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MAJOR GOALS OF THE TECHNOLOGY ASSESSMENT

1 Invotigate technologies available for Multiple Fixed Spot Beam/ Multiple

Scanning Spot Beam systems where reflector optics systems are used in

conjunction with array feeds.

1 Investigate the feasibility of the use of monolithic microwave integrated

circuit IONMIC) power amplifiers and phase shifters to combine and control

array feeds.

1 Study technologies for EHF operation: 20 GHz transmit, 30 GHz receive„

APPLICATION

Typical system deployment: space shuttle launched geostationary satellite,

early 1990's technology.

1 Multiple Fixed Spot Beam System: major U.S. cities are simultaneously

connected with multiple independent beams (up to 18).

1 Multiple Scanning Spbt Beam System: six sectors of 4he continental

U.S. are simultaneously scanned with high power beams to reach outlying

areas.
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MOTIVATION FOR USE OF ARRAY FEEDS

IN REFLECTOR ANTENNAS

I Array feeds provide an effective means to combine RF power generated
by many individual solid state power amplifiers (SSPA's).

Emerging EHF GaAs technology indicates space qualified SSPA's using

MMIC's will be available in the latter part of this decade.

Beam shape compensation for undesirable reflector effects and for

improving carrier-to-interference (C/I) performance can be accomplished

with array feeds.

I Rapid scanning from city to city can be implemented (ti10-100 nanoseconds).

1 Sophisticated systems of the 1990's will permit dynamic control of Effective

Isotropic Radiated Power (EIRP) and C/I performance based on measured

performance indicies.

LIMITATIONS

I High EIRP requirements are difficult to meet with existing and planned

SSPA's for scanning beam systems.

i MMIC amplifier and phase shifter units have not yet been developed for

antenna use at EHF frequencies.

Thermal dissipation from SSPA's (15% maximum efficiency typical) needs

technology development.

I
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ADVANTAGES OF SOLID STATE POWER

USING GaAs TECHNOLOGY

1 Increased reliability on a per device basis,

Eliminates the single point failure mode encountered with TWT designs,

Failure mode results in a graceful degradation for scanning beams.

i Modules allow dynamic^ team control for multibeams.

A Fast switching times (10-100 nanoseconds) are feasible.

Low power, lightweight array control elements (amplifIL , phase shifters)

can be used.

Space fed lenses rather than corporate BFN's are feasible, thus lower

losses.
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LIMITED FIELD OF VIEW ANTENNAS

The antenna systems considered in this assessment are known as limited

field of view (LFOV) antennas. LFOV antenna designs in someway take ad-

vantage of the fact that limited scan requirements are imposed on the

satellite system. These antennas can be scanned rapidly over a small

angular region of space without mechanical repositioning of the reflector

system. Typically, a feed array of limited size (compared to the main

reflector) is electronically adjusted in order to produce beam scanning

or beam shaping. All reflector systems used for off-axis beams, i.e.,

scanned beams or multiple beams, are LFOV systems. The discussions in

,,his report'are generally limited to reflector systems that use a para-

bolic main reflector.

The diagram on the next page illustrates a method by which LFOV antennas

can be classified. Although not all of these configurations would be

successful in meeting the requirements of the Advanced Communications

Technology Satellite (ACTS) program, they are useful for describing the

techniques available for off-axis beams. The major attributes and draw-

backs of each category will be discussed. Examples of off-axis properties

are given for most of the configurations. In this report, specific examples

are not always compared to one another due to the vastly different design

parameters (such as aperture size and f/D ratios) chosen by various

authors of the reference material.
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ORICINAL. PAGE [a.5

!	 OF POOR QUALITY
E

il OPTICS CONFIGURATIONS

The following three pages present a sketch of each of the optics con-

figurations of the previous table. 	 It is important to note the type of

i
subreflector surface,	 e.g.,	 hyperbolic,	 parabolic,	 or elliptical.	 The

k Schwarzschild	 (12A) configuration is not shown since it follows very

closely the offset Cassegrain configuration, but with the reflectors'

shape defined by the Abbe` 	 sine condition.	 Another feature to observe

is the schematic of the feed.	 Three individual	 feeds represent individual

horns or small	 clusters	 (typically <. 25 elements) of array elements

r grouped with individual amplitude and phase shift control. 	 A block of

J	 u. many feeds represents an array of many'elements .(typically > 100 to 200)

with dynamic phase and amplitude control,

r

-
i

!i

tj L.



URIGINAL PAM" VII

OF POOR QUA IV

Q
J

W U
U ^

VCOOa

W
cc

U
4
^.

...J S h
q
CO
Q
x

Q

U	 \CC

yyy

O
m
Q

a
U_

CC

W

n

N
D
W
U.

Q
CC

W

a
U

U

J

COO U

w U.

W
U
U.
0=
O

U
J

1 Q̂
t

a
_

V` ^`4

r,

c

Ii

r
Jf

i

i

i

U

3{

r

j
t

w

N

W
Q
ILL

to a

U ^I
O	 ^w
a
cc

a
U

h-
W

U

owa
,a

H °.
W

LL
UL u
O
D ,:
W r

z

O^LL ii

a
J
0
ma
a
U

HW

O
W
W
I-z
O
W

W
U

Q
u.
a

U

Om

a

r-



^^w

hf

U4

yyy

04

U
e
kd

--a--

9	 i

Lim

P9, -11-

3

td

if

jF

41

tY

U4

4T U^
cc cc

cc

0

It



J U
CJ J
coo QU. 

a U.

Uaa..c=n

ORIGINAL ^^^^n 	 pg. -12-
OF VOO^^5''^

^' O

C7

U.
Z
OU
n

P.

I I
w aQ	 w

l w U.	 U.
w

^U
CL m

= N	 a

° (LL
w (x a J
LL N

I

w
w

^Om I Z
H

l a

ui

L m LL	 IL. a cr.

(^ a M N
C 1

O
w
w
LL

Q
m
m

a

F-
Z

O
a

w	 A 1.vU
LL	

O
LL

cn	 ^
U	 W

w
LL

• ^-C13	
X1,

Q	 cc
a	 Q

V

J

O
ma
CC

a
E-
w
cn
LL
LL

O
0
J
w
Ll.

Q
w
Z

J U
QJ
CJ O U

/Zxccc

v /	 U IL (nn
q
U.
m
D
(n

p
w

U LL

4C13
Q ^

a a
IL
V

i^
O
C7
wa
C7

w
Gn
u.
LL
O



pg. M.13-

OFFSET VS. SYMMETRIC CONFIGURATIONS

Offset configurations are generally favored in order to meet stringent

CJI requirements. Some of the disadvantages of the symmetric configuration,

and the relative advantages of the offset geometry, are:

1 Aperture blockage caused by feeds, subreflector and/or
support structures in the symmetric configuration,

1 Aperture blockage results in higher sidelobes, higher cross-
polarization levels, and lost aperture efficiency.

1 Sidelobe levels below 25 dB are more difficult to obtain in
symmetric systems.

1 Mutual coupling among multiple feeds in the offset configuration
is reduced because of the use of larger high gain feeds.

1 Mutual coupling between the feeds (via the reflector) is reduced
to an insignificant level in the offset geometry; this is important
for broadband feed matching.
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SINGLE REFLECTOR VS. DUAL REFLECTOR CONFIGURATIONS

There are several major trade-offs to consider when selecting a single

reflector design versus a dual reflector design. Some advantages of

dual reflector designs are:

1 Focused dual reflector systems can implement larger equivalent
f/D ratios than front fed configurations in the same volume
constraint. Large equivalent f/D's generally lead to better
off-axis performance.

1 Array feeds can be kept closer to the satellite body; long RF
transmission path lengths are avoided; feed support structures
are replaced by simpler subreflector supports.

1 Effective near-field designs require subreflectors to collimate
primary and secondary aperture beams, i.e., the secondary aperture
is a magnif-(ed image of the feed aperture.

But,`dual reflector designs have some drawbacks.

1 Dual reflector systems require precise alignment of subreflector
surfaces.

1 The forward pointing feeds encountered in dual reflecting systems
contribute to lower C/I ratios. The amount of forward scatter
field is dependent upon the feed horn illumination taper at the
feed horn. For small edge tapers Rusch (10.4) reports the forward
lobe peak to be about equal to the feed horn peak amplitude.
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FOCUSED VS. NEAR-FIELD SCANNING METHODS

The figure on the following page depicts the implementation of a scanning

beam feed in both a focused system, shown on the left, and a near-field

system, shown on the right.

