40 CONTINUE
    50 CONTINUE
        IF(.NOT.PRT) GO TO 7O
        WRITE(G,2000) D,HEAD, (I,EQ,I=1,NDF)
        DO 60 I=1,NUPav
    GO WRITE(G,2001) I, (ID(K,I),K=1,NDF)
C.... COMPUTE COLUNN HEIGHTS
    70 DO 500 N=1, NUNEL
    DO 400 I=1,NEN
    II=IX(IPN)
    IF(II .EQ, O) CO TO 400
    DO 300 Km1.NDF
    KK =ID(K,II)
    IF(KK.EQ.O) GO TO 300
    DO 200 J=I,NEN
    J= IX(J,N)
    IF(JJ.EQ.O) GO TO 200
    DO 100 L=1.NDF
    LL = ID(L.JJ)
    IF(LL.EO.O) GO TO }10
    M = NAXO(KK,LL)
    JDIAG(M) = MAXO(JDIAG(M),IABS(KK-LL))
    100 CONTINUE
    2OO CONTINUE
    300 CONTINUE
    400 CONTINUE
    500 CONTINUE
C.... COMPUTE DIAGONAL POINTERS FOR PROFILE
    NKM =1
    JDIAG(1) =1
    IF(NEQ.EQ.1) RETURN
    DO 600 N=2,NEG
```


ORIGINAL PIGEE IS
 OF POOR QUALITY

```
    600 JDIAG(N) * JDIAG(N) + JDIAG(N-1) + 1
        NKH = JDIAG(NEQ)
2000 FORMAT(A1, 2OA4/ISX. IGHEQUATYON NUNBERS//EK,5HNODE ,
    * (15,A4,A2)<1K)
co01 FONHAT(INO.05N\)
        RETURN
        ENII
C
        SUBROUTINE IIOTLIS
Comar matERIAL PIOPERTIES ROUTINE
        COMHON OCTDATM, D, HEAD(EO), NUMNP, NUMEL, LAYER, NEO, YPR
        CONMON IMTDATA/ RHD,UUI2, E1,EE,G12,G13,GE3,THK,WIDTH
        COMMON COOMPST/ ABD(G,6),DS(2,2),QBR(3,3,25),OBS(2,2,25),
    ~
                                    TH(25),ZK(25)
    COMMON IDMATIK/ D(10),DB(G,6),LINT
    DIMENSION ND(S)
    DATA WDOGH ISO-,GH ORTHO,GHTROPIC,GH COMP,GHOSITE /
C.... INPUT MATERIAL PROPERTIES
    READ(5,1000) LI,LE,K,THK,WIDTH
    READ(5,1001) RHO,UUIE,E1,E2,G12,G13,G23
    po 150 J=1,3
    DO 150 I=1.3
    IF(I.EQ.3 .OR. J.EQ.3) GO TO 150
    DS(J,I I)=0.
    150 ABD(J,I) = ABD (J+3,I) = ABD (J,I+3)=ABD(J+3,I+3)=0,
        LI = MINO(4, MAXO(1,Lu1))
        D(1) = LI
        Lé a MINO(4, MAXO(1,LE))
        D(e) - L.e
        D(3)=R
        LINT=0
        IF(EL-E2) 120,110,120
    110 GLE=E1>(2.#(1.+UU12))
        J!=1 $ J2=3
        G0 TO 200
    120 J1m4 $ J2m5
        IF(LAYER.EG.1) JIE2 $ Jer3
    S00 WRLTE(G,2000) LAYER,HD(JL),WD(JE),THK,EL,ER,G12,G13,G23,VULR,
    n RHOrLI,LR'".
        CRLL CNPD
        RETURN
C..O. FORNAT FOR INPUT-OUTPUT
    1000 FORNATE3Y5. 2F10.0)
    1001 FORNATC(FP10.0)
    2000 FORNATCM5X, H., 12H LAYER(S) OF, 2AG, 2IH PLATE WITH THICKNESS,
```



```
        2 1OX, 1SHSHEAR MODULUS,9X:ZCLEm,E1O.4,9X,NGNOmX,E10.4,9X,
```



```
        4 FHDENSITY, 1FX, WRHOTM, E1O,4010X,13HGAUSS PTS/DIR, 1EX,WLI=x, I5,
```



```
        END
C
CNWH* SUBROUTINE CMEM
    CONMON CTTDATAP D,HEAD(2O), NUMNP, NUNEL,LAYER, NEQ, IPR
    COMMON MITDATA/ RHO,ULIE,E1,E2,G12,G13,GE3,THK,HIDTH
    COMMON (CONPST; ABD(G,G),DS(2,2),OBR(3,3,25),QBS(2,2,25),
    n TH(25),2k(25)
        DINENSION Q(3,3),QS(2,2),TK(25)
        LLELAYER
        111:4LL+1
```



```
        *R(1)aTke0.0
        #0 15 201.LL
        TMK..TTK+TK(%)
        *K(r+1)=TR(T)*OK(x)
        15 contrnue
        D0 23 yad思
        ZK(I)=己゙K(I)-TTKん2.
        es continue
```

PROF 50
PROF 51
PROF 52
PROF 53
PROF 54
PROF 55
PROF 56
MATL

CMipd
CNPD
CHPD
CMPD
CMPD
CMPD
CMPD
CMPD
CMPD
CMPD 1
CMPD II
CMPD IE
CMPD 13
CMPD I4
CMPD is
CNPD 16
CMPD if
CHPD 18

```
    DEL=4.*ATAN(1.)/180.
