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SUMMARY

This is the final report, NASA CR-165566, on lIT Research Institute
(IITRI) Program No. IITRI-M06066-22 entitled, "Fatigue Testing of Low-Cost
Fiberglass Composite Wind Turbine Blade Materials." This program was per­

formed during the period from 10 November 1979 to 30 September 1981 in the

Materials and Manufacturing Technology Division of IITRI. The IITRI Program
Manager was Mr. K. E. Hofer; substantial contributions to the program were

made by Mssrs. L. C. Bennett, G. Skaper, and V. Humphreys. Mssrs. R. Lark
and T. Sullivan acted'as Program Monitors on behalf of NASA-Lewis Research
Center.

The static and fatigue behavior of transverse filament tape (TFT)
fiberglass/epoxy and TFT fiberglass/polyester composites was established by

the testing of specimens cut from panels fabricated by a filament winding pro­
cess used for the construction of large experimental wind turbine blades.
Static mechanical properties obtained included tension, compression, and inter­
laminar shear at ambient conditions and in high humidity/high temperature con­
ditions after a 500-hourexposure to such an environment. The fatigue data
were obtained at similar environmental exposures and at several R ratios, in­
cluding R = 0, -0.1, -0.25, -0.5, and -1. Negative ratios imply a compressive
component of stress. Testing was performed to failure in many cases.

S-N diagrams and a modified Goodman constant life plot were obtained
for one of two of the epoxy matrix composites.

The elastic properties of the epoxy matrix materials showed a strong
dependence only on the filament stiffness and angle between the load

direction and the filament, and a weak influence of the high humidity/
high temperature environment. The polyester materials showed a substantial
decrease in compressive strength for some composites which had been exposed
for over 4000 hours in the high humidity/high temperature environment.
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1. INTRODUCTION

After many years of cheap and abundant energy availability, recent global

events indicated the need for full utilization of all available energy re-
*sources (Ref 1-6). One such resource may be harvested by utilization of wind

energy conversion systems. The blade materials for wind energy conversion
systems are critical for several reasons.

• The stability of the blades is related
to the stiffness of the materials used

The strength and long term durability of the
system are linked to the static strength and
fatigue endurance of the blade materials

• The utilization of the system depends upon the
costs of the blade and the blade costs depend
upon the component material and fabrication
costs.

One candidate material which appears to have the potential for resolu­

tion of the problem areas associated with wind energy conversion systems

(WECS) and the properties required for the success of WECS is glass fiber­

reinforced plastic (Ref 7-9).

The program described herein was undertaken to provide data in support
of the NASA low-cost blade development program. The mechanical properties of

transverse filament tape (TFT) fiberglass reinforced plastic were established

by the testing of specimens cut from panels which had been fabricated by

Structural Composites Industries (SCI) under r.ontrRct nEN3-l00.

A static test program was conducted in accordance with the plan shown
in Table 1. Testing was conducted at both ambient conditions [T= 21°C (lO°F)

and R.H. = 50%J and at elevated temperature and humidity [T = 49°C (120°F)
and R.H. = 98%J. The fatigue program shown in Table 2 was also conducted at

ambient conditions and elevated temperature-humidity conditions.

*Numbers in parentheses refer to the references at the end of this report.
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TABLE 1. STATIC TEST PROGRAM

Minimum Number of
General Winding Test Specimens Per Property

Material Type Pattern Preconditioning Conditions Tension Compression Shear

TFT/epoxy Ta dry C dry 5 5 5

d
5 5 5wet wet

2
b

dry dry 5 5 5

wet wet 5 5 5

TFT/polyester 2 dry dry 5 5 5

wet wet 5 5 5

aFilament orientations were [0° /90 % ° /90 % ° /90 % ° /90 % ° ]5 5 5 5 5 .

bFilament orientations were [ooS/900/±4so/900/00S/900/coS/900/±45°/900/00S].

CDry = 21°C (70°F), R.H. = 50%.

dWet = 49°C (120°F), R.H. = 98% for 500 hours.

2



TABLE 2. FATIGUE TEST PROGRAM

*Test Conditions, Number of Specimens Per R Ratio
Material Type Temperature/Humidity R=O R=-O.l R=-O.25 R=-O.5 R=-l

TFT/epoxy; 21°C (70°F)/50% R.H. 12 8 5 5 5
Winding Pattern
No. 1 49°C (120°F)/98% R.H. 5 5 5 5 5

TFT/epoxy; 2lDC (70°F)/50% R.H. 12 5 5 5 5
Winding Pattern
No. 2 49°C (120°F)/98% R.H. 5 5 5 5 5

TFT/po1yester; 2lDC (70°F)/50% R.H. 5 5 5
Winding Pattern
No. 2 49°C (120°F)/98% R.H. 5 5 5

*R = ratio of minimum stress per cycle to maximum stress per cycle.
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The fatigue stress ratio included values of R from a to -1.0. This

implied compressive components of stress and, consequently, required stabili­
zation of the specimen during fatigue stroking. At ¢ = 0.5 hertz, 250 days

would be required to amass 107 cycles. This time level was unacceptable, and

hence, acceleration of the tests was necessary. Fan-induced airflow across

the specimen was the method of cooling. Temperatures never exceeded 78°F for
ambient conditions and 120°F for elevated temperature/humidity conditions.

This report describes the results of all testing conducted during the

program. A description of the materials investigated during this program is
found in Chapter 2 of this report. Details of the test procedures for the
mechanical testing, including specimen configuration, preparation preliminary
efforts, and environmental exposures are presented in Appendix A to this
report. Individual static mechanical properties results and failure modes

are presented in Appendix B. Individual specimen fatigue endurances and a
description of fatigue failure modes are presented in Appendix C. The static

and fatigue results are capsulized in Chapter 3 of this report; Chapter 4

presents conclusions based upon the results.
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2. MATERIALS INVESTIGATED

All laminated materials investigated during this program were furnished
by NASA-LeRC. Panels were manufactured and submitted to IITRI by the fabricator,

Structural Composites Industries (SCI) under Contract DEN3-100.

The basic reinforcing element in the panels was a 7 in. wide transverse

filament tape (TFT) which consisted of bundles of glass filaments supported by

two carrier threads. The carrier threads permit the use of filament winding
procedures in the fabrication of structural elements. With an appropriate
overlap (3 in.) of the TFT, the resulting laminate will have an adequate number

of the filaments in the direction of the principal stresses in the structural

component. The laminates prepared for testing contained 00
, 90 0

, and ±45°

filaments.

Two winding patterns were investigated with an epoxy matrix: Winding

Pattern No.1 was a Ooand 90° layup and represented the pattern used to produce

an experimental 150-ft TFT fiberglass wind turbine blade (10); Winding Pattern

No.2 contained 00
, 90 0

, and ±45 filaments and represented the pattern used to
produce two 60-ft experimental fiberglass blades (11). See Table 3 for the

ply-by-ply description of these two winding patterns.

The TFT weight for this study was 7 oz/sq yd, compared with a 36 oz/sq yd
material used to prepare the 150 ft TFT blade. For the epoxy matrix composites

an epoxy system containing DER 332 with RD-2 diluent and Tonex 6040 hardener
was used.