Focused Scanning

1 Focused scanning uses an RF switching matrix or variable power divider
(VPD) network.

1 Signals from each feed are spherical wavefronts.

1 Scanning is achieved by physically changing the location of the phase
centers, either mechanically or electrically.

1 A large number of feeds are required; at least one feed is required
for each scanning beam position. Many more elements are required when
free space combining of RF power is implemented.

1 Only a small portion of elements are used at any given time. If SSPA's
with on/off switching are used to simplify the power divider network,
even amplifiers in the off state will absorb signal power.

1 However., multiple scanning beams are easier to implement in focused
systems.

Near Field Scanning

1 Phase shifters can be used to control a linear phase taper across the
array. Each element is fed by a power divider either of the fixed
type or from a space fed lens.

1 The image distorts as a function of f/D and scan angle. Correction
methods require both amplitude and phase control of each feed element.

1 The number of elements required relates to the subreflector size and
magnification ratio.

1 Multiple beam antennas require multiple near field feeds physically
tilted to achieve isolation.
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TRANSFORMING PROPERTY OF REFLECTORS

The fundamental difference between near-field optic systems and

focused optic systems is illustrated on the pages following by spatial

Fourier transform relationships, From antenna theory, we know that

the far field pattern (in sine space) of an aperture antenna is the

spatial Fourier transform of the aperture distribution. Additionally,

by selecting the proper focal plane in a parabolic reflector, the prin-

cipal component of the electric field in the focal plane can be related

to the aperture field distribution by a spatial two-dimensional Fourier

transform pair (7.4). Thus, in the appropriate transform plane, the

field distribution has the form of the far-field radiation pattern.
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1.	 Front Fed Symmetric Parabola

1 Many references are available that have studied this configuration.

Multiple beams and/or scanning beams (i.e. off axis beams) are

formed by lateral feed displacement in the focal region.

1 Feed and Support structures create blockage; hence, sidelobes

and lost aperture efficiency, Therefore this configuration

could not be considered viable for the 30/20 GHz application.

1 Off-axis scans suffer from comatic aberrations.
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TOPICS OF AUTHORS, SUMMARY

1. Y.T. Lo; beam deviation factor

a, analysis and measurement

b. parameter; f/D ratio

c. The beam deviation factor becomes closer to unity as f/D is
increased

2. Ruze;

a. beam broadening

b. loss in gain

c. coma lobes

d, scans limited to a very few beamwidths

e. primary coma; beam degradation, beam shift opposite direction,
first sidelobe away from the axis changes sign and merges with
main beam

3. Rudge & Withers;

a. experimentally shown t15 beamwidth scans

b, little pattern degradation, minimal gain loss

c. arrayed feeds in scan plane

d, feed implements a spacial Fourier transform of the distorted focal region

4. Rusch & Ludwig;

a. locus and orientation of feed for optimum scanning

b, related to th t. Petzval surface (optics)

c. Higher scan gain obtained when feed remains parallel to reflector
axis for moderate to low f/D ratios

5.	 Imbriale, Ingerson, and Wong;

a. vector formulation for accuracy

b, agreement with experimental results

c. beam scans to 29 beamwidths with 14 dB gain loss, poor patterns.

4	 t{
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EXAMPLES FROM RUZE'S PAPER
e

1 Example;

f/D a .33 5 beamwidths scanned 10 dB edge taper

1. Beamwidth increases 1.3;1 over on-axis case

2. Sidelobe level increases From -22 dB on-axis to -5 dB (coma lobe)

3. The gain loss at 5 beamwidths is 2.8 dB

I Example;

f/D = 1.0 5 beamwidths scanned 10 dB edge taper

1. Minimal increase in FIPBW

2. Sidelobe level increases from -22 dB on-axis to -18 dB (coma lobe)

3. Gain loss of e.2 dB
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EXAMPLE OF ARRAY COMPENSATION
A. W. Rudge, M. J. Withers (7.4)

1 This technique is similar to the focal-plane-array technique of Loux

and Martin, and Assaly and Ricardi.

1 Here the feed is not restricted to the focal plane.

This is an example of a front-fed circularly symmetric parabola; the

intent is to illustrate how the spacial Fourier transform was applied.

1 This approach requires no amplitude weighting.

1 A sampled spatial Fourier transform is physically implemented with a

hybrid matrix. The sampled transform is then phase weighted to correct

for the phase errors introduced in the optics and then summed in a

beam forming network.

I A ±15 beamwidth scan was achieved with a scan loss of 0.5 de.

Other studies that have add ,^essed methods leading to the reduction of

distortion for moderate scan angles.

1. Takeshima; defocusing, balancing of 2 or more aberrations.

2. Hannan; compensatory phase-error technique, tilting of the subreflector

in Cassegrainian systems.

3. Loux & Martin; focal plane-array technique, amplitude weighting,

phasing, and summing.

4. Assaly & Ricardi; focal-plane-array technique.
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2. Cassegrain Fed Symmetric Parabola

Discussed here is an example of off-axis feeds in a symmetric Cassegrain

configuration. These results are taken from breadboard measurements of

a Harris sidelobe canceller system consisting of 1 on-axis feed (the

main beam) and 4 off-axis feeds (auxiliary channels). Only 2 auxiliary

beams are shown; the remaining 2 are situated in the orthogonal plane.

Each element of the five element feed is a small pyramidal horn with

element-to-element spacing of 2.5x. The element spacing was chosen such

that the beams formed an approximate set of orthogonal secondary beams.

The main parabolic reflector was 95X and the auxiliary beams were scanned

off 2 beamwidths. Even at these small scan angles the sidelobe perform-

ance and the scan loss of the auxiliary patterns was poor. The 20 to 25

dB sidelobes are typical of sidelobe levels encountered in symmetric

configurations.

However, as an adaptive sidelobe canceller the system worked well. Using

complex weights on the 4 auxiliary channels the system could effectively

null two jammers in all regions outside of the main beam peak. Conversely,

the conjugate weights can be used in the transmit case to improve sidelobe

levels in specific directions of the secondary pattern even when relatively

poor off-axis auxiliary beams are used.

1^ 4
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SYMMETRIC CASSEGRAIN WITH OFF-AXIS FEEDS
(HARRIS CORPORATION)

MAIN BEAM

6	 4	 2	 0"	 z	 `*
ANGLE IN DEGREES

820472
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3. Front-Fed Offset Paraboloid

This configuration is a viable candidate for use on the 30/20 GHz

program since the lack of aperture blockage permits designs with

30 dB sidelobes or better.

Several off-&xis examples from a paper by Rudge (8.1) are given

here:

/ Left Hand Figure

a) f/D = .392 (of parent parabola)

b) off-set feeds at 0, 1.4, and 2.8X in the focal plane

c) measured sidelobes increased from -25 dB to -22.5 dB at 2 beamwidths
scan

d) slight beamwidth increase at 2 BW scan

e) cross-polarization increased from -25 dB to -22.5 dB

f) scan loss was approximately .5 dB at 2 BW scan

g) cross-over levels were at -5 to -6 dB

1 Center Figure

a) change edge illumination to -17 dB and f/D to .332

b) The boresight patterns are shown for the two principal planes

c) sidelobe levels at -32 dB, note shoulders in the plane-of-
symmetry pattern at -28 dB

1 Right Hand Figure

a) measured scan properties with -17 dB edge illumination and f/D =
.332

b) sidelobe levels increase from -33 dB to -27 dB at 2 beamwidths
scan

c) The high sidelobe occurred on the boresight axis side of the main
beam; at the same time the sidelobe away from the axis merged
with the main beam; this is the same type of comatic aberrations
observed in the symmetric paraboloid.
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FRONT-FED OFFSET PARABOLOID

Shown on the following page is another example of off-axis beams in an

offset paraboloid. This example uses a 9 element array feed.

1 Ku-Band feed of small pryamidal horns grouped in a cluster.

1 The patterns shown are calculated secondary patterns based on measured

near-field patterns made of the feed.

1 The cluster was used to form the high taper needed to achieve 35 dB

sidelobes.

1 The on-axis pattern is compared with a pattern scanned off 2.5 beam-

widths.

I Scan was accomplished by lateral displacement of the feed cluster.