    DEN = 1. - E2#UUI2**E/EI
    O(1,1) = E1/DEN
    Q(2,2) = E2/DEN
    Q(1,2)=Q(2,1)=UU12*Q(2, 2)
    Q(3,3)=G12
    Q(1,3)=Q(2,3)=Q(3,1)=Q(3,2)=0.0
    OS(1,1) =G13
    QS(2,2)=623
    OS(1,2) = OS(2,1) = 0.0
    DO 40 I=1,LL
    ANGL=TH(T)HDEL
    C=COS(ANGL.)
    W=SIN(ANGL)
    OBR(1,1,I)=0(1,1)*C**4+2.*(0(1,2)+2.mQ(3,3)*(C*W)**2+Q(2,2)*W**4
    GBR(1,2,I)=OBR(2,1,I)=(Q(1,1)+G(2,2)-4,*Q(3,3))#(C;WW)**2
    $ 40(1, 2)#(W**4 +5%*4)
    OBR(2,2,I)=0(1,1)*W**4+2.*(0(1,2)+2.*O(3,3))*(CHW)**2+Q(2,2)#C**4
    OBR(1,3,I)=CBR(3,1,I)={(0(1,1)-0(1,2)-2.*O(3,3))#W%CH%3 +
                    (0(1,管)-0(2,2)+2,*Q(3,3))*C*W**3
    OBR(2,3,I)=CBR(3,2,I)=(Q(1,1)\cdotsQ(1,2)-2.#Q(3,3))*|### #C+
    $ (Q(1,2)-0(2,2)+2. #O(3,3))*W*C**%
    QBR(3,3,I)=(Q(1,1) +Q(2,2)-2,*日(1,2)-2.#Q(3,3))#(W*C)*&2+
    $ 0(3,3)#(W##4 +C:%#4)
    GBS}(1,1,I)=\operatorname{OS}(1,1)*C**T2 + OS(2,2)*W**
    OBS}(2,2,I)=NS(1,1)m(N**2 + OS(2,2)*C**S
    OBS(1,2,I)=\operatorname{aBS}(2,1,I)=(\operatorname{OS}(1,1)-\operatorname{OS}(2,2))#CHW
40 COITTINUE
    吅50 J=1,3
    DO 50 K=153
    DO 50 I=1,LL
    ABD(J ,K )= ABD(J ,K )+GBR(J,K,I)*(ZK(I+1)-ZK(I))
    ABD(J+3,K )=ABD(J,K+3)=ABD(J+3,K)+GBR(J,K,I)*
    $ (ZK(I+1)**2-ZK(I)**2)/2.
    ABD(J+3,K+3)= ABD(J+3,K+3)+QBR(J,K,I)*(ZK(I+1)**3-2K(I)**3)/3.
5 0 ~ C O N T I N U E ~
    DO 55 I=1,6
    00 55 J=1,6
    IF(I.GE.3 OR. J.GE.3) CO TO 55
    IF(ABS(DS(I,J)) .LT, 1.E-0G) DS(I,J)=0.0
55 IF (ABS (ABD(I,J)).LT. 1.E-06) ABD (I,J)=0.0
    WRITE(G,2001) ((ABD(I,J),J=1,6),I=1,6)
    \square0 60 J=1,2
    00 60 K=1,2
    #O 60 I=1,LL
    GO DS(J,K) = DS(J,K) + QBS(J,K,I)*(ZK(I+1)-ZK(I))
    WRITE(6,2002) ((DS(I,J), J=1,2),I=1,2)
1000 FORIAT (I5,F5.0,F10.0)
2001 FDRMAT( //,1X,10HABD MATRIX//G(2X,6E13.4/))
2002 FORMAT(/,1X,SHDS MATRIX//2(2X,2E13.4/))
    RETURN
    END
    SUBROUTINE KMLIB
    ASSEMBLE CLOBLE ARRAY
    COMMDN G(1)
    DIMENSIOH M(1)
    EQUIUALENCE (G(1),M(1))
    COMMON /ISWIDK/ ISW
    COMMON /CTDATA/ O,HEAD(20),NUMNP,NUMEL,LAYER,NEQ,IPR
    COMMON /LODATA/ NDF,NDM,NEM,NST,NKM
    COMMON /PARATS/ NPAR(14),NEND
    NI=NEND
    NZ=N1+NST*NST"IPR
    IF(ISW.LE.2) NE=NE+NKM%IPR
    IF (ISW.GT,2) NE=N2+NEG*IPR
    CALL SETMEM(NE)
    CALL PZERO(G(NEND), NE-NEND)
    CALL MASSOI(G(NPAR(1)),G(NPAR(2)),M(NPAR(3)),G(NPAR(4)),
& M(NPAR(5)),M(NPAR(6)),G(NPAR(7)),G(NPAR(8)),M(NPAR(9)),
    CMPD 19
MPD}2
CMPD ご
CMPD 21
CMPD 2?
