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FOREWORD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautic;:, and Space Administra-

tion Goddard Space Flight Center (NASA/GSFC) and created for

the purpose of investigating the effectiveness of software

engineering technologies when applied to the development of

applications software. The SEL was created in 1977 and has

three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)

The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Flight Systems. Operation)

The goals of the SEL are (1) to understand the software de-

velopment process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply success-

ful development practices. The activities, findings, and

recommendations of the SEL are recorded in the Software En-

gineerinc1 Laboratory Series, a continuing series of reports

that includes this document. A version of this document was

also issued as Computer Sciences Corporation document

CSC/TM-81/6091.

Contributors to this document include

William J. Decker 	 (Computer Sciences Corporation)

Frank McGarry	 (Goddard Space Flight Center)

Single copies of this document can be obtained by writing to

Frank E. McGarry
Code 582.1
NASA/GSFC
Greenbelt, Maryland 20771
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ABSTRACT

This report summarizes the experiences of the Goddard Space

Flight Center (GSFC) Code 580 Software Engineering Laboratory

(SEL) with the components of a programmer workbench. Phase Z
of the SEL programmer workbench consists of the design of the

following three components: communications link, command

language processor, and collection of software aids. A brief

description, an evaluation, and recommendations are presented

in this document for each of these three components.
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SECTION 1 - INTRODUCTION

This report summarizes the experiences of the Goddard Space

Flight Center (GSFC) Code 580 Software Engineering Laboratory

(SEL) with some of the components of a programmer workbench.

{ Programmer workbench is a term which Code 580 personnel apply

to an integrated set of software aids made available in a

uniform manner on an interactive computer system. 	 Probably

the best-known example of a programmer workbench is the Bell

( Telephone Laboratories' PWB/UNIX (Reference 1).

The SEL programmer workbench is similar in several respects

to PWB/UNIX; however, because what was needed was an ai", to

! the development process of the flight-dynamics-type software

typical of the Code 580 environment, differences evolved.

Specifically, in order for any feature to be included in the

e

SEL programmer workbench, it had to be effective in the de-

velopment of high-quality flight dynamics software.

The SEL programmer workbench design, as developed by a pre-

vious task assignment, specifies the following five major

components:

•	 A high-speed communications link between the SEL

development computer (a Digital Equipment Corporation

(DEC) PDP-11/70) and the application computer (the

Mission and Data Operations 	 (M&DO)	 IBM S/360-95)

•	 A shared supervisor task on the PDP-11/70 which man-

ages the task of each individual session and queues

all transmissions on the communications link

x o	 A command language processor to provide the interface
i

m between the user and the session task^^

•	 A file librarian system to map the command language

file specifications into the actual PDP-11/70 or IBM

S/360-95 file designations and to control the use of

is public shared-access libraries

^r
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• A collection of software aids useful to flight

dynamics software development '

The designs of three of these five components have been re-

fined enough to be evaluated at this time. These three are

(1) the communications link, (2) the command language proc-

essor, and (3) the software aids. The evaluations given in

this document attempt to describe the strengths and weaknesses

of each and, where possible, indicate new directions that

might he taken when further refining of the design is complete.

Sections 2, 3, and 4 present a brief description, an evalu-

ation, and recommendations for the communications link,

software aids, and command language processor, respectively.
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SECTION 2 - COMUNICATXONS LINK

2.1 INTRODUCTION

The communications link is the component of the SEL program-
mar workbench that enables users on the development computer

F.

(a PDP-11/70) to submit jobs to be processed on the applica-
tions computer Can IBM S/360-95). The separation of the
development and applications areas has the advantage ol-.1 re-
ducing the scheduling and priority allocation conflicts that
arise when these areas must share resources. However, total
isolation of these areas is not practical, especially in the
later stages of software development when tests must be per-
formed on the applications machine and error correction per
forme-3 an the developmentdevelopmentuaeh'ne. Tnh e commun i cat i ons link
provides an efficient alternative to shifting the entire
development effort to the applications machine.

2.2 COMIUNICATIONS LINK DESCRIPTION

The communications link enables users of the PDP-11/70 to
submit jobs to the IMI S./360-95 and to receive output from
the completed jobs.	 The link hardware consists of a DQ11

Synchronous Serial Interface and a dedicatod 9600 baud line.
The link software (the RJR Program) emulates an Mvl 3780
Remote Job Entry WE) terminal.

