@ https://ntrs.nasa.gov/search.jsp?R=19830014773 2020-03-21T04:32:18+00:00Z

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-TH-85300)
LABORATORY (SEL) PROGRANMER WORKBENCH PHASE
1 EVALUATION (NASA) 29 p HC AO3/MF AQ1.
CSCL 09B Unclas
03448

SOFTWARE ENGINEERING LABORATORY SERIES SEL-81-009

SOFTWARE ENGINEERING
LABORATORY (SEL) PROGRAMMER
WORKBENCH PHASE 1 EVALUATION

MARCH 1981

Goddard Space Flight Center

FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautius and Space Administra-
tion Goddard Space Flight Center (NASA/GSFC) and created for
the purpose of investigating the effectiveness of software
engineering technologies when applied to the development of
applications software. The SEL was created in 1977 and has
three primary organizational members:

. NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciences Department)
Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software de-

velopment proéess in the GSFC environment; (2) to reasure
the effect of various methodologies, tools, and models on
this process; and (3) to identify and then to apply success~
ful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software En-
gineering Laboratory Series, a continuing series of reports
that includes this document. A version of this document was
also issued as Computer Sciences Corporation document
CSC/TM-81/6091.

Contributors to this document include

William J. Decker (Computer Sciences Corporation)
Frank McGarry (Goddard Space Flight Center)

Single copies of this document can be obtained by writing to

Frank E., McGarry

Code 582.1

NASA/GSFC

Greenbelt, Maryland 20771

—

T e e

ABSTRACT
This report summarizes the expesriences of the Goddard Space
Flight Center (GSFC) Code 580 Software Engineering Laboratory
(SEL) with the components of a programmer workbench. Phase I
of the SEL programmer workbench consists of the design of the
following three components: communications link, command
language processor, and collection of software aids. A brief
description, an evaluation, and recommendations are presented
in this document for each of these three components.

iii

FRARE VT IRARR e e T - D

e i

S e

(TABLE OF CONTENTS

‘ﬁy Section 1 - Introduction . . . v « « « « ¢ &« o s + &+ o« 1=
Section 2 =~ Communications Link . . « . « « ¢« « « + + . 2=1
lz . 2 ol IntrOductlon ¢ s 2-1
2.2 Communications Link Deacrlption e e s e e e oaoe 2=1
i 2.3 Effectiveness and UsSe .« « « v ¢ « ¢ o s o o ¢ « «» 2=1
? 2.4 Conclusions and Recommendations . « « « ¢« + & + o« 2=2
. Section 3 - SOftware Aids " ° Y . 3_1
ﬁ 3.1 Introduction . . . C e 6 e e e e e e s e s 3=l
3o2 GSFC COde 580 BnVlronment « e . . . B 3-1
i 3.3 Criteria for Software Aids . ¢ ¢ ¢ « « + « o o + 3=2
3-3q1 SimpliCity. . - . . - . . » 3 L) » 3”2
N 3. 3.2 Integrated Setl L] . » - . L] L] L] - . [] . . 3-2
i

3.4 ConcluSioNSs + & « o o« o s s o s s o o o s o2 o o« « 3=3
Section 4 - Command Language Processor . . « « .« « » 4-=1
4 -l IntrOdUCtlon . . - » 'Y 4-1
4,2 SEL Command Language Description. . T

4.3 Useful Features Absent From the Command
Language Processor Design . . .+ « « &+ + &+ + « + 4=7
4.4 In-House Development Considerations . . , 4=8
4.5 Recommendations .« + « v« ¢ « o o « & = o « o « o« « 4=9

References

i
]
b LIST OF ILLUSTRATIONS
3" Figure
' 4=-1 Command Language Syntax . « + + « « « o o o » o 4=2
£
LIST OF TABLES . |
Table |
4-1 Command Language Lexicon « « +» « « 4-4 %
g 5
i §
!
!
-
H

e ——try

SECTION 1 - INTRODUCTIOLI

This report summarizes the experiences of the Goddard Space
Flight Center (GSFC) Code 580 Software Engineering Laboratory
(SEL) with some of the components of a programmer workbench.
Programmer workbench is a term which Code 580 personnel apply
to an integrated set of software aids made available in a
uniform manner on an interactive computer system. Probably
the best-known example of a programmer workbench is the Bell
Telephone Laboratories' PWB/UNIX (Reference 1l).