CIMPD 2%
CMPD 24
CMPD 25
CITPD:S
CHPD ap
CMPD 28
CM%1) %
CMFD ?O
CMPD 31
CMPD 32
CHIPD 3%
CMPD 34
CHPDD 3:
CMPD 3G
CMPD 3;
C|MP]"<3
CMPD :O
CMPD :O
CMPI) :0
CMFD 41
CMPD 42
CMPD 43
CMPD 44
C[1PD 45
CMPT] 4G
CIFPD 4%
CMPD AT
CMPD 48
CMPD 49
CMPD 50
CMPD 51
CMPD 52
CMPD 53
CMPリ 54
CMPD 55
CMPD 55
CMPD 5%
CMPD 5%
CMPD 58
CMPD '59
CMPD 60
CMFD 61
CMPD Ge
CMPD 63
CMPD 64
CHPD 65
CMPD EG
CMPD G%
CMPD G%
CMPD 68
CMPD 69
CMPD }7
```

COMMON／CTDATA／O，HEAD（20），NUMNP，NUMEL，LAYER，NEQ，IPR

```COMMON／PARATS／NPAR（14），NENDKMLI 9
N1＝NEND
KMLT 11
KILII 12
KHLI 13
KMLII 14
KMLI }1
KMLI 16
KMLI 17
```

C
C.\#\#**

```
    2 G(NPAR(11)),G(N1),G(N2),NDF,NDM,NEN,NST,NKM)
        RETURN
        END
KMLI 18
KMLI 19
c
SUBROUTINE MASSOI (UL, XL,LD,P,IX, ID, X,F,JDIAG, B, S, A, NDF, NDM, NEN,
KMLI 20
- NST, NKM)
C**** FORM MASS MATRIX
COMMON /CTDATA/ D, HEAD (20), NUMNP, NUMEL, LAYER, NEQ, IPR
COMMON MTIDATA/ RHO,UUIL,E1,E2,G12,G13,G23,THK,WIDTH
COMMON IDMATIX/ D(10),DB(6,6),LINT
COMMON /ELDATA N, NEL,MCT
COMMDN /ISWIDX/ ISW
COMMON/GAUSSP/ SG(16),TG(16),WG(16)
MASS
DIMENSION UL(1); XL(NDM, 1), LD(NDF: 1), P(1):IX(NEN, 1), ID(NDF, 1),
\(1 X(N D M, 1), F(1), J D I A G(1), B(1), S(N S T, 1), A(1), \operatorname{SHP}(3,12)\)
C.... LOOP ON ELEMENTS
MASS
DO \(110 \mathrm{~N}=1\), NUMEL
DO \(10 \mathrm{I}=1\), HST
DO \(10 \mathrm{~J}=1\), NST
```

$10 \mathrm{~S}(\mathrm{I}, \mathrm{J})=0$.
C.... SET UP LOCAL ARRAYS
MASS
MRSS
MASS
MASS
MASS
MASS
MASS 1
MASS
MASS
MASS
MASS
CALL PFORMEUL, XL,LD,IX,ID, X,F,B,NDF,NDM, NEN, ISW)
C.... COMPUTE CONSISTENT MASS MATRIX $L=D(1)$
CALL PGAUSS(L,LINT)
DO 500 L=1, LINT
c .. COMPUTE SHAPE FUNCTIONS
MASS 15
DU = WG(L) \#KS J\#RHOTHK
MASS
MASS 1
MASS 1
MASS 19
MASS 2
MASS
MASS 2
MASS 2
MASS 24
C .. FOR EACH NODE J COMPUTE $D B=R H O * S H A P E * D U$
$K 1=1$
DO $500 \mathrm{~J}=1$, NEL
$W 11=S H P(3, J) * D U$
W33 $=$ W11 1 THK $3 * * 2 / 12$.
C .. FOR EACH NODE K COMPUTE MASS MATRIX (UPPER TRIANGULAR PART)
$\mathrm{J} 1=\mathrm{K} 1$
DO $510 \mathrm{~K}=\mathrm{J}$, NEL
S(J1 , K1) = S(J1 , K1) + SHP(3,K)*W11
$5(J 1+3, K 1+3)=5(J 1+3, K 1+3)+\operatorname{SHP}(3, K)$ * H 33
MASS
MASS
. MASS 2

- MASS 28
MASS 29
MASS 3
MASS 31
MASS 3
MASS 3
MASS 34
$510 \mathrm{~J} 1=\mathrm{J} 1+\mathrm{NDF}$
MASS 35
$500 \mathrm{~K} 1=\mathrm{K} 1+\mathrm{NDF}$
MASS 36
c... compute missing parts and loher part by symmetry
NSL $=$ NEL $* 1 Y D F$
DO $530 \mathrm{~K}=1$, NSL, NDF
MASS
MASS 38
DO $520 \mathrm{~J}=\mathrm{K}$, NSL.NDF
$5(J+2, k+2)=5(J+1, k+1)=5(J, k)$
$5(J+4, K+4)=5(J+3, K+3)$
$5(K, J)=5(J, K)$
$5(k+3, J+3)=5(J+3, K+3)$
$S(K+2, J+2)=S(K+1, J+1)=S(J \quad, K)$
$5205(k+4, J+4)=5(j+3, k+3)$
530 COMTINLLE
IF (ISW.EQ.2) CO TO 100
C.... LUMPEDI MASS MATRIK
SUM1 $=0.0$
SUML $=0.0$
SUMD1 $=0.0$
SUMDE $=0.0$
DO 540 I $=1, \mathrm{NSL}, \mathrm{NJJF}$
SUMD1 $=$ SUMD $1+S(I, I)$
SUMD2 $=$ SUMDE $+5(1+3, I+3)$
DO $540 \quad J=1$, NSL. NDF
SUM1 $=$ SUII $\dot{+} \mathbf{S}(I, J)$
540 SUME $=5$ LMM $+5(I+3, j+3)$
DO $550 \mathrm{I}=1$, NSL, NDF
$P(I)=S(I, I) * S L H 11 /$ SUMD1
$P(I+2)=P(I+1)=P(I)$
$P(I+3)=S(I+3, I+3) * S U M 2 / S U M D 2$
MASS 39
MASS 40
MASS 41
MASS 42
MASS 43
MASS 44
MASS 45
MASS 46
MASS 47
MAFSS 48
MASS 49
MASS 50
MASS 51
MASS 5 ?