1 Main reflector diameter 78.9a

3 dB beamwidth	 .950

lot-rease in sidelobe	 >40.0 dB to 34.6 dB, 3.5 BW scan

Beam broadening	 <.050

1 The beam forming network used to feed the 9 element array was fabricated

in waveguide. FI-Plane septum power dividers were used,

J



w
Z

i
Z

Pam-

i

rx

i

C9
Z

W
° U.

w QCO
CC a. w

LU
>- LL

O Q 0
M o J<zw
O,

	j..	 awx
r , ?I	 ~0Ww

cn w Z

I	 LL

	

.y	 O 0.

t	 U W

ii

^ t

p

x

a

t	 a^r
i

y^ae

r

OF PUCK QUAUI-e	 pg . -30-

OO
M

0O
N w

w
C)
o C7 y_

r p X
Cl Z Qi

w V
J

Z
O Q
r

aO
N
QO
M

e	 ►^	 ^-	 N	 Y	 N	 M	 M	 Q'

8P NI NIVE) 3AIIV-13U

N

uy

y

1 N

w Z
w	 Q

w N	 f^

Q Q w
J
d

X
(9

S
N

M	
LU

-j	

p

N Q	
M

M N

t^

p	 p	 p	 p	 po	 a	 o	 o	 c O	 Oaa	 aOo O	 O	 aC!	 o	 o
aco	 r N N	 N	 M M	 IT

8P NI NIVE) 3AIIV 13U

cc
w

W

Q
^ M
^o
^u

w
ti
Q

h



A

pg. -31-

4. Focused Offset Cassegrain

Calculated Results

1	 Results calculated by Rahmat-Samii and Galindo (1.1). They use what

they claimed was an efficient combination of methods to formulate

accurate results;

1. Scattering from the subreflector was computed using the Geometrical

Theory of Diffraction (GTD),	 I
2. The fields reflected to the secondary aperture were computed by

Geometrical Optics (GO), and

3. The far fields were computed from the secondary aperture fields

using a Jacobi-Bessel series expansion.

1	 The figure on the left compares the solution using GTD from the sub-

reflector to the results using only GO from the subreflector. The

main beam compares well, but the first few sidelobes are in slight

disagreement,

1	 Note that the first few sidelobes are predicted to be higher using

GTD. This is to be expected since the edge scattered fields act as

additional interference in the secondary aperture. This is analogous

to the aperture interference generated by feed or subreflector support

blockage in symmetric antennas.

1	 This configuration, with an equivalant f/D of 0.6, has limited off-

axis performance with conventional feeds. If 20 dB sidelobes were the

goal, then the off-axis scan must be less than 3.5 beamwidths, Array

compension techniques similar to (Rudge) might improve the scan

performance.

1	 This configuration (equiv. f/D = 0.6) has better scan loss character-

istics than an offset paraboloid with a f/D = 0.4.

I,

i



O

V	 Of	 N

p9,-s2-

'ek, al.^ L ^,,,a.aaa"" LM

o...
Zi

~ ^
u

a
aa

a '" ti o e
M

zz Qp

/^ I
Lu
m N z

t

o 
p 4	 4	 4	 q	

a n
n

ea ssol twos

0

`^44' ^

..

m p m

G	 WIN Lu

J
; 5

C7
W J

a
?'

W
W

d"
n W

^U
cc p C

Z
Z ^^ O

.Z

T,'

yJ — W 0 C^.1 N
'^'	 .p Z

LL. S^
LL

F
N 'pp4 LL C^

y J `
uj

N O ~

W
cn J#r 2

A
C7

= V V
er

W

WO m
a....

N
m J

N1 A W Q

Q7
W

r7O	 O	 O	 O	 ON	 Pi O p̂
1 ^ 4

m ^

LL.

J

Z
¢ O

W W

Q a OW
CL Z
Y O h

Z r'U-
F O

p
V

a V N
0

H u F O
N ~

X W O Q
Q

CWT LL
U.0w	 U.



r

i,

P9• -33-

Focused Offset Cassegrain Measured Results

I These results were measured by Semplak (9.2) at 100 GHz.

Main reflector diameter T 203N

Large f/D ratio; i.e. 1.9

HPBW of .390

On-axis sidelobes of -25 dB

Illumination taper of 18 dB

I Unexpected results were observed; the sidelobes decreased as the beam

was scanned. For example, at 4.3 0 scan (11 beamwidths) the sidelobes

had decreased to -30.5 dB with a well shaped pattern. Scan loss at

that point was only .4 dB.

I At a 50 scan angle the sidelobe away , from the axis merges with the

main beam. This broadens the coverage at the -30 dB level from 1,10

at a 4.3 0 scan to 1.35 0 at the 50 scan.

I A plot of Gain vs Scan angle indicates a maximum of ;25 dB loss at

a scan angle of 9 beamwidths; it also indicates a shoulder in the

curve where the scan loss does not fall off as rapidly as predicted

by calculation on similar configurations.

I A plot of beamwidth vs. scan angle is given at the -3.0, -10, and

-20 dB levels; note that after scanning past 4 0 the -20 dB beamwidth

increases very rapidly, this is the result of the sidelobe merging

with the main beam (comatic aberation).

I	 1{
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4.	 FOCUSED OFFSET 0,ASSEGRAIN

CALCULATED RESULTS

•	 12' diameter main reflector with fixed f/D ratio, 45" subreflector.

•	 Frequency of operation is 20 GHz.

INITIAL POINT DESIGN GEOMETRIC PARAMETERS

HYPERBOLOIDAL SUBREFLECTOR

SUBTENDED DISTANCE
EQUIVALENT MAGNIFICATION APPROX.	 SUBDISH ANGLE BETWEEN

f D FACTOR DIAMETER OF SUB SUB FOCI

0.65 1.61 45 inches 26.90 80 inches

1.OQ 2.48 45 inches 18.20 110 inches

1.35 3.35 45 inches 13.60 140 inches

1.71 4.22 45 inches 10.90 170 inches

1
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OF POOR QUALITY

COMPUTER CODE DESCRIPTION/VERIFICATION

1 Utilizes geometrical optic raytracing techniques with far field

radiation pattern determined by an aperture integration or surface

current integration

1 Checked against two independent reflector codes

- Numerical Electromagnetic Code (NEC), Ohio State University,

Equivalent Parabola Geometry, Aperture Integration Method

- Raj Mittra, University of Illinois, Dual Reflector Code,

Surface Current Integration Method

pg. -37-
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SCAN PROPERTIES VS F/D RATIO FOR THE OFFSET CASSEGRAIN

Gain loss for feeds in focal plane are excessive

I Gain loss for feeds located on the focal surface is less than 1.0 dB

for eight beamwidths off axis

1 Low secondary pattern sidelobes requires low edge illumination

of subreflector. (approximately -17 dB for 30 dB C/I ratio)
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Gain Loss vs F/D Ratio in an Offset Cassegrain Antenna for Fe pds Offset Along

both the "Focal p lane" and Optimum "Focal Surface" Corresponding to Eight

Beamwidths Scan.
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€	 OPTIMUM FOCAL SURFACE

1 There is an optimum focal surface for feed placement for the offset

Cassegrain

1 Approximate focal surface location can be found using geometrical

k
	

optics. More accurate location requires physical optics and/or

}	 experimental verification

1 The curvature of the optimum surface increases with f/D ratio
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F!D = 1.00
I" 32.1a `_ ""{	

5.9 A

11,9 A

FiD = 1.05
42,9A

T

10,6 A

F/D = 1,71

ISU EI

ORIGIWAL PACZ' '12
OF POOR QUALITY

nTrcnaULOIDAL
SUBREFLEC7DR

^-'tea ''^^"''	 f!D = 0.65-	 21.6 A ^	 1 1.7 x

Feed Plane Versus Optimum Focal Surface
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FEED SYSTEM DESIGN

•	 CLOSE PROXIMITY OF CLUSTERS AND NECESSITY OF

SHARING SOME ELEMENTS MAKES SPACE FEEDING DIFFICULT

•	 CORPORATE FEED HAS CAPABILITY FOR EXACT POWER

DIVISION BETWEEN ELEMENTS

•	 TYPICAL SEVEN ELEMENT CORPORATE FED CLUSTER (NO

SHARED ELEMENT)
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FOCUSED OFFSET GREGORIAN

This approach was studied as an alternative configuration to

provide large f/D ratios in a compact gecm gtry. No distinct

advantage is known that favors this cor0 guration over an

offset Cassegrain configuration,

pg. -46-

•	 The subreflector surface is a portion of an ellipsoid. One

focus is placed coincident with the main parabolic reflector

focus and the other focus is the location of the feed.

•	 Scanning is accomplished by displacing the feed on the focal
surface for off-axis beams.

