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1. INTRODUCTION

The vast majority of composite laminates in use today are fabri-

cated so that the material properties are symmetric with respect to the

laminate's geometric midsurface. To have symmetric material properties

a laminate must be fabricated so that for every lamina above the geometric

midsurface with specific material properties, thickness, and fiber

orientation, there is a lamina below the midsurface with ident4cal

material properties, thickness, and fiber orientation. A laminate so

constructed will not -Alibit bending-stretching coupling in its elastic

response to external loads. Coping with analyses which must include

bending-stretching coupling effects can be difficult. Thus to simplify

the analysis of composites, laminates a-e fabricated with midsurface

symmetry of material properties. However, to make a laminate symmetric

only to simplify the analysis is a penalty on the performance of the

composite. In practice, symmetry is generally achieved by adding a

sufficient number of layers to the laminate. From a strength or stiff-

ness measure, these lamina may not be necessary. However, adding the

lamina most certainly increases the weight of a structure. It may be

that unsymmetric laminates are actually desirable. Experimental evidence

has shown that unsymmetrically laminated composites, which are flat at

their elevated cure temperature often cure to a shape closely approxi-

mated by a right circular cylinder. The out-of-plane warping of the

cured laminate is a direct result of bending-stretching coupling.

However, the cylindrical characteristic is contrary to the predictions of

classical lamination theory L1,2]. The classical theory predicts the
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cured shape of all unsymmetrically laminated composites to be saddle-

like, having their principle curvatures of opposite sign but not neces-

sarily of the same magnitude. For some unsymmetric laminates, however,

the saddle-shape does appear. It was felt by many investigators that

the observed cylindrical shapes were due to problems with curing,

moisture absorption, or other unwanted effects in the fabrication process.

However, a systematic experimental study L3] has shown that the phenomena

is repeatable and whether a cured unsymmetric laminate assumes a cylin-

drical shape or a saddle shape depends on the thickness of the laminate

compared with a characteristic in-plane length. Thin laminates cure

into the shape of a right circular cylinder while thicker laminates

conform, at least qualitatively, to the saddle-shape predictions of the

classical theory. This characteristic of thin unsymmetric laminates is

felt to be very important because of the large number of components on

aircraft which are cylindrical in nature. In addition, fabrication of

these cylindrical shapes is not much more difficult than the fabrication

of flat laminates. No expensive mandrels or forms are needed; the

laminate simply cools to the cylindrical shape.

Recently a theory has been developed which accounts for this behav-

ior of unsymmetric laminates [4]. The theory is a nonlinear extension

of classical lamination theory and at present is limited to the analysis

of laminates having their lamina oriented at either 0° or 90° relative

to some global coordinate system. However, the predictions of the

t',ieory agree well with the limited amount of experimental data avail-

able. The theory indicates that the radius of curvature of the cylinder

is a function of the lamina orientations (i.e. [904/04 ] T' [905/03]T'

s
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etc.) and the thermo-elastic properties (E l , E
2
, al, 0121 ...) of the

individual lamina. The theory is being extended to account for arbi-

trary lamina orientations. It appears, even at this early stage of the

development of the theory, that this phenomena should be strongly consid-

ered as a way to fabricate cylindrical components from composite mate-

rials. The next question is: How useful are these cylinders? Do they

buckle easily? Do they have unusual vibration characteristics? How do

they respond to point loads, pressure loads, etc.? Perhaps any unusual

response characteristics can be off-set by the ease of fabrication

considerations. To answer the just-mentioned questions, a rational

step-by-step series of analyses of unsymmetrically laminated cylinders

is in order. These analyses should range from linear analyses to nonlin-

ear analyses, static and dynamic, steady-state dynamic and transient

dynamic, prebuckling and postbuckling. The analyses should precede in

such a way that potential problems are first examined at a simple level.

say, with linear analyses, and then if no problems appear, cylinders

should be examined at a more complicated level, say, wi , n nonlinear

analyses. At all times the behavior of the unsymmetric laminates should

be compared with a symmetric counterpart, its competitor based on current

thinking. This paper reports on the first step in examining the utility

of cylinders fabricated from unsymmetric lay-ups. The paper examines

the static structural response of an unsymmetrically laminated long

cylindrical panel subject to a line load acting inward. A line load,

though simple, is felt to represent one of the more severe types of

static loadings a laminate can encounter. The analysis presented is a

geometrically linear and elastically linear analysis.
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The report begins in the next section by describing the geometry

and the nomenclature of the cylindrical panel. The section continues by

describing the kinematics of the assumed deformation. From the kine-

matics such fundamental quantities as strain, cross-section rotation,

and curvature are established. Next, the nomenclature associated with

the applied load is discussed and the internal force resultants are

defined. Newton's second law is applied to a small section of the panel

to establish static equilibrium equations in terms of the internal force

resultants and the applied load. Since the panels studied gave only 00

and 900 lamina, the constitutive behavior of the cylindrical panel is

represented by an orthotropic stress-strain relation. The out-of-plane

stresses are assumed to be negligible and so the constitutive behavior

ultimately reduces to the familiar A, B, and D matrices. In the study

of these unsymmetrically laminated cylindrical panels it is shown to be

convenient to define a reference surface other than the laminate's

geometric mid-plane. The location of the reference surface through-the-

thickness is related to the material properties of the panel. This

aspect is discussed in detail. After the discussion of the constitutive

behavior, the boundary conditions and transitions conditions at the

point load are examined. This next section concludes by establishing

the differential equations which govern the deformation behavior of the

panel.

The third section of this report is devoted to solving the governing

equations. The boundary and transitions conditions are applied and

closed-formed expressions for the deformation of the panel, as a function

of spatial position along the panel, are obtained. The forrth section

i^_
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o,F the paper presents numerical results regarding deflections, stiff-

nesses, and strains of several representative panels. The numerical

results for unsymmetrically laminated panels are examined in the context

of results for a symmetrically laminated panel which use the same amount

of material. This type of comparison is done to illustrate any advan-

tages or disadvantages of unsymmetrically laminated panels. The formula-

tion and results presented herein are valid for arbitrarily deep cylindrical

panels. A formulation and numerical results are presented for shallow

panels. Comparisons between the deep theory and the shallow theory are

made. The main purpose of this comparison is to establish whether

deepness of cylindrical composite panels is a purely geometric property,

as it is for metal panels, or whether it involves material properties as

well. This latter idea has been suggested by some investigators.

Finally, the fifth section reports on some experimental results.

The force deflection characteristics of a [90 4/04
J
T and a [(0/90)2]s

T300/5208 graphite-epoxy cylindrical panel are compared with theoretical

predictions. The purpose of this comparison is to determine if predicted

differences between symmetric and unsymmetric panels are observable.

The experimental set-up is briefly described as is the correlation

between the theory and experiment.
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2. PROBLEM DEFINITIJN

i
Geometry

Figure 1 illustrates the basic notation associated with the cylin-

der geometry. The undeformed circular cylinder has a center of curvature

at 0 and has a semi-opening angle 
60° 

The laminate has thickness h.