MASS 53
MASS 54
MASS 55
MASS 56
MASS 57
MASS 58
MASS 59
MASS 60
MASS 61
MASS G2
MASS 63
$550 \mathrm{P}(\mathrm{I}+4)=\mathrm{P}(\mathrm{I}+3)$
MASS 64
C.... ADD TO TOTAL ARRAY
MASS 65

10	CALL ADDSTF (A, S, P, JDIAG,LD, NST, NEL, NMDF, FFALSE.)	MASS 67
	COMTINUE	MASS 60
	REWIND 2	Mass 69
	IF (ISW.EQ. 2) WRITE(2) (A(I), I=1,NKM)	MASS 70
	IF (ISH.EQ.3) WRITE(2) (A) I , I=1, NEQ)	MASS 71
	RETURM	MASS 7 ?
	END	MAGS Pe
C SURTME RODIPOT		
	SUBROUTINE RODIPCT	RODI 1
C****		RODI 3
	LOGICAL FLAG	RODI ${ }^{\text {a }}$
	COMMON G(1)	RODI 4
	DIMENSION M(1)	RODI 5
	EQUIUALENCE (G(1),M(1))	RODI Gi
	COMMOM /CTDATA/ O, HEAD (20), NUMNP, NUMEL, LAYER, NEQ, IPR	RODI i
	COMMDN \angle LODATA/ NDF, NDM, NEN, NST, NKM	RODI 8
	COMMON /PARATS/ NPAR(14), NEND	RODI 9
	COMMON /RODATA UR, IG, NDS	RODI 10
	COMMON /ROELEH/ MER, NEQR,ER	RODI 19
	DATA FLAG/.FALSE./, NER/20/, ER/30000000./	RODT İ
	IF (FLAG) GO 1050	RODI 13
	NEQR $=2 *$ ($\mathrm{NER}+1$)	RODE 14
	NKMR $=$ PM NER +3	RODI 15
	NIENEND	RODI 16
	$N 2=N 1+N E O * I P R$	RODI 17
	N3=N2+NEQHIFR	RODI 18
	N4=N3+NEG*IPR	RODI 19
	N5 $=$ N4+NKMR	RODI 20
	N6:NF+NEQR:IPR	RODI 21
	NT $=$ NS + NEQR	RODI ce
	N8=NT+NEQRHIPR	RODI 23
	NS $=$ NB + HEQR*IPR	RODI 24
	N10 $=119+$ NEOR FTPR	RODI 25
	N112.410+NEQRMIPR	RODI 2 E
	NE= $1111+N E Q R * I P R$	RODI 2 ?
	CALL SETMEM(NE)	RODI 28
	CALL PZERO(G (NEND), NE-NEND)	RODI 29
	FLAG =. TRUE.	RODI 30
50	CALL WIMPCT (G) $\operatorname{NPAR}(1)$), G(NPAR(2)), M(NPAR (3)), G(NPAR (4)),	RODI 31
		RODI 32
	$2 \mathrm{M}(\operatorname{NPAR}(9)), G(N P A R(10)), \operatorname{LNPAR}(11)), G(N 1), G(N 2)$,	RODI 33
	$3 \mathrm{G}(\mathrm{N} 3), G(N 4), G(N 5), M(N 6), G(N 7), G(N 8), G(N 9), G(N 10)$,	RaDI 34
	4 G(N11))	RODI 35
	RETURN	RODI 36
	END	RODI 37
C		
	SUBROUTINE WIMPCTCUL,XL,LD,P,IX,ID,X,F,JDIAG,DR,U,B,U,A,RK,RM,	WIMP 1
	JDR,RU,RU,RA,RB,FR)	WIMP E
C****	SOLUE IMPACT PROBLEM	WIMP 3
	LOGICAL FLAG; TAN	WIMP 4
	CDMMON G(1)	WIMP 5
	DIMENSION M(1)	WIMP 6
	EQUIUALENCE (G(1),M(1))	WIMP ?
	COMMIDN /CTDATA/ D, HEAD (20), NUMNP, NUMEL, LAYER, NEQ, IPR	WIMP 8
	COMMON /TMDATA TIME, DT, DDT,FDRCE, ALPHA	WIMP 9
	COMMON /LODATA/ NDF, NDM, NEN, NST, NKM	WIMP 10
	COMMON /NITERS/ ITR	WIMP 11
	COMMOM /PARATS/ NPAR(14), NEND	WIMP 12
	COMMOM /RODATA/ UR,IQ,NDS	WIMP 13
	COMMDN/ROELEM/ NER,NEQR.ER	WIMP 14
	COMMDN /CONSTS/ AO, A2, A4, A5, A6, A7, A8, AREA	WIMP 15
	COMMON /PROLOD/ PROP	WIMP 16
	COMMON /ISWIDX/ ISW	WIMP 17
	CQMMON EXTRAS/ TAN	WIMP 18
	DIMENSION UL(1), XL(1),LD(1),P(1), IX(1), ID (1), X (1),F(1), JDIAG(1),	WIMP 19
		WIMP 20
	$2 \mathrm{RU}(1), R A(1), R B(1), F R(1), Q(3), Q P(3)$	WIMP 21
	DATA ITR/5/,FLAG/.FALSE./,WIL/1.4/, INTE/24/	WIMP 22
	IF (FLAG) CO TO 50	WITP 23
	DO $1 \mathrm{I}=1,3$	WIMP 24

	$Q(I)=0.0$	WIMP 25
	QP (I$)=0.0$	WIMP 26
1	CONTINUE	WIMP 27
	IIS $=1$	WIMP 28
	TAM=, FALSE.	WIMP 29
	REWIND 2	WIMP 30
	READ (2) ($B(I), I=1, N E Q)$	WIMP 31
	FORCE $=0.0$	WIMP 32
	$A L . P H A=0.0$	WIMP 33
	PROP $=0.0$	WIMP 34
	NYEQ=NDF*NUMNP	WIMP 35
		WIMP 36
	A $2=6 . /($ WIL \#DT $)$	WIMP 37
	A4:A0,WIL	WIMP 38
	AS $=-A 2 /$ WIL	WIMP 39
	$A E=1 .-3.1$ WIL	WIMP 40
	$A T=D T / 2$.	WIMP 41
	$A 8=D D T / 6$.	WIMP 42
	CALL FORMROD (RK,RM, JDR)	WIMP 43