•	 The off-axis scan properties in the symmetric plane were

reported in Ref. [9.3]. It was shown that the scan loss at 3

beamwidths off-axis was -3 dB. Good cross-polarization per-

formance was predicted, i.e., less than -31 dB at 1 beamwidth

scan and less than -26 dB at 3 beamwidths scan.
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6,	 NEAR-FIELD SYMMETRIC PARABOLA

A multi-element array compensation technique for off-axis beams was

studied by Assaly and Ricardi (8,3).

1	 In this optics configuration, the array feed is placed in front

of the focal point,

/	 Assaly & Ricardi's analysis was based on scalar wave theory,

a simple approximation for the EM fields, and used only a

2-dimensional geometry.

1	 The synthesis of the transmit array distribution is simple

(conjugate matching technique):

1. Assume a plane wave incident from free space for several

off-axis angles.

2. Compute the complex weight of the received signal at each

array element.

3. Set the transmit element weight equal to the complex

conjugate of the received signal.

4. Compute the far-field secondary pattern from the sum of

the individual elements.

1	 Element Spacing Effects - It was found that the secondary

patterns exhibited a grating lobe like phenomenon when the

elements were spaced at LOX in the feed aperture. Even at

.8a spacing relatively high sidelobes were observed at 12

beamwidths from the main beam (see Figure).

1	 Array Position - As the array was moved closer to the focal

point the amplitude and phase weights on the elements became

very critical. As the array was moved away from the focal

point, more elements were required.

1	 This configuration was also studied by Mistik and Smith (3.2),

and C. Winter (11.1), among others.

Results observed in Ref. (8.3).

1 The array gain was higher than the gain of a single feed element

located at the on-axis focus.
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6.	 NEAR-FIELD SYMMETRIC PARABOLA - contd. ORIOlMAL PACE 15
OF POOR QUALITY

•	 The array pattern beamwidths were always larger than the

single element case for scans as high as 4 beamwidths.

focal length	 30 X

distance from vertex to array = 26 X

FEED GAIN HPBW 10 dB BEAMWIDTH SIDELOBE LEVEL*
CONFIGURATION (dB) (deg) (deg) (dB)

Single Element 25 1.0 1.75 23.5

Feed

21 Element
Feed 25.3 1.1 1.80 -29.5
0° Scan

21 Element;
Feed 25.1 1.2 2.00 -22.5
4° Scan

*Blockage neglected

r

N

k

E'
}ip
'yd



w°

p9 • .,4g_

I

w°
m

K

b.

^ceyy

18P1 d3MOd 3AIlV13ki

g
r`t

	
I(

1
4

E

e

(l

{C

o p,

w
0	 0

3 nindWV 1N3W313

113MOd 3AU.Vl3a

¢^Z

e¢$a

= ZQ WnE
3:

c°i w

N

3Of111ldWV 1N3W313

MP) lU3MOd BAIIV13U

IY

0

IA

o b

w
O
0

l0

0	 0

30nllldWV 1N3W313

W }

30 az

v ^ ^Qo
a

W } Fy-
^ Qw

N W

VWo
w N N
LL nw
C	 (8P) H3MOd 3AIIV13U

z
I	 +'

a

c

^--- at

.^.	 N	 N	 r^i

—	

N

a

^! 	 a

0

a

A

Sf

w y
	 4,

{of

SV
4

J
w

2

G

9
^ ar
wri
QHo^

W

r!
at

ORIGINAL PAC-" EU
OF POOR QUALITY

0



r
s.

v
G

^I
ORIGINAL RACC 14^	 pg . -50-

OF POOR QUALITY
T.	 SYMMETRIC NEAR-FIELD CASSEGRAIN

One of the major investigators of the NFC system was Fitzgerald [1,2].

He presents both analytical results based on ray tracing and measured

results.

A small planar phased array is placed such that it is in the near

field of the parabolic subreflector.

This is a circularly symmetric antenna; hence, there is a consid-

erable amount of blockage resulting from the presence of the subreflector.

In his investigation, Fitzgerald studied the 5 different parameters:

I).	 the ratio of subreflector diameter to iiiain reflector

diameter,

2),	 the focal length to main diameter ratio,

3). the main reflector diameter in wavelengths,

4). the distance of the feed array aperture'from the sub-

reflector, and

5),	 the electric field distribution on the feed aperture.

Two aperture distributions were studied: a 1-p 2 distribution and a

uniform distribution.

Scan loss is caused by phase aberations and to a lesser extent,

amplitude dispersion.

Computed patterns showing scan loss are shown. It is seen that the

beam can be scanned to 3 degrees before the scan loss reaches 3 dB, this

is equivalent to a scan of 15 half-power beamwidths from boresight. The

sidelobe levels did not increase when the beam was scanned to 3 degrees,

although the boresight beam levels were excessively high due to the uni-

form feed distribution.

1
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7.	 SYMMETRIC NEAR-FIELD CASSEGRAIN - contd.

The principal conclusions from Fitzgerald's investigation of the NFC

antenna are that;

•	 The feed array demonstrates linear phase scanning property

(linear phase taper, although the primary to secondary transfer

is rit linear).

•	 The feed array element spacing can be made large due to the limited-
field-of-view requirement, thus reducing cost and complexity.

•	 The "coma" lobes associated with an off-axis focused parabolid are

avoided.

•	 The system can scan up to 15 beamwidths from boresight with

only 3 dB scan loss and 7 beamwidths with 1 dB scan loss.

The disadvantage of the symmetric near field Cassegrain system is

the large amount of blockage resulting from the subreflector. This

blockage is greater than a similar off-axis Cassegrain antenna configu-

ration using a hyperbolic suhreflector.



cv n

r—i
u

= b
rd	 fC3

S-
a

v rn

N' +^'
w uu
o ^

w
u-

a tLS	 fu
(V

au U (iiN
S.. c

fdN U
V)

N
rcl i

n
U ,1.

9	 j

i

7

4

p

a

A
k'

k

f

co

N

D

A
M
A^

h

r-

11

ao
Z

1

M

(8 p ) dWd 3AIiVlh

p9. —52—

r

ORIGINAL E A('t w 10

OF POOR QUALITY



i^
1C RIOWN'AL PAQ ? fg

OF POOR QUALITY

pg. -53-

I

SYMMETRIC NEAR-FIELD CASSEURAIN
SECONDARY APERTURE DISTRIBUTION

The figure on the following page shows the path length errors determined

by Fitzgerald (1.2) across the central strip of the secondary aperture,

The linear phase distribution that represents the beam steering component

has been subtracted out; hence, only phase errors are shown. Amplitude

variations resulting from space attenuation on the central strip were

small. The amplitude distribution was found to be approximately linear

with variations of less than 2 dB when the primary aperture scan angle,

0, equaled 15
0

.

The effects of f/D ratio on aperture reduction and path length errors

are seen. Smaller f/D ratios have less aperture reduction but greater

path length errors.



OF POOR QUALIFY
V	 P.	

n

M

P9. -54_

ORIGINAL PAGE *

Ln
W ,,,^ M

1 O C ` Z

gg
p^

CNIO
0.0Q

+9 a `'^U
v O W

2	 z
jj C Q
_J

P
H

^	 ^ 4

u

J LM	 O
C
y tJ3alQi'
w
U

O
2
O

U
^ 41 N u1

4 w
E w O

E D o

W

Q Ulo w ° Z
q N 0

wi0

u	 F,.
dOC

\ LLo
Z u Z
w

Z

C
q // ^I

ul

o e

t/

o
o	 un

7	

o

e

r DI N

K
^^ N

I
e^ 4

w

G
j U

f

i
I

I

O
J

II WU.

1

Z
C
uj
W

u

i^
O
J

U.

ui
W
Z

vS
Z
O
F=
cc
5

C

O
W
C7
Cw

w
Cc

4:!

V)



ORiG1NAI, PraV'^ ^3

OF POOR QuA't' rl

a
i

L

pg. -55-

8. NEAR-FIELD SYMME'T'RIC GREGORIAN

Little information has been published about the off-axis properties

of this configuration, Dragone and Hogg (11.2) implicitly talked about

its radiation patterns and the reflection coefficient seen at the feed.

Morgan (11.3) discussed the possibility of using the concave subreflector

to minimize spillover and wide angle sidelobes. He found that antennas

of practical proportions were difficult to design.
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This particular configuration has received little attention in the
r	 literature, The theory of operation, in principle, is very similar to

F
its symmetric counterpart discussed earlier. The obvious advantage of

the offset configuration is the elimination of feed blockage, resulting

in a significant improvement in far field beam performance,
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10. Offset Near-Field Cassegrain

® This is one approach that Harris is studying for the scanning beam

case.