There are two surfaces within the laminate to be considered. Normally,	 j

analyses of laminated plates and shells deal with the geometric mid-

surface of the laminates. All geometry, boundary conditions, and other

information is referenced to this surface. To date. analyses of composite

panels have dealt pr,inw rily with symmetric laminates. In these cases it

is natural to consider the geometric midsurface as the reference surface

from which to describe the panel's geometry and deformation. As will be

shown later, dui to the elastic bending-stretching coupling inherent in

unsymmetric laminates, it advantageous to consider another surface as

the reference surface. Thus the analysis here will discuss both the

geometric midsurface and the reference surface. These two different

surfaces are iilustrated in Fig. 1. The laminate midsurface and reference

surface are a distance 'd' apart. The quantity d, to be defined later,

is a material property. The radius of curvature of the laminate mid-

surface is 'a' while the radius of curvature of the reference surface is

'R.' These quantitites are related by

R = a+d.
	 (1)

The arch rise, denoted as 'N,' is measured at midspan and is the ver-

tical distance from the midsurface to the horizontal line joining the

end-points of the midsurface arc. The variable 8 is the independent

6
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spatial variable. It describes the angular position along the arch, and

it is measured positive clockwise from the midspan vertical. PW;o on

through the thickness of the laminate is denoted as z,' with z = 0 at

the laminate reference surface.

The radial displacement of the reference surf,.^e is denoted as 'w,'

positive w being towards the center of curvature. The circumferential

displacement of the reference surface is denoted as 'u,' with positive u

being to the right. In this analysis, w = w(e) and u = u(e).

Illustrated in Fig. 1 are pinned supports, the pins acting at the

ends of the geometric mid-Surface. The supports are constrained to

remain a fixed horizontal distance apart, this distance being denoted as

'L.' The results presented here are restricted to these pinned conditions

but sufficient information is given in deriving the governing equations

to allow other support conditions, e.g., clamped, to be studied.

Assumed Deformation of the Reference Surface

Figure 2 depicts the kinematics of the assumed deformation. Due to

the applied load, each point on the panel displaces an amount T and the

cross-section at each point rotates through an angle 0. In the notation

used here, the overbar denotes a vector quantity. The unit vectors

i t and i e denote unit vectors normal to and tangent to the undeformed

reference surface. Likewise, the unit vectors n and t denote unit

vectors normal to and tangent to the deformed reference surface. The

orientation of these vectors are all a function of position alon=, 'he

panel. The location of a point on the undeformed r^eferen'ce surface is

given by

R = R i r	 (2)
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The location of that point after deformation is located by

r = R +D 	(3)

The displacement of the point is represented by

T = -w(e)i r + u(e)i e	(4)

Using Eqs. 2-4, the extensional deformation of the reference

surface can be determined. If dS represents the magnitude of an element

of arc length of the undeformed reference surface and ds represents the

magnitude of the arc length of that element when it is deformed, then by

definition the extensional strain of the reference surface is

6
_ ds 

dS
- dS	

(5)
E	 '

Arc length in the undeformed geometry is

dR = de (Ri r (6))de = Ri e (e)de,	 (6)

where use is made of the fact that

didee) 	 i

e( e )	 (7)

The magnitude of the arc length in the undeformed geometry is

dS =	 dR•dR = Rde .	 (8)

In the deformed geometry arc length is defined similarly, namely,



.

or	 t^ I4 I

dr =dR + dp de[F6
	 de	 (9)

= R; (e) + de (-W(6)i'(0) + u(e ) ie (e)) de.	 (10)

Using Eq. 8, the notation ( ;' = dam, and the relation

die(e)

8 6	
= - i r (e) ,	 (11)

Eq. 10 becomes

dr = Ri a - w'1 r - wi e + u'i e - ui r de	 (12)

-w' +u i + l +u -w ^	 (13))R	 r	 R	
ie Rde

By defining

r  = - (w' +R a and r e = u' 
R 
w	

(14),(15)

the deformed arc length can be written as

dr = 1(1 + rddie + rr1JdS	 (16)

The magnitude of the deformed arc length now becomes

d  = dr-dr = [(1 + r e ) 2 + r2 ] 
1/2 dS
	 (17)

The extensional strain of a line element is then computed directly to be

ee	
dsdS dS =

 ^(l + re ) + Ir	 1	 (18)

j
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Rewriting this as	 OF pC()^'"r.'.+r'a tlM

ee =	 1 + 2re + 
r2+ 

rr - 1,
	

(19)

and using the binomial expansion of the first term, the extensional

strain can be written as

Ee = re + 2 rr 	 +0 (r3 )	 (20)

Assuming the deformations of the panel are small,

0 < Orel << i	 and	 0 < I rr l « 1 9	 (21),(22)

the higher order terms can be dropped. The strain-displacement relation-

ship then becomes linear, namely,

Ee= re= u' R w .	 (23)

The rotation, Q, and the curvature, K, at points of the reference

surface can be related to u and w by further analysis of the kinematics.

Again referring to Fig. 2, the tangent and normal to the deformed

reference surface are related by the rotation to the tangent and normal

of the undeformed surface. These relations are

t = - sin(P)i r + cos(Q)i 8 	(24)

n =	 cos(s2)i r + sin(P)i e	(25)

By definition

s

L
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dFt= ds. (26)

Using previous results,

dr
t ` 

FS
- 1 +1E	 dS -	 ^ 1 	 r0 ) ^ 0 * rr^r	 1 + e	 (27)

	

0	 0

Comparing Eq. 24 and Eq. 27,

	

1 + r ®	 -rr
cos(Q) = 1 + 

c	
sin(n) = 1 + 

c .
	 (28),(29)

	

^	 0

Thus the tangent of the rotation is given by

-r
tan(s2) =

r	
(30)

a

If the deformations are small, then in addition to Eqs. 21 and 22 being

true,

1 + e0 z 1 .	 ( 31)

For these conditions the rotations are approximated by

5" = - rr = w o R+ uu
	 (32)

The curvature of the reference surface is defined by

dt
TS' - "

n	 andTS
	
== -Kt	 (33),(34)

Again, using previous results, Eq. 33 can be expanded as
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dt = dt dS =	 1	 dt 	 1	 dt	 (35)
ds dS ds	 1 + ee Ts- R 1 + eg d6

Using Ea. 24 in Eq. 35 leads to

dt =	 1^
ds	 R 1 + ee	

cos(Q) Q'i r - sin(n) 1  - sin(P) Q'i6
l-	

l

- cos(St) it 1	 (36)
1

Regrouping results in

dt =	 1 + SZ'	 1 _	 ^
Us-	R 1 + e

e	
Cos (S2)i r - sin(Q)i e	(37)

^	 J

Substituting Eq. 25 in Eq. 37 leads directly to an equation of the form

of Eq. 33, namely

^
dt =	1 ^ St'
Fs 	 (38) R 1 + 

e8

ThereforE, curvature is defined to be

K = R1 ++Q6
	

(39)

For small deformations

1	 S2'	 St'	 (	 )K- R +R =KO +R- ,	 40

Ko being the initial curvature of the reference surface. Substituting

for the definition of Q, Eq. 32, the curvature can be related to u and

w by

i"

{
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Deformations off the Reference Surface

A similiar kinematic analysis can be developed for lines parallel

to the reference surface. Figure 3 shows the deformation of a point

which is a distance z away from the reference surface. For purposes of

illustration, the thickness of the laminate has been exaggerated in Fig.

3. Due to the applied load, the point displaces by an amount E z . The

subscript z is used to denote off-reference-surface position. It is

assumed that deformations normal to the reference surface, i.e. through-

the-thickness deformations, are negligible in this analysis and that

there are no transverse shearing deformations. Thus, in the deformed

state, the point is still a distance z from the reference surface and

the distance z is measured along the normal to the deformed reference

surface.

The extensional strain on a parallel line is also determined by

examining arc lengths. The undeformed location of the point off the

reference surface is

R  = (R + z) i t	 (42)

From this,

dRz = (R + z)ddi a = 1 + R dSi	 (43)

and

dS z = d7Rd  Rz = (1 + ZK0 )dS	 (44)

In the deformed geometry, the point is located by
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rz = r + zn	 (45)

The deformed arc length can be determined by

dr, =	 dr + z do	 ds = (1 + ZK) t ds	 (46)
z	 ds	 ds

drz = (1 + E e ) (1 + ZK) t dS.	 (47)

In going from Eq. 46 to Eq. 47, Eqs. (26), (34) and (5) were used. The

magnitude of the deformed arc length is

ds z =	 d 	 = (1 + E e )(l + ZK)dS .
	