	DO $10 \mathrm{I}=1$, NEOR	WIMP 44
10	$R \cup(I)=-U R$	WITP 45
	$Q(2)=-U R$	WIMP 46
	FLAG=.TRUE.	WIMP 47
50	ISW=5	WIMP 48
	IF (IDS.EQ.NDS) TAM=,TRUE.	WIMP 49
	CALL FSTREA (UL, XL, LD, P, IX, ID, X, F, JDIAG, DR, U, NDF, NDM, NEN, NST, NNEE)	WIMP 50
	DO $20 ~ I=1$, NEG	HIMP 51
	$\mathrm{A}(\mathrm{I})=\mathrm{DR}(\mathrm{I}) / \mathrm{B}(\mathrm{I})$	WIMP 52
	$U(I)=U(I)+D T * A(I)$	WIMP 53
	$U(I)=U(I)+D T * U(I)$	WIMP 54
20	CONTINUE	WIMP 55
	$Q P(1)=U(10)$	WIMP 56
	$Q P(2)=U(10)$	WIMP 57
	$Q P(3)=A(10)$	WIMP 58
	DO $30 \mathrm{I}=1$, NEQR	WIMP 59
	$\mathrm{RB}(\mathrm{I})=\mathrm{RM}(\mathrm{I}) *(A O * R U(I)+A 2 * R U(I)+2 . * R A(I))$	WIMP G0
30	CONTIMUE	WIMP E1
	RBIG=RU(1)+DT*RU(1)+DDT/3.*RA(1)	WIMP 62
	$\mathrm{ROT}=0.000001$	WIMP 63
	ICOU $=0$	HIMP 64
	DO $100 \mathrm{IT}=1, \mathrm{ITR}$	WIMP 65
	RUT $=$ RBIQ+G(3)*DDT/6.	WIMP 6E
	$A F=-R U T-Q P(1)$	WIMP 67
	CALL RODLOAD(FIQ,AF)	WIMP 68
	DO $110 \mathrm{I}=1$, NEQR	WIMP 69
	FR(I) $=$ RB (1)	WIMP 70
110	CONTINUE	WIMP 71
	$F R(1)=F R(1)+(1 .-W I L)=F \operatorname{ORCE}+W I L$ 外IQ	WIMP 72
	CALL ACTCOL (RK,FR,JDR, NEGR, .FALSE., .TRUE., 0)	WIMP 73
	$Q(3)=A 4 *(F R(1)-R U(1))+A 5 * R U(1)+A E * R A(1)$	WIMP 74
	RUTT $=$ RBI $0+Q(3) * D D T / 6$.	WIMP 75
	ROTR=ABS ((RUTT-RUT)/RUTT)	WIMP 76
	IF (ROTR.LT.ROT) ICDU=1	WIMP 77
	IF (ICOU.GT.0) GO TO 200	WIMP 78
100	CONTINUE	WIMP 75
200	DO $210 \mathrm{I}=1$, NEQR	WIMP 80
	$F R(I)=A 4 *(F R(I)-R U(I))+A 5 * R U(I)+A 6 m R A(I)$	WIMP 81
		WIMP 82
	$R \cup(I)=R U(I)+A 7 *(F R(I)+R A(I))$	WIMP 83
	$\mathrm{RA}(\mathrm{I})=\mathrm{FR}(\mathrm{I})$	WIMP 84
210	CONTINUE	WIMP 85
	$\mathrm{Q}(1)=\mathrm{FLU}(1)$	WIMP 86
	$\square(2)=R U(1)$	WIMP 87
	$\mathrm{Q}(3)=\mathrm{RA}(1)$	WIMP 88
	FORCE FIO	WIMP 89
	PROP $=$ FORCE	WIMP 90
	ALPHA $=-\mathrm{Q}(1)-\mathrm{QP}$ (1)	WIMP 91
	RODFR $=$ RU(INTE) ${ }^{\text {\% }}$ AREA $* E R$	WIMP 92
	WRITE (8,8001) FORCE, ALPHA, RODFR, (Q(I), I=1,3)	WIMP 93
001	FORMAT(6E.12.4)	WIMP 94

	IDS IDS IF (IDS.GT.NDS) IDSm 1 TAN=, FALSE. RETURN END	WIMP 95 WIMP 96 HLMP 3 ? HIHP GU HIHP 90
C****	FORM STIFFNESS AND MASS MATRICES OF ROD	FOin
	COMMON /RODATA/ UR,IQ,NDS	FOSI
	COMMON /ROELEM MER,NEQR,ER	FORM
	COMMON /CONSTS/ A0, A2, A4, AS, AG, AT, AB, AREA	FOM 1
	DIMENSION RK(1),RM(1), JDIR (2), D(6)	FOM1
	DATA RHOR/.0003225/.RL/1.0/	FOBM
	DATA D/.22, 36, 43, 48,.50,.625/	FOET1 3
	ELmRL NER	FOnH
	PAI=4, \#ATAN(1.)	FORH 10
	$J D R(1)=1$	FORM 11
	$\mathrm{JDR}(2)=3$	FOEM 12
	DO $100 \mathrm{I}=1, \mathrm{NER}$	FORM 13
	IF (I,LT, 6) A=PAI\#(D(I)/2.)**2	FORM 14
		FORM is
	TT $=2 * E R / 30, / E L$.	FORM 16
	$J 1=2 *(I+1)-1$	FORM 89
	$J 2=51+1$	FORT 13
	$J 1 M 1=J 1-1$	FORM 19
	J1M2= 1 -2	FDRM 0
	$\operatorname{JDR}(J 1)=\operatorname{JDR}(J 1 M 1)+3$	FORH 21
	$J \operatorname{IR}(J 2)=\operatorname{JDR}(J 1)+4$	FORH ${ }^{\text {at }}$
	K1EJDT (JIHE)	FOPM 33
	$K 2=J D R(J 1111)-1$	FOM ET
	RK(K1) =RK(K1)+TT*36.	FORH ${ }^{3}$
	RK(K2) $=$ RK (K2) +TT*3.*EL	FDPM EG
	RK (K2+1) =RK ($\mathrm{K}^{2}+1$) +TT*4.*EL**2	FORH 2
	$R K(K 2+2)=R K(K 2+2)-T T * 36$.	FORM 28
	RK $(K 2+3)=R K(K 2+3)-T T \# 3 . * E L$	FORM 29
	RK (K2+4) =RK (K2+4) +TT436.	FORIT 30
	RK $(K 2+5)=R K(K 2+5)+T T * 3 . * E L$	FORM 3 ?
