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SIMULATION OF LARGE TURBULENT VORTEX STRUCTURES WITH THE

PARABOLIC NAVIER-STOKES EQUATIONS

J. V. Rakich, I R. T. Davis, 2 and M. Barnett 3

ABSTRACT

The theoretical basis for well-posed marching of a Parabolic Navier-Stokes (PNS)

computational technique for supersonic flow is discussedand examples given to verify

the analysis. It is demonstrated that stable computations can be made even with very
small steps in the marching direction. The method is applied to cones at large
angles of attack in high Reynolds-number, supersonic flow. Streamline trajectories
generated from the numerical solutions demonstrate the development of vortex
structures on the lee side of the cone.

INTRODUCTION

The computation of steady supersonic viscous flows with one set of equations,

valid in both the boundary layer and the inviscid supersonic region, has long been
attempted to avoid the difficulties with matching conditions for separate inviscid

and boundary-layer equations. Use of the unsteady form of the NS equations has been
successful but ineffieient_ in terms of computer time and memory requirements.

Therefore, many authors [I-8] have used steady marching or iterative methods to solve
numerically the time-invariant NS equations. Single-pass methods have been used
for supersonic flows, where the inviscid region is a well-posed initial-value

problem, and where the viscous region is a boundary layer, which is itself amenable

to a marching solution. The difficulty with solving the complete inviscid/viscous

domain at once lies in the thin subsonic layer near the wall, where the pressure
is determined by the solution. The absence of a downstream boundary condition makes
the problem ill-posed. This combined problem is basically an interaction of a

boundary layer with an inviscid, supersonic stream. Lighthill [9] analyzed this
problem and found solutions for the boundary-layer displacement thickness of the

form 6 = a exp(kx). One can interpret this exponential growth as the onset of
streamwise expansion or compression, which may lead to separation; these solutions
have become known as "departure" solutions corresponding to some undetermined

downstream boundary condition. This paper describes an approach for avoiding the
exponentially growing solution, and presents results for turbulent flow over a cone
at large angles of attack.

THE PNS EQUATIONS

The governing equations are written in general curvilinear conservation-law
form as follows [8]:

_-_ {J-l[$xE* + SyF* + SzG*]} + _ {J-l[_x(E - Ev) + ny(F - Fv) + nz(G - Gz)]}

(l)

+ _ {J-l[_x(E - mv) + _y(F - Fv) + _z(G - Gv)]} = _ {-J-l[_xpI + _yP2 + _zP3 ]}
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Here J is the Jacobian of the coordinate transormation; E, F, and G are the

inviscid flux vectors; and Fv and Gv are the viscous flux vectors--all written in
terms of Cartesian velocity components. Note that the viscous terms are omitted

from the _ derivative term; this is the fundamental parabolizing approxim@tion.
The ( )* terms are central to the discussion of parabolic marching, and are given
by the column vectors

* 2 }TE = {0u,pu + rap,puv, 0uw,(0et + p)u ,

F* = {pv, puv, pv2 + up, pvw, (pet + p)v}T , (2)

G* = {pw, puw, pvw, pw2 + up , (pet + p)w}T ,

where

pet = p/(y - i) + 0.5p(u2 + v2 + w2)

Here u, v, and w are Cartesian velocity components, p is the pressure, p the
density, and y the ratio of specific heats. The P terms on the right side are
given by

PI = {0, (i- re)p, O, O, 0}T , ]

P2 = {0, 0, (i- re)p, O, O}T , (3)

P3 = {0, O, O, (1- _)p, O}r .

Following Vigneron et al. [4], the parameter m is included with the pressure

term in the momentum equations. It was shown that the equations can be made formally
parabolic by utilizing an appropriate functional form for m. Considering the two-
dimensional viscous subset of equations (i), the mathematical character of the

equations is governed by the eigenvalues of the differential system, leading to the
condition

S YMx2/[l + (y - l)Mx2] (4)

If this condition is satisfied, then the equations remain parabolic even in
the viscous region near the wall where the Macb number is less than unity; a similar

form also governs the inviscid region, but is not pertinent to the present work.
The purpose of this paper is to further demonstrate the effectiveness of this

approach for interacting supersonic flows where the problem can be solved in a single
sweep of the PNS equations.

In previous work with the PNS method, a "sublayer" approach was used, in which
the pressure gradient term was completely removed in the subsonic region of flow.

This is equivalent to a step function for m, and this places greater significance

on the P terms on the right side (RHS) of the equation. Usually, backward-
difference approximations have been used for the pressure gradient term on the RHS.