1 A phased array generates a plane wave that is incident on the

parabolic subreflector,

0 Beam steering results from applying varying phase tilts to the

feed array.

i The input and output signals (array feed and secondary beam, respec-

tively) are collimated beams.

® This configuration follows that of the symmetric near field Cassegrain

presented by Fitzgerald (1.2).
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OFFSET NEAR-FIELD CASSEGRAIN DESIGN PROCEDURE

a Relate the far field beam requirements of the antenna system to

physical d 4 mensions of the feed array and subreflector.

11

I Assume a perfect imaging reflector system.

0 Apply a 3 dB sector edge illumination criterion to aperture array

elements.

0 Note that this implies a 3 dB gain loss a, sector edge. (Other edge

criteria could be applied, resulting in more feed array elements.)

0 Determine actual feed array size and element spacing through magnifi-

cation factor.

. _ _	 .
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PERFORMANCE OF NEAR-FIELD CASSEGRAIN

G Chosen to minimize physical size for spacecraft applications.

Disadvantage is the amount of spillover. For limited scan applications

the amount of spillover may be acceptable.

i Offset Gregorian may be used where the confocal parabola has excessive

spillover. However image distortion increases with scan angle.
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OFFSET NEAR-FIELD CASSEGRAIN CONFIGURATION

{	 1 12'	 main reflector with fixed f/D ratio and offset angle

0 Operating frequency 20 GHz

0 Largest subreflector chosen to prevent blockage

Table Of The Offset Near Field Cassegrains Studied

SUBREFLECTOR SUBREFLECTOR
DIAMETER FOCAL LENGTH
(INCHES) MAG FACTOR SUBREFLECTOR F/D (INCHES)

A g 16 0.405 11,1

r
B

!^
18 8 0,405 22.2

I
C 27 5,3 0.405 33.4

D 36 4 0.405 44.5

E 45 3.2 0.405 55.6

w

E

t`

e

i

a

I	
u u

f	 r	 .
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V

TYPICAL ARRAY CHOSEN FOR NEAR-FIELD CASSEGRAIN FEED

Dominant TE	 mode concical horns.

177 elements.

Amplitude weighting distribution proportional to cos (P/A),

I
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177 Phased Array Feed Elements Are Roquirod

used On The Far-Field Sector Scan Criteria
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PERFORMANCE OF NEAR-FIELD CASSEGRAIN

AS A FUNCTION OF MAGNIFICATION RATIO

®	 Cross polarization decreases with decreased system magnification.

s	 Gain loss decreases with decreased system magnification.

I	 The ►-e is an equivalent beam deviation factor for near-field systems.



OPICImAL PAGE Is
OF pOuR QUALITY

SYSTEM MAGNIFICATION

16	 8	 5.3	 4	 3.2
-l0

	

-45	 _ .........

J
O

	

0.
-50	 .... .............. ._.,..«.,............,.. _ ....... 	 _.......................,_,..........,.,.................,...............,

U

	

-55	
..... ............ _....

............................................

-60
1	 y	 3	 4	 5

ELEMENT DIAMETER (WAVE LENGTHS)

Crass Polarization Levels Vs Element Diameter For An On-focus Beam.

F!ed Array Contains 177 Dominant Mode Conical Horns with an
A m p litude Weighting Distribution P ro p ortional to COS (,rP /D)



pg. -67-

0MOVAL r-ITT 19
OF POOR QUALITY

SYSTEM MAGNIFICATION

16	 8	 5,3	 4	 3.2

5

147782

i

a

1
r

Gain Loss Vs Element Diameter for 2 1/2 Beamwidths Scan. 	 d

Feed Array Contains 177 Dominant Mode Conical Horns With An Amplitude
Weighting Distribution Proportional to COS !,r P/D).
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Beam Deviation Factor Vs Element Diameter for 2-1/2 Beamwidths Scan.
Feed Array Contains 177 Dominant Mode Conical Horns With An Amplitude

Weighting Distribution Proportional to COS (rr P /D).
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MULTIPLE SEAM NEAR FIELD SYSTEM

Requires multiple array feeds for multiple beams.

Can use OMT's to obtain simultaneous orthogonal linear

polarizations.

Can cover two of six CONUS zones with one dual polarization

array.
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THREE SECTOR FEED ARRAY LAYOUT
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FRONT VIEW

131482

TOP VIEW

TRI-Focal Subreflector
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FEED SYSTEM DESIGN

•	 COPORATE FEED

-	 USES POWER DIVIDERS, BENDS, TWISTS TO FORM "N"

OUTPUTS FROM A SINGLE INPUT

-	 POWER LOSSES OCCUR IN WAVEGUIDE COMPONENTS

-	 PROVIDES EXACT POWER DIVISION BETWEEN FEEDS

-	 SIMPLE TECHNIQUE

-	 NO EXTRA RF RADIATION

•	 SUBJECT TO PHASE VARIATIONS DUE TO THERMAL

EFFECTS

t,urSrurlNI t rttu t.UINrIUUhAI IUN

154482
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SPACE FEED

HORN

.l	 f

SPACE FEED CONFIGURATION

Vt
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FEED SYSTZM ;DESIGN (CONTINUED)

•	 SPACE FEED

-	 USES FREE SPACE TO DIVIDE SIGNAL AMONG

RADIATING ELEMENTS. IDEAL FOR ARRAYS OF LARGE

NUMBER OF ELEMENTS.

-	 SPILLOVER LOSS DUE TO ILLUMINATION NOT BEING

CONFINED TO THE ANGLE SUBTENDED BY THE ARRAY

-	 LESS WAVEGUIDE - LOWER COST AND WEIGHT

-	 RESULTING AMPLITUDE TAPER CAN BE USEFUL

FEED THRU

ARRAY
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RECOMMENDED SSPA ELEMENT DESIGNS

1	 Use leadless chip carrier.

1	 Uses microstrip to interconnect the chip modules.

1	 Makes use of ridgeline trans Former to convert from microstrip

to waveguide (excellent performance measured at 30 GHz).
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elAVEGU IDE TO MICROSTRIP TRANS IT ION

DESIGN CHOICE; RIDGELINE TRANSFORMER

BROADBAND CAPABILITY

—	 STRAIGHTFORWARD DESIGN

-	 READILY ADAPTED TO UNSYMMETRICAL MICROSTRIP LINE

—	 EASILY MACHINED AND ATTACHED TO WAVEGUIDE

PERFORMANCE OF TRANSITION

—

	

	 SAMPLE TEST DATA FOR 27.5-31.3 GHz TRANSITION

BUILT BY SCHNEIDER, ETAL

20
N
.,
O 25
V
O
Z 30
NN

2

j 40

^ aS
26	 27	 28	 29	 30	 31	 )2	 33

FReoueNcr IN GHz

RETURN LOSS OF TRANSFORMER AND TRANSITION FROM
WAVEGUIDE TO MICROSTRIP FROM 26.5 GH,z TO 32 GHz

.^ T A ANSITION

RANSFORMER
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ARRAY HEAT REMOVAL

0	 MUST REMOVE UP TO 500 WATTS HEAT DISSIPATION FROM

THE CORE OF THE PHASED ARRAY

•	 INTEGRATE HEAT PIPES INTO A MOUNTING PLATE WHICH

ATTACHES AT MODULE SECTION TO EACH ELEMENT

0	 500 WATTS INPUT INTO 1.0 m DIAMETER EVAPORATOR AREA

BY 177 WAVEGUIDE SECTIONS CONTAINING MODULES

HEAT FLOWS LATERALLY BY HEAT PUMPING TO A 0.3 m

WIDE BORDER COATED WITH S-13G PAINT; HEAT IS THEN

REJECTED TO SPACE BY RADIATION
w
1

G^

i

u

I

l

	

n1

S13G WHITE THERMAL	 EVAPORATORS
PAINT IN CONDENSER 	 INTERLACED WITH

REGION	 MODULES

ESTIMATES FROM INDEPENDENT CONTRACTOR INDICATE THE
STRUCTURE WILL DISSIPATE APPROXIMATELY 1200 WATTS
WITH A MAXIMUM HEAT SINK TEMPERATURE OF 600C

, 323 12
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11.	 OFFSET NEAR-FIELD GREGORIAN

Imaging Reflector Configuration

In reference (2.2) Dragone & Gans pointed out several

important properties of the Gregorian Imaging Reflector

System.