	RK $(K 2+6)=R K(K 2+6)-7 T^{*}+E L+42$	FORM 32
	$R K(K 2+7)=R K(K 2+7)-T T * 3 . * E L$	FORM 33
	RK ($\mathrm{K} 2+8$) $=12 \mathrm{~K}(\mathrm{~K} 2+8)+\mathrm{T} * 4.4 \mathrm{EL} * *+2$	FORM 34
	$T T=R H D R * A * E L$	FDRM 35
	L1-2\#1-1	FORH 36
	$R M(L 1)=R M(L 1)+T T / 2$.	FDRM 37
	$R M(L 1+1)=R M(L 1+1)+T T+E L * * 2 / 420$.	FORM 33
	$R M(L 1+2)=R M(L 1+2)+T T / 2$.	FORM 39
	$R M(L 1+3)=R M(L 1+3)+T T * E L * 2 / 420$.	FDRM 40
100	CONTINUE	Farm 41
	AREA $=A$	FORM 42
	DO $20 \mathrm{I}=1$, NEQR	FORM 43
	$\mathrm{J}=\mathrm{J} \mathrm{DR}(\mathrm{I})$	FDRM 44
20		FORM 45
	CRLL ACTCOL (RK, RM, JDR, NEQR, , TRUE, , FALSE*, 0)	FORM 46
	RETURN	FORM 47
	END	FORM 48
C		
	SUBROUTINE RODLOAD (F,AF)	RODL
C****	COMPUTE CONTACT LOADING	RODL ${ }^{\text {e }}$
	LOGICAL RELD, UNLD, PIL	RODL 3
	COMMON /TMDATA $/$ TIME, DT, DDT, FORCE, ALPHA	RODL 4
	COMMON /EXDATA/ Q(4)	RODL 5
	DATA UNLD/.FALSE./,PIL/.FALSE./, RELD/.FALSE. 1	RODL E
	IF(PIL) GD TO 10	RODL 7
	AMAX $=$ AMIN $=F M A X=0.0$	RODL 3
	PIL=.TRUE.	RODL 9
10	IF (RELD) GO TO 50	RODL 10
	IF (UNLD) EO TO 20	RODL 11
	$F=Q(1) * A F * * 1.5$	RODL 12
	IF (F.GE.FORCE) RETURN	RODL 13
	UNLD $=$. TRUE.	RODL 1.4
	AMAX $=$ ALPHA	RODL 15

```
    FMAK=FORCE RODL 16
    IF(AMAX,GT,Q(2)) UK=FMAX/((1.-Q(3))*AMAX+G(2)WQ(3))w*Q(4)
    IF(AMAX.LE,Q(2)) UK=FMAX/AMFX##Q(4)
AMIN=O(3)H(AMAX-O(2))
IF (AIIIN.LT.O.) AlIIN=0.0
2O IF(AF.LE.AMIN) CO TO 30
F=UK*(AF-AMIN)##O(4)
    IF(F.LT.FORCE) RETURN
    RELD:= TRUE.
    RK=FMAX/(AMAX-AMIN)H#1.5
50 IF (AF.LE.AMIN) GO TD 30
    F=RK#(AF-AMINY)*+1.5
    RETURN
30 F=0.0
    RETURN
    END
RODL 17
RODL 18
RODL }1
RODL }1
RODL 20
RODL 21
RODL 22
RODL 23
RODL 24
RODL 25
RODL 2G
RODL 2G
RODL 28
RODL 29
RODL 30
RODL 31
```

NSG 3185

WAVE PROPAGATION IN GRAPHITE/EPOXY LAMINATES DUE TO IMPACTT

NASA CR-168057

```
Advanced Research Projects Agency
Washington DC }2052
Attn: Library
Advanced Technology Center, Inc.