The SEL programmer workbench is similar in several respects
to PWB/UNIX; however, because what was needed was an auid to
the developrent process of the flight-dynamics-type software
typical of the Code 580 environment, differences evolved.
Specifically, in order for any feature to be included in the
SEL programmer workbench, it had to be effective in the de-
velopment of high-quality flight dynamics software.

The SEL programmer workbench design, as developed by a pre-
vious task assignment, specifies the following five major
components:

® A high-speed communications link between the SEL.
development computer (a igital Equipment Corporation
(DEC) PDP-11/70) and the application computer (the
Mission and Data Operations (M&DO) IBM S/360-95)

) A shared supervisor task on the PDP-11/70 which man-
ages the task of each individual session and queues
all transmissions on the communications link

® A command language processor to provide the interface

between the user and the session task

o A file librarian system to map the command language
file specifications into the actual PDP-11/70 or IBM
S/360~95 file designaticns and to control the use of
public shared-access libraries

1-1

C e A collection of software aids useful to flight
| dynamics software development °* .

The designs of three of these five components have been re-

fined enough to be evaluated at this time. These three are

(1) the communications link, (2) the command language proc-

essor, and (3) the software aids. The evaluations given in

this document attempt to describe the strengths and weaknesses
[; of each and, where possible, indicate new directions that

might be taken when further refining of the design is complete.

L Sections 2, 3, and 4 present a brief description, an evalu-
r ation, and recommendations for the communications link,
l software aids, and command language processor, respectively.

SECTION 2 - COMMUNICATIONS LINK

2.1 INTRODUCTION

The communicatiens link is the component of the SEL program-
mexr workbench that enables uvsers on the development computer
{(a PDP-11/70) to submit jobs to be processed on the applica-
tions computer (an IBM §/360-95). The separation of the
devaelopment and applications areas has the advantage o ra-
dueing the scheduling and priority alloecation cenflicts that
arise when these areas must share resources. However, total
isolation of these &reas is not practical, especially in the
later stages of softwara development when tests must be per-
formed on the applications wmachine and error correction per-
formed on the development machine. The communications link
provides an efficient alternative to shifting the entire
development effort to the applications machine.

2.2 COMMUNICATIONS LINK DESCRIPTION

The communications link enables users of the PDP-11/70 to
submit jobs te the IBM §/360-95 and to receive output from
the completed jobs. The link hardware consists of a DQll
Synchronous Sarial Interface and a dedicated 9600 baud line.
The link software (the RJE Program) enmulates an IBM 3780
Remote Job Entry (RIJE) terminal.

The RJE Program was written for the PDP RSX-1lD operating
system by GSFC Code 934. The program was converted to the
RSX=-11M operating system for Code 580 by Systex, Incorporated
and became operational within the SEL in June 1980. Since
that tiwme, the program has seen some limited by steady use.

2.3 EFFECTIVENESS AND USE

In one sense, this type of communications link can be con-
sidered to be a one-way link; i.e., the PDP-1l/7Q users can
task the IBM $/350-95, while the §/360-95 users cannot task

A

T Tee TR TARTEARET steharm et wliew o T Ser st e

the PDP-11/70. However, this is not a limitation upon the *
intended purpose of the PDP-360 link, because there are few
times when an applications envirsitnent generates tmsks for
the development effort. In other words, software "flows"
from the development area to the applications area, and this
fact is reflected in the RJE link capabilities. A more com-
plex communications setup is therefore not required.

One telling observation can be made at this time. After almost
1l year of availability to Code 580 development projects, the
communications link has not been demonstrated to be ecritically
needed. If it were not available, no current or planned proj-
ect would be stopped or seriously delayed. All projects using
the RJE Program have alternate (although slower and less con-
venient) methods of submitting jobs to the IBM S$/360-95.

The reasons for the lack of a critical role for the communica-
tions link in the Code 580 development efforts are not readily
aprarent. Since the RJE Program is easy to use and functions
reliably, user dissatisfaction does not seem to be the cause.
A more likely reason is the relative newness of the idea.
Project planners may be unaware of the RJE capability or un-
familiar with the ways in which it can be used to facilitate
the development-area-to-applications~area transition.