One important concept i7 that of conjugate elements, i.e.,

rays eminating from a point on a surface in an optical

system are transformed to rays eminating from the conjugate

point on a second surface. In a Gregorian optical configu-

ration two conjugate planes can be determined. The array

surface projection is the reference plane and the inverted

image surface in the projected aperture of the main reflector

is the conjugate plane.

A second important concept is the frequency independence of

the transformation relating the array aperture to the main

reflector projected aperture.

Reference (7.1) determined the performance of the Gregorian

configuration by a plane wave expansion from a series of

transformed plane waves. Dragone and Gans' entire analysis

is based on the laws of Geometrical Optics.
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POLARIZATION

No information concerning the cross-polarization properties of any near-field

system was found. However, much has been written about the polarization proper-

ties of on-axis beams in focused systems. Dijk, et.al . [12.2] compared the

polarization efficiencies of 4 of the focused reflector systems that we have

discussed:

f

E	 9	 Symmetric front-fed paraboloid:

efficiency	 .999 to .939

- for subtended angles from 60° to 160' or

f/D = .933 to .300

- Worse for lower f/D ratios
z

1	 Offset front-fed paraboloid:

efficiency	 .997 to .916

: t	 - for subtended angles 40' to 100 0 (offset angle

30 0 and 60°, respectively)

- Polarization efficiency is dependent on feed polarization

9	 Symmetric Cassegrain:

efficiency	 1.0 to .996

- for subtended angles from 60' to 160' M = 2
E

- Worse for lower magnification (M) values

``	 I	 Offset Cassegrain

efficiency	 .997 to .924

- for subtended angles 40' to 100' (offset angle

30' and 60', respectively)

- Similar to the offset front-fed paraboloid; but, the

results are less sensitive to polarization of the feed.
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POLARIZATION COMPENSATION

According to Rudge and Adatia [2.4] depolarization in offset front-fed

and offset Cassegrain antennas can be made to cancel by designing the

primary feed to provide a conjugate match to the incoming fields. In

contrast to a linearly polarized corrugated horn they suggest an

approach where higher order asymmetric waveguide modes are used to

provide the polarization correction. A similar effect might be obtained

in an element cluster where some of the array elements were orthogonally

polarized.
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®r POOR QUALITY,

ARRAY PROPERTIES

In addition to knowledge of the reflector optics it is important to

discuss the properties of the array feeds. The electric-field from

an array of elements can be expressed by a single fundamental equation,

Many simplifications of the array equation are possible, but will not

be discussed, An important consideration is that of array elevient

complex weights, i.e, amplitude and phase. A general discussion is

given; however, specifics-can only be discussed in the context of a.

detailed design. This discussion concludes with examples of design

considerations others have found to be important when dealing with

array feeds in reflector systems.

t
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a



f,

ORIMN'AL PA(Y;4 
I$'

OF POOR QUALITY
t pg. -90-

EQUATION OF A 2-DIMENSIONAL ARRAY

A	 Applicable to both:

1. A multiple fixed spot bears might consist of a cluster of elements

used in a focused system with approximately 7 elements in the

cluster.

2. The scanning beam case is a near-field system consisting of at least

177 elements per beam.

®	 The electric field pattern of the array is given by:

ejkJr-ril

i	
Jr-ri^

where

E	 is the electric field vector

r	 the position vector from the origin to the observation

point

k	 a complex constant

f iO	 element radiation pattern in the array environment as

a function of the polar angles for the i th element

a 
	 the complex weight of the i th element

r 
	 the position vector of the i th element

®	 Element weight, a i , is c

1. Multibeam clusters,

control, a  must be

2. Scanning array, the

steer the beam.

amplex, i.e., amplitude and phase

a  is fixed by the BFN. For dynamic beam

controlled in amplitude and phase.

a i I s are modified in amplitude and phase to

i
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	 Dynamic amplitude and phase control is usually reserved for

adaptive antenna systems where all of the requirements are not
E

known a priori,	 Antenna patterns are modified by the measure-

ment of some parameter in a control loop that seeks to optimize 	 j

that parameter. However, the optics configurations discussed

earlier require both dynamic amplitude and phase control to correct

for optics transform properties when the beam is repositioned.

4. Dynamic EIRP control, amplitude and phase control can be used

when the need arises to change the effective radiated power from

time to time.

A

	

	 The position vector r. i describes the location of the elements in the

lattice. This lattice is very important to the control of grating lobes,

which possess the properties of the main beam in the sampled aperture

space. For large element spacing, these grating lobes appear in the

"visible region" which means that there is propagation in the grating

lobe direction.

1	 Element patterns fi(

1,	 Finite array: each element has a slightly different pattern.

2. Array edge effects become important, vastly different element

patterns near edge.

3. Typical array has elements with a cos	 field pattern, some
! F

arrays use high gain elements where the pattern width is narrower,

reason: limited scan and aperture filling.
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GENERAL PROPERTIES OF ARRAY ELEMENT WEIGHTS

Size of aperture determines beamwidth.

1	 Phase distribution determines scan angle and focal range.

/	 Amplitude and spatial tapers determine sidelebe characteristics.

A	 If all parameters are known a priori, then traditional synthesis

methods are applicable.

Synthesis methods:

1. Fourier Transform Method

2. Laplace Transform Method

3. Woodward's Synthesis Method

4. Optical Synthesis

5. Iterative Methods

6. Optimum Design Methods

a. Minimum Beamwidth

b. Taylor's Method

C.	 Dolph-Chebyshev

1	 Synthesis of 2-dimensional sources:

1. Separable distribution, line source, uses methods mentioned

above

2. 2-Dimensional Fourier Transform

3. Circular Source, Hankel Transform

!	 Fresnel Region Synthesis:

1. Used if field distribution is specified in the Fresnel Region

(radiating near-field).

2. Integral equation of the Tresnel field is inverted to give

integral equation for the source distribution.

—A
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Considerations

4	 EIRP requirements met and exceeded for SSPA active array implementa-

tion when controlling grating lobes,

I	 Since wide scan angles are not envisioned, e.g., :t 2" secondary scan

with a magnification of 4 -, primary array must scan -, 8".

6	 Cost, weight and mechanical tolerances of closely spaced arrays

provides impetus for thinning the array feed,

0	 Partial choice of array lattice configuration based on observability

of grating lobes in U - V space.

I	 Rectangular lattice configuration acceptable for narrow scan angles;

Triangular lattice used for large scan angles and reduce coupling.

ArrayContro l s--   -

I	 Minimum number of controllers needed for LFOV phased array deter-

mined by:

Max ^N/N 
min	

1, where N i,5 the number of phase shifters used;

N	
n

is the minimum number of control	 elements.

(1)
sill	

")(2)
sin	

ilia x Max
N 
mi n

si n^ 03
/

 
2 

R
3/2)

s i n	
3^r^2" L

where
-'max

2)
I	

are -the maximum scan a ngle in the two planes
max

at peak;

-( 1 )
13

,(2)
 3 are the half-power beamwidths.
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NEAR-FIELD OF AN ARRAY

1	 In this report we have discussed focused systems and their relation-

ship to near-field systems.

1	 But, we have not set a criteria for what the near field range of an

aperture is. This criteria is shown on the left in the following

figure.

Focused systems are designed such that the reflectors are placed in the

far field of the primary aperture. The main beam of a primary aperture

is usually well formed by the time the fields reach the reflector.

However, in some configurations, i.e., configurations with high f/D

ratios, the reflector is at the far field boundary or possibly in the

Fresnel zone.

1	 Near field systems are configured in a way to place the subreflector in

the radiatin g near field (Fresnel zone) of the primary aperture.

Seen on the right (after Silver) is the relative field magnitude of a

uniformly illuminated aperture at various ranges in the Fresnel zone.

Field patterns in this region are very dependent on range. The main

beam is not well formed until the far field boundary is reached.
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OVERSIZED RADIATING ELEMENTS, WIDELY SPACED ARRAY ELEMENTS

Review of Amitay & Gans (2.2)

anx. , n.	 I

OF P0611'1 	 ili
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See Reudink D. 0. & Y. S. Yeh

Bell Syst, Tech J. Volume 56 No. 0

Oct. 1977 pp. 1549 - 1560

Amitay & GWIS used,,

dx :3 2.78, dy - 1.19

104 element array

Studies blind spots in this oversized element array. Blind spots were

discovered to be a result of a resonant TM	 wavequide modo at the aperture

surface. They further discussed methods to modify the position of the

blind spot such that the array could be useful as a food for a LFOV

antenna.