The RJR Program was written for the PDP RSX-11D operating
system by GSFC Code 934.	 The program was converted to the
RSX-11M operating system for Code 580 by Systex, Incorporated
and became operational within, the SEL in June 1980.	 Since
that time, the program has seen some limited by steady use.

2.3	 EFFECTIVENESS AND USE

In one sense, this type of communications link can be can-
siderad to be a one-way link; i.e., the 	 users can
task the IMI S,,,̂ 350-95, while the S/160-95 users cannot: task

ii
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the PDP-11/70.	 However, this is not a limitation upon the

intended purpose of the PDP-360 link, because there are few

times when an applications envir(:',,Lhnent generates tasks for

the development effort. 	 in other words, software "flows"

from the development area to -the applications area, and this

fact is reflected in the RJE link capabilities.	 A more com-
plex communications setup is therefore not required.

One telling observation can be made at this time.	 After almost

1 year of availability to code 580 development projects, the

communications link has not been demonstrated to be critically

needed.	 If it were not available, no current or planned proj-

ect would be stopped or seriously delayed.	 All projects using

the RJE Program have alternate (although slower and less con-

venient) methods of submitting jobs to the IBM S/360-95.

The reasons for the lack of a critical role for the communica-

tions link in the Code 580 development efforts are not readily

apparent.	 Since the RJE Program is easy to use and functions

reliably, user dissatisfaction does not seem to be the cause.

A more likely reason is the relative newness of the idea.

Project planners may be unaware of the RJE capability or un-

familiar with the ways in which it can be used to facilitate

the development-area-to-applications-area transition.

2.4	 CONCLUSIONS AND RECOMMENDATIONS

To date, the RJE communications link has fulfUled its purpose

in demonstrating the feasibility of a connection between the

PDP-11/70 and the IBM S/360-95.	 The RJE Program has also

shown that communications between a development machine and

an applications machine can be effective when only the devel-

opment machine can generate tasks.	 The importance of this

second finding lies in the fact that if a more complex com-

munications link is not required, a limit is placed upon the

complexity (and, hence, the cost) of the link software.

AX
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it is recommended that some effort be made to include the

use of the RJE Program in the preliminary plans for a sel-
ected SEL project so that it can be fully integrated into

the complete software development process from she start.
Thus, the full impact of the carefully planned use of the

RATE link capability could be assessed.

No changes are contemplated to the RJE Program at the pres-

ent time. This is due primarily to the current simplicity

and ease of use of the RJE capability. Another considera-

tion, however, is the uncertainty surrounding the details of

the components and structure of a proposed new Flight Dynam-

ics System computing facili.'y. The design of the new system

could possibly eliminate the need for a separate communica-

tions link for the programmer workbench through the incor-

poration of multipurpose links.
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SECTION 3 - SOFTWARE AIDS

3.1	 INTRODUCTION

The concept of the programmer workbench calls for an inte-

grated set of software aids which can be applied to the .

Code 5$0 software development process.	 The term "software

aid" as used here includes development tools and utilities
F

from any source.	 For example, many basic software aids are

usually supplied by the computer vendor along with the hard-
6

ware.	 These aids include file manipulation utilities and

_ compilers for the major high-order languages. 	 Other more

complex but still general-purpose aids, such as data base

management systems or word processing software, are available

r from independent software vendors.
r

However, experience in the SEL indicates that the greatest

success has been achieved with tools or utilities developed

in-house to satisfy applications specific to the Code 580

environment.

.; 3.2	 GSFC CODE 580 ENVIRONMENT

the Code 580 computing environment can be described in tBerms

{ of the size and the type of software development projects and

j
the application areas served by the development.

^. Code 580 software development results in software systems

+$ that range in size from 5,000 to 120,000 lines of code. 	 A

typical	 (average)	 system has 40,000 lines.	 When possible,

j a high-order language (typically FORTRAN) is used. 	 The de-

velopment is carried out primarily in an interactive environ-

s ent on both PDP-11 70 and IBM S 360 computers.m /	 /	 P

The software can be characterized as scientific application

E	 systems with little or no real-time or near-real-time require-

ments. Attitude determinations and control systems require

software to access large data bases and to perform flight

l	 dynamics analysis. Orbit determination and control systems

3-1

T

raX

u



require celestial mechanics software that is mainly mathe-

matical and algorithmic. Spacecraft maneuver planning re-

quires mathematical and algorithmic software that models a

particular vehicle's physical and dynamic characteristics.