(48)

Substituting Eqs. 44 and 48 into the definition of extensional strain,

E = ds
z - dS z 	(49)

6	 dSz

leads directly to

Ee = ( 1 + E8 )(`I + ZK)(1 + ZKQ ) -1 - 1	 (50)

Expanding the first two terms and using the bionomial expansion of the

third terms results in

E  = 
C  

+ z(1 + E0 )(K - Ko ) + 0(Z2 ) .
	

(51)

For small deformations, the extensional strains on parallel surfaces

become, using Eq. 31,

Ee = E  + Z(K — K0 ) .
	

(52)
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Parallel surface displacements can be computed in terms of reference

surface displacements and rotations by considering the geometry of Fig.

3. From the figure

n

zi r + '^z = A + z 	 (53)

Using Eqs. 4 and 25 and grouping terms produces

n	 n

Sz 
= E-w + z(cos(Q) - 1)]i r + Eu + z sin(s,)li ® .	 (54)

If S
z
 is written as

.^z = -w(0,z) •i r + u(e,z)ie	 (55)

then by association in Eqs. 54 and 55,

w(a,z) = w(a) + z(1 - cos(Q(a)))	 (56)

u(0,z) = u(6) + z sin(PM) .	 (57)

For small rotations, cos(PI) - 11

w( q ,z) = w(a) ,	 (58)

and

u(a,z) = u(6) + zsl(e) .	 (59)

Allied Loads, Internal Force Resultants, and Static Equilibrium Equations

The load analyzed in this study is a line load of intensity P, with

P in units of force per unit length along the generator direction.

Li
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Referring to Fig. 4, the force P is positive when directed toward the

center of curvature and the load acts at some arbitrary location on the

span denoted by 6 = V). The load is inclined from the radial direction

by an angle a.

The internal force resultants are illustrated in Fig. 4. The in-

plane (membrane) force, N, is assumed positive in tension. The positive

sense of the shear resultant, V, and moment resultant, M, are indicated

in the figure, These resultants are assumed to act at the reference

surfce and, as in a shell theory, are defined per unit length along the

generator or x-direction.

To determine the governing equilibrium equations, a small portion

of laminate is isolated. The pertinent forces acting in this portion of

the laminate are illustrated in Fig. 5. Since this is a linear theory,

the forces are illustrated in and Newton's Law will be applied in the

undefc-rmed geometry. Even though the interest here is in a line load, a

distributed load q(6) is shown in the figure for generality. It is

assumed spatially uniform in the x-coordinate and has units of force per

unit reference surface area.

Referring to Fig. 5 and summing forces in the normal, i r , direction

leads to

dV
d8_ N = Rq cos(a)	 (60)

Summing forces in the tangential, 1 6 , direction results in

d® + V = Rq sin(a)	 (61)

IL
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Finally, moment equilibrium of the element requires

dM
+ RV = 0	 (62)

Equations 60 - 62 are the static equilibrium equations which govern the

behavior of the cylinder under load.

Constitutive Behavior and the Determination of the
Reference Surface Location

The constitutive equations for a lamina are

ox = Q11Ex + Q12E6	
(63)

oA = Q12Ex + Q22EA	
(64)

Tx8	 Q66yxA'
(65)

where E
x , E

A' yxA are the strains and ox , QA , TxA are the stresses.

Because the laminates in this study are made from lamina with fibers

either in the 0 0 or 90 0 direction relative to the x-direction,

Qi6 = 0 1
 i = 1,2.

For a panel which is long in the x-direction, it is assumed that

Ex	
yxA- 0 '

(66)

such that

ox	Q12 E 8 '
(67)

crA	Q22E
6
	 (68)

Txy = 0 .	 (69)

iI
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For a beam it is assumed that the transverse stresses are zero, i.e.

ax = 0 in this case. Hence

2

o
® - Q22 (1 - AQl2 ) E9	(70)

Q11Q22

In either formulation the constitutive equation can be written as

* (71)
e0	 Q22 E® '

where

Q22 for a long panel

Q* 22
	

2

Q22 (1 - 412 ) for a beam.

Q l lQ22

It appears the factor 
;r2	 - 

1Q22 is small with respect to 1 for the

Practical case. For example, consider a 0 0 ply of graphite-epoxy. From

Jones [1, pp. 46-511,

_	 E1

Q11 = Q11 = T-- 12 V
21	 (72)

_	 E2

Q22	 Q22 T_- 12 V21
	

(73)

Q12 = Q12 = j v 12E2 	 (74)
12"21 

ii
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Thus

m %-' l 2 '2 ^ LO. 21 ) ' I . 7 ms i

41 1'q2	
'- -rF  - 

I	 kygi— - 0. 0037485	 (75)

which is, In fact, small with respect to unity. Therefore Q*,	 '^,2 is
exact for a long panel and is a good approximation for a beam or arch.

The definitions of the stress resultants for the reference surface

are

d	 d

N m 
f0o

dz 	 m	
f 
N dz	 (76),(77)

h
+ d)	 + d)

2

Using the constitive relation, Eq. 71, the definition of parallel

surface strain, Eq. 52, and integrating, Eqs. 76 and 77 become

N - A22CO + B 22 (K - 'Qo)	 (78)

M zi . 5 22 00 - D22 (K - Ko)	 (79)

where

h _ d

2
(A	 B I2 2 1 2 2 D 22 )	Q22(1,zlz ) dz	 (80)

+ d

For the middle surface, making the change of variable z 	 d and

substituting into Eq. 80 yields
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822 = 622 - dA22
	

(82)

D22 
= 6

22 - 2d 622	 d2 A22,
	

(88)

in which

h
2

(A22' 622' 622 )	 f	
®22 (1, i, z) dz	 (84)

_h

2

are the stiffnesses for the middle surface. To uncouple the constitutive

equations requires

822 = 0 = B22 - dA22 ,	 (85)

so

d = 822_	 (86)

A22

and

2

D22 ='D22 -
822	

(87)

A22

The barred stiffnesses are the stiffnesses typically associated with

classical lamination theory [1, pp. 154-155]. Using the uncoupled

reference surface, Eqs. 78 and 79 reduce to
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N = A22ce	
and	 M = - 022 (K - KO )	 (88) (89)

Boundary Conditions

Care must be exercised in the application of the boundary condi-

tions. All boundary conditions must be stipulated in the context of the

laminate reference surface, as opposed to the laminate midsurface.