High gain elements, used with active element patterns, will control grating

lobes past 50 deg. from baresight.

j
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ACTIVE ELEMENT REFLECTION COEFFICIENT

It is important in array design to consider the reflection coefficient that

will be observed at each array element when the array is fully excited. There

are many techniques available for both infinite and finite array active

reflection coefficient analysis [12.1. For large arrays such as those

encountered in near-field systems, infinite array approximations can be used

successfully to design element matching for scan angles as high as 30 degrees.

The behavior of internal elements of a large array are nearly identical and

only the, outer elements require special treatment.

But, in small arrays such as the cluster array proposed for use in a focused

multibeam antenna, the active reflection coefficient cannot be predicted by

,r	 infinite array techniques. One method available to analyze finite arrays

is an integral equation formulation (moment method). Results were published

by Fenn, Thiele, and Munk [3.4] using open-ended rectangular waveguide

radiators. The magnitude and phase of	 predicted for a 25 element array

fed at broadside is shown oh the follo0ing page. Note that the worst case

reflection coefficient corresponds to a VSWR of 2.6;1 while the corner elements

have a VSWR of 1.2;1. It was discovered that when the array is scanned in the

H-plane, ,.'I was generally reduced, where as E-plane scans tended to increase
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SCAN LIMITS OF A NEAR-FIELD ARRAY

Here, 
the 

aperture-to-secondary scan transfer properties of the Gregoriah

configuration studied in Ref, [1,3] are compared with a linear beam

steering apgoximation based on the magnification ratio (D/d). It is
seen that in the positive 0 1 direction that the array understeers the
beam, i.e., an increase in aperture scan does not prodUCi2 a proportional

increase in the secondary beam scan. 
In 

this case, a beam scan of

7 1 makes it necessary to increase the scan capabilities of the
feed array by 20'," from the linear approximation. The condition is

reversed in the " direction; here the secondary beam is oversteered.
This example 

uses 
computed data from a configuration with a magnifica-

tion of 3. As shown in this study for magnification ratios on the order
of 10 to 15, even greater non-linear scan transfer characte ►o, istics are
produced,
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TECHNOLOGY OF RF AMPS AND PHASE SHIFTERS

This section will address the current status and growth prospects of

technologies required of phased array elements having integral mono-

lithic transmit or receive control devices. The literature search

concentrated on monolithic modules and phased array elements operating

above 18 GHz.

Monolithic Modules

In general, a lot of work, both theoretical and developmental has been

done in the area. As early as 1965 diode switches were available to 24

GHz, and to 40 GHz by 1967. Diodes (BARITT, IMPATT, TRAPATT) have been

used extensively for reflection type amplifiers and phase shifters. Dual-

=e^. e GaAs MESFET's show the most promise for Variable Gain and Variable

Phase amplifiers in the 20-30 GHz Band. Power combining from several

FET's is necessary to achieve appreciable output power.

Engineers from Hughes Corp. and Texas Instruments both indicated that

variable power amplifier module fabrication is feasible with current

technology. Texas Instruments is currently fabricating a four-stage

monolithic amplifier module for the Advanced Communications Technology

Satellite (ACTS). The chip size will be approximately 100 x 200 mils,

The module uses dual-gate rET's for gain control and should have per-

formance similar to NASA's design goals. It will be fabricated on a

GaAs chip which would then be'mounted in a leadless chip carrier and

connected to the desired interface.

L
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Since an active array is under consideration in this stt,dy the scope

of investigation must go beyond the techniques of an antenna designer

of reflector antennas and beyond the scope of a designer of phased

arrays. The technology of the design must now include the concepts

of the RF linear power amplifier designer such as AM/P111 conversion,

dynamic range, linearity, response time and harmonics.

1 Typical values of RHF components includL^3

- AM/PM Conversion: 2 degrees/dB

- Linearity: n150

- Stability: ±50

4.3 dB

- Third-Order IM: -23 dBc

1 [ ff'ec;ts on Multiple Beam Generation

- SSPA array RF amplifier non-linearities can produce 3rd order

spacial intermodulation.

- Affect the antenna pattern by producing spacial gitter and

lobing phenomenon.
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ARRAY PHASE CALIBRATION

An i ► pov l,ant consideration in an ae,-tivQ elument array is phase synchrod-

zation of the RP signal at the array face. Tho ideal caseat broadsidesd

would be constant planar phase front. Many factors will perturb this ideal

situation. Some of these are by design i.e. linear phase Waving and

beam shaping bUt many will be undesirable affects. These undesirable ef-

fects ineludoz

I SSPA insertion loss variations from element to domont.
I Differontial Phaso Variations from ole ► o ►lt to olo ►ont as a

function of froquoncy.

Phase shifter wlurantixation offocLs-

Ono suggested moody is giwon by (b,l) as an intovpolation locking

tochniquo,

I
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GaAs FETS, UNIT-TO-UNIT VARIATIONS

0 The FETS can be biased and tuned for either;

a) optimum efficiency

or b) optimum output power

1 The same set of 14 solid state amplifiers were measured at 20 GHz

and at 21 GHz.

1 The power output of randomly selected SSPA's in an active aperture

could vary widely. For example, at 21 GHz and optimum efficiency

the power output from the highest to the lowest differs by more Chan

3 dB. Array design is difficult with random variations of this mag-

nitude.

1 The standard deviation of output power is smaller when the amplifiers

are biased and tuned 'for optimum efficiency.

1 Note that efficiences ranging from 20 to 25 are obtainable. But,

the power output is typically lower by 150 mW. Because of the thermal

problems encountered in active apertures of this type, optimum ef-

ficiency is preferred.
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SSPA/RADIATING ELEMENT DESIGN

Shown here is a block diagram of a solid state power amplifier integrated

into a radiating element.

1 Final Stage - It is recommended that the final amplifier stage be

set at its optimum efficiency, and should not have any dynamic control

of amplitude nor phase, It was found in the literature that fixed,

low-gain (5 to 10 dB) SSPA's are generally more efficient. Since heat

dissipation in the array is a severe limiting factor, efficient opera-

tion is extremely important. In addition, some fixed gain amplifier

designs are now available; thus, the reliability history will be more

well known. The remaining portion of the SSPA element gain would be

supplied by a preamp module. This module would operate at modest

power output levels (50 to 150 mW) and have dynamic amplitude and/or,

phase control.

Rapid Scanning - Since rapid beam steering is required each element

would be equiped with the ability to store the next amplitude and

phase state. Individual elements would be loaded sequentially via

an address and data bus structure. This structure would reduce the

total number of control lines and reduce layout complexity for large

arrays. A single control would command the phase shifters and vari-

able gain amps to change state. Beam updating could be done quite

rapidly; but, the power supply must be designed to handle the power

surge.
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SSPA/RADIATING ELEMENT DESIGN

Static Phase Set - Each element will need a precise static phase

setting device to establish a coherent wave front at the aperture.

One method would be to use various lengths of dielectric slabs to

cover a portion of a microstrip line.

Chip Carrier Construction - Prior to placement into the radiating

element, SSPA's would be packaged in hermetically sealed, leadless

chip carriers. The chip carriers are typically made of berillium

copper. They would be afixed to the element with silver epoxy for

thermal and RF continuity. Wire bonds would be used between chip

carriers and coupling devices.

The configuration shown here is for a space-fed active aperture with

rectangular receive elements. Other radiating apertures uuld be selected,

such as: square apertures, small pyrimidal horns, conical horns, and

rectangular to circular transitions.

i ^	 l
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There are a wide variety of elements which could be used with a monolithic

module in a Phased Array at 20 GHz. These elements are briefly discussed

below in order of applicability to tke project.

Some successful experimentation has been done at Harris in the EHF Band

on dielectric rod antenna elements. A dielectric rod element is an ex -
tension to an open-ended waveguide radiator which provides additional

beam shaping and impedance matching design parameters.

Microstrip array elements offer an extremely easy interface with mono -
lithic modules including the possibility of simultaneous fabrication

and connection. There is a moderate amount of analytical tools available

and the array would be rather simple to construct= However, printed-

circuit microstrip patch has low bandwidth and only moderate aperture

efficiency and polarization purity. A similar technique, the printed-

circuit notch antenna, offers a wide bandwidth and is easily matched to

free space as well as to the fed line.