LTV Aerospace Corporation
P.O. Box 6144
Dallas, TX }7522
Attn: D. H. Petersen
    W. J. Renton
Air Force Flight Dynamics Laboratory
Wright-Patuersoñ Alir Förce Dā巨e, OH 45433
Attn: E, E, Baily
    G, P, SendeckyJ (FBC)
    R. S. Sandhu
Air Force Materlals Laboratory
Wright-Patterson Alr Force Base, OH }4543
Attn: H. S. Schwartz (LN)
        T. J. rieinhart (NBC)
        G. P. Peterson (LC)
        E. J. Morrisey (LAE)
        S.W. Tsal (MBM)
        N. J. Pagano
        J. M. Whitney (MBM)
```

Air Force Office of Scientific Research
Washington DC 20333
Attn: J. F. Masi (SREP)
Air Force Offige of Scientific Rescarch
1400 Wilson Bivd.
Arlington, VA 22209
AFOSR/NA
Bolling AFB, DC 20332
Attn: , A. K. Amos
Air Force Rocket Propulsion Laboratory
Edwards, CA 93523
Attn: LibraryBabcock \& Wilcox CompanyAdvanced Composites DepartmentP.O. Box 419Alliance, Ohio 44601Attn: P. M. Leopold
Bell Hellcopter Company
P.O. Box 482
Ft. Worth, TX 76101
Attn: H. Zlnberg
The Boeing Company
P. O. Box 3999
Seattle, WA 98124
Attn: J. T. Haggatt, MS, 88-33T. R. Porter
The Boeing Company
Vertol Division
Morton, PA 19070
Attn: E. C. Durchlaub
Battelle Memorial Institute
Columbus Laboratories
505 King Avenue
Columbus, OH 43201
Attn: L. E. Hulbert
Bendix Advanced Technology Center
9140 Old Annapolis Rd/Md. 108
Columbia, MD 21045
Attn: 0. Hayden Griffin
Brunswick Corporation
Defense Products Division
P. O. Box 4594
43000 Industrial Avenue
Lincoln, NE 68504
Attn: R. Morse
Celanese Research Company
86 Morrls Ave.
Summit, NJ 07901
Attn: H. S. Kliger
Commander
Natick Laboratories
U. S. Army
Natick, MA 01762
Atrn: Library
Commander
Naval Alr Systems CommandU. S. Navy DepartmentWashington DC 20360
Attn: M. Stander, AlR-43032D
Commander
Nayal Ordnance Systems CommandU.S. Navy DepartmentWashington DC 20360
Attn: B. Drimmer, ORD-033M. Kinna, ORD-033A
Cornell University
Dept. Theoretical \& Applied Mech.
Thurston Hall
Ithaca, NY 14853
Attn: S. L. Phoenix
Defense Metals Information Center
Battelle Memorial Institute
Columbus Laboratories
505 King Avenue
Columbus, OH 43201
Department of the Army
U.S. Army Aviation Materials Laboratory
Ft. Eustis, VA 23604
Attn: 1. E. Figge, Sr.Library
Department of the Army
U.S. Army Avlation Systems Command
P.O. Box 209
St. Louis, MO 63166
Attn: R. Vollmer, AMSAV-A-UE
Department of the ArmyPlastics Technical Evaluation Center
Picatinny Arsenal
Dover, NJ 07801
Attn: H. E. Pebly, Jr.
Department of the Army
Watervllet Arsenal
Watervliet, NY 12189
Attn: G. D'Andrea
ORGINAL PAS: R

```
Department of the Army
Watertown Arsenal
Watertown, MA 02172
Attn: A. Thomas
Department of the Army
Redstone Arsenal
-Huntsville, AL 35809
Attn: R. J. Thompson, AMSMI-RSS
Department of the Navy
Naval Ordnance Laboratory
White Oak
Silver Spring, MD 20910
Attn: R. Simon
Department of the Navy
U.S. Naval Ship R&D Laboratory
Annapolis,MD 21402
Attn: C. Hersner, Code 2724
Director
Deep Submergence Systems Project
6900 Wisconsin Avenue
Washington DC 20015
Attn: H. Bernstein, DSSP-221
Director
Naval Research Laboratory
Washington DC 20390
Attn: Code 8430
    1. Wolock, Code 8433
Drexel University
32nd and Chestnut Streets
Philadelphia, PA }1910
Attn: P, C. Chou
E. I. Dupont DeNemours & Co.
DuPont Experimental Station
Wilmington, DE }1989
Attn: D. L. G. Sturgeon
Fiber Science, Inc.
245 East i57 Street
Gardena, CA S0248
Attn: E. Dunahoo
General Dynamics
P.O. Box }74
Ft. Worth, TX 76100
Attn: D. J. Wilkins
    Library
```

General Dynamics/Convalr
P.O. Box 1128

ORIGINAL FOES HS
San Diego, CA 92112

OF POOR QUALITY

Attn: J. L. Christian
R_{k} Adsit
General ituctric Co.
Evandale, OH 45215
Attn: C. Stotler
R. Ravenhall

General Motors Corporation
Detroit Diesel-Allison Division
Indianapolis, iN 46244
Attn: M. Herman
Georgia Institute of Technology
School of Aerospace Engineering
Atlanta, GA 30332
Attn: L. W. Rehfield
Grumman Aerospace Corporation
Brathpage, Long İsīand, NY $11 \overline{1} 14$
Attn: S. Dastin
J. B. Whiteside

Hamilton Standard Division United Alreraft Corporation
Windsor Locks, CT 06096
Attn: W. A. Percival
Hercules, Inc.
Allegheny Ballistics Laboratory
P. O. Box 210

Cumberland, MD 21053
Attr: A. A. Vicario
Hughes Aircraft Company
Culver City, CA 90230
Attn: A. Knoell
Illinois institurs of Technology
10 West 32 Street
Chicago; IL. 60616
Attn: L. J. Brourman
I. M. Daniel

Dr. Joseph Wolf, Engineering Mechanics Dept.
General Motors Research Labs.
256 Research Drive
Warren, MI 48090
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91103
Attn: Library

Lawrence Livermore Laboratory
P.0. Box 808, L-421

Livermore, CA 94550
Attn: T. T. Chiao
E. M. Wu

Lehigh University
Institute of Firacture ε
Solid Mechanics
Rethlehem, PA 18015
Attn: G. C. Sih
Lockhecd Meorgia Co.