During fabrication 1.5% of Cab-O-Sil was added to the mix for thixotropic
properties (to provide control of resin flow during blade winding). For the

polyester laminates the resin used was Polylite AZ7623a catalyzed by using equal

amounts of cumenehyperoxideb and Percodox 16N.c No attempt was made to opti­
mize the selection of polyester resin by test.

aA product of Reichold Chemical Co.

bA product of Lucidol Co.

cA product of Novry Chemical Co.
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TABLE 3. LAYUP SCHEDULE FOR WINDING PATTERN NOS. 1 AND 2

Winding
Pattern

2

Ply Ply Angled Number
Des i gna ti on (Degrees) of Plies

TFTa
0° 5e

LFTb 90° 1

TFT 0° 5

LFT 90° 1

TFT 0° 5
LFT 90° 1

TFT 0° 5

LTF 90° 1

TFT 0° 5
TFT 0° 5

LFT 90° 1

BFTc ±45° 1

LFT 90 0 1

TFT 0° 5

LFT 90° 1

TFT 0° 5

LFT 90° 1

BFT ±45° 1

LFT 90° 1

TFT 0° 5

aTransverse filament tape, 7 oz/yd2, 7 in. wide.
bLongitudinal filament tape, 10 oz/yd2, 3 in. wide.
cBiased filament tape, 15 oz/yd2, 7 in. wide.
dTo the principal structural load direction, i.e., along
the length of the blade.

eAlthough five successive passes of the TFT were made,
the tape was laid down with a 4 in. overlap, thus pro­
ducing a total of approximately 2-1/3 layers per pass;
thus, the ratio of 0° filaments to 90° filaments for
Winding Pattern No.1 is approximately 15:1.
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During fabrication of the turbine blade~ the tapes are wound in such a

way that a 3 in. overlap in the direction of the fibers is developed. This

overlap assists in transferring load along the length of the fibers from one

tape to the next. The 3 in. overlap results in the fibers being oriented at

a small angle to the principal stress direction, about 2°. A small prelimi­

nary test program was conducted to identify whether the main body of test

specimens should be cut with the specimens oriented at 0° or at 2° to filament

direction. The procedures and test results of that program are described in

Appendix A.

There was some difficulty in assessing the principal fiber direction from

the panels provided~ since no accurate reference lines were present. The zero

direction was taken as the direction 90° to the average direction of the

tracing threads. Even this was often difficult to establish. Figure 1 shows

the direction of fibers along the length of a sample determined by prying the

fibers from the surface of the sample and measuring their direction relative
to the assumed 0° direction. Fiber direction~ on both the top and bottom
surfuces of the sample~ was obtained, and is shown plotted in Fig. 1. As can

be seen, the surface fiber directions vary as much as +8° and _10° from the
assumed fiber direction. In adQition, the internal ply directions will also

vary from 0°. The testing of specimens at 2° to the blade direction was clearly

not as significant as originally designed.

Furthermore, as the test results presented in Appendix A illustrate,

there was no significant difference between samples prepared at Oo~ the

principal fiber direction, and samples prepared at 2° to the principal fiber

direction. The decision was made to conduct all further static and fatigue

testing at 0° to the principal fiber direction.

Although the panels of epoxy matrix composites had all been subjected to

routine nondestructive inspection by ultrasonic C-scan by NASA prior to ship­
ment to IITRI, the polyester panels had not. As a consequence, the polyester
panels were subjected to C-scan by IITRI prior to specimen preparation. The
apparatus shown in Fig. 2 was utilized for this purpose.

Figures 3 and 4 show the attenuation versus position and C-scans for a

trial sample at 1 and 5 MHz, respectively, in the pulse-echo mode. The 1 MHz
pulse-echo scan was repeated after overnight immersion, to eliminate air

7
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Figure 2. Nondestructive ultrasonic scanning system for inspecting wind turbine blade materials.
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Figure 3. Specimen scanned at 1 Megahertz (pulse-echo mode).
a) db attenuation versus position along various traversing
paths in panel; b) gated scan with pen-paper contact only
when attenuation is less than a fixed level.
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Figure 4. Specimen scanned at 5 Megahertz (pulse-echo mode).
a) db attenuation versus position along various traversing
paths in panel; b) gated scan with pen-paper contact only
when attenuation is less than a fixed level.



bubbles possibly attached to the surface. Figure 5 shows the results. No

improvement over the scan shown in Figure 3 was evident. Finally, a through­

transmission scan was performed for the same sample. Figure 6 shows those

results.

Finally, using the best available techniques the two polyester matrix

panels provided to IITRI by NASA were nondestructive1y tested using ultrasonic
pulse-echo at an excitation frequency of the transducer of 1 MHz. The complete
ultrasonic C-scans for panels 4A and 4B are shown in Figs. 7 and 8. Both
panels show numerous indications of regular gaps or flaws parallel to the
filaments in the transverse filament tape.

Since no section of the panels appeared to be
every section was similar to every other section.

prepared from the panel s with typical "gap" 1eve1 s

12

free of the gap, each and
Specimens were, therefore,

present in every specimen.
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CJ1

Figure 7. Ultrasonic pulse-echo gated record at 1 MHz for Panel 4A. Note that almost the entire
panel contains regions of relatively high attenuation. These regions are parallel to the
filaments in the panel. .



0"\

Figure 8. Ultrasonic pulse-echo gated record at 1 ~1Hz for Panel 4B. Note that the panel is
uniformly spotted with regions of high attenuation. These regions are parallel to the
filament directions.



3. STATIC AND FATIGUE BEHAVIOR

3.1 Baseline Static Mechanical Data

As described above in Table 1 of Section 1, using the specimens and pro­

cedures outlined in Appendix A, a static test program was conducted to estab­

lish the strengths and basic elastic moduli of the three laminated materials
studied. A brief summary of the average mechanical properties of the three

materials is presented in Table 4.

Comparison of the various materials indicates the following conclusions:

• Tensile and compression strengths of the epoxy
matrix composites with Winding Pattern No.1 are
approximately 10% higher than those of Winding
Pattern No.2 .

• Similarly, the tensile and compressive moduli of
the epoxy matrix composites with Winding Pattern
No.1 are approximately 20% higher than those
with Winding Pattern No.2.

• There is no difference between the two patterns
in the interlaminar shear strengths. The previous
conclusions are consistent with the fact that the
composite properties are fiber dominated, particu­
larly with regard to the tensile and compression
properties.

• The tensile and compressive strengths of the
polyester matrix composites were slightly lower
than those for Winding Pattern No.1 of the epoxy
matrix composites. The stiffnesses, however, were
closer to those for Winding Pattern No.2.

Comparing the two resin types for their common
winding pattern, number 2, the static strengths
of the polyester material are higher than the
corresponding static strengths of the epoxy
matrix materials.

17



TABLE 4. SUMMARY OF BASELINE STATIC MECHANICAL PROPERTIES
OF THREE TFT COMPOSITE LAMINATES INVESTIGATED

Modulus
Material Strength of Elasticity Poisson's

Material a 106 ps iLoad Type Condition MPa ksi GPa Ratio

A Tension RTDb 464 67.2 31. 9 4.63 0.284

wetC 476 69.0 30.1 4.37 0.243

Compression RTD 384 55.6 31.8 4.61 0.300

wet 380 55.1 31.0 4.49

Int. Shear RTD 43.5 6.3

wet 74.5 10.8

B Tension RTD 413 59.9 26.6 3.85 0.312

wet 386 56.0 23.7 3.44 0.331

Compression RTD 345 48.6 25.3 3.67 0.318

wet 358 51.9 28.0 4.06
Int. Shear RTD 49.7 7.2

wet 73.1 10.6

C Tension RTD 447 64.7 25.3 3.64 0.281

wetd 441 63.9 26.1 3.81 0.299

Compression RTD 343 49.7 29.6 4.28 0.252
wet 333 48.2 28.4 4.11 0.259

Int. Shear RTD 72.4 10.5

wet 63.7 9.2

a"'Ma ter ia1 A is the epoxy matrix composite with winding pattern No. 1.
Material B is the epoxy matrix composite with winding pattern No. 2.
Material C is the polyester matrix composite.with winding pattern No. 2.

b "'T = 21°C (70°F), RH = 50%.
c "'T = 49°C (120°F), RH = 98% for 500 hr.

d",Additional information at 4000 hr exposure indicates that the tensile
strength drops to 320 MPa (46.4 ksi) although the modulus remains at
25.3 GPa (3.65 msi) and Poisson's ratio stays at 0.274.