Dipole or printed circuit dipole elements have moderate bandwidth,

polarization purity, and aperture efficiency. However, fabrication

of dipoles for broadband EHF operation is difficult. Cavity backed

slots have parameters similar to those of open-ended waveguide. They

might be considered if array depth becomes a driving factor. Waveguide

slot arrays are popular, but are not applicable to the use of a single

monolithic module per element.

Open-ended rectangular waveguide is a commonly used element, and would

be convenient for initial studies. It has a wide bandwidth, with moderate

aperture efficiency, and high polarization purity. It is easily combined

with monolithic modules, and provides for a relatively simple array

structure with either a triangular or rectangular lattice. Blind spots

which are often associated with waveguide arrays can be avoided due to

the small scan angle requirements of the system. There is a large amount

of analysis available for waveguide arrays.
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ARRAY ELEMENTS - Contd.

In some instances a small pyramidal horn may be needed, especially if

a large aperture area must be filled with a few elements. It has the

same general characteristics as the waveguide above. If a high packing

density is needed, the element spacing may be smaller than the size of

normal waveguide. In this case, ridged waveguide would be used. It has

the same parameters as regular waveguide, except for a lower cut-off

frequency and wider bandwidth for a given size.

Another alternative is open-ended circular aveguide. It allows for

polarization diversity, elimination of some array resonance problems,

and lends to dense hexagonal packing. A small conical horn would be

used if a large aperture of circular elements is desired and is recom..

mended here.
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SSPA TO WAVEGUiDE RADIATOR TRANSITIONS

1 Two examples of an SSPA transition to a rectangular waveguide radiator

are shown in the following figure.

A The element on the left shows the use -^f a stepped waveguide transition.

This type of transition is typically used for matching IMPATT diode

cavities to rectangular guide.

The loop coupling shown here for the GaAs FET is impractical at EHF

frequencies because of the tight tolerances required; but, the coaxial

feed through does provide environmental protection for the SSPA.

A second transition is shown on the right.

Measured data for this transition is shown at the end of this section.

The SSPA chip can be mounted to a heat sink (not shown) that extends

half way into the waveguide from behind #	 SSPA.

The heat sink and support for the SSPA as well as the element itself

could be machined from a single piece of metal. This provides an

excellent thermal path to a cooling plate.

I Another alternative is the use of a broadband stepped ridgeline

transformer shown on the following page.

Measured data for this type transition indicates good bandwidth character-

istics. The following pages illustrate how the MHIC modules can be

integrated into microstrip line and rectangular waveguides.
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Waveguide to Microstrip Transition:
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SSPA ELEMENTS/CIRCULAR RADIATOR INTERFACE

Rectangular SSPA Package

i
- Uses the same transitioning design as shown in the previous

illustrations.

- Input is either microstrip line or rectangular waveguide transition.

- Rectangular to circular waveguide transition utilized to match

modes in the circular radiator.

I SSPA in Circular W'aveguide Pipe 	 k

SSPA region must be isolated from input/output transitions.

- Microstrip modes are matched in a rectangular package in the

SSPA region.

- Flaired slot transitions match circular waveguide input/output

modes.



p9• -122-

a

CPrwwE''i'^ It, PACE Is

OF POOR QUALITT,

VPS	 VPA	 CGA
CERAMIC	 MODULE	 MODULE	 MODULE
COVER

CERAMIC
CHIP CARRIER

KOVAR
FRAME

50 OHM
MICROSTRIP~

LINE

CERAMIC ,J	 \

	

MOUNTING	 ^- CONTROL AND

	

BASE	 BIAS PINS

MICROWAVE
LEADLESS CHIP

CARRIERS
(LCC)

MODULE
MOUNTING

BASE

149382
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SCANNING BEAM EIRP DC POWER REQUIREMENTS

Conventional Spacecraft Communication Satellite systems utilize

TWTA's to produce power levels commensurate with the required coverage

EIRP. The required EIRP for the scanning beam case is 67 dBW with

53 dB assumed for the antenna. An RF output power of 25 W is required.

A comparison of TWTA's having an efficiency of 25% and the specified

efficiency of 15°0 for the SSPA's is presented. The DC power dissipated

by the TWT is 195 watts and for the SSPA's is 158 watts. It should

be pointed out in this comparison that the logic power loss has not been

considered and would be higher for the SSPA's due to the larger number

of devices required.
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POWER COMPARISON TW /BFN VS MONOLITHIC MODULE ARRAY

MONOLITHIC
TRANSMIT

	

Two BFN	 MODULE

RF OUTPUT POWER	 25 W	 25 W

BFN LOSS*	 3 dB	 -

POWER AMPLIFIER OUTPUT	 50 W	 25 W
^!	 l

EFFICIENCY	 25100 (TWT only)	 15% I`

AMPLIFIER LOSS	 150 W	 142 W

H.V. SUPPLY EFF.	 91	 (L,V.) 9100

N.V. SUPPLY LOSS	 20 W	 (L.V.) 16 W

BFN SWITCHING POWER*	 25 W	 -

TOTAL POWER REQUIRED 	 195 W	 158 W

* BFN SYSTEM ASSUMED: 63 VPD's in 6 stages, 5 dB/Stage Joss, 200 ;,J

switching energy per VPD, BFN reconfigured every 500 m sec.
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ACTIVE ARRAY HEAT DISSIPATION

An active array like the one studied by Motorola produces significant

heat (N380 Watts in this case). Assuming that the method of heat dis-

sipation is via conduction through a structure possessing moderate thermal

mass to a thermal radiator(s), significant thermal gradients are prevalent

which will distort the array. Distortions resulting from the thermal

differences of this magnitude can be compensated for as long as the

thermal environments are predictable. Thermistor sensor devices can

be utilized in practice to monitor the array thermal condition so that

the appropriate phase shifts may be trimmed providing the needed compen-

sation.

An example of a new type of thermal radiator is shown on the following

page. A honeycomb heat pipe plate is utilized where the individual wave-

guides pass through the plate and are mechanically attached at their

center section, the region of heat dissipation. Heat is conducted into

the plate and evaporates a working fluid such as methanol. By capillary

action, vapor is radially transported through wicks to the plate edge

where condensation takes place. Heat is then rejected to space via the

plate edge region which acts as a space radiator. There is very little

build up of temperature from the plate center to the edge which is ideal

for the SSPA's.



u

ORIGINAL ^'^^^^ C s
OF POOR Q[,1AUTY	 pg. -128-

i
i

7

y

EHF COMPONENTS

At EHF frequencies the performance of the RF components becomes increas-

ingly critical. Shown below on the left is the measured insertion and

return loss of a back-to-back waveguide to microstrip transition. This

configuration is important for the utilization of the SSPA modules in

waveguide radiators. Other measured data was available for a 20 GHz

microstrip 3 dB hybrid. A VSWR of 1,5:1 was maintained over 4 GHz with

an insertion loss averaging .7 dB. Comparing this with readily avail-

able stripline 3 dB hybrids at X band one finds typical VSWR's of 1.35:1,

isolation greater than 18 dB, and insertion loss less than .4 dB. Pre-

dicted performance at 21 GHz fo: , 2-way and 4-way in-phase stripline power

dividers is shown here:

VSWR INSERTION LOSS ISOLATION AMP BAL PHASE BALBAL BW

2-Way	 2.0:1 0.9 dB 14 dB :^,3 dB ±6° 36;0

4-Way	 2.0:1 2.0 dB 14 dB ±.4 dB ±120 36c/a/

For coaxial connections the 3 mm coaxial connectors are the most suitable.

These connectors can operate up to 38 GHz free of higher order modes. The

maximum VSWR expected in the 20 GHz band is 1.27:1 whine the maximum in-

sertion loss expected is 0.18 dB. The 3 mm connectors are compatable with

.085 semi-rigid coaxial cable. A typical 6 inch cable assembly operated

at 20 GHz can be expected to have a maximum VSWR of 1.0:1 and a maximum

insertion loss of 0.83 dB. In contrast, the theoretical insertion loss

of a 6 inch length of WR42 aluminum waveguide is .12 dB; however, waveguide

tolerances of 1.001 inches are required.
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NEEDED TECHNOLOGY

Technology developments needed for multiple reflector system with array

feeds include:

1 A study of specific optics designs with array feeds and with

array compensation techniques. (addressed in this contract)

1 Solid State phased array technology (addressed in this contract)

1 Multiple beam forming networks for active arrays

/ Further investigation of mounting configuration of SSPA modules

into a complete antenna system

1 Additional studies on the distribution of bias and control lines
to the individual SSPA modules

1 Optimize amplitude and phase quantization; needs versus hardware

capability

1 Studies of advanced cooler designs
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