Advance: ${ }^{\prime \prime}$ Composites Information Center
Dept. 72-14, Zone 402
Marietta, GA 30060
Attn: T. M. Hsu
Lockheed Missiles and Space Co.
P.O. Box 504

Sunnyvale, CA 94087
Aten: R. W. Fenn
Lockheed-California
Burbank, CA 91503
Attn: J. T. Ryder
K. N. Lauraitis
J. C. Ekvall

McDonnell Douglas Aircraft Corporation
P.O. 30× 516

Lambert Field, MS 63166
Attn: J. C. Watson
McDonnell Douglas Aircraft Corporation 3855 Lakewood Bivd. Long Beach, CA 90810
Attn: L. B. Greszczuk
Material Sciences Corporation
1777 Walton Road
Blue Bell, PA 19422
Attn: B. W. Rosen
Massachusetts Institute of Technology
Cambridge, MA 02139
Attn: F. J. McGariry
J. F. Mandell
J. W. Mar

NASA-Ames Research Center
Moffett Field, CA 94035
Attn: Dr. J. Parker
Library

```
NASA-Fllght Research Center
ORICHNL.
P.O. Box 273
Edwards, CA }9352
Attn: Library
NASA-George C. Marshall Space Flight Center
Huntsville, AL 35812
Attn: C. E. Cataldo, SEE-ASTN-MK
    Library
NASA-Goddard Space Flight Center
Greenbelt, MD 20771
Attri: Llbrary
NASA-Langley Research Center
Hampton, VA 23365
Attn: J. H. Stammes
    J. G. Davj"s, Jr.
    M. C. Card
    J. R. Davidson
NASA-Lewis Research Center
21000 Brookpark Road, Cleveland, OH 44135
Attn: Contracting Officer, MS 501-11
    Tech. Report Control, MS 5-5
    Tech. Utilization, MS 3-16
    AFSC Liaison, MS 501m3
    SGMTD Contract Files, MS 49-6
    L. Berke, MS 49-6
    N. T. Saunders, MS 49-1
    R. F. Lark, MS 49-6
    J. A. Ziemianski, MS 49-6
    R. H. Johns, MS 49-6
    C. C. Chamis, MS 49-6 ( }4\mathrm{ copies)
    R. L. Thompson, MS 49-6
    T. T. Serafini, MS 49-1
    Library, MS 60-3 (2 copies)
NASA-Lyridon B, Johnson Space Center
Houston, TX 77001
Attn: S. Glorioso, SMD-ES52
    Library
NASA Scientific and Tech. Information Focility
P.O. Bow }875
Balt/Wash:Intemnational Airport*MD 21240
Attr: Acquisitions Branch (. 10 capies)
```



```
Office of Advanced Research & Techmet%gy
Washington DC 20546
Attn: L. Harris, Code RTM-5
    M. Greenfield, Code RTM-
    C. Bersch, 'Code RTM-6
```

National Aeronautzes \& Space AdministrationOffice of Technology UtilizationWashington DC 20546
National Bureau of Standards
Eng. Mech. Section
Washington DC 20234
Attn: R, Mitchell
National Science Foundation
Engineering Division
1800 G. Street, NW
Washington DC 20540
Attn: Library
Northrop Corporation Aircraft Group
3 gal West Broadway
Hawthorne, CA 90250
Attn: R. M. Verette
G. C. Grimes
Pratt \& Whitney Aircraft
East Hartford, CT 06108
Attn: J. M. Woodward
Raytheon Co., Missile System Division
Mechanical Systems Laboratory
Bedford, MA
Attn: P. R. Digiovanni
Rensselaer Polytechnic Institute
Troy, NY 12181
Attn: R. Loewy
Rockwell International
Los Angeles Division
International Airport
Los Angles, 6A 90009
Attn: L. M. Lackman
D. Y. Konishi
Sikorsky Aircraft Division
United Aircraft Corporation
Stratford, CT 06602
Attn: Library
Southern Methodist University
Dallas, TX 75275
Attn: R. M. Jones
Space ε Missile Systems Organization
Air Force Unit Post Office
Los Angedes, CA 90045
Attn: Technical Data Center

```
Structural Composites Industries, Inc.
6344 N. Irwindale Avenue
Azusa, CA }9170
Attn: R.Gordon
Texas AEM
Mechanics & Materials Research Center
College Station, TX }7784
- Attn: R. A. Schapery
                        Y. Weitsman
TRW, Inc.
23555 Eucl id Avenue
Cleveland, OH 44i17
Attn: I. J. Toth
Union Carbide Corporation
P. O. Box }611
Cleveland, OH 44101
Attn: J. C. Bowman
United Technologies Research Center
East Hartford, CT 06108
Attn: R. C. Novak
    Dr. A. Dennis
    University of Dayton Research Institute
    Dayton, OH 45409
    Attn: R. W. Kim
    University of Delaware
    Mechanical & Aerospace Engineering
    Newark, DE 19711
    Attn: B. R. Pipes
    University of lllinois
    Department of Theoretical & Applied Mechanics
    Urbana, IL 61801
    Attn: S. S. Wang
    University of Oklahoma
    School of Aerospace Mechanical & Nuclear Engineering
    Norman, OK 73069
    Attn: C. W. Bert
    University of Wyoming
    College of Engineering
    University Station Box }329
    Laramie, WY 82071
    Attn: D. F. Adams
    U. S. Army Materials & Mechanics Research Center
Watertown Arsenal
Watertown, MA 02172
Attn: E. M. Len@e
    D.W. Oplinger
```

V.P. I. and S. U. Dept. of Eng. Mech. Blacksburg, VA 24061 Attr: R. H. Heller
H. J. Brinson
C. T. Herakovich
K. L. Reifsnider

ORIGIRUAL PAGE G OF POOR QUALITY