For pinned supports at the middle surface, there is no radial or

tangential displacement, that is,

w(±eo ,-d) = 0	 (90)

u(±eo ,-d) = 0
	

(91)

In terms of the reference surface displacement, these conditions are,

using Eqs. 58 and 59,

w(±e o ,-d) = w(te o ) = 0	 (92)

u(±e o ,-d) = u(±eo ) - dQ( ±6 o ) = 0	 (93)

Using the definition of Q, Eq. 32, and defining

R	
d ,	 (94)

the boundary condition for zero tangential displacement at the middle

surface becomes

(1 - d)u(teo ) - dw'(±e o ) = 0	 (95)
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At the pinned supports the bending moment for the middle surface

vanishes. If V, N, and M are the force variables for the middle sur-

faces and V, N, and M are the corresponding force variables for the

reference surface, the following static equivalence holds.

d( >0)

h/2

^

-7h 

I^d

V=V
	

V=V
	

(96a)

N=N
	

N=N
	

(96b)

M= M+dN
	

N=M - dN
	

(96c)	 a

The moment-free boundary condition, at the middle surface, is then
	 1

N ( ±eo ) = 0 .	 (97)

Referred to the reference surface this condition becomes

M( ±e o ) - dN( ±6o ) = 0 .	 (98)
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Using the constitutive relations, Eqs. 88 and 89, Eq. 98 becomes

- 
D22(K(+Oo) - 

Ko ) - 0
22 eO (+6 0 ) = 0	

(99)

Using the definition of K and r'.,, Eqs. 23 and 41, and defining

dRA22
	 (100)

1^2

the moment-free boundary condition can be written as

w 11 ( to 
0 ) 

+ (I + \)u'(±o 
0 ) 

+ W(to 0 ) 
0 0 .	 (101)

By virtue of the vanishing radial displacements at the supports, Eq. 92,

Eq. 101 simplifies to

w 11 ( :o 
0 ) 

+ (I + \)ul(to 
0 ) 

ra 0 .
	

(102)

Equations 90, 95, and 102 become the pinned end boundary conditions on

the kinematic variables u(0) and w(0).

Transition Conditions at the Point Load

Consider the distributed force per unit reference surface area q(o)

to degenerate to a line load per unit generator direction located at

o c 4- as shown in Fig. 5. Define

Rq(o) - P6(0 - fl
	

(103)

where S In this equation is the Dirac delta function. The equilibrium

equations, Eqs. 60-62, become
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Fia. 5 Equilibrium of a Small Element of Laminate
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dV
d6 

_N = P6(6-	 Cosa

de+V = P6(6-	 sin 

dMde+RV=0 .

(104)

(105)

(106)

r3

a

Integrating these equations between 1b - E and ^ + E, E>o, results in

	

+ E	 + E	 + E

1
	 de de - I	 N de =	 P cos a j	 6(e - ^) de	 (107)

l^J — E	 E	 — E

	

, 

+ E	 l + E	

f
l + E

de de+ J
	V d6P sin a 
	

6(6 -^) d6	 (108)

— E	 ^ — E	 ^ — E

f

+ E	 1 + E

 de d6 +	 RV de =	 0	 (109)^ - E	 l - E

The limit of these equations as E - 0 becomes

VW) - VW) = P cos a	 (110)

N(^+ ) - N(^ ) = P sin a	 (111)

MW) - MW) = 0 .	 (112)

These same relations can be obtained by considering a free-body diagram

of a panel segment at the location of the line load. From these relations

it is clear that the shear and tangential force resultants, V and N,



experience a jump at the location of the line load. The moment, however,

is continuous. The continuity condition on M is similiar to the continuity

condition on several kinematic quantities which remain continuous at the

line load. The kinematic quantities which remain continuous are the

tangential displacement, the radial displacement, and the cross-sectional

rotation. Specifically,

WW) = WW)	 (113)

u (^ +) = U N- )	 (114)

Q W
)
 = Q(W ) •	 (115)

All transition conditions can be stipulated in terms of the funda-

mental kinematic variables u(e) and w(e) by substitution of previously

defined quantitites. Working first with those quantities which are

continuous at the point load, continuity of rotation, Eq. 115, becomes

w' (^ +) + u(P+ 	 = w' (W ) + uW)	 (116)R	 R

Equation 32 was used for this equality. By virtue of the continuity of

the tangential displacements, Eq. 114, continuity of rotations becomes

w'(^ + ) = w'W) •	 (117)

The jump in the membrane force, Eq. 111, can be represented with

the aid of Eq. 88 as

A22 (C O W) - e e (^ )) = P sin a .	 (118)
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From the definiton of Ee , Eq. 23, this equation becomes, with a slight

rearrangement of terms and using continuity of radial displacements, Eq.

113,

u'(W
- ) + PR sin a = u'(^+)

X22
(119)

By using the constitutive relation between moment and curvature, Eq. 89,

continuity of moment, Eq. 112, becomes

-022 (K(y + ) - Ko ) = -D22 (K(4 ) - Ko ) .	 (120)

From the definition of K, Eq. 41, continuity of moment reduces to,

w 11 W) + u '( W+ ) = w" W ) + u '( W - ) -
	

(121)

Finally, the jump in the shear force can be examined. Since shear

deformations are ignored the shear force must be written in terms of the

other force variables by using the equilibrium equations. Using Eq. 62,

the jump in the shear force, Eq. 110, can be stated as

- R M '(W+ ) + R M '(V ) = P cos a .
	

(122)

Using steps similiar to the previous steps, this condition can be

written in terms of kinematic quantities as

W"' W- ) + u „ (W - ) + PRpcos a = w
„,

(W+ ) + u"(y + ) .	 (123)
22

Equations 113, 114, 117, 119, 121, and 123 are the conditons the kine-

matic variables u(8) and w(e) must satisfy at the point of application

of the load.
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Su- mmary of Equations

For convenience the important equations are summarized here. The

equations, as a whole, constitute a properly formulated boundary value

problem which can be used to study the linear elastic response of an

arbitrarily deep cylindrical laminated composite panel to a line load.

A symmetrically laminated panel is but a special case.

The equilibrium equations in the intervals -6 0<e q and V<6e60 are:

V - N = 0	 (q = 0 for line load)	 (60)

N' + V = U	 (q = 0 for line load) 	 (6i)

M' + RV = 0	 (62)

The constitutive behavior of the panels is:

N = A22c6 = AL2 u R w
( 	)

(88),(23)

M = -022
('
 - ko ) = -022 w° +2u•
	

(89),(41)
R

The boundary conditions for the pinned supports are:

radial disp. = 0:	 w(±60) = 0	 (92)

tangential disp = 0: 	 (1 - 6)u( ±e
0
) - dw'(±eo ) = 0	 (95)

moment = 0:	 w"( ±eo) + (1 + a)u l (±e o ) = 0	 (102)

At the line load the following transition conditions must be enforced:
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continuity of radial lisp.: w(4I) = w(I,+ ) (113)

continuity of tangential disp.: u(c)-)	 a u(qi+ ) (114)

continuity of rotations: w'(',	 ) = w'(^+ ) (117)

jump in membrane force:	 u'(w- ) + PRA = U l W) (119)

continuity of moment: 	 w"(q.i-) + u' U, - )	 = w"(q,+ )	 + u' N,+ )	 (121)

jump in shear force:

will N- ) + u u(^-) + PR3Cos ^x	 will ( IP+ ) + u ( +)

22	 (123)

By virtue of the nature of the problem, there will be two solutions

to the homogeneous governing equations given by Eqs. 60-62. One solution

will represent the radial and tangential displacements of that portion

of the panel to the left of the point load. The other solution will

represent the displacements of the panel to the right of the point load.

These two solutions will be related through the transition conditions

and each solution will satisfy the boundary conditions pertinent to that

portion of the panel.
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3. SOLUTION TO GOVERNING EQUATIONS

General Solution to the Differential Equations

From Eq. 61 with q = 0

V = -N' ,	 (124)

Substituting this into Eqs. 60 and 62 yields

N" + N = 0	 (125)

M' - RN' = 0	 (126)

By Eqs. 88 and 89 the equations become

Ee + Ee = 0	 (127)

and

D22 (K - KO )' + RA22 E e ' = 0	 (128)

The solution to Eq. 127 is

E e = A l cos e + A2 sin a	 (129)

Integration of Eq. 128 produces

D22(K - Ko ) + RA22 Ee = A 
3 
R	 (130)

E

Using the definition of the reference surface strain, E e , and curvature,

F

	 K, Eqs. 23 and 41, Eqs. 129 and 130 become	
a

34
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u' = w + RA  cos e + RA2 sin e

3
w" + u' 	 RDA22 (Al cos e + A2 sin e)	

+ DR3 A
3 .