Mission planning software is the generalized maneuver plan-

ning software that is used to evaluate vehicle performance

while the total mission is still in its definition phase.

3.3 CRITERIA FOR SOFTWARE AIDS

The following two lessons have been learned about what makes

a utility or tool usqful to SEL users:

• A software aid is more effective when it is simple.

9 The set of software aids must be an integrated set.

3.3.1 SIMPLICITY

Experience within the SEL tends to indicate that a simple

tool fr i,:tility achieves wide and long lasting acceptance

morn v;ften than a complex tool or utility. Simplicity here

means that each aid should have a single purpose, with a

small number of options. The options should provide flex-

ibility of function for the aid but should not add unrelated

capabilities to it.

The interaction with the user is thus limited to prompting

for information needed to perform one function. If the user

makes an error, it is more likely to be detected as an error

because it cannot be interpreted as a request for an alter-

nate function.

3.3.2	 INTEGRATED SET

An integrated set of software aids is achieved when the aids

are invoked with a common syntax and x4hen the range of capa-
ry is adequate to allow the user to perform all required

actions.	 A uniform syntax is important to the user, since it

results in a shorter learning period and a lower error rate

after the syntax is learned.

3-2
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Secticn 4 of this document describes a proposed syntax and

list of commands. These commands are representative of cur-

rent capabilities within the SEL, but they do not represent

the only possible list.

The selection of software aids for inclusion in the program-

mer workbench will continue until well after the introduction

of the workbench into the SEL environment.

3.4 CONCLUSIONS

in conclusion, the following can be said about software aids

for the SEL programmer workbench:

• The tools and utilities to be selected should perform

a single function.

• The common command syntax implied by the programmer

workbench concept will in itself be an aid to users.

• The list of software aids included in the program-

mer workbench is expected to evolve with time.
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SECTION 4 - COMMAND LANGUAGE PROCESSOR
t

4.1 INTRODUCTION

The command language processor is the component of the pro-

grammer workbench that ties together all components into a

useful whole. The processor interprets the user's typed

commands and invokes the particular component of the work-

bench required to perform the requested function.

a	 The effectiveness of the programmer workbench concept will

depend heavily on the user's acceptance of the system, and

a well-structured, easy-to-learn-and-use language will con-

tribute to user satisfaction.

The following subsections describe the proposed command

language, recommend some additions to the language, and

present some arguments in support of continued in-house de-

velopment of the command language processor (as opposed to

the use of software from other workbench projects).

4.2 SEL COMMAND LANGUAGE DESCRIPTION

The syntax and lexicon of the SEL, as developed in the previ-

ous task assingment, are given in Figure 4-1 and Table 4-1,

respectively. The language is structured to take advantage

of the processor-defined defaults whenever possible. For

yj	 example, if the user enters
i;

EDIT MODULE

the command language processor will assume that the file

MODULESRC.FPP is to be edited, since the default type of file

content is source code (SRC) and the default language is

structured FORTRAN (FPP). Of course, the user can override

these defaults if desired, but the defaults have been chosen

to minimize this need in the Code 580 environment.

z.
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of p00R QUALITY

2 BASELINEE ,r,iiL.jqqwvQq
4 BACKUPE	 TO
6 CALCULATEE wo-vtw--,t*iwi3
8 GALL C v r i I L- 3 C P CREATE t

o
v ED I T 3

10 C,*HANGE	 IN 041 le ' 1 ibrary I ALL) 3C YLIsT3

12 COM"ILECI i,r.!lw3CrREMOTE3
it COMPAREE -rllt..!3E WITH tai:toc( TO (,-)wj-LF,uLJ
T6 CONTROLE	 YEDIT3EPREMOTE3
is copn i-riiwv TO
20 CRE•TEC