18



Additional conclusions with regard to the wet condition as opposed to the
dry (RTD) condition are:

• There is little difference between wet and dry
strengths and moduli for the epoxy matrix composite
with Winding Pattern No.1. There appears to be
a mixed behavior for Winding Pattern No.2, but
overall there is not a significant difference
between wet and dry

Somewhat surprisingly, the interlaminar shear
strengths for both winding patterns increased
when wet over the dry values

There was a significant decrease (-25%) in the
strengths of the polyester matrix composite
which had been exposed to 4000 hours of 98% RH
from the dry strength properties. The high void
content, as illustrated by the ultrasonic NOT
examination, may have permitted a substantial
moisture buildup to occur under the very long
time exposures (greater 'than 4000 hr). This may
also have resulted in the presence of greater
strength-reducing mechanisms than if the sample
was void free. The presence of cut edges on the
sides of the sample could have contributed to
the exposure of more of the interior material to
moisture than would have occurred if the samples
could have been tested in an "uncut" condition.
However, the presence of voids, per se, does not
necessarily imply the presence of wet tensile or
compressive strength degradation. Moisture is
absorbed through the surface to the interior of
the material. Thus, the limiting or saturation
moisture level of a material with high open voids
may be reached sooner because of the greater sur­
face area, but the level would not be quantita­
tively different.

The composite moduli were not affected by moisture since the moduli is
a more fiber-dominated property than is the strength.

19
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3.2 Effect of Moisture on Fatigue Life

The individual fatigue data are presented in Appendix C. A summary of

the tension-tension (R=O) S-Ncurves for the epoxy matrix composites with
Winding Pattern Nos. 1 and 2 are presented in Figs. 9 and 10, respectively.
Both dry and wet behaviors were determined.

Some reduction in the wet fatigue strenqths were indicated for the epoxy
matrix composites with Winding Patt~rn No.1. The wet fatigue strengths were
not determined for all values of stress for the epoxy matrix material with
Winding Pattern No o 2, but the values obtained for 100 MPa (14.5 ksi) stress
range appeared to be part of the same S-N curve.

3.3 Effect of Mean Stress on Fatigue Life

The majority of the fatigue data obtained as shown in Appendix C were
from tests performed at one stress level and as such do not lend themselves

to an examination of the mean stress. However, some data are available from
the epoxy matrix composites with Winding Pattern No.1.

The fatigue lines are plotted in Fig. 11 for various values of the stress
range, i.e., Is - S . I. The stress range can be calculated from Table 17max mln
of Appendix C by multiplying the peak stress per cycle (stress level) by the

value (l-R) where R is the R ratio. Thus for a peak stress of 82.8 MPa
(12 ksi) at an R ratio of -0.25, we have the stress range = 1.25 x 82.8 =

103.5 MPa. The alternating component of this stress range is 0.5 x 103.5 =
51.75 MPa and the mean stress would be 82.8 - 51.75 = 31.05 MPa. Figure 12

is a modified Goodman Plot of constant life curves obtained from Fig. 11 and
the values of the alternating component of the stress range.

The curves portrayed in Fig. 12 are similar to those obtained for other

common aerospace structural materials including metals, plastics, and
composites. Thus, no particular problem would arise from the use of such
curves in design with the TFT fiberglass/epoxy composites.

22



500

400

rc
Cl..
::E:

.; 300
<J.
OJ
0>
C
rc
cr:
U1

~ 200
I­....,

(/)

100

0, baseline data

o o o o

R

-0.10

-0.25

-0.50

-1.00

Symbo1

0---0

• •
~

Dr--C::.

70

60

50

.
(/)

40 <J.
Q)

en
c::
<t:l

er::
30 Vl

Vl
Q)
I­....,

(/)

20-
10

OL....------__.r..- I...- ---JI....- .......I ...... O

102 103 10
4

105 106 107

Cycles to Failure

Figure 11. Effect of mean stress on the fatigue endurance for the epoxy matrix composite with winding pattern 1;
all tests performed at ambient conditions, T = 21°C (70°F), RH = 50%.



O----'-__-'-__L..-_-.A.__-'-__.L-.-_---"'__-'-__.L-.- __

1.0o 0.2 0.3 0.4 0.6 0.8

(Mean Stress/Material Strength)Ratio

Figure 12. Modified Goodman diagram illustrating the effect
of mean stress on the behavior of epoxy matrix composites
with winding pattern No.1 at T = 21°C (70°F) and RH = 50%.
[Material strength = 464 MPa (67.2 ksi).J

24



•

4. SUMMARY OF RESULTS

The following conclusions appear to be warranted by the results of the

static and fatigue testing p~ogram:

There does not appear to be a dramatic increase
in tensile or compressive strength of the TFT
composites compared with results obtained by
other investigators. The lighter weight TFT
(7 oz/sq yd) produces strengths approximately
the same as those for the 36 oz/sq yd material
used in the l50-ft composite blade program by
Kaman Aerospace.

• The effect of elevated temperature and moisture
on the static tensile and compressive strengths
of the epoxy matrix composites is not significant.

• There appears to be a significant loss of strength
for polyester materials with long term exposure
to moisture/elevated temperature.

• With respect to the elastic moduli, there is no
effect of temperature and humidity, load direction,
i.e., tension or compression, and type of resin.

• The fatigue results show an effect of moisture
and temperature on the S-N behavior of epoxy
matrix 0°_90 0 composites (Winding Pattern No.1).
However, there did not appear to be any significant
influence of moisture and temperature on the fatigue
behavior of the(00/90 0 /±45°) epoxy composites
(Winding Pattern No.2).

• The data obtained for the polyester matrix compo­
site are all for OO/90 0 /±45° filament orientations
and show a significant decrease in the ability to
assume repeated stress at the same stress levels
which were representative of runout for the cor­
responding epoxy matrix/fiberglas composites.
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APPENDIX A

TEST PROCEDURES FOR MECHANICAL TESTING OF TRANSVERSE FILAMENT TAPE
FIBERGLASS/EPOXY AND POLYESTER MATRIX COMPOSITES

A.I. MECHANICAL PROPERTIES, TEST SPECIMENS AND PROCEDURES

The procedures-For specimen fabrication and testing are discussed in this

appendix.

A.l.l SPECIMEN BLANKS AND PRELIMINARY TESTS

A.l.l.l Blanks for Specimens

Panels were received at IITRI from the fabricators. The panels arrived

at IITRI in the form of roughly cut squares approximately 91 cm (36 in.) on a
side (see Table 5). The epoxy panels were then roughly quartered before ma­
chining to the shape shown in Fig. 14 , The edges of the panels were not square
and in most cases were not straight. The transverse filament tape carrier
threads were visible in the surface and these threads were useful in establish­
ing the 0° direction of the transverse filaments themselves. Once an average

or approximate 0° direction had been established, this direction was marked on

the surface of the quartered panel. The panel was then aligned on the surface

of the cutting row (see Fig. 13) and the first straight edge on the panel was
cut. All blanking started with this operation. Following this edge preparation,
the 45.5 cm (18 in.) by 45.5 cm (18 in.) quarter panels were then cut into blanks,

2.54 cm (1.0 in.) wide by approximately 45.5 cm (18 in.) long (see Fig. 14).
Blanking to the 2.54 cm (1.0 in.) strips was done before tabbing, for those spe­
cimens requiring tabs, rather than in the reverse order as is customary. This
was done to avoid tab disbonding during the final specimen cutting operation.

Blanking of the polyester matrix panels was similar to that for the two
epoxy matrix laminate types, except that the polyester/transverse filament

tape laminates were nondestructively inspected by means of ultrasonic C-scan

testing prior to blanking.