2.4 CONCLUSIONS AND RECOMMENDATIONS

To date, the RJE communications link has fulfllled its purpose
in demonstrating the feasibility of a connection between the
PDP-11/70 and the IBM $/360-95. The RJE Program has also
shown that communications between a development machine and

an applications machine can be effective when only the devel-

opment machine can generate tasks. The importance of this
second finding lies in the fact that if a more complex com-
munications link is not regquired, a limit is placed upon the
complexity (and, hence, the cost) of the link software.

T A

25

i
i
B

pr—"

PRSI

It is recommended that some effort be made to include the

use of the RJE Program in the preliminary plans for a sel-
ected SEL project so that it can be fully integrated into

the complete software development process from the start.

Thus, the full impact of the carefully planned use of the

RJE link capability could be assessed.

No changes are contemplated to the RJE Program at the pres-
ent time. This is due primarily to the current simplicity
and ease of use of the RJE capability. Another considera-
tion, however, is the uncertainty surrounding the details of
the components and structure of a proposed new Flight Dynam-
ics System computing facility. The design of the new system
could possibly eliminate the need for a separate communica-
tions link for the programmer workbench through the incor-
poration of multipurpose links. '

]
3
4
3
3
1
y

.‘-v-,‘q».,,,,mw_.m
i

ey

iares.

SECTION 3 - SOFTWARE AIDS

3.1 INTRODUCTION

The concept of the programmer workbench calls for an inte=
grated set of software aids which can be applied to the .
Code 580 software development process. The term "software
aid" as used here includes development tools and utilities
from any source. For example, many basic software aids are
usually supplied by the computer vendor along with the hard-
ware. These aids include file manipulation utilities and
compilers for the major high-order languages. Othsr more
complex but still general-purpose aids, such as data base
management systems or word processing software, are available
from independent software vendors.

However, experience in the SEL indicates that the greatest
success has been achieved with tools or utilities developed
in~house to satisfy applications specific to the Code 580
environment.

3.2 GSFC CODE 580 ENVIRONMENT

The Code 580 computing environment can be described in terms
of the size and the type of software development projects and
the application areas served by the development.

Code 580 software development results in software systems
that range in size from 5,000 to 120,000 lines of code. A
typical (average) system has 40,000 lines. When possible,

a high-~order language (typically FORTRAN) is used. The de-
velopment is carried out primarily in an interactive environ-
ment on both PDP-11/70 and IBM S/360 computers.

The software can be characterized as scientific application
systems with little or no real-time or near-real-time require-
ments. Attitude determination and control systems require
software to access large data bases and to perform flight
dynamics analysis. Orbit determination and control systems

3-1

b iy,

e

g g

require celestial mechanics software that is mainly mathe-
matical and algorithmic. Spacecraft maneuver planning re-
quires mathematical and algorithmic software that models a
particular vehicle's physical and dynamic characteristics.
Mission planning software is the generalized maneuver plan-
ning software that is used to evaluate vehicle performance
while the total mission is still in its definition phase.

-

3.3 CRITERIA FOR SOFTWARE AIDS

The following two lessons have been learned about what makes
a utility or tool useful to SEL users:

. A software aid is more effective when it is simple.
® The set of software aids must be an integrated set.

3.3.1 SIMPLICITY

Experience within the SEL tends to indicate that a simple
tool = wtility achieves wide and long lasting acceptance
mere wften than a complex tool or utility. Simplicity here
means that each aid should have a single purpose, with a
small number of options. The options should provide flex-
ibility of function for the aid but should not add unrelated
capabilities to it.

The interaction with the user is thus limited to prompting
for information needed to perform one function. If the user
makes an error, it is more likely to be detected as an error
because it cannot be interpreted as a request for an alter-
nate function.

3.3.2 INTEGRATED SET

An integrated set of software aids is achieved when the aids
are invoked with a common syntax and when the range of capa-
bilities is adequate to allow the user to perform all required
actions. A uniform syntax is important to the user, since it
results in a shorter learning period and a lower error rate
after the syntax is learned.

3~2

[Eiiatinchin- ittudie e v g

Secticn 4 of this document describes a proposed syntax and
list of commands. These commands are representuative of cur-
rent capabilities within the SEL, but they do not represent
the only possible list.

The selection of software aids for inclusion in the program-
mer workbench will continue until well after the introduction
of the workbench into the SEL environment.

3.4 CONCLUSIONS

In conclusion, the following can be said about software aids
for the SEL programmer workbench:

° The tools and utilities to be selected should perform
a single function.

° The common command syntax implied by the programmer
workbench concept will in itself be an aid to users.