22	 22

Subtracting the two equations and defining

-_ R3
01D22

3
R A22

^2 = 
R + D22

results in an equation for w(e), namely

W11 + w = - A1^2 cos e - A 202 sin e + 01A3

The solution to tn',s equation is

w(e) = -A l 2 6sin6+A 2 2 e cos e+A301+

A4 cos e+ A 5 sin e.

(131)

(132)

(133)

(134)

(135)

(136)

Substituting into Eq. 131 and integrating once leads to the expression

for u(a), specifically,

u (e) = Al [(R - L2 )sin  a + 2e cos 8 +

A2 - ( R - ^) cos 8 + 2 e si n e	 + A3^le +

A4 y in 8 - A5 cos e + A6	 (137)

i



r

Note, Eqs. ,36 and 137 are valid in regions of the panel both to the

left and to the right of the point of application of the line load.

However, constants A l thr,;^,*A A6 will be different for each region. In

	

what follows the superscrip	 of + , s or -'s will be used to denote

whether the various quantitites being discussed pertain to regions of

the panel to the right or to the left, respectively, of the line load.

Thus the solution for w(e) and u(e) to the left of the point load will

involve constants Al through A6 while the solution for w(e) and u(e) to

the right of the point load will involve constants A l through A6.

Application of the Boundary and Transition Conditions

Since the boundary conditions and transition conditions have been

written in terms of the kinematic quantities u(6) and w(e), application

of these conditions to find the twelve unknown constants A through A6

and A
1
 through A6 is straight-forward. In terms of the twelve constants,

the conditions lead to the following twelve equations:

radial displacement at 6 = -e0 is zero:

^ 1 A3 -	 A- 
+ ^22o A-
	 sin 60 +	 A- - 

^22o A2
	 cos eo = 0

(138)

radial displacement at 6 = +e0 is zero:

^, 1 A3 +	 A+ - 
^ 
262o A^	 sin 60 +	 A+ + 

^ 
2e2o A2	 cos 60 = 0

(139)

It
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tangential dis placement at a = -ao is zero:

^ 1	 `) A-^10oA3	 lA4 + R 22	 Al - ^ A - ' sin 0
l21

A5 +	 R -	 A- + ^`^° Al	 q-l 
cos d o	 - 6 ( q- + ^^ 1	 4	 1

X210 A- sin O o + IA5 + 
'2 

A- + ^2ao q" , cos a	 = 02	 I	 1	 11

(140)
tangential dis p lacement at 0 = 

+ao 
is zero:

(1 - S) A6 + p 1 0oA3 + ^A+ + R - 12 A+ + -'o A+ i sin a
1	 1

+A5 +	 R - AL A2 - ^20o Al' cos a p	 i- s - A,+̂  + 
^2 

q+
1	 )	 1	 -c 1

A sin Oo + A5 + `` A _`^ q+ 
1 cos a = 0I	 1	 2	 2	 11	 0

(141)

moment at ? = -0. is zero:

IA 5 + ^2A2 +	 A^ I sin O o -	 A4 + ^ 2Ai - —=- °_ A - I cos a0

+ (1 + \) ^ A - -A5 + RA- + ^`- ° A - ) sin a
1	 ^	 o

+ q- + RA-- X200
1	 A2. 1 cos 60	 = 0	 (142)

Is

N
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moment at e = +e o is zero:

z

J A5 + 2A2 - ^22o A+l sin 3 0 - i A4 + ^2A+ + ^
2 eo

 A+, cos a

E	 ^ 8

	

+ (1 + X) IOJA3 + ;5 + RA2 	- 2 2° A^ 	 sin eo

+ 
I
"+ + RA+ + 12eO A2(1 cos eo = 0I	 (143)

continuity of radial displacements at e = w:

l 12± 1	 f	 02	 1^ 1 A3 +	 A5 - 2 Al J sin i^ + 1 A4 + 2 A -2 l cos

O J A3 +	 A 5 - ^2^ A+ si n y, +	 A4 + 021 A2 co s ,p	 (144)

continuity of tangential displacements at e = ^:

	

1 0 2	 X2`1'A5 + ^ 1 ^lk3 + l A4 +	 R - 2 A, + 2 A2 sin k

4	 t2	 $24)	 1A5 + R - 2 A2 - 2 Al 4 cos s

	

A5 + ^1^ A3 + A4 + R - ^2 A+ + " A +'' 	 sin W

+2 + ^2^ +)
,

-	 A +	 R -	 A -	 A	 cos	 (145)5

	

2	 2	 2	 1 j

a
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continuity of rotations of e = ^:

l^2 -	 02^ -	 ^2 -	 02`^A4 + - 2 A l + -
2
— AL sin  ^, + A5 + -7 A2 - -2- A l cos

w
1 A4 + -7 Al + -r A` sin  ^ + A5 + -^- A2 -	 Al cos w

(	 (146)

jump in membrane force at e = c^:

A2 sin s + A- cos V + P sin a = A3 sin t, + Ai cos	 (147)
22

continuity of moment at e = w:

^ 1 A3 + (R - 0 2 )A2 sin	 + (R - ^ 2 )Al cos

1 A3 + (R - 2 )A2 sin	 ^, + (R - ^ 2 )A1 cos	 (148)

jump in shear force at a = ^:

- (R - ^2 )Al sin	 (R - YA2 cos w + $ 1 P cos a =

- (R - ^ )A+ sin y + (R - 2 )A2 cos 0	 (149)

Equations 138-149 are simply a set of linear algebraic equations of the

form
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A -

A 2

A3

A4

A5

A6

C +
Al

A+
2

A+
3

A+
4

A+
5

A+
6

B1

B2

B3

B4

B5

66

(150)

B7

B8

B9

B10

B11

B12

S

These can easily be solved for A- through A 6+ . The Appendix gives the

coefficients C ij and B j , i,j = 1,12.

Given the cylinder geometry, the material properties, and the

loading condition, the matrix C and the vector B can be defined and

coefficients A- through A+6 can be computed. Once these coefficients are

known, the deformed shape, the strains, the membrane force, the Mending

moment, the boundary reactions, and any other quantity related to the

response can be determined. The next section presents numerical results

regarding the response.
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4. NUMERICAL RESULTS

Figure 6 shows the predicted stiffness characteristics of three 4-

layer cylindrical panels as a function of panel geometry. The panels

are assumed to be fabricated from glass-epoxy with the following mate-

rial properties:

El = 20.0 x 106

E2 = 1.04 x 106

G12 = 1.50 x 106

v12 = 0.28

t = 0.005 in. (lamina thickness)

The case shown in Fig. 6 is for panels with the line load exactly at

mid-span (ip = 0) and aligned radially (a = 0). The stiffness 'K' is

defined as the total load divided by the radial deflection under the

load. The stiffness has been normalized by the stiffness of a pinned-

end panel w • , Ii a symmetric [90/0/0/901 T stacking arrangement and with a

semi-opening angle of n (see Eq. B.9 in Appendix B). The pinned-end

panel with semi-opening angle of 1r is not be be confused with a closed

ring. The difference is illustrated below.

41
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pinned-end panel with	 closing ring

semi-opening angle n

The notation on stacking sequence needs some explanation. The

notation reads from the left to the right, for example in 190/0/0/9017,

and each number is associated with a particular lamina. The number

indicates the angle of the fibers in the lamina relative to the global

x-axis. The left most entry in the stacking sequence notation refers to

the lamina at the negative most z position. Reading to the right in the

notation corresponds to moving from lamina to lamina in the direction of

positive z. Thus, for the problem here, 190/0/0/901 7 signifies that the

fibers in the innermost and the outermost lamina are in the circumferen-

tial direction while the fibers in the two inner lamina are in the

generator direction.