However, it can be shown that a backward difference leads to numerical instability
for sufficiently small marching steps (which may be a manifestation of the departure

behavior). When the _ function is used, the RHS can be set to zero, to a good



approximation, making the numerical computation stable, even for small steps. Thus,

the _ function and a zero RHS together permit the investigation of departure
behavior, which requires very small streamwise steps.

NUMERICAL METHODS

The present computational results are obtained with the Beam-Warming factored
algorithm in delta form. Details can be found in reference [8]. Full second'order

accuracy can be maintained by use of central differences in _ and _, and with a
three-point backward difference in _. However, for the present results, the Euler
implicit method is used for the marching direction, making the method first-order
accurate in the _ direction.

TRIPLE-DECK ANALYSIS

For subsonic flows, that is, elliptic equations, a downstream boundary condition

must be specified. When attempting to march such a system without specification
of the downstream condition, there are an infinity of possible solutions that corre-

spond to various attached or separated flows. When the viscous layer is thin, the
departure solution is governed by the interaction of the viscous and inviscid regions

near the wall [9]. Stewartson [i0] further studied such flows using a triple-deck

analysis consisting of a Lighthill sublayer, an inviscid shear region, and the
inviscid external flow. This analysis establishes the order of magnitude of the
interaction region.

The pressure is constant across both the lower and middle decks, and the velocity
in the middle deck corresponds with the attached velocity profile upstream of the

interaction, but displaced by 6. Utilizing linear supersonic theory for the pressure

at the top edge of the middle deck, one obtains the following momentum equation for
the lower deck:

8u Du = 82 [_w(Me2u _xx+ v _y _ u 2/ - I)!i]--d26 (5)
_y---_-OeU e dx2 '

where the subscript w refers to wall, and e refers to the top edge of the middle

deck. Introducing the stream function in (5), and utilizing the Lighthill form for
the displacement thickness 6, yields an Airy equation. It is found from the

solution that the trlple-deck scale is given by

AT = 0.8272(M 2 -I)3/4(T=/Tw)I/2cf 5/4Re3/8 Ax = k Ax , (6)

where x is the nondimensional physical distance, Re is the Reynolds number, Cf
is the skin friction coefficient, T is the temperature, and M is the Mach number.
The pressure gradient that results is

dp/dx = C exp(kx) (7)

The importance of this analysis to computations with the PNS equations is that
it provides a test of the effectiveness of methods for damping the unwanted departure
solutions. To illustrate, we consider a flat-plate boundary layer. The solution

shown in Figure i at x/L = 0.5 is obtained with the m parameter turned on, and
then w is set to 1.O, so that the full PNS equations are marched for a short
distance. The solution immediately starts to "depart" until at x = 0.5055 the

factor is again turned on, and the solution decays toward the well-known boundary-
layer solution. If the triple-deck scale had not been resolved by the step size



Ax, the departure would have appeared as an oscillatory divergence. We note here

that other investigators report their methods are unable to suppress the departure

behavior for small marchingsteps, while the present approach is quite effective.

Figure 2 demonstrates that the computed departure solutions (_ = i) agree with

Lighthill's linear analysis. This figure shows the magnitude of the computed
pressure gradient as a function of the triple-deck distance scale _ = kx. The

initial slope of the computed departure agrees with the linear analysis until
nonlinear effects take over.

COMPUTATION OF TURBULENT FLOWS

Turbulent computationsare performed with the Reynolds averaged form of the

PNS equations and an algebraic, or zero-equation, eddy viscosity model. Details are
given in reference [5] and will not be repeated here. We note, however, that no

special modifications were needed for the present calculations, even with a large
crossflow separation on the leeward side.

Figures 3 and 4 compare the circumferential variation of pressure and surface

stream angle from the present computations with the experimental results of Rainbird

[ii]. Generally, good agreement is obtained with experiment. The main differences

are caused by an incorrect prediction of the location of separation, believed to be
due to the inadequacy of the simple turbulence model used. These results were

obtained on a CDC 7600 computer with 50 grid points between the body and the shock,

and with 47 unequally spaced meridian planes.

FLOW-FIELD SIMULATION

The simulation of turbulent vortex structures is achieved by tracing particle

paths using the velocity field obtained from the PNS solution. Initial positions
for the tracer particles are specified at field locations near the cone surface,

and x/L = 0.i. The particle paths are then determined from a simple Euler predictor-
corrector, finite-difference scheme. The velocity field is taken at x = L and is
assumed invariant with x for the purposes of this simulation.

The flow simulation is shown in Figures 5a and 5b. Three distinct vortices are

observed--one emanating from the primary separation, the second from the secondary
separation of the flow coming down the leeward plane of symmetry, and a third below
the primary vortex and having the same rotation as the primary vortex. This flow

structure is suggestive of a global type of mixing in large turbulent structures,
which is significant to the development of turbulence models.
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