° The list of software aids included in the program-

mer workbench is expected to evolve with time.

L« SECTION 4 - COMMAND LANGUAGE PROCESSOR

' ? 4.1 INTRODUCTION

The command language processor is the component of the pro-
grammer workbench that ties together all components intc a

s

: useful whole. The processor interprets the user's typed
L, commands and invokes the particular component of the work-
i bench required to perform the requested function.

The effectiveness of the programmer workbench concept will

depend heavily on the user's acceptance of the system, and

a well-structured, easy~to-learn-and-use language will con-
tribute to user satisfaction.

The following subsections describe the proposed ccmmand
language, recommend some additions to the language, and
present some arguments in support of continued in-house de-
velopment of the command language processor (as opposed to

the use of software from other workbench projects).

‘ 4.2 SEL COMMAND LAMNGUAGE DESCRIPTION

The syntax and lexicon of the SEL, as developed iﬂ the previ-
. ous task assingment, are given in Figure 4~1 and Table 441,
: respectively. The language is structured to take advantage
j of the processor-defined defaults whenever possible. For
i example,. 1f the user enters
i

EDIT MODULE

the command language processor will assume that the file
MODULESRC.FPP is to be edited, since the default type of file
content is source code (SRC) and the default language is

E structured FORTRAN (FPP). Of course, the user can override
these defaults if desired, but the defaults have been chosen
to minimize this need in thke Code 580 environment.

ATl

e g

EXABT

H

acTe A (».v-v’: §a|
ORIGHAL PAGS
OF POOR QUALITY

i, B BASELINEL 1Piluwllyluvell
' A4 BACKURPE 1ibversd< TO 12 Pllenane
& CHLCULATED wrewsn i
8 LHLLC PPLleIL s CREATE! yEDITI
1O GHANGE Zelbrinkg=1/0ulring=23/0 IN (Wrilellibvarelall)Ir LISTI

i3 COMPILED wPilelCrREMOTEZ

14 COMFARED #filewldl WITH ofileldCC TO i uabeugl]
Téd CONTROLL »rileldlyOREATE!yEDITIC,REMOTED

18 CORYLD wlilwld TO 12)wPilelyNeidld

20 CREATEL ¢ rileldl vl PilelDyDELETED

282 DATECwmmAdd S ww Iy furmes L]
»4 LDEBUGE wriluwllyCREATE) yEDITI
26 DELETELD wlileldl /uvubfelelywiubfileld,. s o
‘ 28 DIRECTE »1rile) lilhvaerws! ALLILCy Purmet]
JO 0 BOLTE wPiledlC TO (2delilel

s
3.3
3

32 EXECUTEL wrilel
‘ 34 EXITEyRESTARTI
38 FING Swbeird/E IN Gefllellibrery!ALL)I0 LISTI
38 GESSL #rilwllyREMOTE]
A0 GESSDOLE wPilell TO 1derfilellrumrliond

2 HELRPL vummatedl
49 INSTALLE w#PiledD IN librarw]
& LIMKL mPiled

iy,
3>
B3

| . 48 LISTL wirileldl/vsubltilelywubiriled.s]
‘ O LOGADLD » Pl lelDyCREATE L »EDITIL yUSER ! y TASKD
) bR OPFILED wiiled
i G4 FRINTE wriledl/saafilelywulbtfiled.s s s I/ #rinterd
! U6 REGEN ritLlle/versiun
S8 RENGME wirilel TO (12)ulile
&G RESTOREL librerwd FROM Pilename '

H

: &2 RETRIEVE IPilensmelrPilensmes .
; G4 RUNOFFL #PfiledC TO teroulmalld
J &6 BUANE wlrilwll/wulhlilel

Figure 4-1. Command Language Syntax (1 of 2)

: &
E S8 BOOCL olriledlyleveld
] FO O OSIZELD »MileldlySUBFILED
|
i FEOOBTATUS dubiniene
: 'S BUBMIT wlivwblsberdeid :
§ 76 BYNOHED »riledl WITH wfiledld TO ixdelmlileld
é FOOTESTE »PLllellyOCRENTE vEDITS
1 a0 TlfFEleuLvuaLUHTE/?U)mﬁuJErnTOFUHTFHIr ESSIONI
1
f 82 TRALELD »lilelDyOREATEI vEDITI
) o4 lhwUVSEilT wlintlhy Lavyell
| 86 UFGATEL »rilelywevirbltile
: a8 '\?rr pliledlyorlionsdDC TO 1) oubrgll
|
E rl’
:
i
l

SN

NOTATION

oriciiAL Prica v
OF POOR QUALITY

as
-~

% NOTATION KEY %

MEANING

UPPER CASE
LOWER CASE
SQUARE éRACKETS
PARENTHESES

VERTICAL BARS

Figure 4-1.