In Fig. 6 the abscissa is the scaled semi-opening angle 90/7r.

This parameter completely characterizes the panel's depth, or "bulge,"

with respect to the chord line connecting the support points. It can be

seen from Fig. 1. that this rise to span ratio for the panel is
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Thus, as stated, the semi-opening angle completely characterizes the

panel's depth. Moreover, Eq. 151 implies that for a shallow panel in

which the rise to span is small that 6
0
 is small, i.e.,

L	
4 

6 0 , for 6o small.
	

(152)

Shallowness means a small semi-opening angle, independent of the panel's

radius.

Figure 6 shows the stiffness characteristics of a 190/0/0/901T

panel, a 10/0/90/901 T panel and a 190/90/0/01 T panel. The first panel

represents a symmetric stacking arrangement that can be made using

ordinary fabrication techniques, i.e. laying the prepreg over the cylin-

drical mandrel and curing it. The second panel represents an unsym-

metric lay-up that would naturally assume the cylindrical shape if it

were fabricated flat, cured, and cooled. The third panel is a fictious

unsymmetric panel which if actually fabricated would have curvature

characteristics opposite to that implied in Fig. 1. This panel was

studied only to assess the effects of the through-the-thickness location

of the circumferential fibers. It is important to note that all of the

panels in Fig. 6, and in subsequent discussions, have an equal volume of

material (arc-length of 20 inches). Thus, in a sense, material efficiency

is being studied.
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From Fig. E it appears that the symmetric panel affords the stiff-

est configuration, except when the opening angle is small. The stiff-

nesses of the two unsymmetric panels are identical. The small opening

angle region will be referred to as the shallow panel case. Before this

study began, it was not clear whether the unsymmetrically laminated

panel would be softer than the symmetric counterpart. If membrane

forces governed the stiffness, perhaps the stacking arrangement was not

important. If bending forces governed the stiffness, then the stacking

arrangement would be important. With a [90/0/0/90] T configuration, the

circumferential fibers are in the best position, through-the=thickness,

for resisting bending. In the other stacking arrangements the circum-

ferential fibers are all on one side or the other of the bending axis.

Thus it appears bending stiffness is quite important, at least for deep

panel configurations.

To obtain a more detailed comparison of the stiffness when shallow

panels are considered, the stiffness and geometric perimeters are

rescaled. The stiffness is nondimensionalized by the stiffness, Kb,

of a 190/0/0/901 T simply supported beam (see Eq. B.20 Appendix B) and

the ratio of the panel rise to laminate thickness is used to describe

the deviation from a flat configuration. Figure 7 shows a comparison of

the 3 panels for the case of shallow panels. The figure has several

interesting features. First, it is obvious a slight curvature in a

'beam' dramatically increases the stiffness. For a rise-to-thickness

ratio of even 1, the stiffness has increased several times. This

phenomena is not unique to composites. It happens with metals and the

increased stiffness is due to geometric effects. The second feature to
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be noted is that for a small range of rise-to-thickness ratios, the

unsymmetric 190/90/0/01 T panel is stiffer than the symmetric panel.

Above a rise-to-thickness ratio of about 1, the 190/90/0/OJ T is always

less stiff than the symmetric panel. The ratio of the stiffness for

each unsymmetric flat panel to the stiffness of the symmetric flat panel

is 0.545, which may be determined from Eqs. B.19 and B.20 in Appendix B.

For a shallow panel, the induced membrane force is a significant

component of the panel's stiffness. This membrane effect adds to the

inherent bending stiffness. Thus the membrane force at the pinned

support was examined. For the loading here the membrane force was

compressive, or a thrust, and Fig. 8 shows how it varies with panel

geometry for the 3 different stacking arrangements. From the figure it

is clear that even though the banding stiffness of an unsymmetric panel

is less than the bending stiffness of the symmetric ones, the induced

thrust in an unsymmetric panel can be greater. In the case of the

[90/90/0/0] T panel this increased thrust increases the global stiffness

beyond the symmetric panel's. The figure also indicates that the deeper

the panel, the less is the difference in thrust among laminates. As

suggested by Fig. 8, the thrust has significantly less contribution to

the global stiffne-,s for the deeper panels.

It is interesting to determine if the shallowness approximation (r0

small) is influenced by the laminate configuration. For metallic panels

shallowness is determined solely by geometry, see Eq. 152. The error in

the shallowness approximation on panel stiffness is shown in Fig. 9 as a

function of the scaled semi-opening angle a o,''r. Panel stiffness as
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computed from the assumption of shallowness is designated Ksh and is

derived in Appendix B (see Eqs. B.10 to B.17). The percent error on the

ordinate of Fig. 9 is defined as

e = (Ksh/K-1)1001

in which K denotes the exact panel stiffness from the general theory (ao

arbitrary). For the resolution on the graph shown in Fig. 9, the dif-

ferences between the error curves for the 19O/O/O/9O1
T1
 190/90/0/0]T,

and [0/0/90/90] T laminates are indistinguishable. hence shallowness is

essentially unaffected by lamination dissymmetry, and thus, it truely is

a geometric quantity.

Of fundamental importance to the integrity of composite structures

is the strain levels. Due to the brittleness of epoxies, large tensile

strains in the matrix direction of the epoxy matrix laminates cannot be

tolerated. Even if adjacent layers have the ability to hold the struc-

ture together, cracks in lamina are simply bad. A crack in one lamina

can induce cracking in an adjacent lamina even though the cracks could

ultimately be at right angles to each other. Cracking can lead to

delamination and the problems inherent with that sort of damage. Thus

it is important to assess the strain levels in these three laminates.

Figure 10 shows the circumferential strains in the three laminates.

The maximum circumferential strains at the innermost and outermost

radial location were computed as a function of panel geometry. The

outermost strain's were compressive while the innermost strains were

tensile. The maximum strain's occurred at the load location. In the
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symmetric laminate, the circumferential fibers in the inner and outer

plys react these maximum strains. In the [90/90/0/0] T the inner tensile 	

'f
strains are reacted by matrix while the outer compressive strains are

reacted by fibers. In the [0/0/90/90]T the tensile strains are reacted

by the fibers while the compressive strains are reacted by the matrix.

As can be seen in Fig. 10, the [90/90/0/0] T laminate yields the

largest tensile strains while the LO/0/90/901 T laminate produces the

largest compressive strains. Shallowness appears to have much co do

with the magnitude of the strains on the opposite sides of the panel.

As the panels become deep (H/h increasing) the strains on op posite sides

become nearly equal in magnitude, an indication of bending effects

dominating.

The results presented so far have been for the case where the load

is actually radial and it is located exactly at midspan. This is an

ideal situation. In prat:ice it is difficult to achieve the symmetry in

the loading implied by this situation. Oftentimes the load is slightly

rotated (o. $ 0) relative to the radial lines so that it does not act

entirely in a radial direction. In addition, the load may not be

exactly at midspan (q) # 0), acting a little to one side or the other of

the geometric center of the panel. In some structures such deviations

from the ideal loading can cause a response that is drastically dif-

ferent than the response to the ideal case, even if the deviation is

small. This is particularly true for imperfection sensitive structures

which exhibit a significant decrease in the static buckling load of the

perfect structure for small eccentricities in the load position or for

small geometric imperfections in the structure's initial shape. For
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example, an elastic arch with symmetric end conditions and unloaded

shape, subjected to a downward point load at midspan, is imperfection

sensitive if the arch rise is sufficiently large to cause instability at

a bifurcation point L51. Thus the sensitivity of the cylindrical panels,

particularly the unsymmetrically laminated ones, to deviations from the

ideal loading case was studied. The stiffness of the panels was again

used as an indicator of panel response. If the load is rotated slightly

relative to the radial direction, not al' of the deflection is radial.