A.l.l.2 Preliminary Tests

A preliminary test program was conducted to determine the specimen adequacy,

cutting directions (0° or 2°) to the filament directions and equipment shakedown.
Specimen dimensions were 2.54 cm (1 in.) wide by 27.94 cm (11 in.) long.
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TABLE 5. DESCRIPTION OF TFT/EPOXY COMPOSITE PANELS
PROVIDED TO IITRI FOR FATIGUE TESTING

Wrap
LaPanel Pattern

No. No. (in. )

2022-3A l/Top 38

2022-3B l/Bottom 37b

2022-2A 2/Top 38

2022-2B 2/Bottom 37b

wEl a
t

ij:.!~.:.1 .(in :1
35. .5 0.5

36b 0.5

35.5 0.5

36 O. 5

Our Code Name
For Subpanelsc

3A - 1, 2, 3, 4

3B - 1, 2 , 3, 4

2A - 1, 2 , 3, 4

2B - 1, 2 , 3, 4

a -- L---

t
W Fiber
t Direction

-Q-t
._ -_ _•._._ --- _._..-_.._------------

bPanel out of square
cSee Fig. 13.
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91. 4 em ( 3 6 in • )

3A-l 3A-2.. .. .. ..

3A-3 3A-4.. ... .. ...

Figure 13. Typical example of panel partitioning prior to specimen blanking
operations (panel No. 3A for epoxy matrix/TFT with winding pattern No.1).
The arrows beneath the subpane1 numbers refer to the principal, or 0°,
filament direction.
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18 l.n.---~-----~-t..._1
Approx.

!>-l
I

:x: .--l N C"") ...j" Lf) \,() r--- 00 0'\ 0 .--l N C"") ...j" Lf) \,() r--- 00
:x: .--l .--l .--l .--l .--l .--l .--l .--l .--l

I

5 in.
pprox.

/

j
~/ .

1
A

Ma~~ ~t--~----
(0 0 direction)

Figure 14. Sub-panel specimen blanking scheme. Each strip
is 1 in. wide. All strips were cut parallel to reference
mark (in 00 direction).
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The tensile strengths for the epoxy matrix composites with winding angles 1

and 2 at 0° and 2° to the principal filament directions are shown in

Table 6.

Preliminary testing of the epoxy matrix composites was performed for
the purpose of checking out the compression fixture. The results are shown

in Table 7.

An examination of the static tension and compression failure modes was

made as well. Figures 15 and 16 illustrate failures for both of the epoxy

matrix composites (Winding Pattern Nos. 1 and 2). Figure 15 shows compression

failures. Note that the failures for the two patterns are dissimilar. It

would appear that the material from plates prepared by Winding Pattern No.1

show shear failure, with the failure zone occurring away from the ends and in
the center of the material. Similarly, it appears that material from plates

prepared by Winding Pattern No.2 shows an end brooming mode that is located

at the end of the specimen. Delamination is also present in the failure of

Winding Pattern No.2. As seen from Fig. 16, there was no apparent difference

in the tension failures for the two materials.

Finally, preliminary compression fatigue tests were performed with two

specimens at 0° to the principal fiber direction and two specimens at 2° to

the principal fiber direction for the epoxy matrix composite with Winding

Pattern No.2, i.e., the 00/90 0/±45° composites. The samples were 1 in. wide

x 11 in. long and were fully stabilized during repeated fully-reversed (R = -1)

loading. The results for a constant amplitude stress of 80% of the static

compression strength are shown in Table 8. The test frequency was 1.0 Hertz.

As a given specimen failed, it was replaced with a steel dummy sample and

stroking was continued. Failed samples are shown in Fig. 17 of the epoxy

matrix composites with Winding Pattern No.2.

Both from failed specimen appearance and from the test results it appeared

that there was no detectable difference in the results for the two fiber
directions.
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TABLE 6. INDIVIDUAL SPECIMEN TENSILE STRENGTHS FOR EPOXY MATRIX/
TFT COMPOSITES WITH WINDING PATTERNS 1 AND 2 AT 0° and 2° TO THE

PRINCIPAL FILAMENT DIRECTION

Specimen
Orientation

Composite Relative to Tensile
Winding Fil ament Ultima te Load Strength
Pa ttern Di recti on KN ~ MPa ksi

2 0° 123.6 27.8 370 53.6

0° 135.2 30.4 419 60.7

2° 124.5 28.0 402 58.3

2° 125.4 28.2 374 54.2

Ooa 153.5 34.5 490 71.0

20b 162.7 36.6 531 76.9

aSamp1e broke in tab.

bSurface fibers appeared to be arranged substantially off­
axis (they appeared to have a curved appearance).
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TABLE 7. INDIVIDUAL SPECIMEN COMPRESSIVE STRENGTHS FOR EPOXY
MATRIX/TFT COMPOSITES WITH WINDING PATTERNS 1 AND 2

Winding Specimen Compressive Strength Test
Pattern No. MPa ksi Conditi on-_.-

2 283-31 370.5 53.7 RTDa

283-32 348.5 50.5 RTD
283-33 355.4 51. 5 RTD
283-34 357.4 51.8 RTD

Average 358. 1 51.9 RTD

3A3-1C 407.8 59. 1 RTD
3A3-2C 416. 1 60.3 RTD

Average 411. 9 59.7 RTD

aT = 21°C (70°F) and R.H. = 50%.
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3A-3 -10

Winding P~ttern 1
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3A-3-2C2B3 -34

Fracture appearance of winding patterns 1 and 2 specimens
subjected to static compression loading.

Winding Pattern 2

Figure 15.
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Winding Pattern No.2

1
I
~

t

,
1

!

,
•

Winding Pattern No.2

Typical fracture appearance of specimens subjected to
static tension loading.
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Figure 160

Winding Pattern No. 1



TABLE 8. FATIGUE TEST RESULTS FOR TFT MATERIAL OF WINDING
PATTERN 2 ORIENTED AT 0° AND 2° TO THE PRINCIPAL

FILAMENT DIRECTION

Specimen
Orientation
Relative to
Filament Alternating
Direction, Spec imen Stress Cycles to

deqrees No. MPa ksi Failure

0 2B3-1 ±246 ±35.7 34

0 2A4-121 ±270 ±39.2a 27

2 2B3-11 ±242 ±35.1 21

2 2A4-81 ±246 ±35.7 39

aSmaller cross-sectional area than other specimens but
load held at ±88.96 KN (±20 kips).

Tested at R = -1, ~ = 1 Hertz, T = 25°C (78°F),
RH = 50%.
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283 -11

Fracture appearance of samples of winding pattern 2
subjected to fully-reversed loading.

Figure 17.
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A.l.2 TENSION TESTS

After blanking operations were completed, preparation of the individual

tension samples was initiated. The tension specimen shown in Figo 18 was

developed. It is similar to the conventional IITRI tension coupon for advanced

composite materials. The doubler tabs on both sides and each end of the sample

are bonded by means of adhesive to the rectangular blank prepared as described

above. The adhesive chosen for bonding the tabs to both the epoxy matrix and

the polyester matrix composites was Hysol 100.

Specimens were conditioned, as will be described later, and were then

instrumented with three electrical resistance foil strain gages located at the

center of the 6 in. gage section shown in Fig. 18.

Load was increased in approximately 4.448 or 8.896 KN (1 to 2 kips) incre­

ments to failure. After each increment of load, readings were taken o The

stress versus strain diagrams were plotted and the modulus of elasticity,

Poisson's ratio, and ultimate tensile strength were obtained from the stress­

strain diagrams.

Typical failed room temperature d~y and wet samples are shown in Figs. 19

and 20 for epoxy matrix/TFT fiberglass composites with Winding Pattern Nos. 1

and 2, respectively.

A.l.3 COMPRESSION TESTS

Static compression tests were conducted using the specimen shown in Figo

21 in the static compression fixture shown in Fig. 22. A window in the center

of one of the two sides of the compression fixture permitted the use of elec­

trical resistance foil strain gages o The load increments and methods of cal­

culating elastic modulus, Poisson's ratio, and ultimate strength were similar

to those used for tensile mechanical properties.