24 DEBUGC i-,('il"-3EpCREATE1rEDIT3
26 BELETEE
28 DIRECTC Mlul lil.w4jvv,' ALL31vru,-,,,aL3
30 KBITC • 1153C( TO SAM

42 IXECUTEE M03
3.4 E.XIT'L rRES'uRTJ
36 Fil•lti / ,-Lvimj/C IN

-rll,.:3[pREjM,1TE3
4o onsmcc	 TO

4'"' HELI'-'C uummcmd3
4 .4 voi)-rALLE	 IN
46 LINKE f.,riiej
40 LIS•E
10 LOADC Prilu3EyCl^Eit1'rE,'YEDIT31?(JSEfi,'YTASK3

'52 PFILEt' ?•,rilt-e3
04 PRINTE Prilu3c/burutto." y,

06	 RI (.71.:.1`)
Ocl RENAlIE:* wrilw( TO
60 REST OREE llb pw•u3 FRom rhwame

62 RETRIEVi.-"
64 RUNUFFE MIKE( IV MwAwMl
66 SCiiNC
68 srict"'r
70	 SIZE[ t-f'.4.i1,.,31ySU13FILEJ

72	 8TATU's Jul-1114:1111L.
72 SUBNIT ullwLEPLo•awU
26 SYNCHC •IM WITH wri%M TO wwwrilw3
78 TESTE ?-, f'i:h-e31:vCREA'rE; YEDIT3
80 TIMEELimwE y daLw33c/ro1'iiii^L3EvS'ro pwA'rCH,' PSESSID143

82 71A EC t-PlIto.-jr.yCREATE! PEDIT3
8 .4 TRAN&•IT
86
88 XREFE "Mw!Evw-LJ.t.)w-A3rk 'TO

Figure 4 -1. Command Language Syntax (1 of 2)
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 NOTATION KEY ­ ,':	 ^

UPPER CASE	 REQUIRED SPELLING

LOWER CASE	 USER-SUPPLIED INFORMATION

SQUARE 8RACKETS [ l	 OPTIONAL INPUT

PARENTHESES	 OPTIONS WITHIN AN OPTION

/VERTICAL BARS	 /	 ONE OF SEVERAL IS TO BE.
SELECTED

Figure 4-I. Command Language Syntax (2 of 2)
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Table 4-1. Command Language Lexicon (1 of 3)

Command	 Description

BASELINE produce & baseline tree chart with the specified
file as the root, extending for a specified num-
ber of levels

BACKUP	 Copy the working (or other specified) library to
a packed file

CALCULATE	 Enter calculator mode, evaluate an expression

q	 CALI,.	 Use (or create or modify) a command list to exe-
cute a module, performing necessary compiling
and task building

CHANGE	 Global edit function to change (and list) all
occurrences of specified string in a file or a
library (see FIND)

COMPILE	 Precompile, compile module (optionally, on tar-
get system)

COMPARE	 Compare two files, list differences, optionally
produce SLP editor script

CONTROL	 Generate command list (as used by CALL or
SUBMIT)

COPY	 Produce copy of the file with new generic name,
version = 1

CREATE	 Call EDI to create new text file (defaults to
SRC.FPP, but also used for GESS, test

files, documentation, and others)

DATE	 Display current date in selected format (also
used as a format converter; e.g., calendar day
to Julian day)

DEBUG	 Specify debug mode for execution of module (see

4	
CALL)

DELETE	 Mark generic name (or specific subfile) for
deletion

DIRECT	 Produce directory listing of working (or other
it	 specified) library, with various formatting/

processing options

EDIT	 Call EDI to edit file (see CREATE); may also
perform copy function prior to editing (see
COPY)

i
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Table 4-1. Command Language Lexicon (2 of 3)

Command Description

EXECUTE Task build and execrate module, compiling if
necessary; unlike CALL, does not use command
list	 ,

EXIT End session, delete files marked by DELETE,
optionally restart session

FIND Global search function to list all occurrences
of specified string in module or library (see
CHANGE)

GESS Process GESS source, optionally on target sys- .
tem (similar to COMPILE)

GESSDOC Extract system description data from GESS
source files

HELP Print description, format, defaults of speci-
fied command

INSTALL Copy specified module source into controlled
library

LINK Create task (compile if necessary) from module

LIST List specified file on terminal 	 (see PRINT)

LOAD Use (or create or modify) command list to com-
pile module and install the ------ SRC.OBJ  file
into the object library