However, the stiffness was still defined as the total load divided by

the radial deflection under the load. The reason for this definition of

stiffness is that if experimentally one was determining the stiffness

and did not realize that the load was rotated, this definition would

still be used to compute stiffness.

In what follows, the stiffnesses for the nonideal cases have been

normalized by the stiffness for the ideal 190/0/0/901 T case. The

stiffnesses will be assumed to be a function of the location of the

load, q), and the inclination of the load, a. Thus, the notation

K = K( ,a). The ideal case will be donated as K(1=O,a=O). Figure 11

shows the stiffness of a typical shallow panel (R = 100 in., a o/Tr =

0.032) as a function of the location of the load along the span of the

panel. The load is assumed to act radially (a = 0). Figures depicting

the effects of load location and orientation can become cluttered if, in

addition, various panel geometries are shown. Thus a single panel

geometry representative of a shallow panel was chosen. As can be seen

in the figure, slight deviations of load locations from the center

positions cause no noticable decrease in stiffness. As the load location

reaches quarter-span, ,P/e o = 0.5, the stiffness decreases considerably.



NMO
O

11

O
m

C

O
O

it

0J
r

4-
O
C
O
•r

f0U
O
J

O

NN

4-
4-
•r

N
r—
O
C

G.

4-
O

.r

•r

•r
L7
C
fU
L/)

r^
r

C.
•r
LL

i

54

N	 r	 C

O

O
m

O
b
O
J

r—•
r^
•r

cU

LO 4-
O

O
C
O
.r

(O

O
J

O

CO=p`0=n)^I /CU=^`0 )^ `SSau^;S PazLLew,AON



55

As the point of application of the load approaches the support, ^/e o =

1, the stiffness becomes very large. The stiffness variations of both

unsymmetric laminates and the symmetric one are similar and there are no

adverse sensitivity problems with the unsymmetric laminates. In essence,

if the load were not exactly at midspan in an experiment, the stiffness

calculations would not be in error. Figure 12 shows the stiffness

characteristics of a deep panel ( R = 6.5 in., 6 0/1T = 0 . 5) as a function

of load location. Again, there does not appear to be any adverse sensi-

tivity for any laminate.

Figures 13 and 14 show the effect on stiffness of a rotation of the

load from the purely radial inclination. Figure 13 is for a represen-

tative shallow panel ( R = 100 in., 60/Tr = 0.032) and the load is assumed

to act at midspan (^ = 0). It is clear that for inclinations 15 1 - 20°

from the radial direction, the increase in stiffness over the ideal case

is negligible. As the load rotates more and more from the radial position

it begins to encounter the membrane effect of the panel and the radial

deflections decrease. The unsymmetrically laminated panels seem to have

the same characteristic as the symmetric panel. In addition, as shown

in Fig. 14, the deeper panels behave similarly.
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5. A LIMITED COMPARISON WITH EXPERIMENTAL RESULTS
	

'i
z

To determine if the predictions of the response of unsymmetrically

laminated cylindrical panels were correct, a [0 4/904 ]T T300/5208 graphite-

.	 epoxy cylindrical panel was fabricated. In the uncured state the flat

panel was 12 x 12 in. When cured, the panel had a radius of curvature

of 10.2 in. The panel was fabricated at the Air Force Materials Laboratory,

Wright-Patterson Air Force Base. The authors extend their appreciation

to Stephen W. Tsai for providing for the panel fabrication.

The panel was mounted horizontally, the panel midspan being higher

than the supported ends. The pin supports were simulated by using two

steel right-angle members parallel to the generator direction and running

the lenqth of the cylinder. The open side of each angle member was

towards the panel. One leg of each angle member was horizontal and the

other leg was vertical. Each straight edge of the panel was seated in

the corner of a right-angle. The angles were clamped so they could not

move relative to one another. The vertical leg of each angle prevented

the cylindrical panel from spreading as a downward load was applied.

The horizontal legs provided a vertical reaction to the applied downward

load. Dead weights acting on a stiff bar that ran the length of the

cylinder provided the line load. The load acted radially (a = 0) at

the panel midspan (e = 0). The results of Figs. 11-15 indicated that

the panel response would not be overly sensitive to slightly off-center

(e # 0) or slightly misaligned loads (a # 0). Figure 15 shows the

setup. Dial gages were used to monitor the radial deflections of the

cylinder at several locations.
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Figure 16 shows the load deflection characteristics of the panel.

The experiment was terminated after the panel deflected more than 4 	
It

laminate thicknesses simply because this was felt to be the range of the

linear theory developed here. The correlation is not particularly good.
h

To put the results in context, a [(90/0) 2 ] S T300/5208 graphite-epoxy

cylindrical panel with a 12-inch radius was tested. The panel was

obtained from the Air Force Flight Dynamics Laboratory and the authors

extend their appreciation to Capt. Marvin Becker for providing the

panel. The panel had been previously buckled with inpiane compressive

loads acting in the generator direction. There was no noticeable damage

to the panel from the previous buckling. Figure 17 shows the symmetric

panel and the unsymmetric panel side-by-side. Figure 18 shows the load-

deflection characteristics of the symmetric panel. Again the correlation

is not good. In fact, the correlation for the symmetric panel is Norse

than the correlation for the unsymmetric panel. It is not entirely

clear why the correlation for both panels is not better. Some overstiff-

ness is expected in the predictions but not to the degree observed here.
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Definition of Coefficients C if and Bj

Eq. 138

^2eU
C1,1 = - - 2 cos 60

^2 e0

C1,2 = -
	 2 cos B0

C1,3 01

C1,4
= cos e0

C1,5 = - sin e0

C1,6--'C1,12=0

B1 = 0

Eq. 139

C2,1 -► C2,6 = 0

C2,7 = C1l1

C2,8 
= - C1,2

C2,9 = C
1 

3

C2,10 = C1,4

C2,11 = - C1,5

C2,12 = 0

B2 = 0
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Etc— 140 8

C 3 1	 =	 (1	 -	 a)	 -	 R

l

- sin cos 60

e
- a i 2 sin

d
e0 +

220
cos 

6 0^

'	 J $2 e 0
$2
	 l

C3,2 =	 (1	 -	 a) 1	 2 sin 60 - R - 2	 cos e0 j

$2 6
^	 1

_ a	 -	
20

sin 60 +  cos 60)

S

1

Eq. 141

CM -r C4,6 = 0

	

C4,8	 C3,2

	

0 4,10	 C3,4

r
C4,12 - "3,6

C4,7 = -	 C3,1

C4,9 =
- C3,3

04,11 C3,5

B 4 = 0

C3,3 = - (1 - a) oleo

C 3,4 = - sin e0

C3,5 = - cos 60

C3,6 = 1 - a

C3,7 
-r 

03,12 = 0

B 3	 0



Eq. 143

C6,1 -> C6,6 = 0

C6,12 = 0

CM 0 = C5,4

C6,5 
= - C5,2

C6,7
C5,1

C6,9 C5,3

C6,11 C5,5

B 6 = 0

68

Eq. 142

C5,1 = 0 + a) - ^280 sin 6 0 + R cos e0

X260
4•	 2 sin e0 - ^2 cos 60

e
C5,2 = 0 + a) - R sin 8 0 - ^ - cos e0

1

+ 02 sin eo + ¢220 cos e0

C5,3 = 0 + a) ^1

C5,4 = a cos e0

C5,5 = -a sin e0

C5,6 } C5,12 = 0

B5 = 0

1

I



Eq. 144

T 2

C7,1
= -	 2	 sin

C7,3 -	 01

C7,5
=	 sin

C7,7
-	 -	 C7,1

C7,9
= - C7,3

C7,11 = -	 C7,5

69

T^T
C7y2

2	
cos

C7,4 = cos

C7,6 =	 0

C7y$ _	 - C7y2

C7,10
= - C7,4

C7,12
=	 0

B7 = 0

I'