Typical static compression failure modes are shown in Fig. 23. All

failures were a combination of transverse fracture and brooming.

A.l.4 INTERLAMINAR SHEAR TESTS

Interlaminar shear tests were conducted on samples with transverse fila­

ment tape (TFT) fiberglass reinforced epoxy and polyester matrix composites.

The short beam shear specimen shape and test methods are shown schematically
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27.9 cm (11 in.) ~I
f-6".1-3_?_c_m_,,_{2_._5__i '+o·..)t---l 5.24 cm (6 in.) .,------1~5 em (2. 5 ;~)

-----+-----~--~------I rlfi5in~)

~Electric Resistance Foil Strain Gages

Fiberglass Tab
1.5 mm (0.059 in.)

Resin Matrix TFT Composite

Figure 18. Static and fatigue coupon for both epoxy matrix
and polyester matrix/TFT composites.
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Figure 19. Top view of fractured TFT/epoxy matrix
static tension specimens Winding Pattern
No.1. a) RTD; b) wet.
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Figure 20. Side view of fractured TFT/epoxy matrix,
static tension on specimens with Winding
Pattern No.2. a) RTD; b) wet.
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r,...=~~~~~ 1_O._1_6_C_m_(_4_1_.n_._) ~_ -i
2.54 cm
(1 in.)

T

~

I

Full Panel
Thickness-------T

Figure 21. Static compression specimens.
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1 .90 em ._--+-_1
(.75 in.)

9.53 em_
(3.75 in.,)

4.44 em
(1.75 in.)

L ~---r---r-r-t-.,.---j
1.27 em
(.5 in.)

TEFLON COATED

Figure 22, Stainless steel static compression fixture
(two sides required),
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c

Figure 23. Typical failed compression samples for epoxy matrix/TFT
fiberglass with Winding Pattern Nos. 1 and 2.
a) Winding Pattern No.1, tested RTD; b) Winding Pattern
No.1 tested wet; c) Winding Pattern No.2, tested RTD;
d) Winding Pattern No.2, tested wet.



in Fig. 24. Loads were increased steadily to failure. The interlaminar shear

strength was calculated as follows:

Shear Strength = T = 1.5 P/wt

where P = load

w = specimen width

t = specimen thickness.

Typical failed samples are shown in Fig. 25.
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t~---10.16 em (4 in·)------1 .-L
,....-------------------1 1.27 em

(0.5 in.)

T
P = Load

11

j

6.35 em (:2.5 1n• )-

Full Panel
Thickness

T

Figure 24. Schematic of the interlaminar shear specimen
and loading procedures.
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~ I t~~;":_."~;~~~t'.&~·"~..-,/I d

Figure 25. Typical side views of interlaminar shear failures
of epoxy matrix/TFT composites with Winding Pattern
Nos. 1 and 2. a) Winding Pattern No.1 tested wet;
b) Winding Pattern No.2 tested wet; c) Winding
Pattern No. 2 tested dry; d) Winding Pattern No. 1
tested dry.



A.2. ENVIRONMENTAL CONDITIONING BEFORE AND DURING TESTS

The procedures and conditions for establishing and maintaining ambient
and wet environments before testing and during the tests are described in
this section.

A.2.l. DRY AMBIENT CONDITIONS (RTD)

The room-temperature dry (RTD) designation refers to samples which have
been dried to a constant weight in an oven at 120°F (6 hours) and held in a

dessicator in the test lab. thereafteruntfl ready for testing. Both static

(single cycle) and fatigue tests were conducted in the RTD condition. The
fatigue testing was accomplished at 30 hertz and was performed using a fan to
prevent heat buildup. The temperature of the specimen never exceeded 78°F.

A.2.2. WET CONDITIONS

All samples were prepared as above to the dry condition and were then
held in an oven at 120°F in a covered tray, suspended but not immersed, over
water. The period of time used was 500 hours, but one series of specimens
was subjected to 4000 hours of exposure. The weight gain after 500 hours was
negligible as determined by preliminary experiments, while the weight gain
after 4000 hours of exposure was approximately 2% by weight.

Testing statically was accomplished using a Missimers oven with a pan of

water at the bottom of the unit throughout testing. The wet fatigue tests were
conducted ina special environmental chamber in a chain of four specimens tested
simultaneously (see Fig. 26). The fixture has been described e1sewhere'by HoferJ

and will not be repeated here.

aK. E. Hofer and J. Jollay, "Growth of Four Flaw Types in Graphite/Epoxy
Due to Fully Reversed Loadi ng," in" Fi brous Compos i tes in Structural Des i gn,"
Ed. by E. Leroe, et a1, Plenum Press, 1980, pp. 831-845; K. E. Hofer and G.
Waring, "Fatigue and Residual Strength and Flaw Growth of Graphite/Epoxy
Composites Under Simulated Aerospace Environment," in Proc. 1978 Int. Conf.
on Composite Materials, Published by Met. Soc. AIME, 1978, pp. 259-276; and
D. Y. Konishi, P. Parme1ey and K. E. Hofer, "On the Accelerated Testing of
Graphite/Epoxy Coupons," in Proc. 1978 Int. Conf. on Composite Materials,
Published by Met. Soc. AIME, 1978, pp. 1604-1619.
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Figure 26. Multi-specimen loading chain for fatigue testing TFT fi~erglass composite wind turbine
blade material.
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The compression fatigue testing (R = -1.0, -0.2, etc.) required that the

individual samples be stabilized against buckling. The four-specimen testing

fixture was examined to see how it might be modified for thick composite samples

to prevent that buckling. The fixture was originally designed for specimens
which were 1.07 cm (0.42 in.) thinner than the panels tested during this in­

vestigation.

The problem was solved by adding inserts to the conventional compression

fatigue stabilizing fixture shown in Fig. 27. These inserts are shown in

Fig. 28, and fit around the Thomson Ball Bushings. The stabilizing bars were
fltted around the thick samples, were restrained to move parallel to the axis

of compressive stroking, and were centered on the centerline of the actuator

motion. In addition to these specimens anti-buckling measures, additional

support for the two end yokes in the chain were required. This modification
was necessary to prevent buckling of the overall chain. Figure 29 shows this

modification. Figure 30 shows the test stand with five-specimen chain for

fatigue loading.
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Guide Rod

Linear Bearing

Teflon Shims

Specimen

Figure 27. Schematic of compression fatigue
anti-buckling stabilization bars.

51



1 .9 em
(.75 ;n.)R
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Figure 28. Spacer segments for compression fatigue stabilizing bars.
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Figuare 29. Schematic of modifiea tion of multi -specimen cha in 10ad transmi tting yoke required to prevent buckl i ng.



Figure 30. Test stand with five-specimen chain for spectrum
fatigue loading

54



APPENDIX B

STATIC MECHANICAL PROPERTIES OF EPOXY MATRIX
AND POLYESTER MATRIX TFT COMPOSITES

This appendix presents individual test specimen results for the studies

described in this report. Figures 31 to 42 are the tensile and compressive
stress-strain curves in ambient [T = 21°C (70°F), RH = 50%] and hot-humid
[T = 49°C (120°F), RH = 98%J conditions. Tables 9 through 16 present a sum­

mary of the tensile strengths, elastic moduli, and Poisson's ratios from

these curves.

An examination of the failed specimens was made. The results indicated

are discussed below:

In tension, the epoxy matrix composites differed substantially based on
structure of the reinforcement. Pattern No.1 laminates showed practically no
difference between the dry and wet fracture modes. Pattern No.2 appears as
brooming type failures (many long filament bundles with a large amount of in­

dividual fiber spraying) for the dry material. Wet, the failures appeared to

be local failures of the fiber bundles with few individual fibers showing up.
The polyester tension fracture modes were similar to those of epoxy matrix
pattern No.2. The dry tension failure mode exhibited multiple bundle frac­
tures with longitudinal "intra-bundle" fractures as well as separation of bun­
dles. The wet and supersaturated tension fracture modes appeared as multiple

bundle fractures with separation.

The static compression failure modes for both epoxy matrix patterns 1 and
2 were by end broomi ng for both dry and wet states, wi th one specimen of pattern
No.2 failing the center of the gage section. The polyester static compression
specimen exhibited different failure modes wet and dry. The dry failures were

by brooming while the majority of the wet failures were in the center of the
gage section by direct compression.

The static interlaminar shear failure modes for epoxy matrix pattern No.1
appeared as multiple interlaminar separations with wide gaps dry and a single
interlaminar fracture wet. Pattern NO.2 failures showed a substantial hinge
like appearance viewed from the side for both wet and dry samples. The polyester
material exhibited multiple interlaminar separations with a slight crushing
directly under the central load (this was never a source of the terminal failure).
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TABLE 9. TENSILE PROPERTIES OF EPOXY MATRIX
COMPOSITES WITH WINDING PATTERN NO. 1

Specimen Tensile Strength Modulus of Elasticity Poisson's Test
Number Megapascals ksi Gigapascals 10 6 psi Ratio CondHion

3B4-7 538.9 78.1 32.6 4.73 0.278 RTDa

3A3-6 434.7 63.0 32.2 4.67 0.286 RTD
3Al-13 418.8 60.7 30.9 4.49 0.288 RTD
3B2-5 528.5 76.6 46.9 4.56 0.256 RTD
3B3-1 459.5 66.6 32.6 4.73 0.275 RTD

Average 464 67.2 31. 9 4.63 0.284 RTD

3A1-3 404 58.6 26.3 3.82 0.190 WETb

3A2-6 507 73.5 31.1 4.51 0.265 WET
3B2-12 520 75.3 32.1 4.65 0.268 WET
3B3-3 419 60.7 30.1 4.36 0.238 WET
3B4-14 527 76.6 31.2 4.52 0.254

Average 476 69.0 30.1 4.37 0.243 WET

aT = 21°C (70°F),RH = 50%

bT = 49°C (120°F), RH = 98% for 500 hours
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TABLE 10. COMPRESSIVE PROPERTIES OF EPOXY MATRIX
COMPOSITES WITH WINDING PATTERN NO. 1

Specimen Compressive Strength Modulus of Elasticity Poisson's Test
Number Megapascals ksi Gigapascals 10 6 ps i Ratio Condition

3Al-21 367.1 53.2 RTDa

3B4-81 398.1 57.7 RTD
3b4-82 390.5 56.6 RTD
384-83 387.8 56.2 RTD
3Al-131 382.3 55.4 RTD
382-51 382.9 55.5 RTD
3A3-92 382.3 55.4 32.8 4.76 0.330 RTD
3A3-93 363.6 52.7 33.1 4.80 0.320 RTD
381-22 380.2 55.1 32.4 4.70 0.270 RTD
381-23 442.3 64.1 30.6 4.44 0.300 RTD
3B4-31 346.4 50.2 30.1 4.36 0.280 RTD

Average 384 55.6 31.8 4.61 0.300 RTD

3A2-42 423.0 61.3 31.9 4.62 WET b

3A2-41 378.8 54.9 30.6 4.44 WET
381-41 360-2 52.2 29.8 4.32 WET
381-42 342.2 49.6 31.2 4.52 WET
3B4-52 398.1 57.7 31. 3 4.53 WET

Average 380.2 55.1 31.0 4.49 WET

aT = 210C (70° F), RH = 50%

b - 49°C (120°F), RH = 98% for 500 hoursT -
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TA8LE 11. TENSILE PROPERTIES OF EPOXY MATRIX
COMPOSITES WITH WINDING PATTERN NO. 2

Specimen Tensile Strength Modulus of Elasticity Poissonls Test
Number Megapascals ksi Gigapascals 10 6 ps i Ratio Conditi on
2Al-5 407.8 59.1 27.3 3.96 0.309 RTDa
2A2-6 418.8 60.7 25.3 3.67 0.292 RTD
2A3-9 391.9 56.8 25.9 3.75 0.307 RTD
282-2 451.9 65.5 28.2 4.08 0.330 RTD
283-11 398.1 57.7 25.6 3.71 0.322 RTD
Average 413 59.9 26.6 3.85 0.312 RTD

2A3-10 416 60.3 23.6 3.42 0.272 WET b
2A4-2 413 59.9 25.9 3.76 0.337 WET
281.12 372 53.9 22.6 3.28 0.430 WET
283-5 358 51.9 22.4 3.25 0.296 WET
283-13 375 54.3 24.0 3.48 0.320 WET

Average 386 56.0 23.7 3.44 0.331 WET

a - 21°C (70° F) , RH = 50%T -

bT = 49°C (120°F), RH = 98% for 500 hours
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TABLE 12. COMPRESSIVE PROPERTIES OF EPOXY MATRIX
COMPOSITES WITH WINDING PATTERN NO. 2

Specimen Compressive Strength Modulus of Elasticity Poisson's Test
Number Megapascals ksi Gigapascals 10 6 psi Ratio Condition

2A4-111 358.1 51.9 RTDa

2A4-112 382.3 55.4 RTD
2A4-113 382.3 55.4 RTD
2BI-52 371.9 53.9 RTD
2BI-53 349.8 50.7 RTD
2BI-51 362.9 52.6 RTD
2Al-101 362.9 38.1 24.0 3.48 0.310 RTD
2Al-102 354.7 51.4 22.4 3.24 0.280 RTD
2A3-71 280.1 40.7 24.2 3.50 0.350 RTD
2A3-72 302.9 43.9 28.3 4.10 0.300 RTD
2Bl-11 307.1 44.5 27.6 4.00 0.350 RTD

Average 345.2 48.6 25.3 3.67 0.318 RTD

2A4-131 387.8 56.2 29.6 4.29 WET b

2A4-132 340.9 49.4 27.7 4.01 WET
2A3-131 303.6 44.0 28.2 4.08 WET
2B2-131 378.1 54.8 26.6c 3.86 c WET
2B2-132 381.6 55.3 23.2 3.36 WET

Average 358.1 51. 9 27. 1 4.06 WET

aT = 21°C (70°F), RH = 50%

bT = 49°C (120°F), RH = 98% for 500 hours

cExcluded from the average
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TABLE 13. TENSILE PROPERTIES OF POLYESTER MATRIX COMPOSITES

Specimen Tensile Strength Modulus of Elasticity Poisson's Test
Number Megapasca1s ksi Gigapasca1s 10 6 psi Rati 0 Condition

4A-T2c 440.9 63.9 26.01 3.77 0.272 RTDa

4B-TI 25.74 3.73 0.291 RTD
4A-T6 c 25.05 3.63 0.275 RTD
4B-T3c 412.6 59.8 24.15 3.50 0.286 RTD
4B-T5 24.70 3.58 0.279 RTD
4A-TI5 453.5 65.7 RTD
4A-TI7 441.5 64.0 RTD
4A-TI9 485.0 70.3 RTD

Average 446.7 64.7 25.33 3.64 0.281 RTD

4A-Tl 420.9 61.0 25.05 3.68 0.265 WET b

4B-T2 418.1 60.2 27.19 3.94 0.333 WET
4A-Tl6 463.0 67.1 WET
4A-T18 459.7 66.6 WET
4A-T20 445.5 64.6 WET

Average 441.1 63.9 26.12 3.81 0.299 WET

4A-T3 334.7 48.5 24.15 3.50 0.286 Saturatedd

4A-T5 316.0 45.8 26.08 3.78 0.264 Saturated
4B-T4 308.4 44.7 25.67 3.72 0.269 Saturated
4B-T6 320.9 46.5 25.16 3.62 0.276 Saturated

Average 320.0 46.4 25.27 3.65 0.274 Saturated

aT = 210C (70°F), RH = 50%

bT = 49°C (120°F), RH = 98%; exposure for 500 hours

cTabs sheared from specimen prior to failure

d49 0 C (l20°F), RH = 98%; exposure for 4000 hours
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TABLE 14. COMPRESSIVE PROPERTIES OF POLYESTER MATRIX COMPOSIlfS

Specimen Compressive Strength Modulus of Elasticity Poisson's Test
Number Megapasca1s ksi Gigapasca1s 106 ps i Ratio Condition

4A-C1 387.8 56.2 28.50 4.13 0.264 RTDa

48-C2 313.3 53.9 27.95 4.05 0.328 RTD
4B-C5 313.3 45.4 29. 12 4.22 0.237 RTD
4A-C3 381.6 55.3 28.84 4. 18 0.239 RTD
4B-C4 256.0 37. 1 34. 16 4.95 0.202 RTD
4B-C6 346.4 50.2 28.77 4.17 0.240 RTD
Average 342.9 49.7 29.56 4.28 0.252 RTD

4A-C5 356.7 51. 7 28.08 4.07 0.289 WETb

4B-C1 346.4 50.2 28.29 4. 10 0.291 WET
4A-C4 325.0 47.1 26.63 3.86 0.259 WET
4B-C3 285.7 41. 4 28.43 4. 12 0.243 I~ET

4A-C6 349.1 50.6 27.39 3.97 0.252 WET
4A-C2 331.9 48. 1 31.40 4.55 0.220 WET
Average 332.6 48.2 28.37 4.11 0.259 WET

aT = 210C (lO°F) , RH = 50%.

bT = 490C (120°F), RH = 98% for 500 hr.
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TABLE 15. INTERLAMINAR SHEAR STRENGTHS FOR EPOXY MATRIX COMPOSITE MATERIALS
WITH WINDING PATTERN NOS. 1 AND 2 AT AMBIENT (RTD)a AND WETb CONDITIONS

Hinding Test Specimen Interlaminar Shear
Pattern No. Conditi on Number MPa ksi

RTD 3A291-1 48.3 7.0
3A291-2 42.1 6. 1
3B192-1 46.9 6.8
3B192-2 42.1 6. 1
3B441-1 39.3 5.7

3B441-2 42.8 6.2
Average 43.5 6.3

Wet 3A2-411 79.3 11. 5
3A2-412 75.2 10.9
3Bl-l011 75.9 11.0
3Bl-1012 73.8 10.7
3B4-1321 76.6 11. 1
3B4-1322 67.6 9.8
Average 74.5 10.8

2 RTD 2A131-1 42.8 6.2
2A131-2 56.6 8.2
2A3132-1 61.4 8.9
2A3132-2 50.4 7.3
28111-1 44.2 6.4
2B111-2 41. 4 6.0
Average 49.7 7.2

2 Wet 2A1-311 82.8 12.0
2Al-312 79.4 11. 5
2A2-811 63.5 9.2
2A2-812 69.0 10.0
2Bl-711 75.9 11.0
2Bl-712 66.2 9.6
Average 72.8 10.5

aT'" 21 C (70 F), R.H. = 50%.

b T = 49 C (120 F), R.H. = 98%.
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TABLE 16. INTERLAMINAR SHEAR STRENGTH
FOR POLYESTER MATRIX COMPOSITES AT
AMBIENT (RTD)a AND WETb CONDITIONS

Inter1 ami nar
Test Spec imen Shear Strength

Cand it ion No. MPa ksi

RTD 4A-S1 2 76.6 11. 1

4A-S2 2 74.5 10.8

4A-S3 2 70.4 10.2

4A-S4 2 71.8 10.4
4A-S5 2 69.7 10. 1

4A-S6 2 71. 1 10.3
Average 72.4 10.5

Wet 4A-Sl 1 66.9 9.7

4A-S2 1 64.9 9.4

4A-S3 1 61.4 8.9
4A-S4 1 62.8 9. 1

4A-S5 1 61.4 8.9

4A-S6 1 64.9 9.4
Average 63.7 9.2

aT :: 210C (l0°F), RH :: 50%.

bT :: 490F (120°F), RH :: 98%.
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APPENDIX C: INDIVIDUAL FATIGUE DATA

Individual fatigue data are assembled in this appendixo The curves

presented in the text of this report were derived from these individual
*fatigue test data. Several R ratios, including R = 0, -0.1,-0.25, -0.5,

and -1.0, were evaluated. Two environmental conditions were maintained
during testing: 1) dry or ambient conditions, i.e., T = 21°C (lO°F), and

R.H. = 50%; and 2) wet conditions, i.e., T = 49°C (120°F), and R.H. = 98%.

In most cases testing was terminated after exposure to 10,000,000 stress
cycles.

A post-failure examination of the fatigue failures was made and the
following observations reported:

The pattern No.1 epoxy matrix specimen exhibited brooming failures dry
but not wet at R = O. As the R ratio included increasingly large compression
components (from R = -0.1, -0.25, -0.5 to -0.1), some splitting and brooming
occurred.

Pattern No.2 epxoy matrix specimens generally exhibited tab failures

for all R ratios. Very few wet failures were available since stress levels
were below the threshold of fatigue failures.

The polyester failure modes for fatigue were similar to those for the
static loading. The tension-tension (R = 01 fatigue failures were similar,
dry and wet to static tension failures. The R = -1 (fully reversed) fatigue
failures were similar to the static compression failures.

*R is the ratio of the minimum algebraic stress per cycle to the maximum
algebraic stress per cycle.
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TABLE 17. FATIGUE ENDURANCES FOR EPOXY MATRIX MATERIAL
WITH WINDING PATTERN NO. 1 AT VARIOUS R RATIOS

Stress Level Cycles to Test
R Ratio MPa ksi 'Failure Conditions

0 103.5 ~5 3,633,000 RTO b

0 103.5 15 12,000, OOOa RTD

a 103.5 15 1O~239,000 RTD

a 103.5 15 1,280,000 RTD

a 207 30 16,064 RTD

a 207 30 12,644 RTD

a 207 30 20,274 RTD

a 207 30 2,024 RTD

a 310.5 45 527 RTD

a 310.5 45 689 RTD

a 310.5 45 472 RTD

a 310.5 45 1 ,145 RTD

a 172.5 25 20,626 cwet

a 172.5 25 10,1 91 wet

a 172.5 25 17,778 wet

a 172 .5 25 100,000a wet

a 116.6 16.9 61 ,000 wet

a 103.5 '1 5 596,000 wet

a 103.5 15 10,510 ,000a wet

0 103.5 15 8,249,000 wet

aRunout, no fa i 1ure.

bT = 2PC (l0°F), R.H. = 50%.

cT = 490C (120°F), R.H. = 98%.
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TABLE 17 (cont.)

Stress Level Cycles to Test
R Ratio MPa ksi Failure Conditions

-0.1 172 .5 25 34,186 RTDb

-0.1 172 .5 25 13,766 RTD

-0.1 172.5 25 7,450 RTD

-0.1 172 .5 25 9,810 RTD

-0 .1 82.8 12 17,378,000a RTD

-0 .1 82.8 12 15,1 50, OOoa RTD

-0.1 82.8 12 10,700,000a RTD

-0.1 82.8 12 12,341,000a RTD

-0.1 82.8 12 10,070,000a RTD

-0.1 172.5 25 100 ,oooa Cwet

-0.1 172.5 25 10,983 wet

-0.1 172 .5 25 18,833 wet

-0.1 17205 25 67,533 wet

-0.1 82.8 12 17,378,000a wet

-0.25 82.8 12 1,296,000 RTD

-0.25 8?.8 12 5,290,000 RTD

-0.25 82.8 12 12,384,000a RTD
-0.25 82.8 12 12,371,000a RTD

-0.25 82.8 12 12,239,000a RTD

-0.25 82.8 12 12,321,000a wet

-0.25 82.8 12 12,320,000a wet

-0.25 82.8 12 13,227,000a wet

-0.25 82.8 12 13,226,000a wet

-0.25 82.8 12 10,946,000a wet

aRunout, no fail ure.

br = 2PC (l0°F), R.H. = 50%.

cT = 490C (120°F), R.H. = 98%.
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TABLE 17 (cant. )

Stress Level Cycles to Test
R Ratio MPa ksi Fail ure Conditions

-0.5 172 05 25 14,851 RTO b

-0.5 172.5 25 7,124 RTO

-0 0 5 172 0 5 25 46,009 RTO

-0.5 172.5 25 79,346 RTO

-0 05 82.8 12 17,348,000a RTO

-0.5 82.8 12 10,000,000a cwet

-0.5 82 08 12 10,200,000a wet

-005 82.8 12 10,460,000a wet

-0 05 82.8 12 10,773,000a wet

-1.0 ±172.5 ±25 142 RTO

-1.0 ±172.5 ±25 569 RTO

-1.0 ±172.5 ±25 4,211 RTO

-1.0 ±172.5 ±25 19,846 RTO

-1.0 ± 55.2 ± 8 10,500, OOOa RTO

-1.0 ± 55.2 ± 8 10,140,000a RTO

-1.0 ± 55.2 ± 8 12,318,000a RTD

-1.0 ± 55.2 ± 8 15,010,000a RTD

-LO ±172.5 ±25 2,839 wet

-1.0 ±172.5 ±25 14,074 wet

-1.0 ±172.5 ±25 17,347 wet

-1.0 ±172.5 ±25 736 wet

-LO ± 55.2 ± 8 12,400,000a wet

-LO ± 55.2 ± 8 11 ,000, OOOa wet

-1.0 ± 55.2 ± 8 13,710,000a wet

-1.0 ± 55.2 ± 8 10,160,000a wet

a failure.Runout, no
bT = 2PC (70°F), R.H. = 50%.

cT = 49°C (120°F), R.H. = 98%.
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TABLE 18. FATIGUE ENDURANCES FOR EPOXY MATRIX MATERIAL
WITH WINDING PATTERN NO. 2 AT VARIOUS R RATIOS

Stress Leve1 Cycles to Test
R Ratio MPa ksi Failure Conditions

0 103.5 15 5,160,000 RTDb

0 103.5 15 2,115,000 RTD
0 103.5 15 2?138,000 RTD
0 103.5 15 2,105,000 RTD

0 207 30 18,134 RTD

0 207 30 19,847 RTD
a 207 30 18,853 RTD
0 207 30 13,1 36 RTD
0 310.5 45 136 RTD
a 310.5 45 204 RTD
0 310.5 45 328 RTD
0 310.5 45 238 RTD

0 103.5 15 10,360,000a Cwet

a 103.5 15 10,500,000a wet
0 103.5 15 973,000d wet

a 103.5 15 10,170,000a wet

0 82.8 12 10,133,000a wet

a fail ure.Runout, no

bT = 2PC (l0°F), R.H. = 50%.

cT = 490C (120°F), R.H. = 98%.
d fa i 1ure.Tab area
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TABLE 18 (cont.)

Stress Level Cycles to Test
R Ratio MPa ksi Fa il ure Conditions

-0.1 172.5 25 21 ,135 RTD
-0.1 172.5 25 7,590 RTD
-0.1 172.5 25 100,000a RTD
-0.1 172.5 25 19,898 RTD
-0.1 82.8 12 10,442,OOOa RTD
-0.1 103.5 15 b Wet1,500,000
-0.1 103.5 15 b Wet1,500,000
-0.1 103.5 15 b Wet1,500,000
-0.1 103.5 15 b Wet1,500,000
-0.1 82.8 12 10,694,000a Wet
-0.25 82.8 12 13,654,000a RTD
-0.25 82.8 12 15,182,000a RTD
-0.25 82.8 12 10,079,000a RTD
-0.25 82.8 12 10,081,000a RTD
-0.25 82.8 12 10,313,000a RTD
-0.25 82.8 12 10,010,000a Wet
-0:25 82.8 12 10,007,000a Wet
-0.25 82.8 12 10,578,000a Wet
-0.25 82.8 12 10,576,000a Wet
-0.25 82.2 12 10,383,000 Wet

aRunout, no failure.

bFailure of a component in the testing machine took place;
therefore, no specimen failures took place. The samples
were not reinserted after repairs although no visible
damage was observed.

82



TABLE 18 (cant.)

Stress Level Cycles to Test
R Ra ti a MPa ksi Fa il ure Conditions---
-0.5 82.8 12 90,000a RTDb

-0.5 82.8 12 10,208,000c RTD
-0.5 82.8 12 15,277 ,000c RTD

-0.5 82.8 12 d RTD5,494,000

-0.5 82.8 12 493,000d RTD
-0.5 82.8 12 10,183,000 Wete

-0.5 82.8 12 10,570,000b Wet

-0.5 82.8 12 3,717,000 Wet
-0.5 82.8 12 12,820,000 Wet

-0.5 82.8 12 12,744,000b Wet
-1.0 246.3 35.7 34 RTD
-1.0 270.5 39.2 27 RTD
-1.0 172.5 25 3,873 RTD
-1.0 172.5 25 6,541 RTD

-1.0 172.5 25 1,085 RTD

-1.0 172.5 25 7,272a RTD
-1.0 55.2 8 4,098,000 RTD

-1.0 55.2 8 52,000a RTD
-1.0 55.2 8 246,000d RTD
-1.0 55.2 8 18,100,000c Wet
-1.0 55.2 8 10,200,000c Wet

-1.0 55.2 8 10,000,000c Wet
-1.0 55.2 8 10,500,OOOc Wet

-1.0 55.2 8 10,815,000c Wet

aNa failure, tabs disbanded.
br = 21°C (70°F), R.H. = 50%.
cRunout, no failure.
dNa failure, bolts in grips failed.

er = 49°C (120°F), R.H. = 98%.
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TABLE 19. FATIGUE ENDURANCES FOR POLYESTER MATRIX
MATERIALS AT VARIOUS R RATIOS

Stress Level Cycles to Test
R Ratio MPa ksi Fail ure Conditions

0 82.8 12 4,912,000 RTDa

0 82.8 12 4,783.000 RTD

0 82.8 12 10~100,000b RTD
0 82.8 12 9,470,000 RTD
0 82.8 12 757,000 RTD
0 82.8 12 8,281,000 WetC

0 82.8 12 7,784,000 Wet
0 82.8 12 1,003,000 Wet
0 82.8 12 5,046,000 Wet
0 82.8 12 3,539,000 Wet

-0.1 82.8 12 387,000 RTD
-0.1 82.8 12 970,000 RTD
-0.1 82.8 12 3,126,000 RTD
-0.1 82.8 12 728,000 RTD
-0.1 82.8 12 342,000 Wet
-0.1 82.8 12 2,013 ,000 Wet
-0.1 82.8 12 303,000 Wet

-0.1 82.8 12 2,195,000 Wet
-1 ±55.2 ±8 12,600,000b RTD
-1 ±55.2 ±8 9,49G,000 RTD
-1 ±55.2 ±8 6,541,000 RTD
-1 ±55.2 ±8 2,689,000 RTD
-1 ±55.2 ±8 2,139,000 RTD
-1 ±55.2 ±8 4,495,000 Wet
-1 ±55.2 ±8 3,785,000 Wet
-1 ±55.2 ±8 3,575,000 Wet
-1 ±55.2 ±8 8,508,000 Wet
-1 ±55.2 ±8 3,995,000 Wet

a T = 21°C (70°F), R.H. = 50%
b Runout, no failure.

C T = 49°C (120°F), R.H. = 98%
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