REQUIRED SPELLING

USER~SUPPLIED INFORMATION

[] OPTIONAL INPUT
(! OPTIONS WITHIN AN OPTION
i ONE OF SEVERAL IS TO BE'
SELECTED

Command Language Syntax (2 of 2)

!
z
:
!

i
i
X

1
i
{
{
1
1

—

Table 4-1. Command Language Lexicon (1 of 3)

Command

BASEL INE

BACKUP
CALCULATE
CALL

CHANGE

COMPILE
COMPARE
CONTROL
COPY

CREATE
DATE

DEBUG
DELETE

DIRECT

EDIT

»

Description

Produce & baseline tree chart with the specified
file as the root, extending for a specified num-
ber of levels

Copy the working (or other specified) library to
a packed file

Enter calculator mode, evaluate an expression

Use (or create or modify) a command list to exe-
cute a module, performing necessary compiling
and task building

Global edit function to change (and list) all
occurrences of specified string in a file or a
library (see FIND)

Precompile, compile module (optionally, on tar-
get system)

Compare two files, list differences, optionally
produce SLP editor script

Generate command list (as used by CALL or
SUBMIT)

Produce copy of the file with new generic name,
version = 1

Call EDI to create new text file (defaults to
______ SRC.FPP, but also used for GESS, test

files, documentation, and others)

Display current date in selected format (also
used as a format converter; e.g., calendar day
to Julian day)

Specify debug mode for execution of module (see
CALL)

Mark generic name (or specific subfile) for
deletion

Produce directory listing of working (or other
specified) library, with various formatting/
processing options

Call EDI to edit file (see CREATE); may also
perform copy function prior to editing (see
COPY)

PR

N sy PRS-

o

A

PR

=2

Table 4-1. Command Language Lexicon (2 of 3)

Command Description

EXECUTE Task build and execute module, compiling if
necessary; unlike CALL, does not use command
list ,

EXIT End session, delete files marked by DELETE,
optionally restart session

FIND Global search function to list all occurrences
of specified string in module or library (see
CHANGE)

GESS Process GESS source, optionally on target sys-.
tem (similar to COMPILE)

GESsDOC Extract system description data from GESS
source files

HELP Print description, format, defaults of speci-
fied command

INSTALL Copy specified module source into controlled
library

LINK Create task (compile if necessary) from module

LIST List specifiwd file on terminal (see PRINT)

LOAD Use (or create or modify) command list to com-
pile module and install the —-wwe-- SRC.OBJ file
into the object library '

PFILE Display (or specify) the primary default module
name

PRINT Print specified file on printer (see LIST)

REGEN Regenerate specified intermediate version of
controlled source from original source and SLP
editor script

RENAME Rename specified generic module file or subfile

RESTORE Copy working (or other specified) library from
backup packed file (see BACKUP)

RETRIEVE Retrieve target system output data sets to
programmer workbench

RUNOFF Call text processor for format module onto
output device/file

SCAN Call fast-look editor to examine listings,

output files

sty ctiactetscm emarattmy bmstaament tiic

Table 4~1. Command Language Lexicon (3 of 3)

Command Description

sSDOC Extract prologue and program design language
(PDL) from module source files and from depend-~
ent modules, as required (see BASELINE)

SI1ZE List size characteristics of module or subfile

STATUS Return status of specified job on target system

SUBMIT Queue command list and files for submission to
target system

SYNCH Produce SLP script to convert one file into
second file (see COMPARE)

TEST Specify test mode for execution of module (see
CALL); use temporary version of module (cf.
PANVALET)

TIME Display current time in optionally specified
format; also used as format converter (see
DATE)

TRACE Specify trace mode for execution of module
(see CALL)

TRANSMIT Use (or create or modify) command list to move
files between the programmer workbench and tar-
get system /

UPDATE Use SLP script to update controlled source
(see SYNCH)

XREF Create specified type of cross reference from

module or from working (or specified) library

A further extension of the default definition idea is to
extend the concept to the module name itself. For example,

{ if the user enters

EDIT MODULE
COMPILE

f; the compiler selected will be the structured FORTRAN compiler
and the input to the compiler will be the file MODULESRC.FPP.