4

W

Eq. 145

C8,1 = R
	

^22 sin ip + 2 cos

X20	 ^2
C8,2 = 2 sin k -
	 R - 2 cos

C8,5	
= - cos C8,6 =	 1

C8,9	 =
- C8,3

C8,12	 = - C8,6

C8,4 = sin ^

C8,8 = - C8,2

C8,11 = - C8,5

C8,3 = ^l^

C8,7 = - C8,1

C8,10 = - C8,4

B8 = 0

A
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C9,1

^2
= - 2 sin

121 
Cos-	 2	 cos

C9,2
-	 2	 sin ^,

^2
+ -
7
 cos

C9,3
=	 0 C9,4 = - sin ^

C9,5
= cos

C9,6
=	 0 C9,7	 = -	 C9 1 1 C9,8 = - C9,2

C9,9
=	 0

C9,10 =
- C9^4

C9,11 = - C9,5

C9,12
=	 0 B9 = 0

Eq. 147

C10,1	
cos ^	 C10,2 = sin ^	 C10,3 

-Y C
10,6 = 0

C10,7 =	 C10,1	 C10,8 = - C10,2

C10,9 } C10,12 
_ 

0	 B10 - - 
A 

P22 sin a

Eq. 148

C11,1 =
	 (R - ^2)cos	 C11,2 = (R - ^2)sin	

C11,3 = ^1

C 11,4 	 C 11,6	 = 0	 C11,7 = - C 11,1	 C11,8 = - C11,6

C11,9 -	 C 11,3	 C11,10 } C 11,12 = 0	 Bil	 = 0

Eq. 149

C 12,1	 =	 (R - ,n,) sin y,	 C12,2 = (R - ^ 2 ) cos

C12,3 -^ C12,6 = 0
	

C12,7 = - C12,1

c12,8 = ° C12,2
	

C12,9 	 C 12,12 = 0

3
B 12	 - R 

P 
cos a

22

i
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APPENDIX B

Panel Stiffness by Castigliano's Theorem

The global panel stiffness may be obtained with relatively few

algebraic manipulations by Castigliano's second theorem for some special

•	 geometric configurations if the line load P is directed radially inward

at midspan	 0 in Fig. 4). These manipulations are outlined in

this appendix for the deepest panel (e o = T), a very shallow panel (60

small), and a flat panel.

The complementary strain energy per unit length in the x-direction

of the panel is

V = (^) 60 
[M2 

+ 
N2 

]R de .
2 j	

D22	 A22
-60

(B.1)

From appropriate free body diagrams of a circular cylindrical panel with

arbitrary e 0 , the statically admissible force fields as a function of e

are determined. These are

N(e) = - T cos 9 - (Z) sgn (e) sin 6	 (B.2)

M(0) = - T[R cos e - a cos (9 0 )] - (2)[ R sgn (e) sin	 - a sin 60],
a

(B.3)

in which lei < e 09 T is the horizont al reaction thrust per unit length

in the x-direction exerted on the panel by the pinned-end supports and

1, if9>0
sgn(e) _
	

(B.4)
-1 , if 9 < 0
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For the deepest panel e o = n. Using this specific value of ao,

Eqs. (B.2) and (B.3) are substituted into Eq. (B.1) and integrations on

e are performed. The resulting complementary strain energy is

V = R7rT2 + (RTr/4)P2 + R3[1 + 2(a/R) 2 ]T2 + (R3 Tr/4)P 2 + (4aR2)TP
2A22	

2D22	
(6.5)

Castigliano's second theorem states that partial derivatives of V with

respect to the forces T and P are the generalized displacements. In

connection with the specific problem here, this requires

z

where A is the panel displacement in the direction of the load at the

point of load application. The partial derivative with respect to T

(B.7) must vanish since the pinned-end supports are immovable. Eqs. (B.6)

and (B.7) result in linear algebraic equations for T and P when

Eq. (B.5) is used for V. If T is eliminated between them, a single

equation of the form P = K ITA results, in which K,r is the global panel

stiffness. After some manipulations this stiffness is

K = (41rD22/R3 )[1 + 2(a/R) 2 + D22/A22R2)]

1
. (TT 2 [1 + 

D22/(A22 R2][l + D22/(A22R) + 2(a/r) 2 ] - 16(a/R)21-

(B.8)

Specializing this for a symmetric laminate (d = 0, D
22 = 522, etc.), and

noting that the factor D22/(A22R2) is small with respect to unity and may

be neglected for the panels in this study, the stiffness in Eq. (B.8)

is adequately approximated by
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K.r = 12TrD22/[a 3 (3Tr2 - 16)]	 (B.9)

This is the normalization constant for the ordinate in Fig. 6. It is

worth stating that neglecting the factor 
D22/(A22R2) 

with respect to one

is equivalent to neglecting the membrane portion of the complementary

strain energy with respect to the bending portion; i.e. let A22 - ► co in

Eq. (B.5).

Consider a shallow panel which is quantified by a small semi-

opening angle 60 . Statically admissible force fields for this ap proxi-

mation are

N(e) = - T	 (B.10)

M(0) = - (H - Re 
2
/2)T - [sqn (6)R - ae 0 ](P/2)	 (B.11)

in which

H = d + H .	 (B.12)

The rise H (see Fig. 1) in Eq. (B.12) is closely approximated by ae2/2

for a shallow panel. Substitutin g the functional forms of the force

fields into the complementary strain energy (B.1), performing the inte-

grations on e, results in

V = (Re 0/D22[CTT2 - C TPTP + C F P2 ] ,	 (B.13)

in which

CT = H2 - HReo/3 + R2 e 4/20 + D
22 /A22
	 (B.14)

CTP = Hae o - HR6 12 - aR o/6 + R2 6o/8	 (B.15)

r
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Cp = ( a2 62 + R2 62/3 - aR6 o )4 .
	

(B.16)

Castigliano's second theorem is applied to the complementary strain

energy in Eq. (B.13), and the same procedure used to obtain the stiff-

ness for the deepest panel described previously is followed. The

resulting expression for the shallow panel stiffness is

Ksh	 ' D22 / R6
o ) 2 CT/(

4CTC P - CTP ) .
	

(B.17)

Finally, consider a flat panel or wide beam. The results for the

shallow panel may be used to obtain the global stiffness for this case

if the following limiting process is undertaken: Let 90 - ► 0, such tKat

ae0 - L/2, where L is the beam length (see Fig. 1).	 In this limit,

then, the coefficients in Eqs. (B.14) to (B.16) become

CT	D + D22/A22

CTP = dL/4	 and
	

(B.18)

C  = L2/48 .

Substituting these limiting values into the global stiffness expression

(B.17) results in a formula for the flat panel stiffness which is

designated Kbu . After some manipulation this stiffness is

Kbu = (48D22/L 3 ) ( d2 + D22/A22 )/(( d/2) 2 + D22/A22 ) .	 (B.19)

For a symmetric. flat panel this becomes

Kb = 45D22/L3	(B.20)

which is the normalization constant used for the ordinate in Fig. 7.
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