PFILE Display (or specify) the primary default module
name

PRINT Print specified file on printer (see LIST)

REGEN Regenerate specified intermediate version of
controlled source from original source and SLP
editor script

RENAME Rename specified generic module file or subfile

RESTORE Copy working (or other specified) library from
backup packed file 	 (see BACKUP)

RETRIEVE Retrieve target system output data sets to
programmer workbench

RUNOFF Call text processor for format module onto
output device/file

SCAN Call fast-look editor to examine listings,
output files

I "



i
r

iif

1^	 b

t
i€

i

9

3F.

sa

t

i

,

t

Table 4-1. Command Language Lexicon (3 of 3)

Command Description

SDOC Extract prologue and program design Language
(PDL) from module source files and from depend-
ent modules, as required (see BASELINE)

SIZE List size characteristics of module or subfile

STATUS Return status of specified job on target system

SUBMIT Queue command list and files for submission to
target system

SYNCH Produce SLP script to convert one .file into
second file (see COMPARE)

TEST Specify test mode for execution of module (see
CALL); use temporary version of module (cf.
PANVALET)

TIME Display current time in optionally specified
format; also used as format converter (see
DATE)

TRACE Specify trace mode for execution of module
(see CALL)

TRANSMIT Use (or create or modify) command list to move
files between the programmer workbench and tar-
get system

UPDATE Use SLP script to update controlled source
(see SYNCH)

XREF Create specified type of cross reference from
module or from working (or specified) library

8
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A further extension of the default definition idea is to

extend the concept to the module name itself. For example,

if the user enters

EDIT MODULE
COMPILE

the compiler selected will be the structured FORTRAN compiler

and the input to the compiler will be the file MODULESRC.FPP.

The use of defaults is quite common in interactive command

languages and results from a desire to rTduce the number of

user keystrokes and, therefore, the chance for error. Another

consideration is the relative speed with which a command is

typed, compared with the machine response time and the user's

thought processes. The command language processor answers

this problem with multiprocess commands such as CALL

(COMPILE + LINK) and LOAD (COMPILE + INSTALL). In this way,

common sequences are collected into one command.

4.3 USEFUL FEATURES ABSENT FROM THE COMMAND LANGUAGE
PROCESSOR DESIGN

Although much thought was given to command ease of use, the

following two features which should be included in the com-

mand language processor design were omitted:

• Stored command sequence file processor

s Last-command-recall capability

The stored command sequence processor is a utility that reads

a specified file containing command language statements and

executes them as if they were entered by the user. Such a

processor is available in almost all command languages with

various levels of sophistication. This feature enables users

to control quite complex and often unique processes with an

absolute minimum of keystrokes.

With the last-command-recall feature, the user can recover

the last typed command for modification and/or resubmission.

4-7



A series of commands containing only small differences can

thus be executed quickly. 	 The primary benefit occurs when

the user can .recall a command after a syntax error is de-

tected.	 In this case, the user need only correct the part

of the command containing the error before continuing.
4.4	 IN-HOUSE DEVELOPMENT CONSIDERATIONS

The choice of developing a command language processor in-house

for the SEL programmer workbench (rather than using software

from other workbench projects) has the advantage of close

control of the language capabilities, which is necessary in

a research environment.
4

In-house development allows the addition of a monitoring fea-

ture to the processor.	 This monitor can extract information

about the commands that are processed (e.g., command use fre-

quency, error rates, or execution success/failure). 	 These

statistics can be used by management to monitor progress in

a particular software development project.

The statistics can also be used by programmer workbench devel-

opers to evaluate the system's effectiveness and performance.

Commonly used command sequences can be detected and incorpor-

ated into the language as new commands, and frequently used

con nds can be streamlined into a simpler syntax. 	 Language

elements which are not used or are determined to not be ef-

fective in developing flight dynamics software may even be
r?
;f. removed from the language, thus reducing the confusion that

a cluttered language can cause.

s
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4.5 RECOMMENDATIONS

Further work needs to be done on the command language proc-

essor design. In particular, work should be concentrated in

the following areas:

More detailed design of the default definition rules,

especially in the transition from single-module com-

mands (EDIT, COMPILE) to multimodule commands (LINK,

EXECUTE)

• Establishing priorities for a staged implementation

of the processor

c A continuing review of the particular commands to be

included

s_
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