The use of defaults is quite common in interactive command
languages and results from a desire to roduce the number of
user keystrokes and, therefore, the chance for error. Another
consideration is the relative speed with which a command is
typed, compared with the machine response time and the user's
thought processes. The command language processor answers
this problem with multiprocess commands such as CALL

(COMPILE + LINK) and LOAD (COMPILE + INSTALL). 1In this way,
common sequences are collected into one command.

4.3 USEFUL FEATURES ABSENT FROM THE COMMAND LANGUAGE
PROCESSOR DESIGN

-

Although much thought was given to command ease of use, the
: following two features which should be included in the com-
g: mand language processor design were omitted:

® Stored command sequence file processor
° Last~command-recall capability

The stored command sequence processor is a utility that reads
a specified file containing command language statements and
executes them as if they were entered by the user. Such a

processor is available in almost all command languages with
various levels of sophistication. This feature enables users

= o E S NS

[to control quite complex and often unique processes with an
absolute minimum of keystrokes.

ﬁf' With the last~command-recall feature, the user can recover
{ the last typed command for modification and/or resubmission.

{; 4-17

!

.

s

#
[

A series of commands containing only small differences can
thus be executed quickly. The primary benefit occurs when
the user can recall a command after a syntax error is de-~
tected. 1In this case, the user need only correct the part
of the command containing the error before continuing.

4.4 IN-HOUSE DEVELOPMENT CONSIDERATIONS

The choice of developing a command language processor in-~house
for the SEL programmer workbench (rather than using software
from other workbench projects) has the advantage of close
control of the language capabilities, which is necessary in

a research environment.

In-house development allows the addition of a monitoring fea-
ture to the processor. This monitor can extract information
about the commands that are processed (e.g., command use fre-
quency, error rates, or execution success/failure). These
statistics can be used by management to monitor progress in

a particular software development project.

The statistics can also be used by programmer workbench devel-
opers to evaluate the system's effectiveness and performance.
Commonly used command sequences can be detected and incorpor-
ated into the language as new commands, and frequently used
com nds can be streamlined into a simpler syntax. Language
elements which are not used or are determined to not be ef-
fective in developing flight dynamics software may even be
removed from the language, thus reducing the confusion that

a cluttered language can cause.

T e

& ol

4.5 RECOMMENDATIONS

Further work needs to be done on the command language proc-
essor design. In particular, work should be concentrated in
the following areas:

e More detailed design of the default definition rules,
especially in the transition from single~module com-
mands (EDIT, COMPILE) to multimodule commands (LINK,
EXECUTE) ‘

e Establishing priorities for a staged implementation
of the processor

° A continuing review of the particular commands to be
included

4-9

REFERENCES

] 1. Dolotta, T. A. and Mashey, J. R,, "An Introduction to
¢ the Programmer's Workbench," Proceedings of the Second

International Conference on Software Engineering,
Qctober 13-15, 1976

s2ehoasaitsy

R-1

]

e soeemn

BIBLIOGRAPHY OF SEL LITERATURE

Anderson, L., "SEL Library Software User's Guide," Computer

Sciences-Technicolor Associates, Technical Memorandum, June
1980

Bailey, J. W., and V. R. Basili, "A Meta-Model for Software
Development for Resource Expenditures," Proceedings of the
Fifth International Conference on Software Engineering.

New York: Computer sSocietiles Press, .98l

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
1980

Basili, V. R., "The Software Engineering Laboratory: Objec-
tives," Proceedings of the Fifteenth Annual Conference on
Computer Personnel Research, August 1977

Basili, V. R., "Models and Metrics for Software Management
and Engineering," ASME Advances in Computer Technology,
January 1980, vol. 1L

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical
Memorandum, October 1980

Basili, V. R., Tutorial on Models and Metrics for Software
Management and Engineering. New York: Computer Societies
Press, 1980 (a@lzo designated SEL-80~008)

Basili, V. R., and J. Beane, "Can the Parr Curve Help with
the Manpower Distribution and Resource Estimation Prob-

lems?", Journal of Systems and Software, February 1981,
vol. 2, no. 1

Basili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2, no. 1

Basili, V. R., and T. Phillips, "Evaluating and Cumparing
Software Metrics in the Software Engineering Laboratory,"
Proceedings of the ACM SIGMETRICS Symposium/Workshop: Qual-
1ty Metrics, March 1981

