General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

CALIFORNIA INSTITUTE OF TECHNOLOGY

April 14, 1983

NASA
Scientific and Technical Information Facility
P. O. Box 8757

Baltimore/Washington International Airport Baltimore, MD 21240

Attention: J. A. Vitale, Technical Officer

Dear Sir:

Enclosed please find one copy of a Ph.D. Thesis by Marion S. Vassilliou entitled "The Energy Release in Earthquakes, and Subduction Zone Seismicity and Stress in Slabs." This research was partially supported by the National Aeronautics and Space Administration grant number NSG-7610.

1
Sincerely yours,

Betty L. Robinson
Secretary

Encl.

THE ENERGY RELEASE IN EARTHQUAKES, and SUBDUCTION ZONE SEISMICITY AND STRESS IN SLABS

Thesis by
Marios Simou Vassillou

In Partial Fulfiliment of the Requirements
of the Degree of
Doctor of Philosophy

Callfornia institute of Technology
Pasadena, Callfornia

1983
(submitted March 11.1983)
-ili-

To my parents,

Sinos G. Vassiliou

Avra S. Vassillou
recends ran Han wo iond

Acknowledgements

I thank my two advisors, Hiroo Kanamori and Bradford Hager, for all the assistance and support they have given me. Hiros was my principal advisor for Part One, but helped me with Part Two as well. Brad was the principal advisor for Part Two. Both have shown great patience and enthusiasm throughout this work.

I owe a great debt as well to Tom Ahrens, with whom I worked ciosely on several equation-of-rtate projects not represented in this thesis. I consider my interaction with him to have been an important part of my scientific education.
non Andersor has provided many helpful discussions on all phases of my work at Caltech. It was he who first pointed me in the direction of re-examining the distribution of seismicity with depth, this eventually leading to the work in Part Two.

Arthur Raefsky was one of the main agents in developing the finite element code I used in Part Two. For his hetp in running this prog;am, and for the generous time commitment he made to teaching me the basics of the finite element method, I thank him. I also thank Joe Kirschvink, who saved me from heving to re-invent spherical statistics. Tom Heaton provided valuable assistance and discussions on Part l. Medhat Haroun, then of EERL at Caitech, was most helpful in providing me with strong-motion data for Part I. Domenico Glardini was the source of interesting conversations about Part II, end very kindly provided me with important data of his before publication. I must thank, as well, Rob Clayton, for the use of the VAX computer, and for his assistance in that area.

Finally, I want to thank all the rest of the faculty, students, and staff of the Seismological Laboratory and the Division of Geological and Planetary Sciences, for a scholarly and research atmosphere which I bsilieve is unmatched anywhere. Most of the ime, it was even pleasant from a personal point of view. I will miss Caltech.

I acknowledge the support of a Beno Gutenberg Fellowship in Geophysics during my first year of study. This research was supported by the Earth Sciences Section, National Science Foundation, grants EAR77-13641 and EAR78-11973 (Part I), and grant EAR-8206528 (Part II). The research in Part II was also supported by NASA grant NSG-7610.

Abstract for Part 1

Earthquake energy calculations are generally made through an empirical application of the familiar Gutenberg-Richter anergy-magnitude relationstips. The precise physical significance of these relationships is some' what uncertain. We make use here of the recent increases in knowledge about the earthquake source to place ener'„y measurements on a sounder physical basis. For a simple trapezoidal far-field displacement source-time function with a ratio x of rise time to total duration T_{0}, the seismic energy E is proportional to $\frac{1}{x(1-x)^{2}} \frac{M_{0}^{2}}{T_{0}^{3}}$, where M_{0} is seismic moment. As long as x is greater than 0.1 or so, the effect of rise time is not important, "he dynamic energies thus calculated for shallow events are in reasonable agreement with the estimate $E \approx\left(5 \times 10^{5}\right) M_{0}$ based on elastostatic considerations. Deep events, despite their possibly different seismological character, yield dynamic energies which are compatible with a static prediction similar to that for shallow events. Studles of strong-motion velocity traces ubtained near the sources of the 1971 San Fermando, 1966 Parkfield, and 1979 Imperial Valley earthquakes suggest that even In the distance range of $1-5 \mathrm{~km}$., most of the radiated energy is below $1-2 \mathrm{~Hz}$. in frequency. Far fleld energy determinations using long period WWSSN instruments are probably not in gross error despite their bandilmited nature. The strong motion record for the Intermediate depth Bucharest earthquake of 1977 also suggests little teleseIsmic energy outslde the pass-band of a long period WWSSN instrument.

$-\mathrm{vil}-$

Abstract for Part ll

The pattern of seismicity as a function of depth in the world, and the orientation of stress axes of deep and intermediate earthquakes, are explained using viscous fluid models of subducting slabs, with a bartier in the mantle at 670 km .670 km is the depth of a seismic discontinuity, and also the depth below which earthquakes do not occur. The barrier in the models can be a viscosity increase of an order of magnitude or more, or a chemical ciscontinulty where vertical velocity is zero. Log N versus depth, where N is the number of earthquakes, shows (1) a linear decrease to about 250-300 km depth, (2) a minimum near that depth, and (3) an increase thereafter. Stress magnitude in subducting slab versus depth, for a wide variety of models, shows the same pattern. Since there is some experimental evidence that N is proportional to $e^{\lambda \sigma}$, where k is e constant and σ is the stress magnitude, the agreement is encoureging. In addition, the models predict down-dip compression in the slab at depths below 400 km . This has been observed in earlier studies of earthquake stress axes, and we have confirmed it via a survey of events occurring since 1877 which have been analyzed by moment tensor Inversion. At intermedlate depths, the models predict an approximate but not precise state of down-dip tension when the slab is dipping. T.7e observations do not show an unamiguous state of down-dip tension at intermediate depths, but in the majority of regions the state of stress is decidedly closer to down-dip tension than it is to down-dip compression. Chemical discontinulties above 670 km , or phase transitions with an elevation of the boundary In the slab, predict, when incorporated into the models, stress peaks which are not
mirrored In the profile of selsmicity versus depth. Models with an astheriosphere and mesosphere of appropriate viscosity can not only explain the state of stress observed In double Benioff zones, but also yleld stress magnitude proflies consistent with observed selsmicity. Models where a nonlinear theology is used are qualitatively consletent with the linear models.

Table of Content:

Part I: The Energy Releasta in Earthquakes

1. Introduction 3
2. Oynamtc Enargy from Source-Time Function 4
3. A Simplified Procedure for Modeling Deep Focus Events 13
4. Comparison with Static Energy Estimates 19
5. Near Source Energ/ Studles and the Ouestion
of Frequency Content 29
6. Energy and Magnitude 38
7. Conclusions 44
References 45
Part II: Subduction Zone Seismicity and Siress in Slabs
8. Introduction 62
9. Observations 63
10. Calculations of Stress in Subducting Slabs 100
11. Summary and Conclusions 199
References 202
Appendix A: Mschanisms of Large intermediate and Deep
Earthquakes, 1978-1981 213
Appandix B: A Briaf Outine of Directional Statistics 229
Appendlx C: Plots of Seismicity versus Depth for the
World's Subduction Zones 234
Appendix D: Spatial Stress Plots and Volocity Plots
not Included in the Text 266

-1-

PART I: THE ENERGY RELEASE IN EARTHQUAKES

Abstract

Earthquake engrgy calculations ape generaily made tirough an empirical application of the famillar Gutenberg-Richter energy-me jnitude reiatbiships. The precise physical significance of these relationsinips is somewhat uncertain. We make use hare of the mecent Increases in knowledge about the earthquake source to place energy matsurements on a sounder physical basis. For a simple trapezoidal far-field displacement source-time function whth a ratio x of rise tima to total duration in ive seismic ienergy is is proportiorial to $\frac{1}{x(i-x)^{2}} \frac{L_{8}^{g}}{T_{0}^{3}}$; where M_{0} is seismic moment. As tong as x is greatar than 0.1 or so, the effect of rise time ia not important. The dynamic energies thus caiculated for shallow events are in reasonable ag eement with the timate $E \approx\left(5 \times 10^{-6 i} N_{0}\right.$ based on elastostacic considerations. Desep events, despite their possibly different saismological character, yield dynamic energies which are compatible with s static prediction similar to that for shallow 60 wits. Studies of strong-motion veiocity traces obtained naar the sources of the 1971 San Femando, 1866 Parkfledd, and 1879 Imperial Valley earthquakes sugzest that uver In the distance renge of $1-6 \mathrm{~km}$, inast of tho redinted energy is below $\mathbf{1 - 2 ~ H z}$. in frequency. Far fleld energy determinations using long period WWSSN instruments are probably not in gross error despite their bandimiteci nature. The strong motion record tor the intermediate dapth Bucharest aarthquake of 1977 also suggests iftla teliaseLsmic enargy outside the pass-band of a long period ViWSSN instrumant.

1. Introduc tion

The energy released in earthquakes cen be estimated in a number of ways (for a comprehensive review see Bath, 1966). We may divide the energy estimates from the variety of methods available into two broad classes: the static estimates and the dynamic estimates. Static estimates can be obtained from static values of moment and stress drop; dynamic estimates, on the other hand, are obtained from seismograms.

We review static estimates of energy in Section 4. We discuss there that with some simple assumptions, a static estimate of energy can be obtained from the formula $E=\left(5 \times 10^{-5)} M_{0}\right.$ (Knopoff, 1958; Kanamori, 1977).

We may subdivide dynamic estimates of energy from body waves into two groups. One procedure involves the direct integration of anserved waveform at a particrilar station; another involves integration of an inferred displacement sourcetime function.

The familiar energy-magnitude ielationships of Gutenberg and Richter (1942, 1956a, 1956b) fall into the first category of dynamic methods. These empirical relationsips were derived on the dasis of a crude approximation to the integral over a group of plane seismic waves passing by a station. The Gutenberg-Richter estimates of anergy from M_{a} agree fairly wer with the static estimates mentioned above. This might be experted, as M_{s} correlates quite well with $\log _{10} M_{0}$ (Kanamori and Anderson, 1975).

In this study, we develop dynamic energy estimates of the second kind. We apply the theory of Haskell (1964) to compute the energies of several shallow events (Section 2), using moments and source-time histories obtained in the last decade from sophistlcated waveform modeling. Since there are fewer studies availNe on intermediate and deep focus events, we also develop a simplified modeling procedure (Section 3) to obtain moments and time functions for such events, and use these to estimate energy in the same way as for shallow earthquakes. The energy estimates we obtain are in a sense direct physical dynamic estimates, as opposed to the more empirical approach represented by the energy-magnitude relations. In Section 4, we Cl sare dynamic and stati: estimates for both shallow and deep events.

Our dynamic estimates contain more high frequency information than the static ones. Thay are still made, however, at teleseismic disiances, and they are furthermore derived from long period instruments unable to resoli e displacement components of frequency greater than $1-2 \mathrm{~Hz}$. It is this possible that some critical high frequency information is missing. We address this question in Section 5., using high frequency records obtained close to seismic sources with strong-motion instruments.

Finally, in Section 6, we compare obr dynamic energy estimates with estimates from the Gutenberg-Richter energy-magnitude relations, using M_{S} for the shal ow earthquakes and long period body wave magnitude m_{B} for the deep and intermediate ones.

2. Dynamic Energy from Source Time Function

A milestone in the understanding of energy radiation from earthquakes was the paper by hisskell (1964). We essentially follow his treatment, with minor modifications, to obtain expressions for energy release in terms of parameters obtainable
from body wave modeling of earthquakes. The important parameters are the seismic moment and the duration and shape of the far field source time function. The earthquake displacement observed at far field is given by

$$
\begin{equation*}
u(r, t)=\left(\frac{R(\theta, \varphi)}{4 \pi \rho v^{3} r}\right) M_{0} T(t) \tag{1}
\end{equation*}
$$

where $R(\theta, \varphi)$ is a geometric factor accounting for the radiation pattern of the seismic wavas; ρ, v, and r are respectively density, elastic wave velocity, and distance to the source; M_{0} is the seismic moment, and $T(t)$ is the far field source time function, which is normalised to unit area. This expression assumes that we have already accounted for the effects of attenuation, instrument, receiver structure, and geometric spreading (e.g. Langston and Helmberger, 1975). In the simple case of a one dimensional rupture with a ramp function near-source dislocation history, T will generally be trapezoidal in shape (with a triangle as a special case). The trapezoid is obtained by convolving the point-source boxcar (which the near-field ramp produces at far field) with another boxcar representing source finiteness. Other shapes are certainly possible, though not always resulvable by the data. To calculate the energy associated with (1), we begin with a general form of Haskell's (1964) equations (15) and (16)

$$
\begin{equation*}
E=\rho v \int_{-=0}^{-2 \pi} \int_{0}^{\pi} \dot{u}^{2} d t r^{2} \sin \theta d \theta d \varphi \tag{2}
\end{equation*}
$$

Equation (2) was derived in the case of spherically symmetric radiation by Yoshiy na (1963). Rudnicki and Freund (1981) derive it for a more general radiation pattern by imposing plane wave conditions at far field. We apply equation (2) separately to P and S waves. We use (1), with $K(\theta, \varphi)$ factors appropriate (Haskell, 1964) for a

```
-6-
```

```
OH:-
```

OH:-
OF 1-a: \&

```
OF 1-a: & ....
```

double couple source, and work the geometric integrals out analytically; adding the P and S wave energies together, we then obtain

$$
\begin{equation*}
E=K M_{0}^{2} I_{t} \tag{3}
\end{equation*}
$$

with

$$
K=\left\{\frac{1}{15 \pi \rho \alpha^{5}}+\frac{1}{10 \pi \rho \beta^{5}}\right\}
$$

and

$$
I_{t}=\int_{-\infty}^{-} \dot{T}^{2}(t) d t
$$

where α and β are the compressional and shear wave velocities. In the earth, $\beta \approx \frac{\alpha}{\sqrt{3}}$, so that the second term in K is dominant, and the total energy is approximately equal to shear wave energ;. We note that following Plancherel's theorem (Bracewell, 1978), (3) can be written as

$$
\begin{equation*}
E=K M_{0}^{2} I_{f} \tag{4}
\end{equation*}
$$

where

$$
I_{f}=2 \int_{0}^{\pi} \tilde{T}(f)^{2} d f
$$

and $\tilde{T}(f)$ is the Fourier transform of $\dot{T}(t)$ (note that T is real).

Consider now a simple symmetric trapezoidal far field time function with a ratio of rise time to total duration represented r (Fig. 1). In this case, the integral ir (3) reduce to

$$
\begin{equation*}
I_{1}=\frac{2}{x(1-x)^{2} T_{0}^{9}} \tag{5}
\end{equation*}
$$

where T_{0} is total duration Hence we have the important result that energy is proportional to the square of the moment, and inversely proportional to the cube of the duration. If one examines the function $\frac{1}{x(1-x)^{2}}$ one can easily -ze that the effect of x is not important unless x is very small; that is, trapezoldal time functions with x between ≈ 0.1 and 0.5 have roughly the same enargy (Fig. 2). When functions have very short rise times, this correspondirig to the presence of higher frequency components, an appreciable error in the energy can be incurred from even small errors in the rise time. Extramely short rise times are not, however, generally supported by the data, and simple but convincing scaling arguments (Kanamori,1972; Geller, 1976) lead one to expect values of x grsater than 0.1 or so. Hence we effectively have two important parameters in the energy calculation -- the total moment and the total curation. We might note here that the rather artificial presence of sharp corners in the trapezoidal time function does not have an important effect on the total energy. The comers arise from the assumption of a one dimensional rupture. A fault rupturing along its width as well as its length can be modeled by convolving the point-source far-field boxcar with two boxcars representing finitelless instead of one, this leading to a far field time "unction with rounded corners (e.g., Mikumo, 1971, Fig. 2). The main shape effect is still due to the rise time, and the above arguments apply.

We may use (3) to calculate the energles of some shallow events for which time functions and moments have been published. Table 1 shows the results of such calculations, which will be discussed in more detall in Section 4.

-8-

Figure 1. Trapezoidal far field displacement time 'inction. Total duration is T_{0}, ise time is $x T_{0}$.

Trapezoidal Far- Field Time Function $T(t)$

$$
\begin{aligned}
I_{t} & =\int_{-\infty}^{\infty} \dot{\zeta}^{2}(t) d t \\
& =2 / x(1-x)^{2} T_{0}^{3}
\end{aligned}
$$

Figure 2. Effect of trapezoid rise time on calculation of dynamic energy release (see equation 5). As long as x (rise time divided by total duration) is greater than 0.1 or so, the effect is not important.

ORIGWR: F : 13
OF POOR QUALITY

TABLE 1
Energy Calculations fon Some Modeled Shallow Events

Ema	Dene	mos_{0}	$\begin{gathered} T_{0} \\ \hline \end{gathered}$	$\begin{aligned} & \ln \mathrm{I} \\ & \hline 10 \end{aligned}$	\boldsymbol{m}	Inderece
Oroville	1975	24.8	3	19.7		Leagatan and Buther. 1976
Truckee	1906	24.8	3	19.7	6.9	Burdick, 1977
Priuli	5/16/76	25.8	45	20.5	6.5	Cipar, 1980
Priuli	$\begin{aligned} & 9 / 15 / 76 \\ & 821 \end{aligned}$	24.7	4.0	192	6.0	Ciper, 1900
Friuli	$\begin{aligned} & 915 / 76 \\ & \mathrm{~g} 15 \end{aligned}$	25.0	25	19.9	8.9	Cipar, 1881
Koyns	1967	26.5	6.4	20.2	6.4	Langiton, 1976
Eta Golfo	1066	28.7	4	21.3	6.3	Ebel er al, 1978
Borraso Mt.	1968	26.0	5	21.8	6.9	Burdick and Mellman, 1976
Puget Sound	1965	26.2	3	22.7		Langaten and Blum, 1977
Gacli	1976	38.	8	21.4	7.0	Hartsell, 1980
Haichens	1975	28.6	7	22.0	7.4	Cipar, 1879
Solomon la	1975	27.1	10	22.7	7.7	Lay and Kanmmori, 1900
Solomon li.	7/14/71	28.1	14	24.2	7.9	Lay and Kanmmori, 1980
Solomon la.	7/26/71	28.3	16	24.4	1.8	Lay and Kanamori, 1980
	4/16/65	28.1	2.4	20.6		Liu and Kanamori, 1980
	9/4/63	25.2	25	21.2		Liu and Kanmmori, 1980
	10/23/64	25.8	28	22.3		Liu and Kanamori, 1900
	9/30/71	24.9	1.6	21.0		Liu and Kanamori, 1900
	3/24/70	25.2	2.5	21.0		Liv and Kanmori, 1980
Merico	11/29/78	27.3	18	22.6	7.8	Stewat of al., 1981
Merico	8/23/65	27.3	16	22.5	7.6	Chael and Sumart, 1982
Mevico	$8 / 2 / 68$	28.9	16	21.7	7.1	Chael and Stewart 1982
Merico	3/14/79	27.0	17	22.7	7.6	Chael and Stewart, 1982
Bermuda	8/24/70	25.5	8	21.1	6.0	Stuwat and Helmberser, 1981
Gible	1067	28.3	17	20.8	8.6	Kanamori and Stowarh 1976
Gibba	1974	38.7	22	20.9	6.9	Kanaroori and Stewart. 1976

3. A Simplifled Procedure for Modeling Deep Focus Events

Waveform modeling can be an extremely time-consuming task; the data shown in Table 1 represent a very large amount of work on the part of many investigators. To obtain a larger data base one may resort to a more simplified procedure which is still sufficiently accurate for the purposes of energy computation. The procedure we use Is applicable to deep and intermediate events with comparatively simple sources. It consists essentlally of estimating the duration of the time function of a simple source from the average pulse width of long period WWSSN vertical P waves (Bollinger, 1968 ; Chung and Kanamori,1980), and then using the average amplitude to Infer the moment. We use several stations (≥ 10), as well distributed as possible, to ave ige out the effects of radiation pattern and directivity. When the long period P wave is a single pulse and there are no contaminating free-surface phases, this method can be quite accurate. When we applied it to the deep and Intermediate events studied by Chung and Kanamori (1980), our results for moment and time function were in good agreement with theirs.

To estimate the moment and duration, we use curves of the type shown in Figs. 3 ind 4 (see captions). These are obtained from synthetic seismograms which are generated by convolving source functions with an instrument response and an attenuation filter. We generally assume that the time function is a trapezoid with $x=0.2$ (as we have seen, such a trapezoid does not have a significantly different energy from that of a triangle or any trapezold with $x \geq 0.1$), and $T^{*}=0.7$ in the attenuation filter. Optimistically, this method, allowing for differences in time function shape, attenuation, etc., can give us an estimate of total duration accurate to ≈ 20 per cent, and an estimate of moment perhaps accurate to within a factor of tivo, given the scatter in amplitude due to receiver and other effects. The energy

Figure 3. (Adapted from Chung and Kanamori, 1980) The relation between measured pulse width W_{p} of direct vertical P wives on a long period WWSSN seismogram and the duration T_{0} of the far field source displacement time function. The curves are obtained by convolving the time function with an instrument response and an appropriate Q filter ($T^{\circ}=0.76$ shown here). These curves are reliable provided the P arrival is a single pulse (ie, the event is simple). In this case the ovent is assumed to be deep enough thet the direct P wave is not contaminated by free-surface phases.

Figure 4. Examples of curves from which the moment M_{0} can be determined for a simple event once the duration T_{0} of the far field time function has beedetermined. For a suurce depth of 400 km ., a source-station distanc6 60°, and a paak instrument gain factor of 1500 , a curve on this diagram shows the variation of armplitude A_{p} of direct P on a long pertod selenogram with duration of the time functiun if the moment of the event $=10^{25}$ dyn-cm. Thus for a given T_{0} one an read off the expected armplitude for $M_{0}=10^{25}$ dyn-cm, and compare this with the avelage of amplitude measurements actually made to obtain the moment of the event (corrections are easily made to the amplitude ineasurement to standardise it to a distanca of 60° if necessary). Since an average amplitude measurenent is used, the curves drawn here are for an average value of the radiation pattern. The trapezoid function referren to in the flgure ras a rice time equal to $1 / 5$ its total duration, which is what we generally assume for events we are studying by this method. The curves drawn for the limiting cases of a bcxcar and a triangle show what errors might be incurred if this assumption is unwarranted. fis can be seen, these arrors, as well as those due to uncertainties in attenuation, are probably quite negligible compared to errors due to scatter in amplitudes caused by receiver and other effects.

TABLE 2
Energies Calculated for Intermediate and Deep Focle Events Studied by Means or Simplifien Procedure

Orien Tme					Repea	$\begin{aligned} & \text { Depth } \\ & \text { anim } \end{aligned}$	=.		т.nex	$\underset{\operatorname{leg}(t)}{\log }$
M	D	Y	HMis	$8 \times$						
03	11	68	0826	32.8	Tonga-Kermadec	112	62	25.9	4.6	$20.7{ }^{\circ}$
08	12	67	0939	4.3	Tonga-Kermadec	134	6.5	26.1	3.7	$21.4 *$
12	08	65	1805	25.2	Tonga-Kermadec	156	6.0	25.4	3.9	20.0°
∞	01	60	1905	24.5	Tonga-Kermadec	205	6.1	25.4	2.7	$20.5{ }^{\circ}$
03	18	65	1805	25.2	Tonga-Kermadec	219	6.0	25.6	4.7	$20.1{ }^{\circ}$
09	04	67	0351	68.9	Tonga-Kermadec	231	6.2	25.8	1.5	$22.1{ }^{*}$
∞	26	68	1437	46.2	Tonga-Kermadec	251	6.0	25.3	2.0	$20.6{ }^{\circ}$
06	04	74	0414	13.8	Tonga-Kermadec	256	6.3	26.4	4.7	$21.7{ }^{\circ}$
02	22	75	2204	33.5	Tonga-Kermadec	333	6.6	26.5	4.6	$21.9{ }^{\circ}$
01	20	68	2121	31.6	Tonga-Kermadec	349	8.0	25.6	1.3	$21.8{ }^{\circ}$
07	21	73	04',	13.7	Tonga-Kermadec	373	6.1	25.8	2.8	$21.1{ }^{*}$
08	27	70	1. 55	28.3	Brnin le.	406	8.6	27.0	5.9	22.4
11	18	65	2900	19.5	Tonga-Kermedec	424	8.2	25.6	1.75	21.1*
11	29	74	2205	23.5	Japan	429	6.5	26.6	5.1	21.6
02	03	76	1227	30.1	Tonga-Kermadec	477	6.0	25.8	2.9	20.7*
03	23	74	1428	33.0	Tonga-Kermadec	804	6.3	26.6	4.95	21.6
01	29	71	2158	03.2	Japan	815	6.6	26.8	4.45	22.2
12	28	73	0531	03.8	Tonga-Kermadec	517	6.5	26.2	27	21.5
10	25	73	1408	58.5	S. America	817	6.3	25.9	2.2	21.3
10	07	68	1920	20.8	Japan	518	6.7	27.3	13.0	23.4
01	28	66	0436	45.3	Tonga-Kermadoc	845	5.8	25.3	1.75	20.3*
01	24	69	0233	03.4	Tonga-Kermadec	887	6.7	26.1	0.75	23:
06	28	70	1109	51.3	Tonga-Kermadec	587	6.1	25.7	2.35	20.9
07	21	66	1830	15.3	Tonga-Kermadec	590	5.8	25.8	1.8	$21.3{ }^{*}$
02	15	67	1011	11.8	S. America	898	6.4	26.3	4.1	21.3
10	09	67	1721		Tonga-Kermadec	605	6.8	27.0	4.9	22.4
03	24	67	0900	20.0	Java	001	6.3	26.1	4.1	20.9
03	17	66	1550	33.1	Tonga-Kermadec	650	6.2	26.5	4.0	$21.6{ }^{*}$
10	01	72	2349		Philippines	632	8.8	25.0	0.7	21.0
02	10	69	2258	03.3	Tonga-Kermadec	635	6.4	25.6	6.2	21.7
12	09	65	1312	85.3	Tonga-Kermadec	649	8.7	25.7	1.8	21.2°

[^0]estimate is probably good to an order of magnitude or so. Energies calculated for deep and intermediate events studied by this method, including the events of Chung and Kanamori (1980), are listed in Table 2.

4. Comparison with Static Energy Estimates

We now examine the results of the energy calculations in the framework of an important independent method of estimating energy, based on alastostatic considerations. Consider a simple model of an earthquake where σ_{0}, σ_{1}, and σ_{f} are initial, final, and dynamic frictional stresses on the fault. We may write (Savage and Wood, 1971)

$$
\begin{equation*}
W=\left\{\frac{\sigma_{0}+\sigma_{1}}{2}-\sigma_{f}\right\} D S \tag{6}
\end{equation*}
$$

where W is the difference between the strain energy drop and the frictional energy, D is the average disiocation, and S is the slip area. By using the stress drop $\Delta \sigma=\pi_{0}-c_{1}$ and the seismic moment $M_{0}=\mu D S$, we can rewrite (6) as

$$
\begin{equation*}
W=\left\{\frac{\Delta \sigma}{2 \mu}+\frac{\left(\sigma_{1}-\sigma_{\rho}\right)}{\mu}\right\} M_{0} \tag{7}
\end{equation*}
$$

Orowan (1960) proposed a physically very reasonable model of a fault whereby motion stops when the accelerating stress cecreases to a value equal to some average dynamic frictional stress, i.e. $\sigma_{1}=\sigma_{f}$. There is thus no ovcrshoot arising from, say, the inertia of the moving fault blocks. In Orowan's model eq. (6), which is the strain energy drop less the frictional energy represents the energy radiated as seismic waves. If Orowan's cond!tion is satisfied, then clearly the second term in (7) vanishes, and we have simply'

$$
\begin{align*}
& \text { OR!Girn } \\
& \text { OF POOR } \\
& W=\frac{\Delta \sigma M_{0}}{2 \mu} \tag{8}
\end{align*}
$$

Kanamori (1977) used this relationship to estimate the energy released in great shallow earthquakes. With $\Delta \sigma \approx 20$ to 60 bars (2 to $6 \times 10^{7} \mathrm{dyne} / \mathrm{cm}^{2}$), and $\mu \approx 3$ to 6 $\times 10^{11}$ dyne/ cm^{2}),

$$
\begin{equation*}
W_{0} \approx\left(5 \times 10^{-5}\right) M_{0} \tag{9}
\end{equation*}
$$

where we have now adopted the subscript 0 to indicate that this is a static or essentially zero frequency astimate of energy, as opposed to the higher frequency estimates made from (3).

Fig. 5 shows a plot of energy vs. moment for the shallow events of Table 1. The line shows the energy according to (9), with parallel lines bounding an order of magnitude up or down. There is considerable scatter. Some of this scatter must be due to the errors in T_{0} and M_{0}. Another contributing factor, however, probably arises from the fact that (9) is derived assuming $\Delta \sigma$ is 20-60 bars, and for many events this obviously need not be true. The dynamic estimates by their very nature take into account the details of rupture for the individual events. For this reason, they can deviate considerably from the line $E=\left(5 X 10^{-5)} M_{0}\right.$, perhaps even more than would a crude estimate from M_{a}. An interesting case is that of the two Gibbs fracture zone events (Kanamori and Stewart, 1976). They lie considerably below the line. As they are known to have been especially slow events, it should not be surprising that (9) might overestimate their energy.

All in all, considering the simplicity of the model leading to the static estimate, the errors in the dynamic estimate arising from errors in M_{0} and T_{0}, aris the irdependence of the two methods, the agreement between the static and dynamic energy
-2 1 -

ORIGINA:
OF POOA suathy

Figure 5. Energy calculated for some modelled shaliow events (Table 1) plotted against seismic moment. The line shown corresponds to the approximate relation $E^{\prime}=\left(6 \times 10^{5}\right)_{1}$ (which assumes a stress drop of 20-60 vars) obtained by Kanamori (1977). The parallel lines bound an order of magnitude up or down. Considering that this simple elastostatic zalculation is completely independent of the dynamic calculations made here from body waves, the agreement is encouraging (see Section 4).

determinations for shallow earthquakes is rather good. We may examine this rough equality more closely by considering some simple static stress drop scaling relations. In the case of constant stress drop, we may write the moment in terms of stress drop and fault area as (Kanamori and Anderson, 1975)

$$
\begin{equation*}
M_{0}=\Delta \sigma S^{3 / 2} \tag{10}
\end{equation*}
$$

Using an approximate expression $T_{0} \approx \frac{\sqrt{S}}{\beta}$ for the time function duration, we obtain

$$
\begin{equation*}
M_{0}=\Delta \sigma \beta^{9} T_{0}^{9} \tag{11}
\end{equation*}
$$

Substituting this into (3), and using (5), we have

$$
\begin{equation*}
E \approx\left\{\frac{2 K}{x(1-x)^{2}}\right\} \Delta \sigma \beta^{3} M_{0} \tag{12}
\end{equation*}
$$

Using $x=0.2, \beta=3.4 \mathrm{~km} / \mathrm{sec}, \Delta \sigma=30 \mathrm{bars}$, and $\rho=2.8 \mathrm{~g} / \mathrm{cc}$ in K gives us

$$
\begin{equation*}
E \approx\left(4.6 \times 10^{-5}\right) M_{0} \tag{13}
\end{equation*}
$$

which is very close to (9).
Fig. 6 shows energy versus rioment for the deep and intermediate events listed in Table 2. The lines are the sabie as the ones in Fig. 5. On the whole, the deep events tend to plot below the line corresponding to $W_{0}=\left(5 \times 10^{-5}\right) M_{0}$ Of course, given that our energies are not likely to be accurate to better than an order of magnitude, this may not be significant. However, the effect is quite systematic, and coiltrary to what one might expect if one belleved that deep events tend to have higher stress drops: the average stress drop determined by Chung and Kanamori (1980) ior their deep and intermediate events is ≈ 500 bar. If $\mu \approx 6$ to $10 \times 10^{11} \mathrm{dyne} / \mathrm{cm}^{2}$

Figure 6. Similar to fig. 5, but for deep and intermediate events. Circles are for events in Table 2; cpen circles in particular are for events also studled by Chung and Kanamori (1980), and closed ones are for the rest. Closed squares $=$ Mikumo (1971). Closed triangle x Fukao (19? 0).

below 400 km , the relaton $H \approx\left(5 \times 10^{5}\right) M_{c}$ would require $\Delta \sigma \approx 80$ to 100 bars, so If one belleved the high stress drops of Chung and Kanamori (1980), one would expect at least the events they studied iwe have not determined stress drop for the extra events we studied) to plot above the line.

The key to understanding this situation may lie in remembering that for (8) to hold, Orowan's condition must be met, and this need not be the case. If we assume that the condition is met, we may solve (8) for $\Delta \sigma$, and use values of moment and dynamic energy to oktain a value of stress drop which we may call 'Orowan stress drop'. This value should be aqual to the actual stress drop if Orowan's condition is met; if not, it should be lower. If we calculate Orowan stress drops for the events of Chung and Kanamori (1980), we find that they are considerably lower (Fig. 7) than Chung and Kanamori's teleseismically calculated stress drops (using inferences of fautt area fron the source time functions). If we calculate the Orowan stress drops using energy determined from m_{B} (see Section 6) instead of our dynamic estimates from Section 2, the gap is even wider. The implication, then, is that elther Orowan's condition is not met for these events, or the condition is met and the Chung-Kanamori stress drops are too high, by almost an order of magnitude. Since stress drop is one of the more model-dependent and poorly determined seismological quantities, this would not be too surprising.

In any case, it is not d!fficult to see why a relationship of the form

$$
\begin{equation*}
E=q N_{0} \tag{14}
\end{equation*}
$$

can hold for deep and shallow events alike with q approximately given by 5×10 : From (l) we see that

Figure 7. Upper dotted line $=$ Stress drops obtained by Chung and Kanamori (1980) (using source dimensions inferred from far field time functions), plotted againet depth. Lower dotted line $=$ 'Orowan stress drops', calculated from equation (8) assuming Orowari's condition is met, and using energies obtained from m_{B}. Solld line $=$ 'Orowan stress drops' calculated from equation (8) assuming Orowan's condition is met and using dynamic energles calculated in this study. The use of our energie.., which are generally higher than those estimated from m_{B}, does not rlose the gap between the Orowan stress drops calculated from (8) and those obtained by Chung and Kanamori (1980). Either (!) our energies are systematically too low or (2) Chung and Kanamori's (1880) stress drops are too high or (3) Orowan's condition is not met for these deep and intermediate events.

$$
\begin{equation*}
q=\left\{\frac{\Delta \sigma}{2 \mu}+\frac{\left(\sigma_{1}-\sigma_{\rho}\right)}{\mu}\right\} \tag{15}
\end{equation*}
$$

In the case of shallow events, where Orowan's condition is likely to be met (Kanamori and Anderson, 1975), we merely have the reasonable condition, as stated before, that $\frac{\Delta \sigma}{2 \mu} \approx 6 \times 10^{-5}$. For deep events, we can heve a similar situation as for shallow events, or we can have a non-Orowan process with high stress drops in the first term of (15), and a negative second term.

5. Near Source Enargy Studies and the Question of Frequoncy Content

The computations which we have carried out are based on earthquake displacement data viewed through a veriety of distorting filters, such as attenuation and instrument. We address here the question of the validity of these results, given that by using a long period instrument u. cannot hope to resolve displacement components of frequency greater than 1 to 2 Hz . Beyond the problem of the instrument, we must also consider the possibility that important high frequency energy is attenuated, either anelastically or through scattering, by propagation to teleseismic distances. One could make the argument that higr, frequencies observable only very close to the source could be responsible for a considerable portion of the tctal energy. We note here that we cannot simply quote the fact that teleselsmic corner freŗuencies are relatively low for earthquakes of size similar to the ones examined here as evidence that high frequencies are unimportant. A teleseismic spectrum is not necessarily simply related to the true source spectrum at near field.

An important source of information with regard to these questions is to be found In near-source strong-motion records. By examining data obtained close ($\leqslant 20 \mathrm{~km}$.)
to the source using high frequency strong-motion instruments, we can assess the irmportance of the shorter period energy. From an accelerogram, one can easily obtain a velocity trac s, and use that to compute the quantity

$$
\begin{equation*}
D(f)=\int_{0}^{s} \tilde{u}^{2} d f . \tag{18}
\end{equation*}
$$

which is proportional to the integral of the energy spectrum to a given frequancy; $\tilde{u}(f)$ is the Fourier transform of the velocity trace. The seismic wave energy obtained from a trace at a given station is given approximately by

$$
\begin{equation*}
E \approx 4 \pi \rho \beta \tau^{2} R(\theta, \varphi) 2 D(\infty) \tag{17}
\end{equation*}
$$

We note that (16) is not the integral of the source energy density per se, but of the trace energy density. We are thus not looking directly at ti, e true sourci: spectrum. There is some contamination from reflection, refraction, scattering, etc. However, if the high frequency contribution in tracus obtained close to the source is not important, i.e. If D at 2 hz appears to have already reached a final value, tinen we can probably not be too woried that we are looking at a trace spectrum rather than a trae source specirjm. That is to say, if large amounts of high fraquency energy were present, we might have to be concerned that the contaminating processes we have mentioned might be the origin of it, but if such energy is not there it does not matter as much to our argument that such processes might be present. The contaminating processes we have mentioned would probably, if anything, enhanca the high frequency content of the trace relative to the snurcs, whish by itself would argue that if high. frequency energy is negligitie in the trace, it must also be negligible in the sou ce. Of course, this ignores attenistion; if we are close enough to the source,
howevar, attenuation should not be Important. We discuss this more fully below.

Flgs. 8 a,b,c,d show $[J(f)$ ror several records from the 1971 San Fernando, 1966 Parkfield, 1979 Imperial Valley, and 1977 Bucharast earthquakes. Table 3 shows values of $D(10)$ and the ratios $\frac{D(1)}{D(10)}, \frac{D(2)}{D(10)}$ arid $\frac{D(4)}{D(10)}$, where the argument is in Hz , for these and other records. We use $D(10)$ to be essentially representative of $D(\infty)$. This certainly seems justifled on inspection of the figures (in addition, sampling intervals for the digital data are often such that folding frequencies themselves are not much higher than 10 Hz .). Many of the records were obtained extremely close to the source fe.g. Pacoima, less than 1 km . from the nearest point on the Sier:a Madre Fault (Heaton, 1982)), and in ino case is any api reciable energy observable above 4 Hz . Such energy may exist in the very immediate vicinity of the source, but In that case we may raise semantic questions about which energy to consider "radiated" and which not. If this hypothetical high fequency energy is attenuated within 1 km . of the source, we cannot conslder it to be radiated energy. This reasoning applies also to energy at 1 to 2 Hz . If there is important energy in this band which we cannot see even at 1 km or so from the fault (actually, with a Q of about 300 this is unlikely), then we can hardly worry about it for the purposes of computing radiated seismic energy.

What we have set out to do in examining the strong-motion records is to see if there was a large proportion of energy there which we were missing at teleseismic distances. It is clear from the records presented here that even very close to the source, by far the largest proportion of the energy is contained in frequencies below 2 hiz . In many cases. over 90 per cent of the energy is even below $1 \mathbf{H z}$. What these results suggest is that no appreciable error (certainly not one of onder of magnitude; is incurred by making an energy determination at far field using a long period

Figure 8. The intagral $D(f)$ (see section 5) of the spectral energy density versus frequency from strong motion velocity (cm/sec) traces for the San Fernando, Parkfield, Imparial Vallay, and Bucharest earthquakes. Difforent curves for each earthquake correspond to different records, (see Table 3) The curves for the San Fumando. Parkfield, and Imperial Valley earthquakes suggest that, even close to the source, by far most of the energy radiated is batow 1 to 2 Mz . in irequency. Far field energy determinations using towg pertod instruments thus may not be in gross error, desplte thair bandilmited nature.

-34-

OKIGNAL BEEIS
OT POOR QUA:ITY

Table 3
Enemot Spectial Dewert mom Stnowo-Momon Reconde (3ez Fioune 8)

Derimene	menme	Her*	Cmom	$\begin{gathered} \text { at } \\ \text { (} \end{gathered}$	Dinet	$\begin{aligned} & \text { Dol } \\ & \text { pon } \end{aligned}$	$\begin{aligned} & \text { Din } \\ & \text { Dim } \end{aligned}$	$\begin{gathered} D \mathrm{c}_{1} \\ \text { til } \end{gathered}$	Frowe mat Curve
Sen Pernendo	Pacoma	Co41	S16F	-0	47473	0.83	0.92	0.99	8. 1
Sen Fernando	Pacorma	COM 1	S74W	-0	1590.8	0.47	0.71	0.98	8, D
San Perrasido	Holuday Inm, Orion	CO4	Nonw	14.5	1575.6	0.98	0.97	10	8e, B
Sen Pernendo	Hoduday Inn. ${ }^{\text {rrion }}$	Cous	sonw	145	1425.0	095	085	10	
Sen Pernendo	15250) Ventura Pival.	H116	Nile	21.0	1209.2	0.95	0.97	0.98	8a, C
Sen Pernando	15250 Vertura Bivd.	H115	NT9W	21.0	851.6	0.5	0.93	10	
Parkfield	Cholame, Arrey 2	B033	Nest	22.8, 0.00	1709.1	077	0.97	10	\%, A
Parkfield	Cholarre, Array 6	Br34	NstiP.	235.58	311.1	0.72	0.81	098	tb, B
Parkfield	Cholame, Artey 5	B0M	NOSW	23.5, 5.5	156.4	0.47	0.72	0.89	
Partifetd	Cholame. Array 12	B036	N40w	27.7, 15.4	122.2	0.98	0.90	10	
Imperial Valley	E Centro. Array 6	II7094	S50w	24.5. 1.2	7307.5	0.9	0.98	10	8c, A
Irmenal Valley	Bl Centro, Arriy 5	117 mm	Ssow	21.8,40	Ensp. 4	0.97	0.99	10	8c. B
Impernalvalley	Pa Centro. Array 7	117000	Ssow	242.08	5102.0	0.92	10	10	8c, C
Imperial Valiey	\square Cenirs, Array 6	1173004	S40F.	24.5, 1.2	24708	0.91	0.93	10	Ac, D
Imperial Valley	F \boldsymbol{A} Centro, Array 0	117008	850W	23.9, 38	2056.1	0.94	0.98	0.99	
Imperial Valley	E1 Centro, Array 5	117007	SAOP	218.4 .0	2022.0	0.91	0.97	098	
Imperial Valley	[] Centro, Bonds Corner	117)06	$850 W$	31	1641.4	0.43	O.83	058	8c, E
Imperial Valley	Pl Centro, Arris 8	11200s	8408	23.9. 3.8	1499.9	0.91	0.97	0.95	
Imperial Valley	EA Centro. Array 7	117008	8408	24.2,08	1442.9	0.0	0.80	1.0	8c. ${ }^{\text {P }}$
Imperial Valbey	E] Centro, Bonde Corner	112005	840E	3.7	1230.6	0.41	0.85	0.98	$\boldsymbol{8 c}, \mathrm{G}$
Bucharest	Bid. Res Ince.		SN	190	2020.2	098	10	1.0	8d, A
Bucharest	Bld. Rea Inot.		EW	190	743.0	080	0.98	10	8d, B
Bucherex	Bld. Rea Inot		U-D	190	83.9	084	0.98	080	8d, C

instrument.

Strictly, this only applies to shallow events. Certainly we have no instances of strong motion recordings within 1 km . of the source of a deep focus event, so we cannot directly address the probiem of whether tinere is important energy within a few kilometers of the source which never propagates out to teleseismic distances. We can, however, make some statement about whether or not a long period instrument is bro:d enough in its frequency response to retrieve adequately the energy that does manage to propagate to the teleseismic range. The curves of Fig. 8(d) for the 100 km . depth Bucharest earthquake in fact show very little energy outside the passband of a long period WWSSN instrument ($\approx 60 \mathrm{sec}$. to 1 to 2 Hz .), and this is encouraging.

6. Energy and Magnitude

In this section we compare our dynamic energy estimates with the energies one would obtain using the Gutenberg-Richter relations. For the shallow events of Table 1, the comparison is relatively straightforward; we may use K_{s} as a measure of magnitude. Fig. $9(a)$ shows $\log _{10} E$ in ergs versus M_{s} for these events. Our estimates seem to be consistently lower than the Gutenberg- Richter line. A best fit line through our points would have slope $1.81(\pm 0.2)$ and intercept 9.06(± 1.38), compared to 1.5 and 11.8 respectively for Gutenberg-Richter.

The comparisor for the deep and intermediate events of Table 2 is more ambiguous. These events generally did not excite appreciable surface waves, so we must use a body wave magnitude. Gutenberg and Richter (1956a,b) derived the relation $\log _{10} E=2.4 m_{B}+5.8$ The magnitude m_{B} is not the same as the m_{0} now in common use. The latter is a short period ($\approx 1 \mathrm{sec}$) body wave magnitude, while the former is
a longer period one. We have used long period WWSSN records to determine an m_{B} more compatible than m_{b} with Gutenberg and Richter's definition.

One difficulty which arises is that when the P wave consists essentially of a sing'e pulse, as is the general case with the simple events we have studied here, the measurement of the dominant period in the wave group becomes ambiguous. We have set the perioa ia twice the pulse width. Another difficulty is that the WWSSN instruments whose records we have employed are peaked at 15 seconds, while Gutenberg and Richter used mechanical instruments wit'n a different period response (flat rather than decaying); thus, one must be careful to use the correct gain for the WWSSN instrument when one is looking at period different from the peak period. The waveforms from the two instruments differ; we have conducted some numerical experiments to ascertain that no drastic errors occur because of this.

A plot of $\log E$ versus m_{B} for the intermediate and deep events of table 2 is shown in Fig $9(b)$. In contrast to the case of the shallow events, the bias here is above the Gutenberg-Richter line. The least squares line through our plotted points has slope $1.97(\pm 0.34)$ and incercept $9.07(\pm 2.13)$. We note that if one allows an error of 0.5 units in m_{B}, taking into account all the factors mentioned above, as well as an error of an order of magnitude in the energy, the discrepancy is understandable.

Although it is interesting that the shallow events generally plot below the $\log _{10} E-M_{2}$ line, while the deep and intermediate ones plot ahove the $\log _{10} E-m_{B}$ line, we cannot really make meaningful comments about this given the empirical nature of the Gutenberg-Richter relationships.
-40-

Figure 9. (a) Common logarithm of the dynamic energy release in ergs plotted against $\mu_{\text {a }}$ for shallow events of Table 1. The line represents the GutenbergRichter relationship.
-41-

Figure 9. (b) Common logarithm of the dynamic energy release in ergs plotted against m_{B} (long period body wave magnitude-- see section 6) for the deep and intermediate events of Table 2. Squares represent events also studied by Chung and Kanamori (1980). The ine represents the Gutenberg-Richter relationehip.

7. Conclusione

(1) The important parameters in the calculation of selsmic enorgy release from body waves are seismic moment M_{0} and far figid displacement time function duration T_{0}, with $E \propto \frac{M_{0}^{2}}{T_{0}^{3}}$. The important shape effect for the usual trapezoidal time function comes from its ratio x of rise time to total durbtion. A: .. is es $x \geq 0$. , which is genera!ly supported by the data, the effect is not important.
(2) Our near souice studies suggest that most of the important radiated energy is below 1 to 2 Hz . in frequency, and hence that far field energy daterminations using long period WWSSN instruments are not in gross error despite their bandlimited nature.
(3) Dynamic energy estimates for shaliow ear'hquakes made from body waves ore in reasonable agrsement with expectations from simple static elastic relaxation models, which suggest that $E \approx 5 \times 10^{-5} M_{0}$ for shallow events when a stress drop of 20-60 bars is assumed.
(4) Deep events, despite their possit!y different seismolog'cal character, yield dynamic energies which are also :ampatible with a siatic energy pre iction similar to that for shallow events. Seismic moment M_{0}, and hence a moment based magnitude acale, may rellajly be used for shallow and deep events alixe, as a reasonably accurate measure of energy release.

Reforences

Bath, M. (1966). Earthquake Energy and Magnitude, In Physics and Chemistry of the Earth vol. 7 (eds. L.H. Ahrans, F. Press, S.K. Runcorn, and H.C. Urey), Pergamon Press, N. Y., 117-185.

Bullinger, G.A. (1988). Determination of Earthquake Fault Parameters from Long Period P Waves. J. Geophys. Res., 73, 785-807.

Bracewell,R.N. (1978). The Fourier Transform and Its Applications, $2^{\text {nd }}$. ., McGraw Hill. N. Y.

Burdick L.J. (1977). Broad Band Selsmic Studes of Body Waves, PhD Thesis, California Institute of Technology.

Burdick, L. J., and G. R. Mellman (1976). Inversion of Body Waves of the Borrego Mountain Earthquake to the Source Mechanism, Bull. Seismol. Soc. Am., 68, $1485-$ 1499.

Chael, E. P., and G. S. Stewsit (198こ). Recent Large Earthquakes Along the Midde America Trench and Their Implications for the Subduction Process, J. Geophys. Res., 87, 329 33R.

Chung. W. Y., and H. Kanamori (1980). Variation of Seismlc Source Parameters and Stress Drops Within a Descending Slab and Its Implications in Plate Mechanics, Phys. Earth and Plan. Interlors, 23, 134-159.

Clper, J. (1970). Source Processes of the Haicheng. China tarthquake from Observatlons of Pand S Waves, Bull. Selsmol. Soc. Am, 69, 1903-1916

Clpar, J. (1980) Talesalsmic Observations of the 1976 frlili. Italy Tarthquaka

Sequence, Bul!. Seismol. Soc. Am., 70, 9831983.

Clpar, J. (1981). Broadband Time Domain Modeling of Earthquakes from Friuli, Italy, Bull. Sals. Soc. Am., 71, $1215-1231$.

Ebel, L.亡., L.J. Burdick and G. Stewart (1978). The Source Mechanism of the August 7,1966 El Golfo Earthquake, Bull. Selsmol. Soc. Am., ©8, 1281-1292.

Fukao, Y. (1870). Focal Process of a Deep Focus Earthquake as Deduced from Long Period Pand S Waves, Bull. Earthquake Res. Inst., 48, 707-727.

Gellar, R.J. (1976). Scaling Relations for Earthquake Source Parameters and Magnitudes, Bull. Seisniol. Soc. Am., 66, 1501-1523.

Gutenberg. P., and C. F. Richter (1942) Earthquake Magnitude, Intensity, Energy, and Acceleration, Buil. Seismol. Soc. Aın., 32, 163-191.

Gutenberg, B., and C. F. Richter (1956a). Earthquake Magnitude, Intensity, Energy, and Acceleration (Second Paper) Bull. Seismol. Soc. Am., 46, 106-145.

Gutenberg, B., and C. F. Richter (1956b) Magnitude and Energy of Earthquakes, Ann. di Geofis., 9, 1-15.

Hartzell, S. (1980). Faulting Process of the May 171976 Gazli, USSR Earthquake, Buil. Seismol. Soc. Am., 70, 1715-1736.

Haskell, N.A. (1964). Total Energy and Energy Spectral Density of Elastic Wave Radiatton from Propagating Faults, Bull. Selsmol. Soc. Am., 54, 1811-1841.

Heaton, T. H. (1982). The Sal; Femando Earthquake: A Double Event? Buil. Seismol. Soc. Am., 72, 2037-2060

Kanamorl, H. (1972). Determination of Effective Tectonic Stress Associated with Earthquake Faulting. Phys. Earth and Plan. Int., 5. 426-434.

Kanamori, H. (1977). The Energy Release in Great Earthquakes, J. Geophys. Res., 82. 298i-2987.

Kanamori, M., and D. I. Anderson (1075). Theoretical Basis of Some Empirical Relations In Sels mokggy. Bull. Salsmol. Soc. Am., 66. 1073-1006.

Kanamori, H., and G. S. Stewart (1970). Mode of the Straln Release Along the Gitbos Fracture Zone. Mid-Allantic Ridge, Phys. Earth Plant. Int., 11,312-332.

Anopoff, L. (1908). Energy Release in Earthquakes, Geosptys. I Roy. Astr. Soc., 1. 44-52.

Langston. C.A. (10;0). A Hody Wave Inversion of the Koyna, India Earthquake of Doc. 10 180i and Some Implications for Budy Wave Focal Mechanisms, J. Geophys. Res., 81.251i-2k20.

Langston, C.A. and Blum, D.E. (197\%). I he April 29 198S Puget Sound Earthquake and the Constal and Upper Mantla Structure of Westam Wasnington, Bull. Seismol. Sac. Am. 07.083-:11.

Langston. C.A. and Butier, R. (12;0). Focal Mochanism of the August i i975 Oroville Eerthquake, Bull. Solsmol. Soc. Am., ©ti. 11111120.

Langston, C. A., and D. V. Helmberger (10 (b) A Procedure for Modeling Shallow Disiocatlon Sourceas, Geophys. J. Roy. Astr. Soc., 42. 117-130.

Lay. I., and H. Ranamori (1080), tarthquake Doublets in the Sotomon Islands, Phys Farth and Pan Int., 21.233-304.

Lhu. H. L. and H. Aanamori (iviso). Determinathon of Source Paramatars of Mid-Plate tarthquakes irom the Wavaforms of Rody Waves, Bull. Selsmol. Soc Am., 70. 1049-.004

Mikumo, I. (10:1). Source Process of Doop and Intemodiate Earinquakes as Inferred from I ang Pertod P and S Wavaforms. 1. Internedinte Depthtarthquakes in S.W. Pacifle: Reglon, J Phys. Farth 10, 1-18.

Rudnicki, J. W., and L. B. Freund (1981). On Energy Radiation from Seismic Sources, Bull. Seis. Soc. Am., 71, 683-595.

Savage, J. C. and M. D. Wood (1971). The Relation Between Apparent Stress and Stress Drop, Bull. Seismol. Soc, Ami., 61, 1381-1388.

Stewart, G. S., and D. V. Helmberger (1981). The Bermuda Earthquake of March 24, 1978: A Significant Oceanic Intraplate Event, J. Geophys. Res., 86, 7027-7036

Stewart, G. S., E. P. Chael, and K. C. McNally (1981). The November 29, 1978 Oaxaca Earthquake: A Large Simple Event, J. Geophys. Res., 86, 5053-5060.

Yoshiyama, R. (1963). Note oi: Earthquake Energy, Bull. Earthquake Res. Inst., 41, 687-697.

PART II: SUBDUCTION ZONE SEISMICITY AND STRESS IN SLABS

Abstract

The pattern of seismicity as a function of depth in the world, and the orientation of stress axes of deep and intermediate earthquakes, are explained using viscous fluid models of subducting slabs, with a barrier in the mantle at 670 km .670 km is the depth of a selsmic discontinuity, and also the depth below which earthquakes do not occur. The barrier in the models can be a viscosity increase of an order of magnitude or more, or a chemical discontinuity where vertical velocity is zero. $\log N$ versus depth, where N is the number of earthquakes, shows (1) a linear decrease to about $250-300 \mathrm{~km}$ depth, (2) a minimum near that oepth, and (3) an increase thereafter. Stress magnitude in a subducting slab versus depth, for a wide variety of models, shows the same pattern. Since there is some experimental evidence that N is proportional to $\mathbf{e}^{k \sigma}$, where k is a constant and σ is the stress magnitude, the agreement is encouraging. In addition, the models predict down-dip compression in the slab at depths below 400 km . This has been observed in earlier studies of earthquake stress axes, and v'e have confirmed it via a survey of events occurring since 1977 which have been analysed by moment tensor Inversion. At intermediate depths, the models predict an approximate but not precise state of down-dip tension when the slab is dipping. The obsevations do not show an unambiguous state of down-dip tension at intermediate depths, but in the majority of regions the state of stress is decidedly closer to down-dip tension than it is to down-dip compiession. Chemical discontinuities above 670 km , or phase transitions with an elevation of the boundary in the slab, predict, when incorporated into the models, stress peaks which are not
mirrored in the proflle of seismicity versus depth. Models with an asthenosphere and mesosphere of appropriate viscosity can not only explain the state of stress observed in double Benioff zones, but also yield stress magnitude proflles consistent with observed seismicity. Models where a nonlinear theology is used are quallatively consistent with the linear models.

1. Introduction

In this study we hise simple models of subducting slabs to explain observations of the distribution of earthquakes versus depth, and observations of the orientation of stress axes of deep ($>300 \mathrm{~km}$) and intermediate (70 to 300 km) earthquakes.

The distribution of earthquakas with depth has been discussed by many investigators (e.g., Gutenberg and Richter, 1954; Sykes, 1966; Isacks et al, 1968), who have variously noted the presence of seismicity minima near 250 km , and the existence of deep peaks in seismicity. Richter (1979) has recently explored the possibillty of a barrier to mantle flow at the 670 km seismic discontinuity (e.g., Whitcomb and Anderson, 1968) being responslble for the large increase in seismicity above this depth in the Tonga-Kermadec region. He also argues that such a barrier may explain the tendency toward down-dip compression at depth for earthquakes in this region (previously noted by lsacks and Molnar, 9 969, 1971).

We proceed here in the same spirlt as Richter; extending the observational base to the whole world, and expiring a wide range of models of subducting slabs. In section 2 we present observations of seismicity versus depth, using the large amount of catalog data that has become available since the studies of $\mathrm{S} \cdot \mathrm{jkes}(1956)$ and lsacks et al (1968). Wi also analyse the orientations of stress axes of earthquakes studied using the new methods of moment tensor inversion (Kanamori and Given, 1981 ; Dziewonski et al, 1981 ; Appendix A). In Section 3 we present calculations of stress in subducting slabs.

2. Observations

2.1 Seismicity as a Function of Depth

Fig. 1 shows histograms of the logarithm of the total number of earthquakes in the world versus depth. The different curves correspond to different cutoff magnitudes: one represents the earthquakes with a o'e-second body wave magnitude m_{0} greater than or equal to 4 ; in the other two, the cutoffs are $m_{b}=5$ and $m_{b}=6$. The time period covered is 1964 to 1980,1964 being the yaar in which the one-second body wave magnitude began to be applied uniformly. The data sources are the NOAA (1964-1977 inclusive) and PDE (1978-1980) catalogs.

The curves have some striking features. First, we note the well established fact (isacks et al., 1968) that there are no earthquakes below a depth of about 700 km. Second, we observe a roughly linear decrease in $\log N$ from the surface to a depth of approximately 250-300 This exponential behavior was noticed by Sykes (1966), and lsacks et al. (1968); it has not been discussed very much in the literature since. After the linear- or, decrease, there appears to be a seismicity minimum, followed by a resurgence in activity from 500 to 700 km . The three curves behave very similarly in these respects, although the curve for $m_{b} \geq 6$ is spottier than the other two, probably showing the effects of incomplete sampling of larger earthquakes in the time period covered.

The worldwide curves of fig. 1 represent what might be termed an "average subduction zone". Although these curves contain very important intormation, it is necessary also to examine similar plots for individual subducting regions. Such plots are presented in Appendix C. In deciding how to divide up the regions, we have relied on the physicgraphy of trenches, the planform of seismicity observable on global

Flgure 1. Logarithm of the total numbisr of earthquakes in the worid versus depth, in 20 km intervals. The sources are the NOAA and PDE catalogs, from 19641980. The three curves are for three different cutoff magnitudes, as noted, where m_{b} cenotes the one-second body wave magnitude reported by the ISC.

maps such as that of Tarr (1974), the stereo plots of Johnson and Richter (1978). and previous studies of the lateral segmentation of subduction zones (e.g., Isacks and Barazangi, 1977). We have tried to isolate porions of regions where the structure of the Wadati-Benioff zone is as close to two-dimensional as possible.

If we examine the seismicity curves of individual regions, we find that many of them faithfully reproduce the global pattern in whole or in part. Regions without deep seismicity tend to roproduce the upper part of the pattrm, that is, the roughly linear-log decrease down to $250-300 \mathrm{~km}$. Regions with deep seismicity tend to reproduce the entire pattem, with the roughly linear decrease down to $\mathbf{2 5 0} \mathbf{- 3 0 0} \mathbf{k m}$., followed by a minimum and a deep peak of varying position and intensity.

As we : an see from the plots, however, severai regions do not conform preclsely to these specifications. Many of the shallow regions have a decay pattern of seismicity with depth which deviates significantly from linearity. Note the pattern in the Hindu-Kush, which is more a zone of continental convergence than a subduction zone (Molnar and Tapponier, 1975). Some of the shallow dipping South American zones show patterns more similar to this than to the patterns of other circum-Pacific zones.

To iirst order, however, the features of the selsmicity curves which wa have listed do appear to be globel, and bear explanation.

2.2 Orientations of Stress Axes of Intermediate and Deep Focus Earthquakes

2.2.1 A Fi:st Look

We now turn our attention to observational evidence concerning the orientation of stress in subducting slabs. In pair of classic papers, Isarks and Moinar (1969,1971) examined the relationship of earthquake stress axes, ferlved from first motion studies, to the geometry of Benioff zones. In the 1969 paper they established the result that stress axes (tension or compression) are more closely allgned with slab geometry than are nodal planes. That is, the evidence does not suggest that earthquakes represent shear motion along a fault plane marking the interface between siab and mantle. Actually, some evidence for this has been discovered (e.g.. Unino and Hasegawa, 1982), but this is for depths shallower than 60 km .

In the 1971 paper, Isacks and Molnar performed a detailed regional aralysis. Globally, the evidence seems to suggest down-dip compression or tension at depths from 70 to 300 km , depending on the region, and down-dip compression below 300 km. Of course, "down-dip" is to some extent in the eye of the beholder. In this section and the next we will attempt to quantify how chose to down-dip the stress axes of earthquakes are, in the mean. Fujita and Yanariori (1981), who have performed a global survey of focal mechanism soiu.ions fol intermediate earthquakes, and had more data at their disposal than did Isacks and Molnar, argue for a state of "in-p.ate" rather than down-dip stress.

First-motion solutions vary greatly in the degree to which the nodal planes and stress axes can be constrained by the data. Heaton (1982) has compiled a very useful table of the best constrained solutions for esrthquakes deeper than 30 km . Several of isacks and Molnar's solutions are in: sded, as are first-motion studies by
more recent investigators, and some more detalled studies involving the use of synthetic seismograms. in fig. 2, we plot the stress axes from Heaton's list on lowerhemisphere stereographic projecticns. The data from different renions are combined by rotiting all axes such that the slab is always vertical and striking North. The dips and strikes of the various slabs are taken from Uyeda and Kanamori i1979) and Fujita a.nd Kariamori (1981). There is some scatter introduced by the fact that slabs are not everywhere even approximately two dimensional in structu:3, but we have tried to minimise this by eliminating events where the average dips and strikes cannot clearly be used. Particular care must be taken in the Tonga, Indonesian, and Phillppine regions.

Looking at fig. 2, we see considerable scatter in the data. However, a general tendency towards down-dip compression is definitely observable in the deep events. In the intermediate events there is less of an obvious cluster, $\mathrm{x}^{\prime} . \therefore$ igh, the tension axes do s'em to line up with the down-dip direction hatter than does anything else. If we choose for efch earthquake the stress axis closest to the down-dip direction and plot that axis, then the cluster improves for intermediate events, altho',gh rot foi deep ones. This is because of the more universal nature of down-dip compression et depth, as opposed to the more region-dependent state of stress above 300 km . In any case, we can see that the stress axes, rather than the nodal planes, are what align best with the ycometry of the slab.

ORIGINA: raEs 's
OF POOR QUALITY

Figure 2. Stereographic (equal-area, lower hemisphere) projections of stress axes and nodal plane poles for earthquakes drawn from Heaton's (1982) list of well constralned solutions. Some of lsacks and Molnar's (1971) mechanisms are included, as well as mure racent onas. Figure 2(a) is for deep (z 300 km) earthquakes, and figure 2(b) is for intermed!ate (70 to 300 km) earthquakes. All quantities are plotted in a slab coordinate system. The slab is always vertical and striking North-South. The down-dip direction is at the center of the stereonet. Compression and tension axes are shown. Also shown is a drawing where the strass axis (compression or tension) closest to the down-dip direction is plotted.
๘
WELL CONSTRAINED DEEP EVENTS
well constrained deep events

-82-
TO
cr pouncunit

-63-
 ORIGINRI PRER 解 of POOR Quality

WELL CONSTRAINED INTERMEDIATE EVENTS

well Coistrained intermediate events

POLES TO NODAL PLANES

2.2.2 Events Studied by Moment Tensor Inversion

An important new development in seismology has been the development of methods for performing routine moment tensor inversions for earthquakes using now available digital data. In the years preceding the availability of this data and the development of the new methods, an invastigator who wanted to do a more detailed study of an earthquake mechanism than a first-motion analysis had to commit a sizeable amount of time to the digitization and forward modelling of the records. The number of events that couia be studied in this manner was therefore quite limited. The new moment tensor inversion methods offer the advantages of objectivity, as wall as thoroughness and speed. We have studied several of the larger $\left(M_{1} \geq 10^{26}\right.$ dyn- -cm) intermediate and deep events which have occurred in the world since 1978 , using the method of Kanamori and Given (1981) for inverting IDA Jata. Details are given in Appendix A. In addition, we have available several solutions performed in independent studies by Dziewonski and Woodhouse (1983) and Giardini (1982,1983). These investigators have obtained reasonable solutions for events with $M_{0} \geq 10^{24}$ dyn-cm. Their lower threshold stems from their effective use of body waves from the SRO; our IDA inversions are carried out on surface waves at periods exceeding 200 seconds. We now ask ourselves: do these earthquakes studied in this more objective and thorough manner lend support to the general conclusions discussed in the last section?

In general, they appear to. Fig. 3 shows the stress axes for intermediate and deep events studied by moment tersor inversion, plotted as before, with data from different regions rotated such that the slab is striking North and vertical. In this set of figures, too, the most readily apparent feature in the considerably scattered data Is the tendency toward down-dip compression for the deep events. In the

Figure 3. As Figure 2, but for events from 1977-1981 analysed by moment tensor inversion, in this study (Arrendix A), and in Dziewonski and Woodhouse (1983) and Glardini (1983). Figure $3(a)$ is for deep events, and Figure 3 (b) is for intermediate events. We recall that down-dip is always in the center of the stereonet.
-68-

ORIGINAL PAGE IG OF POOR QUALITY
2 nOIS\&GANI yOSNGL in3WOW xa agianls Sinana daga

poles to nodal planes
-70-
URNS:- : A
OF PCOA (ivobity
ใ
intermediate events studied by moment tensor inversion

NOIS\&GANI yOSNGL ingwow da dgianls slmgat gibiaghegini

Internediate events, a pattern is more difflcult to discern, tut the tension axes do show the tightest group around the plate in general, if net convincingl; around the down-dip direction.

Fig. 4 shows the results of some simple statistical analysis of the data in ilg. 3. Since we are dealing here with the statistics of directions rather than converitional linear statistics, some special techniques must be applied. The techniques are well developed and have long been in use in paleomagnetism and biometry; a brief description and references are given in Appendix B. Fig. 4 shows both Bingham and Fisher statistics for the tension and compression axes of the intermediate and deep focus earthquakes. The Bingham and Fisher means are quite similar. In all cases, the hypothesis of uniformicy can be rajected to 99% level or tetter. This meains that there is 1% chance or less that the data are drawn from an isotrrpic distribution, and a preferred direction does not exist. The larger circle or ellipse in each piot represents the standard deviation of the data, while tle smaller one represents the boundary of the region of 95% confidence for the mean direction.

From these figures we can conclude, despite large s itter, that the deep events are consistent with down-dip compression but not down-dip tension, while the intermediate events are marginally consistent with down-dip or in-plate tension, but not down-dip compression.

We must remember, however, thet our sample contains data from many different regions. While we do not have enough events to conduct an exhaustive individual survey of each of the world's subduction zones, it is still worthwhile to present some of the data by region, or class of regicn. One important subdivision we must perform for the deep earthquakes is to isolate the Tonga region. This is the most active area of the world at deptins below 300 km ard accounts for 46% of the deep events in

Figura 4. Some simple statistical paremeters for the data shown in figure 3. Both Fisher and Pingriam statistics are shown (Appendix B). For convenience of plotting, the proiections are row Wulff projections, and cover the whole sphere. An open square indicates a mean position in the upper hemisphere, whic a flled square indicates one in the lower hemis phere. Small ellipses or circles show 95% confidence limits for the true mean directions. In all cas- 3, a preferred or mean direction does exist, to 99% confidence or better. Large ellipses or circles delineate standard deviation limits.
-74-
deep events studied by moment tensor inversion

-76-

DEEP EVENTS STUDIED BY MOMENT TENSOR INVERSION

 FISHER STATISTICS

ORIGINAL PAGE IS
OF POOR QUALITY

OF POUR Q:

ORIGINAT Mam. OF POGA Qumars

our sample. Fig. 5 plots stress axes for deep earthquakes separately for Tonga and for the rest of the world. The tendency toward down-dip compression at depth is not restricted to Tonga, as we can see from the statistics in fig. 6. Fig. 7 shows compression axes for individual regions where we have more than four events. The number of events in each case is small enough such that it is difficult to draw a confident conclusion for the region. We can see, however, that North Honsinu, Mindanao, ond Izu-Bonin are all more or less consistent with down-dip compression. The large scatter in the case of lzu-Bonin is probably at least partially due to the assignment of an average dip to the entire subduction zone, whereas this zone appears to change dip from North th South (Katsumata and Sykes, 1969). This may also be a factor in the case of Java, whose state of stress is not well resolved in the figure.

Turning now to intermediate depths, we are faced with the problem that Tonga and the New Hebrides are really the only regions which ar individually well represented in our sample. Tonga shows some tendency toward down-dip compression, in agreement with the findings of Richter (1979) and Isacks and Molnar (1971) (see fig. 8). The New Hebrides show some tendency toward down-dip tension, as was also observed by Pascal et al (1978), as well as Isacks and Molnar. In both cases, actually, "in-plate" might be a more accurate expression than "down-dip" (Fujita ano Kanamori, $198!$). Shown also are the axes for Nortr Honshu, the Marianas, and Mindanao. These are all deep extending slabs, but they do not show downdip compression at Intermediate denths the way Tonge dces. Mindanao seems closer to tension than compression (see also Cardwell et al. , 1980). However, these regions are not well represenced at all in our sample, and we cannot make any strong statement about them. Other regions are represented, individually, even worse.
-79-

Figure 6. As figure 2, but plotting axes senarately for Tonga and the rest of the world.

Figure 6. Bingham statistics, plotted as in figure 4, for the data representing the world except for :.onga (figure 5).
Bingham Statistics

One potentially instructive way to look at the data is shown in figs. 9 and 11. Here we plot stress axes for intermediate depth earthquakes occurring in slabs that do not extend below 300 km (1 ig .9), and for intermediate depth earthquakes occurring in deep-extending slabs other than Tongs (fig. 10). Again, the scatter is large, and it is difficult for us to draw conclusions as confidently as we have for deep earthquakes As we can see from the mean directions in fig. 10 , sha!low-extending slabs are sloser to down-dip tension than compression. This also appears to be true of the deep-extending slabs other than Tonga (fig. 12). This disagrees with one of the conclusions of Isacks and Molnar (1971), who belleved that deep exiending slabs in general were in down-dip compression at all depths.
-86-

Figure 7. As figure 2, for deep events in individual regions where more than 4 events are available.
-86-

DEEP EVENTS

-87-
ORIGINAL PAGE IS
OF POOR QUALITY

DEEP EVENTS

Compression
Tension
-88-

Figure 8. As figure 2, for intermediate events in individual regions where more than 4 events are avallable.
-AD-

ORIGINAL FACE IS
OF POOR QUALITY

-90-

INTERMEDIATF
EVENTS

-01-

ORIGINAL PACE IS OF POOR QUALITY

INTERMEDIATE
EVENTS
North Henshu

Compression

Figure 9. As figure 2, for intermediate events in slabs with maximum depths at $\mathbf{3 0 0}$ km or less.

-94-

Figure 10. Bingham statietics, plotted as in flgure 4, for events in shallow-extending slabs (figure 9).

- 16
Binghan Statiatice Binghan Statiatice Anghas Statiatice

Figure 11. As figure 2, for Intermediate earthquakes in slabs other than Tonge with maximumi dispths below 300 km . نive separate Tonga because of its tendency, visible in figure 8, toward down-dip compression.
INTERMEDIATE
events

ORIGINAL PAGE IS
OF POOR QUALITY

Fiqure 12. Bingham statistics, plotted as in figure 4, for data shown in figure 11.
-00-

3. Calculations of Stress In Subduciing Slabs

3.1 introduction to the Models

We presume that, other things being equal, the number of earthquakes which will occur in a given area is related to the level of stress. Section 3.4 discusses this in more detall. We thus adopt some simple models of a subducting slab and calculate the stresses therein. We must emphasize that what we seek is not detalled numerical simulation of any individual subduction zone-- a futile task given the complexity and many unknowns involved-- but a series of models which can elucidate the basic physical processes and give us qualitative insight.

It has lorig heen thought that at long time scaies the Earth's mantle behaves as a fluld, and that plate tectonic processes are associated with a large scale thermally driven mantle circulation. The literature on this topic is extensive. Hager and $O^{\prime} C o n n e l l(1981), O^{\prime}$ Connell (1977), and McKenzie et al. (1974) are good starting points for one who is interested. We will not be reviewing here the solld state processes by which a solld nantle might creep or flow over geologic time. The literature here is also extensi!e, but we can quote Ashby and Verrall (1977) and Gueguen and Nicolas (1980) as general references.

Our models consist of a box of fluid, as shown in fig. 13. The slab is modelled as a dencer and more viscous fluid than the surrounding mantle, as we will discuss shortly. We solve the Stokes problem for viscous incompressible flow via a penalty function, finite element method (i.agties et al., 1979). Typically we use grids of square or rectangular elements. We always have at least 20 elements depthwise in the box (y direction), and at least 40 in the z direction. All elements have maxImum dimension of 0.06 dimensioniess units. We have slabs which are at least four
-101-

Figure 13. Boun conditions used in the models.

ORIGINAL PAEE IS OF POOR QUALITY

elements thick. In cases where we are modelling the presence of discontinulties of some kind (Section 3.8), we double this resolution.

The surface of the Earth marks the top boundary, and we have the reasonable conditions (Sleep, 1975; Richter, 1973) that the fluid is free to move horizontally, but has zero vertical velocity. The depth 670 km . marks a bottom boundary which we begin by assuming marks an obstruction of some sort to the motion of the slab (e.g. Richter, 1979). We thus set vertical valocity to zero at this boundary. Horizontal velocity can be sat to zero or left free. If horizontal velocity is set to zero, the boundary assumes the character of an extreme viscosity jump. A free horizontal velocity might be better for simulating a density discontinulty arising from chemical layering, where lateral motions might be occurring along the deforming chemical boundary. Of course, vertical motions would occur also, in the dynamic situation. We are obtaining Instantaneous solutions; we cannot track the dynamic deformation of a chemical boundary. We accept $v_{y}=0$ and v_{g} free as an approximation to the steedy state at the boundary in the case of chemical layering. ieeving v_{z} free is a constant pressure boundary condition, with pressure equal to zero at the boundary. As we will soon sea, the bottom boundary condition on v_{z} has very little Influence on our Important results-- it is the condition on v_{y} which is important.

The boundary conditions on the side of the box are more arbltrary and more artificlal. Since the Earth, or a part thereof, cannot be regarded as as isolated box, it seems reasonable to allow fluld to enter and leaves our model box. We have thus left the horizontal velocity free on the left hand side. In some models, we will 'be pushing the slab from the left. We have somewhat arbitrarily chosen to set $v_{\boldsymbol{z}}$ equal to zero on the right hand side. It turns out that the boundary conditions on the right, while they may influence some of the detalls of the flow field, make essentially no
difference to the results for the stresses in the slab, which are our primary concern. This can be seen or: fig. 17, and figs. D17.

There are some other assumptions we are making. We are Ignoring inertia and Coriolls forces, which are much smaller in our problem than the viscous forces (Sieep, 1975). We are also, obviously, ignoring the curvature of the Earth. As discussed by Richter (1973), this may cause some geometric distortion in the computed flow field compared to what might actually be happening in the Earth, but the basic dynamics will not be changed.

There are many things we do not know about subducting slabs, and the subject can usually offer much room for debate. One thing everyone seems to agree on, however, is that subducting slabs are colder and denser than the surrounding mantle. Gravitational forces on the slab are likely to be an important factor in the kinematics of the subduction process. How much colder one belleves the slab to be than the mantle depends, of course, on one's thermal model. McKenzie (1969) solved the heat conduction equation for a subducting slab in a mantle of constant temperature T_{0}. His 50 km thick, 45° dipping slab moving at $10 \mathrm{~cm} / \mathrm{yr}$ warms to roughly $0.8 T_{0}$ at its coldest by the time it reaches a depth of 700 km . Hence, for $T_{0}=1300^{\circ}$, it is over 250° cooler than the surrounding mantle. Howard and Hager (1983) have performed a very interesting calculation which refines McKenzie's model to Include the effect of the cooling of the mantie as well as the heating of the slab. The material parameters they use in their model are the same as McKenzle's. In their model, the slab stays colder to a significantly greater depth than does McKenzie's slab, because of the buildup of a layer of cooler mantle on the sides of the slab. A 50 km slab in the Howard-Hager model warms up to $0.87 T_{0}$ by 700 km a 100 km slab warms up to $0.46 T_{0}$. Thus, for $T_{0}=1300^{\circ}$, the slab may be about 700° cooler than the
surrounding mantle near the $\mathbf{6 7 0} \mathrm{km}$ seismic discontinuity.

Howard and Hager, llke McKenzie, have not considered the adlatatic gradient in the mantle, or the possible effects of shear heating and mantle phase transitions. Such effects have variously been considered in many studies: Minear and Toksöz (1970a,b);Toksöz et al (1971,1973); Hsul and Toksöz (1979); Turcotte and Schubert (1973); and Schubert et al (1975), among others. In several of these studies, the numerical calculations are so involved that it is sometimes difficult to isolate the effect of each individual factor, and it is also difficult to compare the models to each other. The coolest slab appears to be that of Schubert et al (1975), which at 650 km or $s 0$ is a maximum of 800° cooler than the surrounding mantle. A highly exothermic olivine-spinel phase transition in the model may be partlally responsible for this. We note that none of the models to which we have just referred treat the issue of the entrainment or the mantle, as Howard and Hager (1983) do.

Fig. $14(\mathrm{a})$ shows calculations of the density difference between slab and mantle for the Howard-Hager riodel with a 45° dipping slab moving at $6 \mathrm{~cm} / y r$. The coefficient of thermal expansion is not well known, but is thought to be of order 10^{-5} (e.g. Sleep, 1975). We have somewhat arbitrarily adopted for α a value of 5×10^{-5}, and $3.5 \mathrm{~g} / \mathrm{cc}$ for the density of the mantle at $0^{\circ} \mathrm{C}$. As we can see from the figure. the density contrast varies across the slab and with depth. In most of the models, we have assumed the density difference between slab and mantle to be $0.07 \mathrm{~g} / \mathrm{cc}$ throughout the slab. As we shall see in Section 3.7, this does not affect our results.

Fig. 14(b) shows calculations of the viscosity ratio of the slab to the mantle. This ratio is of the form

$$
\frac{\eta T_{1}}{\eta r_{0}}=\frac{T_{1}}{T_{0}} \frac{E}{R}\left|\frac{T_{0}-T_{1}}{T_{0} T_{1}}\right|
$$

-106-

Figure 14. Variation within the slab of (a) density contrast with respect to the mantie and (b) logarithm of the ratio of slab viscosity to mantle viscosity. In both cases, the slab is dipping 45° and travelling $5 \mathrm{~cm} / \mathrm{yr}$. Calculations are from the model of Howard and Hager (1983). Vertical parallel lines Indicate boundaries of slab. Each curve is a perpendicular section through the slab, taken at the depth indicated by the curve label.

ORIGINAL PAGE IS
OF POOR QUALITY

where T_{1} te calculated temperature, T_{0} is assumed initial mantie temperature, E is the activation energy for creef, and R ls the universal gas constant. We have Ignored a term dependent on the activation volume, since activation volume is essenthally unknown. Since the precise comprsition of the slab is not known, we can only guess at E. We use Ashby and Verrall's (1977) value for ollvine, $6.2 \times 10^{4} \mathrm{~J} / \mathrm{mol}$. The figure shows that we can expect viscosity in the slab to be everywhere easenHally infinite with respect to the mantie.

Note, however, that the equation above calculates microscople viscosity. Although we expect from the temperature that the slab is absolutely rigid microscoplcally, there is evidence that its macroscopic viscosity is lower. Macroscopic and microscopic viscosities can differ If, for example, the slab is fractured. Melosh and Raefsky (1980) found that an effective viscosity of about $0 \times 10^{27} \mathrm{p}$ is required to explain the outer arc bulge and trench if these are formed by bending a viscous lithosphere. The mantie is belleved to have a viscosity of roughly $10^{28} \mathrm{p}$ from postglacial rebound studies (Cathles, 1975; Peltier and Andrews, 1970). Thus our assumption of a slab viscosity ten times greater than the mantle viscosity is probably reasonable.

3.1.1 A Word About Units

We solve a series of problems for a box which has depth h equal to 1. The two fluids in the box simulating mantle and slab have viscosities of 1 and 10 respectively. We epply a downward body force of 1000 to the slab. The results we obtain are not in any conventional unit. The reader will notice, however, that in all our figures we report stress in bars and velocity in cm/yr. These results are correct when the problem is scaled such that $h=070 \mathrm{~km}$, the viscosity of the mantle is $10^{\mathbf{2 x}} \mathrm{p}$.
and a body force of 1000 corresponds to a density contrast of $0.07 \mathrm{~g} / \mathrm{cc}$ between slab and mantle. Stress scales as $\Delta \rho g h$, and velocity scales as $\frac{\Delta \rho g h^{2}}{\eta}$, where g is acceleration due to gravity and η la viscosity. It is important to note that atresses do not depend on the absolute value of the viscosity, whereas velocities do. To convert back to the "natural" dimensioniess unlts of the problem, one needs only to divide stress in bars by 4.72, and no converston is required for the velocities.

3.1.2 Presentation of Results

We have calculated stresses and flow fields for a large number of models. For all these models, we present plots of stress magnitude versus depth in the slab (see 3.2 below) in the main body of the text. In a number of cases, we also present spatial stress plots (showing stress orientation) and velocity fields; however, the large number of models would have made it impractical to Include these in the text for every case. Since the spatial stress plots and the flow dlagrams do contain important Information, we have placed the ones not included in the text in Appendix \mathbf{D}. The figures in Appendix D, as we explain there, are labelled so as to allow them to be easily identified with the corresponding figures in the text.

3.2 A Sinking Vertical Siab

We now ex amine the results of some simple calculations which yield much insight In explaining the selsmicity curves. The slab sinks under its own weight, and is not subjected to extemal push forces. Consider the model of vertical slab, with parameters as discussed in the previous section. Fig. 16 shows the flow field. The slab is moving at a velocity on the order of centimeters a year. Fig. 16 plots the azas of compression of the deviatoric stress at points throughout the model box (at
the center of each finite element). The axes of tension are perpendicular to the axes of compression, and of equal magnitude. We see that the slab is in vertical (1.e., dewn-dip) tension on top, and down-dip compression on the bottom. In fig. 17, we piot the average stress magnitude in the slab versus depth. We define the stress magnitude as

$$
\sigma=\sqrt{1 / 2\left(\tau_{m}^{2}+\tau_{n}^{2}+2 \tau_{n y}^{2}\right)}
$$

where the $T_{i j}$ are stress components. This is actually the expression for the second stress Invariant. At each dapth, we calculate σ for all points in the slab, take the average, and plot on ilg. 17.

The calculated stress profile has the following features: (1) a linear decrease down to $\approx 300 \mathrm{~km}$, (2) a minimum between 30 n sid 400 km , and (3) a resurgence at depth. In a rough sense, it seeme to follow the same pattern as the curves of $\log N$ versus depth. The linear decrease in the upper part of the stress proflle coulc explain the linear-log decrease of seismicity in the upper parts of subducting slabs quite nicely if the number of earthquakes depended exponentially on the stress. (e.g. Mogi, 1962a,b, and section 3.4). The position of the stress minimum also suggests that the seismicity minima might be occurring at a depth dictated by the $\mathbf{6 7 0}$ km length scale to a bottom barrier. We note that whether v_{s} is free or zero at the bottom boundary makes essentlally no difference. The barfer can be a chemical one or a viacosity jump.
-112-

Figure 16. Flow fleld for a vertical sinking slab extending to 670 km, subjected onty to gravitational forces, as deacribed in Section 3.2.

-114-

Figure 16. Deviatoric compression axes for the slab of figure 15 and section 3.2. Tension axes are of equal magnitude, and perpendicular in direction.

-116-

ORIGINAL PAGE IS DF POOR QUALITY

-116-

Figure 17. Solid line shows average stress magnitude versus depth for the slab of section 3.2 and figure 15. Dashed line shows result for the same slab except that ν_{x} is left free on the bottom boundary instead of being set to zero. Dotted line shows result for the same slab when v_{z} is left free on the right hand boundary Instead of being set to zero.

ORIGINAL PREE is

 OF POOR QUALITY

3.3 Viscosity Contrest at 670 km

Suppose now that there is no barrier at 670 km . Fig 18 shows the stress proflle for a slab extending to $\mathbf{6 7 0} \mathbf{k m}$, but underlain by mantio fluid of viscosity $10^{28} \mathrm{p}$. (Our model box is now twice as big in both dimensions). We do not see the minimum or the resurgence, but rather a smooth decay. The slab is in tension, except at its very tip.

Fig. 19 shows what happens if we increase the viscosity of the lower mantle, creating a contrest at 670 km . As the viscosity contrast Increases, the stress minimum, below which compression prevalis, move: up in depth. A viscosity contrast of a factor of 5 produces a significant peak. A contrast factor of $\mathbf{2 5 - 5 0}$ produces a large peak, which is not much different in position or intensity from the case when the contrast is 1000-- or essentially infinite, as in fig. 17.

How viscous is the lower mantie in fact? At present, this question is not completely resolved, but there is some evidence that it could be more viscous than the upper mantie. A good discuasion of the literature is given in O^{\prime} Connell (1977). As we have noted, the upper mantle appears, from analysis of post-glacial rebound date to have a viscosity of 10^{22} p (There is a poss!ble low viscosity channel below the lithosphere; how low its viscosity can be depends on lts thickness). Cathles (i 1975) has fit the data with a 75 km thick channel with viscosity of order $10^{20} \mathrm{p}$). The earlier literature (MacDonald, 1963; McKenzie, 1966) favored a large increase of viscosity with depth in the mantle. McKenzie (1986) concluded that the lower mantle had a viscosity four orders of magnitude greater than the upper mantie. His conclusion was based on Interpreting the Earth's nonhydrostatic "fossil" bulge. However, it appears that his results were an artifact of his use of spherical harmonic coefficients. They were questioned by Goldreich and Toomre (1989), who placed an upper bound of $10^{24} \mathrm{p}$ on the viscosity of the lower mantle from the rate of polar wander obtained
-110-

Figure 18. Avarage stress magnitude versus depth for a vertical slab subjected only to gravitational forces and extending to 670 km , when there is no barrier at 670 km . dopth.

ORIGINAL PACE IS OF POOR QUALITY
(X 10)

Figure 19. Average stress magnitude versus depth for a vertical sinking slab extending to 670 km when there is a viscosity contrast at 670 km depth. The number labelling each curve denotes the ratio of viscosity below to viscosity above the discontinulty. Viscosity above the discontinuity is $10^{22} \mathrm{p}$.

from paleomagnetic studies. Cathles (1075) Interpreted the Canadian post-glacial rebound data to Indicate a lower mantie viscosity of $10^{12} \mathrm{p}$ the same as the upper mantle. Walcott (1973) belleved the data to indicate a lower mantie viscnaity of at least 10^{29} p. As 0^{\prime} Connell (1977) points out, Walcott's analysis considered the residual gravity anomalles In Canada associated with unrecovered rebound. Cathles (1975) belleved the data to be consistent with elther his or Walcott's model, the cholce depending in large measure on the significance attached to the residual gravIty anomalies. More recently, Yuen et al. (1082) estimated the viscosity of the lower mantle to be larger than that of the upper mantle by analysing observed secular motions of the Earth's rotation axis. They found it to be larger than the viscosity of the upper mantle, at most by a factor of 4. Hager (1983), by considering geold anomalies, has found that the contrast factor must be as high as 30 in subduction zones. Thus we see that, overall, the avallable data are consistent with enough of a viscosity barrier at 870 km to produce stress pattems in the slab matching observed selsmicity profiles.

3.4 Rqlationshis of Seismicity to Strass Levala

Before exploring more mode's, we pause to consider the important question of the relationship of seismicity to stress levels. Qualltatively, our results make sense if we assume only that a higher level of stress leads to a larger number of events. They make even more sense if the number of events depends exponentially on the stress. The linear-log decrease of selsmicity in the shallon portion of slabs, as well as the relative numerical levels of deep and shallow selsmicity, are nicely explained. All this assumes that the dependence of seismirity on stress does not change drastically with depth.

Let us further examine the Idea that $N a e^{k r}$, where k le some constant, ano σ denotes the stress magnitude. It has long been known (Ishimoto and lida, 1939) that earthquakes follow a frequeney-magnitude relation of the form relation of the form

$$
\log N=a-b N
$$

where a and b are positive constants known universally in the seismological literature as the " a value" and the " b value" (Richter, 1968; Bath, 1981). We may rewrite this as

$$
\log N=b\left(M_{\max }-M\right)
$$

where $M_{\text {max }}$, the maximum magnitude of warthquake is equal to $\frac{a}{b}$-provided, of course, that the linear relationship holds throughout the magnitude range. If b is not
 compelling reason to assume that $M_{\max } \propto 0$. We are merely trying to see the condithons under which the empirical distribution of earthquake sizes might lead to the type of exponential dependence on stress which has been observed experimentally, and which would provide a link between our slab stress calculations and observed selismiclty curves.

The experiments where $N a e^{k 0}$ has been observed have been acoustic emission studies on the britte fallure of rock samples. In evaluating such experiments in connection with our problem, we are faced with the omnipresent difficulty of scaling. How relevant rock mechanics experiments on small samples are to the real Earth is a long standing unresolvad question (e.g. Ib, 1982). We are also faced with the difficulty of applying results from brittle fracture experiments to deep focus earthquakes whose mechanisms, albelt consistent with shear disiocations, are not known to result
from brittle fallure. However, the results of the experiments are worth revtewing. This ts because, first of all, these results are all we now have at our disposal. Secondly, we must bear in mind that brittle fallure, although not a certeln mechanism for earthquakes at depth, is still a possible one, particularty if the slab retains significant amounts of pors fluid. This is particularly true for the relatively shallow depths (above $\mathbf{2 5 0} \mathbf{k m}$) where we are interested in finding an explanation for the linear-log decrease in number of events with depth.

Mogi (1962a,b) pirformed experiments establishing that microfractures mirock samples obey a frequency-magnitude relation similar to that of earthquakes. He found in his experiments that the number of events was proportional to the exponential of the applied stress. This dependence was subsequently used in certain seismic hazard studies (Hagiwara, 1974). Scholz (1968) conducted more rock mechanics experiments, and found the b value to decrease with stress. This complicates the exponential o'apendence of number of events on stress. However, this stress dependence of the b valus has subsequently been disputed. Mogi (1981) presents data showing that under a constant load, the b value of the microfractures decreases before the main rupture. Ohnaka and Mogi (1981) argue that "the relative increase In the number of emission events with larger amplitude [l.e., the decrease in the b value] is not due directly to the increase in the stress level itself. The effect can be explained reasonably if the stress drop and/or the source dimension (crack size) of emission events becone largor in statistical terms as the rock approaches fallure". Other data (Kusunese et al., 1980; Sano et al., 1982) have also displayed the effect of a relatively constant b value untll the sample comes close to failure. The b values of Kusunose at al. (1980) are constant untll the stress exceeds 85% of the fracture strength. Sano of al. (1982) believe that their b values show evidence of
decreasing stress, but this k, again, for deformation regine close to the macroscoplc failure of the rock. There is thus no convincing experimental evidence that the o value changes significantly with stress.

If the b value did change with stress, then we might expect from our calculations thet it would change with depth in the Earth. Gutenberg and Richter (1964) reported b values for shallow, Intermediate, and deop earthquakes respectively as $0.9 \pm 0.02,1.2 \pm 0.2$, and 1.2 ± 0.2. Fig. 20 shows frequency-magnitude plots for the catalogs we have used in this study for shallow, intermediate, and deep earthquakes. We focus our attention on the magnitude range between 5 and 6 , where the Ilnearity of the frequency-magnitude relation is most apparent. For the smaller events the relationship breaks down, beceuse of inadequate detection capability. For larger events, It breaks down again, both because of the saturation of the m_{0} scale (Kanamori, 1978) and possibly be cause of Inadequate ampling of larger events over the sixteen year time period. There is no evidence in fig. 20 that b value changes with depth. Plotting a flgure like fig. 20 for 100 km depth intervals also fails to provide such evidence. Chouhan and Srivastava (1970) report a depth dependence of b value based on an analysis of Gutenberg and Pichters (1964) data In 100 km depth intervals. Thelr results indicate a roughly constant b value of 0.65 for events above 400 km in depth, a value of nearly 0.8 below 500 km , and a value of almost 1.1 from $400-600 \mathrm{~km}$. We do not believe these results are significant given the small number of events in each sample. The observation by Abe (1981) of a value increasing with dapth for the large events in the data set of Abe and Kanamor (1979) suffers from the same Imitation, as we can see by examining fig. 21. The b value for the deep events ls not well constrained. We note, finally, that Kagan and Knopoff (1980), In a rigorous statistical study of the NOAA catalog, find no

Flgure 20. Logarthm of the number of earthquakes versus one-second body wave magnitude m_{4}, in intervals of 0.1 magnitude unit. A is fin shallow (leas than 70 km) evants; B is for intermediate (betwoen 70 and 300 am) events; and C is for deep (greater than 300 km) avents. Data sources are the NOAA and PDE catalugs, 1084-1980.

-120-

Figure 21. Logarithm of number of earthquakes versus long pertod body wave magnitude m_{g} for large events of the twentieth century complied by Abe and Kanamor (1979). Figure 21(a) is for deep events; figure 21(b) is for intermadiate events.

ORIGINAL PAGE : of POOR QuAMT
-130-
a

ORICINAL PAG: IS OF PUOR QUALITY
b

significant differences in the b values of shallow, intermediate, and deep events.

3.6 Finite, Dipping Slabs

All slabs do not extend to 070 krr , and we might ralse the question of whether finite slabs in our model can give us acceptable stress profiles. Fig. 22 shows that this is in fact the case. A vertical slab extending to less than 300 km , sinking under Hs own weight, has a smooth decay of a with depth. One extending deeper develops a peak, as the bottom boundary begins to be felt. We note that the shallow slab of fig. 22 is in tension, while deeper ones are in tension on top and compression on the bottom below the stress minimum.

What happens when the slab is dipping? Fig. 23 shows the results for a 60° slab, and fig. 24 for 45° slab. All parameters in the models are the same as for the vertical slab, except that the slab is now dipping. The overall stress levels are lower than in the vertical slab because the body force is the same, but is not directed down-dip. Overall, the dipping slabs show the same qualltative features as the vertical one. There is more difference between the v_{z} free and the $v_{z}=0$ case when the slab extends to 670 km , but this is still not a difference resolvable in the seismicity data.

In general, the shallow decay, the minimum, and the resurgence are there. There is some complexity caused by the dip, because of sagging effects. The shallow decay is less smooth, the deep peak is not as pronounced, and the minimum is somewhat broader in the 45° case than in the 60° case, and this is also true of the 60° slab with respect to the vertical one. Of course, $\log N$ versus depth for the various regions is not always smooth in the shallow portion, and does not always show a pronounced deep peak. We cannot, however, see any pattern of the complexity of the

Figure 22. Stress proflle for a vertical slab aubjected only to gravitational forces, extending to (a) 270 km , (b) 400 km , and (c) 640 km .
-134-

-135-

Figure 23. Stress profile for a 60° dipping slab extending to (a) 270 , (b) $\mathbf{4 0 2}$, (c) 640, and (d) 670 km . Dashed curve m (d) is for v_{s} free on the bottom boundary; solid curve is for $v_{a}=0$ on the bottom boundary. Figure 23(d) is the only case where the two curves do not effectively colncide. The slab lis subjected only to gravitational forces.

ORIGINAL PACE IS OF POOR QUA!:TY

-141-

-142-

Figure 24. Precisely as figure 23, but for a 45° dipp!ng slab.
-143-
ORに:
OF PUe: vamily

b

ORIGNAL Fit:
OF POOR QUnilit

selsmic profiles varying with the dip. It is, in fact, almost Impossible to identify any trends in the selsmicity profle which we might ascribe solely to the dip.

The stress orientation for a 46° slab is shown in fig 25. Unlike when the slab is vertical, the stresses in the depths above 300 km are not precisely down-dip tensile. There are both tensile and compressive components down the dip. The state of stress in the lower portions of a deeply extending slab, however, is clearly down-dip compressive. This is consistent with the famous conclusions of lsacks and Moinar (1971), and also with our own analyses of earthquake stress axes obtained by moment tensor inversion (Section 2.2.2, Appendix A).

3.6 Slabs Pushed from the Side

The models we have been considering so far have all been subjected to a body force only. While gravitational forces on the slab are likely to constitute an important driving mechanism for plate tectonics (e.g., McKenzle, 1969), ridge-push is also a possible force. Fig 26 shows a series of stress proflies for a slab pushed from the side so as to produce stress levels in the slab comparable to those produced by body forces in our previous models. We see that we can match the smooth decay in the shallow portion, but we dr not produce a deep peak. As shown in fig 27, stress is down-dip compressive throughout the slab. In general, a model with push force only is not adequate to satisfy the observations. We have no trouble, however, If we add a push force to a body force, as shown in fig 28. As we can see In fig. 29, the state of stress in the shallow portion of the slab is less down-dip tensile when we add a push force.
-148-

Figure 26. Compression axes for the 45° slab of figure 24 , extending to (a) 270 km , (b) 400 km, (c) 540 km and (d) 870 km .

670 km

σ

늘
1 -

670 km

:
\because
$-\quad$.
$-\quad$.
ค

670 km

ORIGINAL rase
OF FJOR CuALIT

670 km

0

厄 kbar
-163-

Figure 26. Stress profllee for a 46° slab subjected only to a push force from the left aide. Different curves are for slab extending to different depths: 270, 400, and 870 km .

ORIGINAL PAG: is OF POOR QUALITY

Figure 27. Compression axes for the slab of figure 26 extending to $\mathbf{6 7 0} \mathbf{~ k m}$. We recall that the s! :b is dipping 46° and is not subjected is: ravitational forces, but only to a push from the left side.
-156-
ORIGINAL F .
13 OF POOR QUALITY

670 km

kbor

Figure 28. Stress profiles for a 45° sleb axtendir .o various depths (270, 400, 540 , and 670 km). The slab is subjecte ,oth to the push force of figure 28 and to a gravitational body force as i. figure 24.
$\begin{array}{ll}\text {-168- } & \text { ORIGINAL PREE } 9 \\ & \text { OF POOR QUALITY }\end{array}$

Fig:t 29. Ccimiressinn axa: for the slav of figure 28 extending 0670 km . We recall that this slab is dipping 45° and is subjected both to a push from the side and to gravitational body forces.

-160-

ORIGINAL PAGE IS OF FOOR QUALITY

670 km

3.7 A Slab More Consistent with Thermal Models

As we have noted, the assumption of a uniform density throughout the slab is somewhat oversimplified. If we bok at fig 14, the calculation of density differences between the slab and mantle for Howard and Hager's (1983) model, we see that Δp varies both across the slab and with depth. Fig 30 shows a stress profile for a slab with body force decreasing smoothly with depth, and one for a slab with a laminated body force. Clearly, we may regard constant density throughout the slab as a reasonabla approximation for our purposes.

3.8 Dis continulties and Phase Transitions Above 670 km

All our slabs thus far have been descending in a uniform mantle with the barrier at 670 km being the only discontinuity. There are known seismic discontinuities between the Moho and 670 km , however. One is the Lehmann discontinuity (Lehmann, 1961; Hales et al., 1976) In Anderson's (1979a,b) compositional model of the mantle, this discontinulty represents a chemical boundary between peridotite and eclogite.

Fig 31 shows a stress profile for a 45° slab when there is a barrier to vertical flow at $\mathbf{2 0 0} \mathbf{~ k m}$. Horizontal flow is allowed, as discussed in Section 3.1 for a chemical boundary. The barrier does not extend into the slab. Hence, we leave v_{z} free and set v_{y} equal to zero at the internal surface representing the barrier, and that surface does not include the 11 element nodes representing the slab. We see that a chemical discontinuity in the mantle would be expected to produce a peak in stress. Thus, within the framework of our assumption that the seismicity profile follows the stress profile, there is no evidence for a barrier of this sort above 670 km .

Another discontinuity is the bztter known one at 400 km (e.g., Anderson, 1967). This second discontinuity has been widely thought to represent a phase transition of

Figure 30. Stress profiles for slabs more consistent with the results of the thermal model shown in figure 14. The sclid line is for a slab dipping 45° and extending to 670 km , with a densith structure such that the upper surface of the slab is densest, with a gredient down to the lower surface which is the least dense. The dashed line is for a similar slab, but with density decreasing with depth to half its shallow value.

upper mantle olvine into the spinel structure (Meijering and Rooymans, 1958; Ringwood and Major, 1970). The proposed olivine-spinel change has been thought to have significance in plate tectonic processes, In that its positive Clapeyron slope Implies an elevation of the phase boundary in the cold slab, this possibly providing a significant additional downward body forca (Turcotte and Schubert, 1971). Schubert et al (1975), have calculated this body force in their model descending slab. They estimate a quadrupling of the body force above the 400 km discontinuity. Fig 32 shows the stress profile for a 45° slab where this effect is included. The influence of this increase in body force on the stress profile is very significant, and no evidence for such behavior is seen in the seismicity profiles.

Thus we affirm once more that the distribution of seismicity with depth in the world appears, to first order, to be dictated by the presence of a barrier at $\mathbf{6 7 0} \mathbf{~ k m}$. Other proposed chemical discontinuities and phase transitions do not appear to be necessary to account for the observations, and in fact show evidence of being Inconsistent. Phase transitions where the phase boundary is not significantly elevated in the siab may be consistent. It is interesting to note that the phase transition of clinopyroxene to the garnet structure, favored by Anderson (1979a) for explaining the $\mathbf{4 0 0} \mathbf{k m}$ discontinuity, may have a Clapeyron slope lower than that for olivine \rightarrow spinel, although the value is not well constrained at present (Akaogi and Akimoto, 1977). It should be bome in mind, however, that for any phase transition, Kinetic factors might prevent a significant change in elevation of the phase boundary In the slab (Hager, personal communication, 1983).
-165-

Figure 31. Stress profle for a 45° slab extending to 670 km , but with a barrier to vertical flow at 200 km arising from a hypothetical chemical discontinuity. The barrier does not extend into the slab, which in this scenario is assumed to have pierced the discontinuity.

Figure 32. Stress profile for a 45° slab with an elevated olivine-spinel phase boundary as calculated by Schubert et al. (1975). A is for a phase boundary clevated by $\approx 100 \mathrm{~km}$, as m that paper, and B is for a phase boundary elevated by 50 km .

ORIGINAL PREX IS OF POOR QUALITY

3.8 Viscosity Increasing with Depth in the Mantse

If we do not impose a step function increase in viscustsy at 670 km , but rather allow viscosity to incruase smoothly with depth in the mantle, sto we get the same resuits? Fig. 33 shows the results of a model where viscosity in the upper mantle increases linearly with depth such that the viscosity is 26 times greater at $\mathbf{6 7 0} \mathbf{~ k m}$ than it is immediately below the lithosphere 'where it is 1 , that $1 s, 10^{22} \mathrm{p}$ in our scaling). The lower mantle, below 670 km, has a viscosity of 25 . The viscosity of the slab is kept at a value of 10 as in previous mooiels. The stress profile i- smoothed out somewhat; the deep peak is not as intense. However, the profile still shows some of the first order features obaerved in the seismicity.

This la less true of the profile in fig 34. We arrive at this profile by using the model of fig 33, except that we now allow viscosity to increase with depth in the slab as well as in the mantle. The slab is now ten times more viscous than the mantle at every depth. There is nc reason to presume, If viscosity increases with depth in the mantle, that it should not also do so in the siab. Thus we might say that, based On the poorer match of fig. 34, an Increasing-viscosity model is not as successful in explaining the variation of seismicity with depth as is a sharp increase at 670 km .

3.10 The Asthenosphere, Mesosphere, and Double Benioff Zones

We explore here the effect of a low viscosity zone in the mantle just below the lithosphere (Cathles, 1976). We refer to this zone, to which we assign a viscosity of 0.01 . elative to the rest of the maritie, as the "asthenosphere", following establlshed convention, end the more viscous mantie below it as the "mesnsphere", following Sleep (1979). The sagging stresses in the slab as it meets the asthenospheremesosphere contact have been proposrd (Sleep, 1979) as a possinle explanation of

Figure 33. Stress Profile for a 46° dipping slab subjected to gravitationai forces only, when viscosity in the mantle increases linearly with depth from a value of $1\left(10^{22} p\right)$ immediately below the lithosphere to one of 25 at 670 km . The viscosity of tie slab is 10 at all depths.
-171-
ORIGINAL PAGE RG
OF POOR QUALITY

Figure 34. The same model as that in fig. 33, except that viscosity increases with depth in the slab as well as in the mantle, so that the viscosity of the slab is ten times that of the mantle at every depth.
-173-

double Benioff zones. We will see below that models of the kind considered by Sleep also yield stress profiles consistent with observed seismicity.

The literature on double Benioff zones has been reviewed by Fujita and Kanamori (1981). A double Benioff zone is a structure of selsmicity involving two parallel planar earthquake belts, separated by about $30-40 \mathrm{~km}$, and existing between approrimately 65 and 185 km depth. The upper zone is characterised by down-dip (or, as Fujita and Kanamori call it, "in-plate") compression, while the lower zone is tensile. This stress orientation is opposite to what one would expect for a bonding plate, and in fact "unbending" of the .late was an early proposed explanation for the observations (Engdahl and Scholi, :977). Fujita and Kanamori cast some doubt on the unbending hypothesis, because they argue that if this were the explanation, one might expect double Benioff zones to be a global feature. In fact the only true douDle Benioff zones known are in Japan (Tsumura, 1973; Umino and Hasegawa, 1975, 1982; Hasegawa et al., 1978) and the Kurles (Veith, 1974, 1977). Engdahl and Scholz (1977) reported a double Benioff zone for the Aleutians. However, the existence of this zone has been called into question by Topper (1978, cited by Fujita and Kanamori), who believes that what one is actually seeing in the Aleutians is a tear in the Benioff zone, which st: ws up as an extra nlane when all everics are projected onto a vertical cross section. Reyners and Coles (1982), who continue to treat the Aleutian data as a double Benioff zone, report that the stress orientation in the upper and lower planes is opposite to what one might expect from unbending, that is, opposite to what is seen in Japan.

Sleep's (1979) models have a lithosphere of $2 \times 10^{29} p$ viscosity, an asthenosphere of $2 \times 10^{20} \mathrm{p}$, an accretionary wedge of icosity varying between $2 \times 10^{2:}$ and $2 \times 10^{23} \mathrm{p}$. and a mesosphere of viscosity varying between 10^{21} and $2 \times 10^{12} \mathrm{p}$. The
accretionary wedge does not have much effect on Sleep's results, but the mesosphere does. If mesospheric viscosity is less than about $2 X 10^{22} \mathrm{p}$, the stress in the slab is down-dip tensile. If it is higher than $6 \times 10^{22} \mathrm{p}$, the stress is down-dip compressive. Between these two viscosities, a double Benioff zone develops.

Fig. 35 shows a calculation very similar to Sleep's for a mesospheric viscosity of $2 \times 10^{22} \mathrm{p}$. (Note that Sleep's boundary conditions are somewhat different from those we have used in our other models. He imposes a velocity of $5.7 \mathrm{~cm} / \mathrm{yr}$ on the lithosphere on the left side. We have applied similar boundary conditions). The slab extends to 200 km depth and dips 60°-- Sleep was trying specifically to explain the situation then thought to prevall in the Aleutians. The top of the mesosphere is at 160 km . Examining fig. 35 (b), we see that below about 100 km , the upper plane of the slab is in compression, and the lower plane is (somewhat weakly) in tension. Fig 35(a) plots the stress magnitude as in our other caiculations. It behaves like our other shallow profiles, showing a fairly smooth decay. If we let the slab extend to 670 km , "ith our customary barrier at that depth (fig. 36), the stress profile is not qualitatively different from that in a uniform mantle. The minimum is just somewhat broader. At depths below about 400 km , the stress is down-dip compressive throughout the siab, while at depths from about $120-400 \mathrm{~km}$, the stress is as in a double Benioff zone. This is teeper than the range associated with double zones.

8.11 Non-Linear Rheology

All calcuiations so far in this study have assumed that the mantle and slab behave as Newtoniar: fiuids. Other than compufational convenience, there is no a. priori reason to assume this. While some proposed deformation mechanisms for the mantle, suc! as point defect dif'usion (Neoarro, 1948; Herring, 1950; Raj and

Figure 35. (a) Stress profile for a 60° slab extending to 230 km , with an asthenosphere-mesosphere contact at 160 km depth. The viscosity of the asthenosphere is $0.02 \times 10^{22} \mathrm{p}$, and of the mesosphere $2 \times 10^{22} \mathrm{p}$. Flgure 35(b) shows compression axer for this slab.

a

Figure 36. As Figure 35, but for a slab extending to 670 km . (a) plots the stress profile, and (b) plots the compression axes.

a
-181-

$$
\begin{aligned}
& \text { ORIGIVAL FRAK } \\
& \text { OF POOR QUALITY }
\end{aligned}
$$

Ashby, 1971) or superplastic creep (Twiss, 1976) have linear constitutive relations, others do not. Diffusion controlied dislocation cllmb, known as "dislocation creep", has a strain rate proportional to some power n of the stress. n can be between 3 and 10 , tending to the higher end of the range with increasing temperature and decreasing stress (Stocker and Ashby, 1873).

We have calculated stress profiles for models with a nonlinear rheology. As \boldsymbol{n} is not known, we have chosen a value of 3 for computational reasons. The results for a 45° s'sb extending to $\mathbf{8 7 0} \mathrm{km}$ and subjecteid only to grasitational forces are shown in fig 37. They are very similar qualitatively to the linear results, and wo find no cause to suspect that nonlinear mantle meology will alter or invalidate our conclusions. We note that the calculation assumes a slab viscosity 100,000 times greater than the mantle viscosity of $10^{22} \mathrm{p}$ at unit stress (4.72 bars, as discussed in Section 3.1.1). The cortrast in effective viscosity, however, is far lower-- viscosity is stress dspendent. We can see this in fig. 38, which snows contours of effective visc.ssity, where a viscosity of 1 represents the starting mantie viscosity. The siab has an e:tactlve viscosity of order 10 , while the mantle varies from order 0.01 to 1. The nonilinear meology tends to create a low viscosity zone where the slab is bendIng, and on the underside near the bottom where the slab approaches the barrier. We can see hints of a tensional lower surface and a comprassive upper surface in the slab (fig. D37S), as we observed in our previous linear models containing an asthenosphere (Section 3.10).

We note that the choice of the factor $: 0^{5}$ was mede in order to obtain reasonable flow velocities cf order $1-10 \mathrm{~cm} / \mathrm{y}$. In the linear case, this is achicved by choosing $\eta_{\text {SLAE }}=10 \eta_{\text {LANTLE }}$, and contrasts of 10^{5} would lead to very small velocities. In the nonlinear case ($n=3$), choosing $\eta^{0}{ }_{\text {SLAB }}=10 \eta_{\text {nANTLE }}$ leads to

Figure 37. Results for a nonlinear rheology ($n=3$). Slab dips 45° and is suhjected only to gravitational forces. Viscosity of slab at unit stress is 10^{5} times that of mantle.

c-3

Figure 38 Contours of sffective viscosity for the slab of fig. 37. A viscosity of 1 represents the starting mantle viscosity. Contours are drawn at effective viscosities of $0.06,0.1,0.3,1.0,3.0,10.0$, and 30.0 .
-180-
670 km
ORIGINAL FEGE IS OF POOR QUALITY

velocties on the order of tens or hundreds of metisrs a year.

3.12 The Nature of the 670 km Barrier

Wheiher the 670 km barrier is a chemical discontinuity or a viscosity jump is not resolvable by our dete. The stress pattems- both orientation and magnitude-- are explainable, to first order, either way. The flow patterns, however, may provide some constraint. If we look at fig. 39, the flow field for a slab running into an impenetrable barrier, we see that the flow lines near the bottom of the slab do not parallel the dip of the slab, but rather flatten out. The slab looks as if it is about to distort into a sigmoidal shape. This kind of shape is not observed. Looking at fig. 40, the flow lines for the slab when there is a viscosity jump of an order of magnitude at 670 km , we see that the flow roughly parallels the slab, and no distortion is implied, particularly when the slab is allowed to extend into the fower mantie. This result is related to that obtained by Hager and O^{\prime} Connell (1978). They calculated global manthe flow fields driven by observed surface plate motions. They were able to predict subduction zone dip angles successfully when they allowed flow to extend into the lower mantle, but not when they confined flow to the upper mantle.

There are other arguments favoring the viscosity contrast as well. Some of the most powerful are the ones given by Hager (1983). He finds that geoid anomalies over subduction zones are positive, contrary to what one might expect in a model Earth of uniform viscosity; a factor of 30 or more Increase in viscosity with depth is required to account for this observation. Moreover, Hager finds that the density contrasts in the seismically active parts of Benioff zones are insufficient to account for the magnitude of the observed geoid anomalies. Allowing slabs to penetrate aseismically into the rower mantle can account for this discrepancy. Another way to account
for $i t$, under the hypothesis of a chemically layered mantie, is to have 350 km of dead slab at the base of the upper mantie. Hager argues that this would require a substantial deflection of the $\mathbf{6 7 0} \mathbf{~ k m}$ discontinuity, which has not been observed.

The finer f: atures of the selsmicity patterns in some of our regions may be better explained by a viscosity contrast of a factor of 10 to $\mathbf{3 0}$ than by a very large viscosity contrast or a chemical discontinuity. if we refer back to fig. 19, and then to the plots in Appendlx C, we see that many of the deep regions have deep peaks whose size relative to shallow selsmicity leveis might imply a "soft" boundary at 870 km. The Marianas, for instance, have a deeply positioned selsmicity minimum, and a sriall deep peak. This pattern is better matched by a vertical slab sinking into a viscosity cont.ast of an order of magnitude, or even less, than by one sinking into a hard boundary. The seismicity pattern ooserved In Mindanao is also suggestive of a relath/ely soft boundary, while that seen in Tonga is more suggestive of a hard one. Perhaps we are seeing the effects of lateral variations in mantie viscosity.

So can we conclude that the boundary at 670 km is a viscosity contrast rather than chemical discontinulty? Not necessarlly; consider fig. 41, which pluts the stress proflie for the slab of fig. 40 (b). The upper mantle stress pattern is adequate to explain observed seismicity, but the stress in the slab is still high at depths below 670 km . Why, then, do earthquakes not occur there? One can adopt the somewhat ad hoc explanation (e.g., Wortel, 1982) that $\approx 700 \mathrm{~km}$ simply happens to be the depth at which a critical temperature is reached and the slab loses its mechanical integrity, becoming aseismic. Such an explanation is not satisfying, however; it seems llke too much of a coincidence that earthquakes should siop, after a very high level of activity, at a depth where there is also a possibly very sharp seismic discontinuity (Richter, 1979). Thus, the question is not resolved.

The sharpness of the disconthulty (Whitcomb and Anderson, 1988) has been used by Anderson (1976) as an argument agalnst its being caused by a phase transition. Bell (Geological Sclences Seminar, Caltech, 1983), however, has disputed this argument, stating that the transition of upper mantle phases to the perovskite structure may indeed be sharp enough to explain the discuntinulty. Thus, a phase transition is still a possibility, so we examine the possible effects of one kind of transition which has the potential to help us explain the selsmicity patterns. If a phase transition at 670 km has a negative Clapeyron slope, the phase boundary may be depressed in the slab. This may then cause an upward body force on the slab, producing compressive stress at depth, and possibly a stress profle with a minimum and a deep peak. It was once belleved that upper mantle olivine in the spinel structure might disproportionate into mixed oxides (Birch, 1952), a transition which might Involve a negative Clapeyron slope (Ahrens and Syono, 1967). Since the discovery that olvine and pyroxene transform to the perovskite structure at high pressure (Llu, 1976,1976), there is less reason to suspact a negative Clapeyron slope. However, It is still possible, as the slope for the perovskite transition is not known.

Fig. 42 shows a curve for the spinel to mixed-oxides transition as calculated by Schubert et al. (197f), with a density contrast of $0.4 \mathrm{~g} / \mathrm{cc}$, and a $\approx 30 \mathrm{~km}$ depresslon of the boundary in the slab. We see that a model of this sort is capable of adequately matching the seismicity profiles, without an increase in mantle viscosity or a chemical barrier at 670 km . However, as we have said, we have no riason to suppose a negatlve Clapeyron slope. A viscosity change or a chemical discontinuity still constitute more straightforward explanations of the phenomenc at hand.

Figura 30. Flow fleld for a 45° slab sinking under its own walght when there is a barrier at 670 km . The stress fleld for this slab is shown in figs. 24 anc 25. The flow lines appear to flatten out at the boundary, suggesting that the slab may be about to distort into a sigmoidal shape.

670 km

-192-

Figure 40. Flow fields for a 46° slab sinking under its own weight when there is a viscosity contrast of an order of magnitude at 670 km . In (a), the slab extends to 670 km depth. In (b), it penetrates into the lower mantle, to a depth of 1000 km . The flow lines are more allgned with the dip of the slab than they are in fig. 39.

Figure 41. Stress profile for the slab of fig. $\mathbf{4 0 (b) , ~ a ~} 45^{\circ}$ slab sinking under its own weight into the lower mantle to a depth of 1000 km , when there is a viscosity contrast of an order of magnitude at 870 km . The stress in the upper mantle portion of the slab is consistent with observed seismicity, out we note that the stress in the lower mantle portion is still high.

ORIGINAL PACE IS
CF POOR QUALITY

Figure 42. Stress finfiles for a 45° slab sinking under its own weight when there is a phase transition at 670 km with a negative Clapeyron slope, as calculated by Schubert et al. (1975).

4. Summary and Conclusions

(1). The distribution of earthquakes with depth in the world has the following features: (a) an exponential decrease from shallow depths down to ≈ 250 to $\mathbf{3 0 0}$ km, (b) a minimum leve! near 260 to 300 km , and (c) deep peak below 300 km . Many shallow su!uducting slabs show only feature (a). Deeper extending regions tend to show (a), (b), and (c), with the deep peak varying in position and intensity.
(2). A survey of events analysed by moment tensor inversion has confirmed some eariler Ideas concerning the state of stress in the slab. Deep earthquakes (below 300 to 400 km) tend to have compression axes aligned with the dip of the slab. This appears to be a global tendency. The behavior of intermedinte earthquakes is less clear, and more region-dependent. Both shallow-extending slabs and deep-extending slabs other than Tonga have intermediate earthquakes which are, in orientation, closer to down-dip tension than they are to anything else, but whose tension axes are not as well aligned with slab geometry as are the compression axes of deep events. The Tonga region shows some tendency toward down-dip compression at intermediate depths. In generab, however, we do not agree with ear!ler concluslons ilsacks and Molnar, 1971) that deep-extending slabs in general are in down-dip compression at all depths.
(3). Simple viscous fluid models of subduction can explain observations (1) and (2) very well if there is a barrier of some sort at 670 km depth. A wide variety of models have stress magnitudes in the slab which display the following features as a function of depth: (a) a roughly linear decrease from shallow depths to about 250-

300 km , (b) minimum near 250-500 km, and (c) a deep peak whose poultion and Intenalty dapend on the depth of penotration if the slab. If the 070 km depth marks - viscoalty contrast, the poaition and intenalty of the deep peak are also affected by the magnitude of the viscosity increase: "softer" boundaries produce deeper and amaller peaks. Curves of atreas magnitude veraue depth look very much like ourves of $\log N$ versus depth, where N ls the number of earthquakes. The minimum at a $\mathbf{3 0 0}$ km seens to be dictated by the 670 km length scale. The linear decrease in $\log N$ with depth down to a 300 km is underatandable if the number of evente depends exponentially on the stress, for which there la some experimental evidence. Slab models with a barrier at 670 km yleld down-dip compression below 300 to 400 km , in concordance with observation (2). At intermediate deptha, dipping alabs in the modela have a state of stress which is nolther down-dip tenslle nor down-dip compressive, although it is closer to the former. This, too, agrees with (2).
(4). The observationa are explainable if the slab sinks under ite own weight and is not subjected to push forcea. They are akro explainable if push forees exist in conjunction with gravitational forces. However, a slab subjected to push forces alone does not develop a deap peak in stress, and thus is not adequate to explain the observations.
(5). Chemical diaconthuities above 670 km , or phase transitiona with a phase boundary elevated in the alab relative to the mantie, produce peaks in stress which do not appear to be mirrored in the selamicity. Phese transitions whose boundartes are not elevuted in the alab may be conalatent with the observationa.
(8). The data are conalatent with aniform viscosity mantle above the impoitant barrier at ${ }^{-} 0 \mathrm{~km}$. Inclusion of a low viacosity asthenosphere below the lithoaphere does not destroy the match between calculeted stress proflles and observed
selamicity, and oen also help explain the atrees orientations associated with double Benloff zones (Sleep, 1979).
(7). The results for a nonlinear rheology (n - 3) are qualliatively shollar to the Innear results.
(8). Observations (1) and (2) are equally well explained if the barrier at 670 km Is a chemical discontinulty or a viscosity contrast where viscosity Increases by an order of magnitude or more. A viscoelty contrat ylelds flow fields in the models which are more conslstent with observed slab shapes. However, If we allow the slab to penetrate into the lower mantle, we find that stresses in the slab below 070 km are as high as they are at upper mantle depths. We are thus faced with the problem of explaining why these stresses do not produce earthquakes.

REFERENCES

Abe, K. (1981). Magnitudes of Large Shallow Earthquakes from 1904 to 1080 , Phys. Earth Plan. Int., 27, 72-02.

Abe, K., and H. Kanamori (1979). Temporal Variation of the Activity of Intermediate and Deep Focus Earthquakes, J. Geophys. Res., 84, 3589-3595.

Ahrens, T. J., and Syono, Y. (1987). Calculated Mineral Reactions in the Earth's Mante, J. Geophys. Res., 72, 4181-4188.

Akaogi, M., and S. Akimoto (1977). Pyroxene-Garnet Solid Solution Equillbria in the Systems $\mathrm{Mg}_{4} \mathrm{Si}_{4} \mathrm{O}_{12}-\mathrm{Mg}_{3} \mathrm{Al}_{2} \mathrm{Si}_{9} \mathrm{O}_{12}$ at High Pressures and Temperatures, Phys. Earth Plan. Int., 15, 90-106.

Anderson, D. L. (1967). Phase Changes in the Upper Mantle, Science, 167, 1166 1173.

Anderson, D. L. (1976). Thf 650 km Mantle Discontinuity, Geophys. Res. Lett., 3, 347-349.

Anderson, D. L. (1979a). The Upper Mantle Transition Region: Eclogite ? Geuphys. Res. Lett., 6, 433-436.

Anderson, D. L. (1979b). The Deep Structure of Continents, J. Geophys. Res., 84, 7565-7680.

Ashby, M. F., and R. A. Verrall (1977). Micromechanisms of Flow and Fracture, and Their Relevance to the Rheology of the Upper Mantle, Phil. Trans. Roy. Soc. Lond., A, 288, 59-95.

Bath, M. (1981). Earthquake Magnitude-- Recent Research and Current Trends, Earth

Scl. Rev., 17, 316-398.
Batschelet, E. (1981). Circular Statiatics in Blology, Academic Press, N. Y.
Bingham, C. (1984). Distributions on the Sphere and on the Projective Plane, PhD Dissertation, Yale University, New Haven, CT.

Bingham, C. (1974). An Antipodally Symmetric Distribution on the Sphere, Ann. Statist., 2, 1201-1 225.

Birch, F. (1952). Elasticity and Constitution of the Earth's Interior, J. Geophys. Res., 67,227-286.

Cardwell, R. K., B. L. Isacks, and D. E. Karig (1980). The Spatial Distribution of Earthquakes, Focl Mechanism Solutions, and Subducted Lithosphere in the Philippine and Mortheastern Indonesian Islands, in Dennis E. Hayes, ed., The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Geophysical Monograph 23, American Geophysical Union, Washington, 1-36.

Cathles, L. M. (1975). The Viscosity of the Earth's Maritle, Princeton University Press, Princeton, N. J.

Chouhan, R. K. S. and V. K. Srivastava (1970). Global Variation of b in the Gutenberg-Richter's Relation $\log N=a-b M$ with Depth, Pageoph., 82, 124-132.

Dziewonski, A. M., T. A. Chou, and J. H. Woodhouse (1981). Determination of Earthquake Source Parameters from Waveform Data for Studies of Global and Regional Selsmicity, J. Geoph. Res., 86, 2825-2852.

Dziewonski, A. M. and J. H. Wood ouse (1983). An Experiment in Systematic Study of Global Seismicity: Centroid-Moment Tensor Solutions for 201 Moderate and Large Earthquakes of $1981, \mathrm{~J}$. Geophys. Res., in press.

Engdahl, E. R. and C. H. Scholz (1977). A Double Benloff Zone Beneath the Central Aleutians: An Unbending of the Lithosphere, Geoph. Res. Lett., 4, 473-476.

Fisher, R. A. (1953). Dispersion on a Sphere, Proc. Roy. Soc. A, 217, 295-305.
Fujita, K., and H. Kanamor (1981). Double Seismic Zones and Stresses of Intermediate Depth Earthquakes, Geophys. J. Roy. Astr. Soc., 86, 131-156.

Giardini, D. (1882). Depth Dependence of Deviations of Earthquake Source Mechanisms from "Double Couple" Model, EOS, 83, 1027.

Giardini, D. (1983). Manuscript in Preparation.
Gilbert, F. (1981). An Introduction to Low Frequency Seismology, in A. M. Dziewonski and E. Boschi (eds.), Physics of the Earth's Interior, North Holland, Amsterdam, 41-81.

Goldreich, P., and A. Toomre (1989). Some Remarks on Polar Wandering, J. Geophys. Res., 74, 2565-2567.

Gueguen, Y. and A. Nicolas (1980). Deformation of Mantle Rocks, Ann. Rev. Earth Plan. Scl., 8, 119-144.

Gutenberg, B. and C. F. Richter (1954). Seismicity of the Earth and Associated Phenomena, Hafner Pub. Co., N. Y. (1985 facsimile)

Heger, B. H. (1983). Subducted Slabs and the Geoid: Constraints on Mantle Rheology and Flow, to be submitted for publication.

Hager, B. H., and R. J. O'Connell (1978). Subduction Zone Dip Angles and Flow Driven by Plate Motion, Tectonophys., 60, 111-133.

Hager, B. H., and R. J. O'Cornell (1981). A Simple Global Model of Plate Dynamics and Mantle Convection, J. Geophys. Res., 86, 4843-4867.

Haglwara, Y. (1974). Probabillty of Earthquake Occurrence from Results of Rock Fracture Experiments, Tectonophysics, 23, 99-103.

Hales, A. L., K. Muirhead, and J. Rynn (1976). Upper Mantle Travel Times in Australia, Phys. Earth Pian. Int., 11, 109-1 18.

Hasegawa, A., N. Umino, and A. Takagl (1978). Double Planed Structure of the Deep Seismic Zone in M.E. Japan Arc, Tectonophys., 47, 43-68.

Heaton, T. H. (1982). Tidal Triggeing of Earthquakes, Bull. Selsmol. Soc. Am., 72, 2181-2200.

Herring, C. (1950). Diffusional Viscosity of a Polyerystalline Solld, J. Appl. Phys., 21. 437.

Howard, A. and B. H. Hager (1983). Entrainment of tha Mantie and the Lifetime of the Subducting Slab, Manuscript In Preparation.

Hsul, A. T. and M. N. Toksöz (1079). The Evolution of Thermal Structures Beneath a Subduction Zone, Tectonophysics, 80, 43-60.

Hughes, T. J. R., W. K. Liu, and A. Brooks (1979). Finite Element Analysis of Incompresalble Viscous Flows by the Penalty Function Formulation, J. Comp. Phys., 30, 1-60.

Ilo, Y. (1982). Scalling of Rupture Size-- From Earthquake to Acoustic Emission, Zisin, 36, 183-193.
laacks, B., and M. Barazangl (1977). Geometry of Benboff Zones: Latera! Segmentation and Downwards Bending of the Subducted Lithosphere, In M. Talwani and W. C. Pitman (eds.), Island Arcs, Deep Sea Trenches and Back-Arc Basins, Ewing Serles, val. 1, American Geophyalcal Union, Washington, D. C., 90-1 14.

Isacks, B., and P. Molnar (1969). Mantle Earthquake Mechanisms and the Sinking of the Llthosphere, Nature, 223, 1121-1124.
laecks, B., and P. Molnar (1071). Distribution of Stresses in the Descending Lithoaphere from a Global Survey of Focal Mechanism Solutions of Mantie Earthquakes, Rev. Geophys. Sp. Phys., 9, 103-174.

Isacks, B., J. Ollver, L. R. Sykes (1988). Selsmology and the New Giobal Tectonics, J.

Geophys. Res., 73, 6865-5899.
Ishimoto, M., and K. Ilda (1939). Observations sur les Selsmes Enregistres par le Microsismographe Constrult Dermierement, Bull. Earthquake Res. Inst., 17, 443478.

Jarosch, A., and E. Abood (1970). Towards a Unified Notation of Source Parameters, Geophys. J. Roy. Astr. Soc., 21, 613-629.

Johnson, C. E., and F. M. Richter (1979). Stereoviews of Selamicity Associated with Subduction Zones, J. Geol., 87, 467-474.

Kagan, Y. Y., and L. Knopoff (1980). Dependence of Selsmicity on Dapth, Bull. Selsmol. Soc. Am., 70, 1811-1822.

Kanamorl, H. (1978). Cuantification of Earthquakes, Nature, 271,411-414.
Kanamori, H., and J. W. Given (1981). Use of Long Period Surface Waves for Rapid Determination of Earthquake Scurce Parameters, Phys. Earth Plan. Int., 27, 8-31.

Kanamori, H., and J. W. Givon (1982). Use of Long Perlod Surface Waves for Rapld Determination of Earthquake Source Parameters, 2. Preliminary Determination of Source Mechanism of Large Earthquakes ($M_{S} \geq 6.5$) in 1980 , Phys. Earth Plan. Int., 30, 260-268.

Katsumata, M., and L. R. Sykes (1969). Selsmicity and Tectonics of the Western Pacific: Izu-Mariana-Caroline and Ryukyu-Taiwan Reglons, J. Geophys. Res., 74, 6023-6948.

Knopoff, L., and J. Randall (1870). The Compensated Linear Vector Dipole-- A Possible Machanism for Deep Earthquakes, J. Geophys. Res., 75, 4967-4963.

Kusunose, K., K. Yamamoto, and T. Hrasawa (1980). Source Process of Microfracture In Granite with Reference to Earthquake Prediction, Sci. Rep. Tohoku University, Ser. 6, Geophys., 26, 111-121.

Lehmann, I. (1961). S and the Structure of the Upper Mentle, Geophys. J. Roy. Astr. Soc., 4, 124-1 38.

Liu, L. G. (1975). Post-Oxide Phases of Forsterte a.id Enstatite, Geoph. Res. Lett., 2, 417-419.

Liu, L. G. (1976). The Post Spinel Phase of Forsterite, Nature, 262, 770-772.
MacDonald, G. J. F. (1963). The Deep Sructure of the Continents, Rev. Geophys. Sp. Phys., 1, 687-665.

Mardia, K. V. (1972). Statistics of Directional Data, Academic Press, N. Y.
McKenzie, D. P. (1966). The Viscosity of the Lower Mantle, J. Geophys. Res., 71, 3896-4010.

McKenzie, D. P. (1969). Speculations on the Consequences and Causes of Plate Motions, Geophys. J. Roy. Astr. Soc., 18, 1-32.

McKenzie, D. P., J. M. Roberts, and N. O. Weiss (1974). Convection in the Earth's Mantle: Towards a Numerical SImulation, J. Fiuid Mech., 82, 465-638.

Melosh, H. J. and A. Raefsky (1980). The Dynamical Origin of Subduction Zone Topography, Geophys. J. Roy. Astr. Soc., 60, 333-354.

Meijering, J. L., and C. J. M. Rooymans (1958). On the Ollvine-Spinal Transition in the Earth's Mantle, Koninkl. Ned. Akad. Wetenschap. Proc., Ser. B., 81, 333-344.

Minear, J. W., arid M. N. Toksöz (1970a). Thermal Regime of a Downgoing Slab and the New Global Tectonics, J. Geophys. Res., 75, 1397-1419.

Minear, J. W., and M. N. Toksöz (1970b). Thermal Regime of a Downgoing Slab, Tectonophys., 10 167-300.

Mogi, K. (1982a). Study of Elastic Shocks Caused by the Fractura of Heterogeneous Materials and its Relations to Earthquake Phenumena, Bull. Earthq. Res. Inst., 40, 126-1 73.

Mogl, K. (1962b). Magnitude-Frequancy Relation for Elastic Shocks Accompanying Fracture of Various Materials and Some Related Problems in Earthquakes: II, Bull. Earthq. Res. Inst., 40, 861-863.

Mogi, K. (1981). Earthquake Prediction Program In Japan, in D. W. Simpson and P. G. Richards (eds.), Earthquake Prediction: An Intemational Review, Maurice Ewing Series vol 4, American Geophysical Union, Washington, D. C., 036-866.

Molnar, P., and P. Tapponier (1975). Cenozolc Tectonics of Asla: Effacts of a Continental Colision, Science, 189, 419-426.

Nabarro, F. R. N. (1948). Deformation of Crystals by the Motion of Single lons, in Strength of Sollds, The Phy:sical Society, London, 75.
O^{\prime} Connell, R. J. (1977). On the Scale of Mantle Convection, Tectonophys., 38, 119 1300.

Ohnaka, M., and K. Mogi (1981). Frequency Dependence of Acoustic Emission Actlvity in Rocks Under Incremental, Uniaxial Comprescion, Bull. Earthq. Res. Inst., 66, 67-89.

Ohnaka, M., and K. Mogi (1982). Frequency Characteristics of Acoustic Emission in Rocks Under Uniaxial Compression and Its Relation to the Fracturing Process to Fallure, J. Geophys. Res, 87, 3873-3884.

Onstott, T. C. (1980). Application of the Bingham Distribution Function In Paleomagnetic Studies, J. Geophys. Res, 86, 1600-1610.

Pascal, G., B. L. Isacks, M. Barazangi, and J. Dubois (1978). Precise Relocations of Earthquakes and Seismotectonics of the New Hebrides Island Arc, J. Geophys. Res., 83, 4957-4973.

Peltier, W. R. and J. T. Andrews (1976). Glacial-lsostatic Adjustment, I. The Forward Problem, Geophys. J. Roy. Astr. Soc., 46, 605-646.

Rej, R. and M. F. Ashby (1971). On Grain Boundary Sliding and Diffusional Ceep, Trans. Met. Soc. AIME, 2, 1113.

Reyners, M., and K. Coles (1982). Fine Structure of the Dipping Selsmic Zone and Subduction Mechanics in the Shumagin lalands, Alaska, J. Geophys. Ras., 87, 356-366.

Richter, C. F. (1968). Elementary Seismology, Freeman, San Francisco.
Richitur, F. M. (1973). Dynamical Models for Sea Floor Spreading, Rev. Geoph. Sp. Phys., 11, 223-288.

Richter, F. M. (1979). Focal Mechanisms and Selamic Energy Release of Deap and Intermediate Earthquakes in the Tonga-Kermadec Region and their Bearing on the Depth Extent of Mantio Flow, J. Geophys. Res., 84, 6783-6796.

Ringwood, A. E., and A. Major (1970). The system $\mathrm{Ng}_{2} \mathrm{SiO}_{4}-\mathrm{Fe}_{\mathrm{g}} \mathrm{SiO}_{4}$ at High Pressure and Temperature, Phys. Earth Plan. Int., 3, 89.

Sano, O., M. Terada, and S. Ehara (1982). A Study on the Time-Dependent Microfracturing and Strength of Oshimn Granite, Tectonophys., 84, 343-362.

Scholz, C. H. (1988). The Frequency-Magnitude Relation of wilcrofracturing in Rock and Its Relation to Earthquakes, Bull. Seismol. Soc. Am., 68, 399-41i.

Schubert, G., D. A. Yuen, and D. L. Turcotte (i975). Role of Phase Trensitions in a Dynamic Mantle, Geophys. J. R. Astr. Soc., 42, 706-736.

Sleep, N. H. (1975). Stress and Flow Beneath Island Arcs, Geophys. J. Roy. Astr. Soc., 42, 827-857.

Sleep, N. H. (1979). The Double Seismic Zone in Downgoing Slabs and the Viscosity of the Mcsosphere, J. Gaophys. Res., 84, 4530-4571.

Stephens, M. A. (1984). The Testing of Unit Vectors for Randomness, J. Amer. Statist. Assoc., 59, 160-167.

Stephens, M. A. (1960a). Tests for Randomness of Directions Agalnst Two Clrcular Alternatives, J. Amer. Statist. Assoc., 04, 280-280.

Stephens, M. A. (1989b). Tests for the Von Mises Distribution, Blomatrika, 66, 149180.

Stocker, R. L., and M. F. Ashby (1973). On the Rheology of the Upper Mantie, Rev. Geophys. Sp. Phys., 11, 391-426.

Sykes, L. R. (1906). Seismicity and Deep Structure of Isiand Arcs, d. Geophys. Res., 71, 2981-3006.

Tarr, A. C. (1974). World Selamicity Map, United St.ates Geological Survey
Toksöz, M. N., J. W. Minear, and B. R. Julian (1971). Temperature Fleln and Geophysical Effects of a Downgoing Slab, J. Geophys. P.es., 76, 1113-1138

Toksöz, M. N., N. H. Sleep, and A. T. Smith (1973). Evolution of the Dowr.zoing Lithesphere and the Mechanisms of Deep Focus Earthquakes, Geophys. J. Roy. astr. Soc., 35, 286-31 0.

Topper, R. E. (1978). Fine Structure of the Benioff Zone Beneath the Centra! Aleutian Arc, M. S. Thesis, Univ. of Cotorado.

Tsumura, K. (1073). Microaarthquake Actistty in the Kanto District, Spec. Pub. Earthq. Res. Inst. Tokyo Univ. for $\overline{0} 0$ th Annlv. Great Kanto Earthquake, 67-87.

Turcotte, D. L. and G. Schubert (1971). Structure of the Olivine-Spinel Phese Boundary In the Descending Lithosphere, J. Geophys. Res., 78, 7980-7987.

Turcotte, D. L., and G. Schubert (1973). Frictional Heating of the Descending Lithosphere, J. Geophys. Res., 78, 5876-6886.

Twiss, R. J. (19?6). Structural Superplastic Creep and Linear Viscosity in the Earth's Mantle, Earth Plan. Sci. Lett., 33, 86-100.

Umino, N., and A. Hasegawa (1975). On the Two-Leyered Structure of Deep Seismic

Plane in Northeastern Japan $A:$: Zisin, 27, 1 卫E,-139.

Umino, N., and A. Hasegawa (1982). A Detalled Structure of the Deep Seismic Zone and Earthquake Mechanism in the N. E. Japan Arc, Zisin, 36, 237-267.

Uyeda, S., end H. Kanamorl (1979). Back-Arc Opening and the Mode of Subduction, J. Geophys. Res., 84, 1049-1081.

Veith, K. F. (1974). The Relationship of Island Arc Seismicity to Plate Tectonics, PhD Dissertation, Southern Methodist University.

Veith, K. F. (1977). The Nature of the Dual Zone of Seismicity in the Kuriles Arc, EOS, 58, 1232.

Walcott, P. I. (1973). Structure of the Farth from Glacio-lsostatic Rebound, Ann. Rev. Earth Plan. Sci., 1, 16-3i.

Watson, G. S. (1F.E日a). Analysis of Dispersion on A Sphere, Mon. Not. Roy. Astr. Soc., Geophys. Supp., 7, 153-159.

Wetscn, G. S. (1956b). A Test for Randomness of Directions, Mon. Not. Roy. Astr. Soc., Geophys. Uupp., 7, 160-161.

Watson G. S. (1966). The Statistics of Orientation Data, J. Geol., 74, 786-797.
Watson, G. S. and E. Irving (1957). Statistical Methods in Rock Magnetism, Mon. Not. Roy. Astr Soc., Geoph. Supp., 7, 289-300.

Whitcomb, J. H., and D. L. Anderson (1970). Reflection of P'p' Seismic Waves from Discontlnuties in the Mantle, J. Geophys. Re . 75, 5713-6728.

Wortel, R., (1982). Seisinicity and Rheology of Subducted Slabs, Nature, 296, 653666.

Yuen, D. A., R. Sabadini, and E. V. Boschi (1882). Viscosity of the Lower Mantle as Inferred from Rotational Data, J. Geophys. Res., 87, 10746-10762.

APPENDICES

-

NOTE: References mentloned in Appendices are in the same list es the other references for Part II.

Appendix A: Mechanisms of Large Intermediate and Deep Earthquakes, 1978-1981

We presint here the results of surface wave inversions for the focal mechanism of large intermediate and deep earthquakes from 1978-1981. Table A1 lists information from the NOAA catalog about these events. In deciding which events were "large", we were guided by the magnitudes. We studied earthquakes with $\boldsymbol{m}_{b} \geq 6$, and which offered some other evidence of being large, for example, a large listing under Mother. Magnitudes, however, are not necessarily reliable indicators of the size of an earthquake (Kanamori, 1978). Thus, some of the events we studied did not in fact tum out to have moments which would place them among the very largest events for the period.

Our data consist of vertical component Rayleigh waves recorded on IDA (international Denloyment of Accelerographs) instruments. Generally, we use R2 in the Inversions. Often, we also use R1, and sometimes R3. The technique is described by Kanamori and Given (1981,1982). What follows in this paragraph is taken almost directly from Section 2 of the 1981 paper. The parameter vector is $M=\left[M_{x y}, M_{y y}-M_{x z}, M_{y y}+M_{x z}, M_{y z}, M_{z z}\right]^{T}$. Once M is determined, the moment tensor matrix

$$
\begin{aligned}
& \boldsymbol{M}_{z z} M_{x y} M_{z z} \\
& M_{x y} M_{y y} M_{y z} \\
& M_{z z} M_{y z} M_{z z}
\end{aligned}
$$

can be diagonalised. The trace of the matrix is zero by assumption in the inversion.

The eigenvectors define the principal stress axes. If the intermediate axis is zero, the moment tensor is a double couple. If it is not, the moment tensor may be decomposed ather into a double coupla plus compensated Unear dipole (Knopoff and Randall, 1970) or two orthogonal double couples (Gilbert, 1981). Generally, one double couple will.be larger than the other. Table 12 presents the major and minor double couples we obtained for our events. The notation conventions are the same as those in Kanamori and Given (1981), who follow Jarosch and Aboodi (1970).

General moment tensor solutions often deviate significantly from double couples. Some investigetors (Dziewonskl et al., 1981; Dziewonski and Woodhouse, 1982; Giardini, 1982,1983) have attached significance to these deviations. Dziowonski et al. (1981):suggest a possible regional variation in the deviation from double couple. Elardini (1982,1983) reports a possible depth dependence in the deviation, with high deviations occuring at intermediate depths in deeply penetrating subduction zones. The deviation from double couple is a difficult parameter to interpret. There is at present no way to evaluate the significance of variations in this parameter, and one cannot be certain that the data avallable can effectively constrain it (Kanamorl and Glven, 1982).

The deuble couple is still a very useful model of the earthquake source, and one that has never been convincingly ruled out by the observations. Kanamori and Glven (1981) present a technique for Inverting IDA data when the source is constrained to be a double couple. We have performed such an inversion for each of our events and the resulta.are shown in Table A3.

In general wo see that the inversion of IDA data can be carried out quie successfully on deep and intermediate events, despite the lower signal levels of surface waves as compared to shallow events. There is, however, one difficulty which aises
at Intermedlate depths: the excltation functions of Rayleigh waves (see Kanamort and Stewart, 1976) go through zeroes, as shown In Fig. A2. Kanamori and Given's matrix equation (equation (7) in the 1981 paper) is

$$
A K=V
$$

where M is the parameter vector, V is vector of spectral points from the deta, and A is a matrix whose entries depend on theecitation functions. If any of the excltathon functions vanish, A becomes singular. \because onen $P_{R}{ }^{(1)}$ vankises, the olements $M_{a y}$ and $\left(M_{y y}-H_{m e}\right)$ are indeterminate. When $S_{R}{ }^{(1)}$ canishes ($M_{w}+M_{z}$) is indeterminate. The function $Q_{R}{ }^{(1)}$ does not venish except at zero depth, so it ls not of any concern except for very shallow events. Fig. A2(a) plots $S_{R}{ }^{(1)}$ versus depth for periods from 100-274 seconds; this represents the practically usable range of periods for these inversions. We see that the zero occurs somewhere between 80 and 160 km depth. From fig. A2(b), we see that $P_{R}{ }^{(1)}$ goes through a zero somewhere between 130 and 200 km depth. Thus IDA Inversions are subject to numerical difficulties over a slzeable portion of the intermedlate depth range. To some extent, we can avoid the problem by choosing an appropriate period. This technique, however, can push the zero away from the depth of interest by only a limited margin, and complications are caused by the fact that the depth is not known exactly. Reported depths in the NOAA catalog probably have error bars of at least $+/-25 \mathrm{~km}$. The hypocentral depth Is not varied as a free parameter in the Kanamori-Given scheme.

One way to improve solutions for eventa in the problematical depth range is to use first motion data in conjunction with the surface wave data. Kanamor (1982, personal communication) has developed a technique to do this. When $M_{z z}+M_{y y}+M_{z z}=0$, the standard expression for P-wave displacement in a
homogeneous whole-space can be written

$$
\begin{gathered}
u\left(i_{n}, \varphi\right)=H_{\pi y} \sin ^{2} i_{n} \sin 2 \varphi-\left(M_{w}-M_{m w}\right)\left(\frac{1}{2} \sin ^{2} i_{k} \cos 2 \varphi\right) \\
+\left(K_{m}+K_{w}\right)\left(\frac{1}{2}\left(1-3 \cos ^{2} i_{n}\right)\right)-M_{y w} \sin 2 i_{n} \sin \varphi-K_{x z} \sin 2 i_{n} \cos \varphi
\end{gathered}
$$

where i_{n} is takeoff angle and φ is azimuth. By estimeting u from amplitude data one can, in principle, determine the moment tensor. Because of the extreme scatter typically observed in P wave amplitude data, however, the technique uses a very crude amplitude measure, with +1 for a clear compressional arrival, 0 for an ambiguous arrival, and -1 for a clear tensional one. After obtaining a guess at the moment tensor from this simple method, one then picks the maximum ciement as a reference element M_{R}. In the case when $S_{R}{ }^{(1)}$ vanishes, $\frac{\left(K_{W^{W}}+M_{a s}\right)}{M_{R}}$ is constrained to have the same value in the surface wave inversion as is given by the body wave inversion. In the case when $P_{R}{ }^{(1)}$ vanishes, both $\frac{M_{z V}}{H_{R}}$ and $\frac{\left(K_{r y}-K_{s p}\right)}{M_{R}}$ are constrained. This technique has been used on events 07/22/80 and 05/13/78 indicated in Table A1.

ORIGINAL PAGE IS OF POOR QUALITY

Table A1 Liet of Eerthquakes Analyzed									
Date	H	M	S	Lat.	Lon.	Depth	m_{1}	Merer	Ref.
072280	07	06	23.0	-20.3	189.6	122	0.1	6.8	1
051378	07	08	46.2	-14.5	167.3	160	6.7	-	1
031678	22	04	40.1	26.4	140.6	283	6.1	0.7	1,3
030778	02	48	39.4	32.0	137.8	442	6.0	0.4	1,3,6
042881	21	14	66.7	-23.7	180.0	540	6.0	-	2
081079	21	31	28.3	41.8	130.8	688	6.1	0.7	1
072080	21	20	04.0	-17.9	-178.6	691	6.0	6.6	1
042479	01	46	09.0	-20.8	-178.7	609	6.0	6.7	1,3
101770	06	43	03.0	- 8.6	145.3	601	6.1	-	,

Rofer ences

(1) Olardini (1983)
(2) Datowonskl and Wouthouse (1883)
(3) Driowonakl of al. (11)8 1)
(4) Ollbert (1081)
(b) Wakek, personal oommunication (1082)

Theae references are to investgatora who have atudied these events independenty from us. in moet ceses, the agreement between our solutions and thetre to exceltent. Apf. (1), the as yet unpublished efudy by Clarutnl (1983), and nof. (2) ware atoo the sourses for the moment tensor muersiens of amaller carthquakes from 1077-1982, aurveyed m Section 2.

Event	Table A2Moment Tensor Inversions							
	Major Double Couple				Minor Double Couple			
	$\begin{gathered} M_{0} \\ 10^{27} \mathrm{dyn}-\mathrm{cm} \end{gathered}$	δ	λ	φ	$\begin{gathered} M_{0} \\ 10^{27} \mathrm{dym}-\mathrm{cm} \\ \hline \end{gathered}$	δ	λ	φ
072280	0.04	11.7	-89.8	8.4	0.01	60.7	43.8	-132.1
061378	0.24	57.9	87.7	-128.8	0.012	44.6	-108.6	-48.6
031578	0.098	87.1	183.6	104.1	0.023	61.0	68.8	-44.6
030778	0.68	80.1	63.7	158.9	0.036	48.4	176.3	-64.6
042881	0.21	85.8	44.3	163.0	0.04	83.1	63.7	-78.1
081678	0.137	20.6	135.2	50.6	0.0018	68.5	-67.6	120.3
072080	0.039	81.9	-46.6	-25.7	0.006	86.2	293.6	213.3
042479	0.067	82.2	16.3	-60.1	0.02	53.0	-38.6	-2.0
101779	0.44	60.0	-139.8	143.9	0.08	86.0	91.6	86.8

ORIGINAL PREE IG OF POOR QUALITY

Table ASFault Plane Inversions(Standard Errors in Parentheses)				
Event	$\begin{gathered} M_{0} \\ 10^{27} \mathrm{dyn}-\mathrm{cm} \end{gathered}$	0	λ	φ
031578	$\begin{aligned} & 0.063 \\ & (0.011) \end{aligned}$	$\begin{aligned} & 47.0 \\ & (11.9) \end{aligned}$	$\begin{array}{r} 178.2 \\ (4.9) \end{array}$	$\begin{array}{r} 120.0 \\ (4.8) \end{array}$
030778	$\begin{gathered} 0.59 \\ (0.56) \end{gathered}$	$\begin{gathered} 24.1 \\ (11.6) \end{gathered}$	$\begin{gathered} 157.3 \\ (0.0) \end{gathered}$	$\begin{aligned} & 48.5 \\ & (13.5) \end{aligned}$
042881	$\begin{aligned} & 0.18 \\ & (0.019) \end{aligned}$	$\begin{aligned} & 42.8 \\ & (0.4) \end{aligned}$	$\begin{gathered} -12.3 \\ (3.7) \end{gathered}$	$\begin{aligned} & 75.2 \\ & (5.0) \end{aligned}$
081879	$\begin{aligned} & 0.14 \\ & (0.009) \end{aligned}$	$\begin{aligned} & 20.5 \\ & (6.7) \end{aligned}$	$\begin{aligned} & 136.3 \\ & \text { (13.9) } \end{aligned}$	$\begin{gathered} 50.9 \\ (16.6) \end{gathered}$
072080	$\begin{gathered} 0.036 \\ (0.006) \\ \hline \end{gathered}$	$\begin{aligned} & 80.4 \\ & (4.2) \end{aligned}$	$\begin{aligned} & -46.8 \\ & (11.3) \end{aligned}$	$\begin{gathered} -33.7 \\ (0.3) \end{gathered}$
042470	$\begin{gathered} 0.024 \\ (0.005) \end{gathered}$	$\begin{aligned} & 77.4 \\ & (6.6) \end{aligned}$	$\begin{aligned} & 268.2 \\ & (21.0) \\ & \hline \end{aligned}$	$\begin{gathered} 78.8 \\ (10.9) \end{gathered}$
101770	$\begin{gathered} 0.36 \\ (0.03) \end{gathered}$	$\begin{aligned} & 65.6 \\ & (3.4) \end{aligned}$	$\begin{array}{r} -134.0 \\ (4.6) \\ \hline \end{array}$	$\begin{array}{r} 146.8 \\ (7.7) \\ \hline \end{array}$

-220-

Figure A1. Focal mechanisms for events listad in Table A1. For 05/13/78 and 07/22/80, the major double couple in the combined surfece-wave/firstmotion inversion is plotted. For the rest of the evente, reaults of the fault plane Inversion are plotted. Circles on nodal planes indicate slip vectors. Filled squares are compression axes, and open ones are tension axes.

ORIGINAL IRい OF POOR QUALITY

Figure A2. Rayleigh wave excitation functions (a) $S_{R}^{(1)}$ and (b) $P_{R}^{(1)}$ as a function of depth. Number labelling each of the curves indicates the period in seconds.

ORIGINAL PACE IS OF POOR QUALITY

Appendix B: A Briof Outiline of Directional Statistics

When one's data are directions in space, one must use special methods to analyse them statistically. In two dimensions, for instance, a unit vector with azimuth 1° and one with azimuth 369° yield a vector with azimuth 180° if one simply averages azimuths. This is clearly an incorrect mean direction. The literature concaming directional data is extensive, and includes two full length monographs, one by Mardia (1972), and another by Batschsiet (1981). Both are good books, but the second is particularly clear for the beginner.

One simple and intuitively pleasing way to average unit directions is to obtain the resultant, and take its direction as the mean direction (Watson, 1966). In the example above, this would give 0° as the mean direction. The resultant can also provide an effective measure of dispersion. The closer a sample of vectors is grouped about a mean direction, the larger will be the resultant. These are measures one might logically choose for data whose exact distribution function were unknown, but which seemed to be grouped about a mean direction.

These simple measures are also the ones applied rigorously in Fisherian statistics (Fisher, 1953), which have been used in paleomagnetism (e.g., Watson and IrvIng, 1957; Watson, 1956a). The Fisher distribution, also known as the Von Mises distribution on a sphere, is essentially a spherical analogue of the two dimensional Gaussian distribution. The density function is given by

$$
f(\theta, \varphi) d A=\frac{\kappa}{4 \pi \sinh (\kappa)} e^{\kappa \cos \theta} \sin \theta d \theta d \varphi
$$

θ and φ are, respectively, the polar and azimuthal angles, and κ is the Fisher precision parameter. The mean is, as we have sald, of the same direction as the resultant, and the circular variance is given by

$$
\sigma^{2}=\frac{N-R}{N}=\frac{1}{k}
$$

where N is the number of samples and R is the magnitude of the resultant vector; k is the maximum likelihood estimate of κ. The confidence cone for the mean direction can be calculated, to significance ($1-\alpha$), from

$$
\begin{gathered}
\alpha=\frac{1}{(N-R c)^{N-1}}\left\{(N-R)^{N-1}-N \frac{R(1-c)}{R-R c+2}(N-R-2)^{N-1}\right. \\
\quad+\frac{N(N-1) R(1-c)}{2}(N-R-4)^{N-1}+\cdots
\end{gathered}
$$

New terms are taken as the discontinuities $\mathrm{R}=\mathrm{N}-2, \mathrm{~N}-4, \mathrm{~N}-6$... are passed. Note that $c=\cos \theta$, where θ is the half-angle of the confidence cone. The Fisherian distribution is circularly symmetric about the mean. It is also antipodally asymmetric, or unipolar. That is, a direction is distinct from its antipode. When dealing with data, such as earthquake compression or tension axes, where a direction and its antipode are equivalent, one must take care to project those directions which would cluster about the antipode of the mean back to their antipodes.

A more general distribution than that of Fisher is the Bingham distribution (Bingham, 1984; 1974), which is now also finding use in paleomagnetism (Onstott, 1980). This is not a circularly symmetric distribution, so that elongate probability patches about a mean are allowed. It is also antipodally symmetric. The best estimate of the mean direction is not necessarily the direction of the resultant, but follows from a
moment of Inertia analysis (Mardia, 1972; Onstott, 1980). Bingham's density function has the form

$$
f\left(l_{i} U_{i} k_{j}\right)=\frac{1}{4 \pi d\left(k_{1}, k_{8}\right)}\left(k_{1}\left(l v_{1}\right)^{)^{2}+k_{\mathrm{g}}\left(l v_{2}\right)^{2}\right)}\right.
$$

where

$$
\left.d\left(k_{1}, k_{2}\right)=\frac{1}{4 \pi} \int_{0}^{8 \pi} \int_{0}^{\pi} d\left(k_{1} \cos ^{2} \varphi+k_{2}+n^{2} \varphi\right) \cos ^{2} \theta\right]_{\sin } \theta d \theta d \varphi
$$

may be evaluated asymptotically (Bingham, 1964) or numarically (Onstott, 1080). \boldsymbol{k}_{1} and $\boldsymbol{k}_{\mathbf{2}}$ are Bingham's "concentration parameters". As Onstott points out, the squarIng of $\cos \theta$ reflects the antipodal symmetry of the distribution. Bingham (1984) was able to write the liksilinood function of his distribution in terms of the moment-ofInertia matrix. The moment of inertia, about a fixed axis $U(x, y, z)$, of N points on a unit sphere, each point of unit mass and direction (L_{i}, m_{4}, m_{i}), can be written (Mardia,1972)

$$
M=U^{\top} B U
$$

where $B=I-T$, and

$$
\begin{array}{lll}
\sum=\frac{1}{N} \sum l_{1}^{2} & \sum 4 m_{i} & \sum m_{i}^{2} \\
\sum l_{i} n_{i} & \sum m_{i} n_{4} \\
\sum m_{i} n_{i} & \sum n_{i}^{2}
\end{array}
$$

The distribution of the N points ls describable by the eigenvalues of the matrix T. As discussed by Mardia and Onstott, Bingham's distribution function may reduce to the uniform distribution, or variously describe symmetric and asymmetric girdle distributions, or distributions about a mean direction (maximum eigenvector). When the
elgenvalues T_{i} of T are distinct, with $\tau_{1}<\tau_{2} \ll T_{3}$, the concentration parameters are such that $k_{1}<k_{2}<0$, and we have an alongate distribution about the maximum eigenvector. When $k_{1} \rightarrow k_{2}$, a circularly symmetric disibution is approached, and the maxImum eigenvector approaches the resultant vector. That is, we approach a situation similar to the Fisherian one. The variance in Bingham statistics is

$$
\sigma_{i j}^{2}=\frac{1}{2 \Delta_{i j}}
$$

where $\Delta_{i j}=\left(k_{i}-k_{j}\right)\left(\tau_{i}-\tau_{j}\right) . \quad \sigma_{i j}$ is the semlaxis of the standard deviation ellipse around the $i^{\text {th }}$ eigenvector in the direction of the $j^{\text {th }}$ eigenvector. Thus we are interested in σ_{31} and σ_{32}, the semiaxes of the ellipse around the mean direction. The semi axes of the confidence region around the mean, to significance ($1-\alpha$), are given approximately by

$$
c_{W}=\left(X_{1-a}^{2}(2) \frac{\sigma_{V}^{2}}{\sqrt{N}}\right)^{1 / 2}
$$

where $\chi^{2}{ }_{1-a}(2)$ denotes the χ^{2} distribution with 2 degrees of freedom at percentage point ($1-\alpha$).

Apart from performing statistical analyses based on a Fisher, Bingham, or other distribution, one can use the resultant vector of \mathbf{t}^{\prime}; data in a test for randomness. By "randomness" here we really mean "uniformity" or "isotrcey", where no preferred direction exists. The null hypothesis is, then, that the parent population is uniformly distributed. One can compute the probability P (Watson, 1956b) that a uniform distribution of vectors will yield a given resultant R_{0}. Hence, given a resultant exceeding R_{0} in magnitude, one can reject the hypothesis of uniformity, with confidence P. Good explanations and tables for performing the test are given in Stephens (1964;
-233-
$1969 \mathrm{a}, \mathrm{b})$. Variants of this test, as wall as other tests, are discussed in Batschelet (1981).

Appendix C: Plots of Selsmicity Versus Depth for the World's Subduction Zones

In this appendix we present histograms of the total nunber of earthquakes with one-second body wave magnitude $m_{0} \geq 4$, for the time period 1964-1980, versus depth in the world's subduction zones. The data sources are the NOAA and PDE catalogs. We note that we have regionallsed such that the isolated areas of very deep seismicity in South America and the New Hetrides do not appear on the plots.
-235-

Flgure C1. The world's subduction zones for which selsmicity ls plotted in fig. C2

Figure C2. Plots of $\log _{10} N$ versus depth for the regions in flg. C1. N is the thtai number of events (1964-1980) with $m_{\phi} \geq 4$.

ORIGINAL PACE IS
OF POOR QUALITY

-240-
of pưh Qunuñ

-241-
ORIGITIAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

-244-
ORIGINAL PAGE IS OF POOR QUALITY

-246-
ORIGINAL PAGE IS OF POOR QUALITY

-246-
Lnigival phoce is OF POOR QUALITY

-247-
ORIGINAL PAGE IS
OF POOR QUALITY

-248-

OF POOR QU.:

-249-

-260-
ORIGIIAL PACE IS OF POOR QUALITY

-261 -
ORIGINAL PAKGE IG
OF POOR QUALITY

-262-
ORIGINA PBC
OF POOR Qunity

-263-
ORIGINAL PAGE IS OF POOR QUALITY

-254-
or pues antary

-255-
ORIGINAL PACE IS
OF POOR QUALITY

-258-
URIGINAL B:... OF POOR QUALITY

ORIGINAL PACE IS OF POOR QUALITY

-268-
ORIGWER BM: OF POOR QUALI:

-259-

ORIGINAL ESEA U
OF POOR QUALITY

-280-
Oricivar fras is
OF POOR QUALITY

-261-
ORIGINAL PACE TG
of pocn quality

-262-
ORIGINAL PAGE IS OF POOR QUALITY

-263-

ORIGINAL PAGE IS OF POOR QUALITY

-264-
CRIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PRGE IS OF POOR QUALITY

Appendix D: Spatial Stress Plote and Volocity Plats not Included in the Text

Abstract

We present here spatial stress plots and flow fields not included in the text, as discussed in Section 3.1.2. Figures are labelled according to the following code: Stress plots are labelled DnnS, and velocity plots are labelled $\operatorname{Dnn} \mathrm{V}$. " D " simply Indicates Appendix D, S and V respectively indicate that the figure is a streiss plot or a velocity plot, and $n n$ is the numnsp of the figure in the text to which the particular figure in this appendix corresponds.

-267-
 670 km

- - -

D17S dashed line
kbar
670 km
D17V dashed line

670 km

670 km

ORIGINAL PABE IS OF POOR QUALITY

670 km

670 km

D18V

$I^{\frac{\grave{y}}{\frac{1}{x}}}$

D19S (10)

2 kbar

$I^{\frac{2}{8}}$
$c-<$

FACTOR OF: YOO VISCOSITY: CONTRAST:
-282-
ORIGINAL FiGE IS OF POOR QUALITY

D198(1000)

-286-

670 km

670 km

- - -
- - -
- - -
- - -
- - -
- - .
- - -
-
- -

D22cS
kbar

-206- ORIGINAL FAGE IS 670 km OF POOR QUALITY

 \leftarrow D23cs

-207-
 670 km
 ORIGINAL PAGE IS OF POOR QUALITY

D23dS solid line

-209-
 670 km

ORIGINAL PAGE IS
OF POOR QUALITY OF POOR QUALITY
670 km

D23dS dashed line

$\xrightarrow{\text {. }}$-301- \quad| ORIGINAL PAGE IS |
| :--- |
| OF POOR QUALITY |

-304-
 670 km
 ORIGINAL FBGE TG OF POOR QUALITY

-300- unginal pige 15 OF POOR QUALITY
 670 km

ORfainal page is OF POUR QUALITY
670 km

-308670 km
 ORIGINAL PRGE IS OF POOR QUALITY

-311.
 670 km
 ORIGINAL PAGE is OF POOR QUALITY

670 km

D36V

ORIGINAL PAGE IS OF POOR QUALITY

kbar

-31s- ORIGINAL PAGE IS 670 km OF POOR QUALITY.

-316-
 670 km
 ORIGINAL PAGE is
 OF POOR QUALITY

S28
ORIGINAL PAGE IS -810-
ORIGINAL PRGE IS
OF POOR QUALITY 670 km

$|$

$670 \mathrm{~km} \quad$－917－ORIGINAL PAGE IS

		（＾8ての	ax／us 9
－			
	$\cdots \cdot . \cdot \cdots \cdot . .$.		
	－．．		
	．．．．．．，，，－	－	
	，＇	1	
	．．．．．，，，．		
	－．．．．．．．，い		
	．．．．．．－－－	－	
	－	－	
	．．．．．．．．．．．．	－	－
	－• • • ．．	．	
	－．．．．．．．．．．		

ORIGINAL PAGE IS 670 km

ORIGINAL PAGE IS OF POOR QUALITY
 670 km

D30S solld line
kbar
促
-322- ORIGINAL PRCE IS
670 km

0313
kbar
670 km

-324670 km
 ORIGINAL PROE IS OF POOR QUALITY

670 km
 ORIGINAL PAGE IS OF POOR QUALITY

|l:

E:

-

original page is OF POOR QUALITY
-3a7-
670 km

D42S

[^0]: - Evenis atudied by Chung and Kanamori (1980).