Basili, V. R., and T. Phillips, "validating Metrics on Proj~-
ect Data," Univarsity of Maryland, Technical Memorandum,
December 1981

PENE—

[——

s

i
i
i
i

P

[—

o

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedings of the Workshop
on Quantitative Software Models for Rellability, complexity

and Cost, October 1979

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

Basili, V. R., and M, V. Zelkowitz, "Operation of the Soft~
ware Engineering Laboratory," Proceedirgs of the Second
Software Life Cycle Management Workshop, August 1978

Basili, V. R., and M. V. Zelkowitz, "Measuring Software De-
velopment Characteristics in the Local Environment," Com=-
puters and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York: Com-
puter Socileties Press, 19/8

Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To
Evaluate Software Engineering Methodologies," Proceedings of
the Fifth International Conference on Software Engineering.
New York: Computer Societies Press, 1981

Church, V. E., "User's Guides for SEL PDP-11/70 Programs,"”
Computer Sciences Corporation, Technical Memorandum, March
1980

Freburger, K., "A Model of the Software Life Cycle" (paper
prepared for the University of Maryland, Decefiber 1978)

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-
pared for the University of Maryland, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"

(paper prepared for the University of Maryland, December
1978)

Miller, A. M., "A Survey of Several Reliability Models"

(paper prepared for the University of Maryland, December
1978)

National Aeronautics and Space Administration (NASA), NASA

Software Research Technology Workshop (proceedings), March
1980

Page, G., "Software Engineering Course Evaluation," Computer
Sciences Corporation, Technical Memorandum, December 1977

Parr, F., and D. Welss, "Concepts Used in the Change Report
Form," NASA, Goddard Space Flight Center, Technical Memoran-
dum, May 1978

porricone, B, T., "Relationships Between Computer Software
and Associated Errors: Empirical Investigation" (paper pre-
pared for the University of Maryland, December 1981)

Reiter, R. W., "The Nature, Organization, Measurement, and
Management of Software Complexity" (paper prepared for the
University of Maryland, December 1976)

Order Languages Study: Addendum." Martin Marietta Corpora-

tion, Technical Memorandum, September 1977

Software Engineering Laboratory, SEL=-7(-001, Proceedings
From the First Summer Software Engineetring Workshop,
August 1976

--, SEL-77-001, The Software Engineering Laboratory,
V. K. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1977

--, SEL-77-002, Proceedings From the Second Summer Software
Engineering Workshop, September 1977

~-, SEL-77-003, Structured FORTRAN Preprocessor (SFORT),
B. Chu, D. S. Wilson, and R. Beard, September 1977

~--, SEL-77-004, GSFC NAVPAK Design Specifications Languages
Study, P. A. Scheffer and C. E. Velez, October 1977

--, SEL-78-001, FORTRAN Static Source Code Analyzer (SAP)
Design and Module Descriptions, E. M. O'Neill,
S. R. Waligora, and C. E. Goorevich, January 1978

--, SEL-78-002, FORTRAN Static Source Code &nalyzer (SAP)
User's Guide, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

~-, SEL-78-003, Evaluation of Draper NAVPAK Software Design,

K. Tasaki and F. E. McGarry, June 1978

»

=, SEL-78~ 004, Structured FORTRAN Preprocessor (SFORT)

PDP-11/70 User's Guide, D. S. Wilson, B, Chu, and G. Page,
Septembeyr L1978

=~, SEL-78-005, Proceedings Prom the Third Summer Software
Engineering Workshop, September 1978

-, SEL-78-006, GSFC Software Engineering Research Require-
ments Analysis Study, P. A. schetfer, November 1978

-~, SEL-78-007, Applicability of the Rayleigh Curve to the
SEL Environment, T. E. Mapp, December 1978

~=-, SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, July 1979

-~-, SEL-79~002, The Software Engineering Laboratory: Rela-
tionship Equations, K. Freburger and V. R. Basill, May 1979

-=-, SEL~79~003, Common Software Module Repository (CSMR)
Svetem Descripticon and Usec's Guide, C. E. Goorevich,
S. R. Waligora, and A. L. Green, August 1979

-=-, SEL-~79-004, Evaluation of the Caine, Farber, and Gordon
Program Design Language (PDL) in the Goddard Space Flight
Center (GSFC) Code 580 Software Design Environment,

C. E. Goorevich, A. L. Green, and ¥, BE. McGarry, September
1979

--, SEL-79-005, Proceedings From the Fourth Summer Software
Engineering Workshop, November 1979

-~, SEL-80-001, Configuration Analysis Tool (CAT) Functional
Requirements/Spec1 ications, F. K. Banks, C. E. Goorevich,
and A. L. Green, February 1980

~-, SEL-80-002, Multi-Level Expression Design Lanquage-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker,
C. E. Goorevich, and A. L. Green, May 1980

~--, SEL-80-003, Multimission Modular Spacecraft Ground Sup-
port System (MMS/GSS) State-of-the-Art Computer System/

Compatibility Study, T. Welden, M. McClellan, P. Liebertz,
et al., May 1980

--, SEL-80-004, System Description and User's Guide for Code
580 Configuration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G. Garrahan, et al., October 1980

~--, SEL-80-005, A Study of the Musa Reliability Model,
A. M., Miller, November 1980

Binnsendtnk

--, SEL~80-006, Proceedings From the Fifth Annual Software
Engineering Workshpp, November 1980

--, SEL-80-007, An Appraisal of Selected Cost/Resource Esti-
mation Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1980

--, SEL-81-001, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., September 198l

--, SEL~81-002, Boftware Engineering Laboratory (SEL) Data
Base Organization and User's Guide, D, C. Wyckoff, G. Page,
F. E. McGarry, et al., September 1981

--, SEL-81-003, Software Engineering Laboratory (SEL) Data
Base Maintenance System (DBAM) User's Guide and System De-
scription, D. N. Card, D. C. Wyckoff, G. Page, et al.,
September 1981

--, SEL-81-004, The Software Engineering Laboratory,
D. N. Card, F. E. McGarry, G. Page, et al., September 1981

~--, SEL-81-005, Standard Approach to Software Development,
V. E. Church, F. E. McGarry, G. Page, et al., September 1981

--, SEL-81-006, Software Engineering Laboratory (SEL) Docu-
ment Library (DOCLIB) Svstem Description and User's Guide,
W. Taylor and W. J. Decker, December 1981

-~, SEL-81-007, Software Engineering Laboratory (SEL) Com-
pendium of Tools, W. J. Decker, E. J. Smith, A. L. Green,
et al., February 1981

--, SEL-81-008, Cost and Reliability Estimation Models
(CAREM) User's Guide, J, F. Cook and E. Edwards, February
1981

--, SEL-81-009, Software Engineering Laboratory Programmer
Workbench Phase 1 Evaluation, W. J. Decker, A. L. Green, and
F. E. McGarry, March 1981

--, SEL-81-010, Performance and Evaluation of an Independent

Software Verification and Integration Process, G. Page and
F. E. McGarry, May 1981

--, SEL-81-011, Evaluating Scoftware Development by Analysis
of Change Data, D. M. Weiss, November 1981

--, SEL-81-012, Software Engineering Laboratory, G. O.
Picasso, December 1981

e T T S R

AT T S MR S dots v e o aane e SR st ke SRl S 0 PRl 4L L1 CMBEEE L il s ASLaSTINET
:

--, SEL-81-013, Proceedings From the Sixth Annual Software
Engilneering Workshop, December 1981

-=-, SEL-81~014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),

K. L. Green, W. JU. Decker, and g. E. McGarry, september 1981
Turner, C., G. Caron, and G. Brement, "NASA/SEL Data Compen-

dium," Data and Analysis Center for Software, Special Fubli=-
cation, April 1981

Turnsg, C., and G, Caron, "A Comparison of RADC and NASA/SEL
Software Development Data," Data and Analysis Center for
Software, Special Publication, May 1981

Weiss, D. M., "Error and Change Analysis," Naval Research
Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"
Naval Research Laboratory, Technical Memorandum, July 1979

Zelkowitz, M. V., "Resource Estimation for Medium Scale

Software Projects," Proceedings of the Twelfth Conference on
the Interface of Statistlics and Computer Scilence, New York:
Computer Societies Press, 1979 '

Zelkowitz, M. V., and V. R. Basili, "Operationa) Aspects of
a Software Measurement Facility," Proceedings of the
Software Life Cycle Management Workshop, September 1977

	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf

