Supplement to
NASA Technical Memorandum 83234

NASA－TM－83234－SUPPL 19830014778

Use of Interactive Graphics To Analyze QUICK－Geometry

$$
\operatorname{For} P \operatorname{con}
$$

James C．Townsend

JULY 1982
ased bony

Mil 191982

Supplement to
 NASA Technical Memorandum 83234

Use of Interactive Graphics To Analyze QUICK-Geometry

James C. Townsend
Langley Research Center
Hampton, Virginia

National Aeronautics
and Space Administration
Scientific and Technical
Information Office

INTRODUCTION

The QUICK-geometry system (ref. 1) is a method for defining configuration shapes in completely analytical form. It was developed for use where the analytical definition of an aircraft geometry is advantageous or necessary for the solution of the flow around it. The QUICK InterActive Graphics Analysis (¢UIAGA) program was written to combine interactive computer processing and graphics-terminal display so that QUICK-geometry models can be rapidly checked for errors and analysis can be made to aid in corrections. The program, which was originally written in FORTRAN IV for use with the Control Data computer systems at Langley Research Center (LaRC), is fully described in the original part of this report entitled "Use of Interactive Graphics To Analyze QUICK-Geometry," published as NASA TM-83234 in December 1981. This paper is a supplement which describes the use of the QUIAGA program on the Prime minicomputer system at LaRC with which a higher baud rate speeds up the graphics display.

DESCRIPTION OF USAGE ON PRIME MINICOMPUTER SYSTEM

Requirements and Availability
The Quick InterActive Graphics Analysis (QUIAGA) program and its companion data reader (READAT) have been COded in FORTRAN 77 to run on the Prime minicomputer system and the Tektronix 4014 Computer Display (storage-tube graphics) Terminals at LaRC. The PLOT10 library is used for all graphics. Non-ANSI usages have been generally avoided in order to ease conversion to other systems with similar capabilities. The complete program is available from COSMIC (Computer Software Management and Information Center, 112 Barrow Hall, University of Georgia, Athens, GA 30602) as QUICK Interactive Graphics Analysis Program, LAR-12952. It is essentially equivalent to the version coded in FORTRAN IV for Control Data computers.

Changes in the graphical displays are small, the most notable changes being a different set of symbols for control-point locations and the addition of date and time notations as an aid in hard-copy identification. On the other hand, the Prime system requires a different means of accessing the file containing the QUICK intermediate deck. (See fig. 4 of the original report.) The optional capability to compare with original digitized data requires an additional file containing the crosssection data written in Prime mass storage format by the program READAT. An error file QERROR has been added. The programs are written assuming a 9600-band data link between the terminal and computer.

The command files used on the LaRC Prime minicomputer system to compile, load, and save the programs are shown in figure 1. Note that in addition to the program, the second procedure compiles and loads the subset of QUICK subroutines QKSUBS and CSMSET. This is the same group of subroutines, called SUBQUICK, which is used whenever the QUICK-geometry system is invoked, for example, by the finite-difference flow-field program STEIN (ref. 2). The V-mode PLOT10 graphics library VLBTEK is also loaded. These command files use the prime utility sEG for segmented programs and save the absolute binaries as \#READAT and \#QUIAGA.

Usage of READAT

The program READAT, which is run as shown in figure 2, takes numerical crosssection data from file QINP and writes them on a direct-access file named by the user. The input file must be opened on Prime file unit 1 by typing "I QINP." The data on this file are in the same form as that used by the Control Data version READATA (appendix A of the original report). The outputs from READAT are a list of the cross-section numbers and associated axial locations displayed on the screen (fig. 2) and the cross-section data written to the direct-access file named by the user.

Usage of QUIAGA

The QUICK Interactive Graphics Analysis (QUIAGA) program is run in the interactive mode. An example of the initialization of an interaction session is given in figure 3. For QUIAGA the input file, containing the QUICK intermediate output, can be opened either before beginning execution or by giving the file name when asked for it. As shown in the figure, before reading the QUICK intermediate data from the input file, the program asks the user, "DO YOU NEED HELP?" The figure shows a negative response. If the response had not begun with an "N," the program would have listed the quantities which may be asked for in a session and appropriate responses (fig. 4). A flowchart of prompts and program actions is given in figure 5. The rest of this section enlarges on this information.

IS Q2650 OUTPUT ON A D/A FILE? Y/N: This question pertains to the availability of original numerical data for comparison plots such as those shown in figure 6. If a local file of such data, written in direct-access form by the companion program READAT, is available, answer "Y." The program will then ask for the name of the file and will list the x locations from it as in figure 3, confirming the desired file has been opened. If such data are not available, answer "N." (The program will continue running but comparison plots cannot be made.)

KEY: ITYPE, SCALE FACTOR: This prompt, which comes next, marks the beginning of the major program loop. After each series of plots is finished, the program will return to this point to begin a new series. The parameter ITYPE is a two-digit integer which determines the type of plots to be generated in the next series. If the first digit is zero, the plots will be single cross sections with original data for comparison (e.g., fig. 6); if it is 1, the one or more cross sections plotted will be aligned to form a front view (fig. 7(a)); if it is a 2 , the cross sections plotted will be displaced in a row from upper left to lower right, somewhat like a lower oblique view (fig. 7(b)); if the first digit is 3, the cross sections will be in a row from lower left to upper right, somewhat like an upper oblique view (fig. 7(c)). If the second digit is a 1 or 3 , only the right half of the cross sections will be plotted (e.g., fig. 7(b)); if it is a 2 or 4 , both halves will be plotted (fig. 7(a)); if the second digit is 5 , body lines will be plotted instead of cross sections (fig. 8). If ITYPE is positive, all lines will be plotted (figs. 7(a) and $7(b)$), but if ITYPE is negative, hidden lines will be omitted (fig. 7(c)). The SCALE FACTOR, entered after ITYPE and a comma, is the decimal multiplication factor required to convert from geometry units to inches on the graphics terminal screen. The best choice depends on the configuration and type of plot; it can be found most easily by making a few trials. For a new configuration, dividing 15 by the length in inches should give a reasonable value. If 0.0 is used for SCALE FACTOR, the program will compute its own scale factor, which may be acceptable.

KEY: \# PTS/SIDE, CONCENTR ANGL: This prompt appears next if the plots are to be of a cross-section type. The value of \# PTS/SIDE is the integer number of points to be used in plotting each half cross section. The number must be between 3 and 180 (inclusive), chosen as a compromise between plotting speed and accuracy. The CONCENTR ANGL is a real number designating the angle about which there is to be a concentration of points around the cross section. The angle is measured from the horizontal through the QUICK map axis at each cross section. Concentrating near 0°, for example, helps to define the wing leading edge in plots such as those in figure 7. The range for concentrated points is from -90° to $+90^{\circ}$. However, CONCENTR ANGL can be set outside this range (such as 99) to produce an even angular distribution of points.

KEY: X LOCATION \# (0 TO END) : If the type of plot is a single cross section with comparison data, this prompt appears next. This is the integer corresponding to the desired axial location of the plot as listed after the yes response to the question "IS Q2650 OUTPUT ON A D/A FILE?" (fig. 3). The program will then plot the original cross-section data for the indicated axial location and the QUICK-geometry cross section of the type indicated by the second digit of ITYPE (fig. 6). The program returns to this same prompt after plotting; a response of zero, when no more plots of this type are desired, sends the program on to the last prompt of the main loop.

KEY: XMIN, XMAX, DELX: For all other types of plot this prompt appears next. Respond with the decimal axial location for the first cross section to be plotted or the beginning of the body lines, with the axial location for the last cross section to be plotted or the end of the body lines, and with the increment in axial location for the cross sections or for the body-line points to be plotted. (For a single cross section give the axial location followed by a slash.) If cross sections are requested, the program will plot them according to the value of ITYPE. After completing the plot the program moves on to the last prompt.

KEY: \# OF BL'S AND BL \#'S: If body-line plots were requested (ITYPE = 5), the program issues this prompt after requesting the axial locations. Respond with the number of body-line models to be plotted (up to a total of 20) and their model numbers. These numbers are found in parentheses in the "Body Line Coordinate Index" printed as part of the QUICK output when the geometry model is generated. The program will then plot the requested body lines between the given beginning and ending axial locations with points computed at the specified increments. The lines will be labeled with their model numbers.

MORE BL'S? (Y/N): This prompt appears after the plot. A response of "Y" sends the program back to the prompt of the previous paragraph. An "N" response sends the program on to the last prompt.

HIT 0 TO STOP, 1 TO CHANGE PLOT TYPE, 2 FOR NEW X STATION: This is the last prompt of the main program loop. A response of 0 ends the program, 1 returns the program to the beginning of the major program loop (to the prompt "KEY: ITYPE, SCALE FACTOR"), and 2 returns the program to the request for new axial locations (to the prompt "KEY: XMIN, XMAX, DELX"). If the response is 2 , the ensuing plots will be of the same type and scale factor as the plots just completed, and if they are crosssection plots the same number of points per cross section and the same concentration angle will be used. The program will continue cycling and producing plots as requested until the user responds with a 0 to this last prompt.

HIT <CR> TO CONTINUE: The program pauses after each plot is completed. A carriage return <CR> signals the program to clear the screen and continue when the user is ready.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
June 17, 1982

REFERENCES

1. Vachris, Alfred F., Jr.; and Yaeger, Larry S.: QUICK-GEOMETRY - A Rapid Response Method for Mathematically Modeling Configuration Geometry. Applications of Computer Graphics in Engineering, NASA SP-390, 1975, pp. 49-73.
2. Marconi, Frank; and Yaeger, Larry: Development of a Computer Code for Calculating the Steady Super/Hypersonic Inviscid Flow Around Real Configurations. Volume II - Code Description. NASA CR-2676, 1976.
－C＿RDAT
F77 READAT－INTS－B B＿RDAT－64U FILMEM
SEG
ULOAD EREADAT
LO B＿RDAT
LI
MA 3
QU
CO TTY
OK，
－C＿OIAG
F77 QUIAGA－INTS－B B＿QIAG－L L＿QIAG
F77 COMPAR－INTS－B B＿COMP－L L＿COMP
F77 CSMSET－INTS－B B＿CSMS－L L＿CSMS－NOOPT
F77 QKSUBS－INTS－B B＿QSUB－L L＿GSUB
FILMEM
SEG
ULOAD \＃QUIAGA
LO B＿OIAG
LO B＿COMP
LO B＿CSMS
LO B＿QSUB
LI ULBTEK
LI
MA 3
QU
CO TTY
OK．

Figure 1．－Command files to compile，load，and save absolute binaries of programs READAT and QUIAGA．

OK，I OINP
OK．SEG FREADAT
47 CROSS SECTIONS ON INPUT FILE NAME OF D／A FILE TO WRITE： QXDATA

－x location	＊	\because LOCATION	1	K LOCATIDH	4	\therefore LOCHTIOH
10.00000	2	2.00000	3	12.00008	4	22．00090
532.00000	6	42.00000	7	52.00000	8	62． 00000
962.09000	10	S7．09020	11	122.00000	12	137．08003
13 162．00000	14	182．00000	15	157．00009	15	202．20000
17 222．00000	13	242．00000	19	262．00000	20	Eここ．eatas
21 302．00000	22	322.00000	23	342.00009	24	EE2．en000
25402.00000	26	432.00000	E7		23	512.00000
29562.00000	30	612.00000	31	662.000 ®̀	$3{ }^{3}$	712.00003
33 762．03000	34	812.00000	35	$862 . \mathrm{nove心}$	36	912.0 dea
37 962．00000	38	1012.000000	39	1012．00000	40	105こ． 10200
41 1073．00000	42	1832．00000	43	1112.00000	44	116 コ．40000
451212.00000	46	1237．0n080	47	126̈． 00090		

Figure 2．－Example of run of READAT absolute binary on Prime minicomputer． User inputs are underlined．

```
OK. I QOUTPT _____ Prime commands to open QUICK intermediate-output file as
OK, SEG #QUIAGA
    input file and to begin execution from absolute binary
DO YOU NEED HELP? of QUIAGA.
```


47 CROSS SECTIONS READ FROM FILE OXDATA

LOCATION	x	LOCATION	* \quad -	LOCATION	x
1	0.0000	17	222.0000	33	762.0000
2	2.0000	18	242.0000	34	812.0000
3	12.8808	19	262.0000	35	862.0000
4	22.8000	20	282.0000	36	912.0000
5	32.8000	21	302.0000	37	962.0000
6	42.0000	22	322.0000	38	1012.0000
7	52.0000	23	342.0000	39	1012.0000
8	62.0000	24	362.0000	40	1062.0000
9	62.0000	25	402.0000	41	1073.0000
10	87.0000	26	432.0000	42	1082.0000
11	112.0000	27	462.0000	43	1112.0000
12	137.0000	28	512.0000	44	1162.0000
13	162.0000	29	562.0000	45	1212.0000
14	182.0000	30	612.0000	46	1237.0000
15	187.0000	31	662.0800	47	1262.0000
16	202.8000	32	712.0000	48	0.0000

Figure 3.- Initialization of interactive session using QUIAGA.
User inputs are underlined.

```
            QUICK INTERACTIUE GRAPHICS ANALYSIS
    HELPS YOU CHECK QUICK OUTPUT (USE PRIMOS' I pathname)
WHEN ASKED FOR: GIUE A: EXPLANATION:
ITYPE 2-DIGIT INTEGER <0 HIDDEN LINES OUT
            1ST DIGIT = COMPARISON WITH ORIGINAL DATA
                            1 FRONT UIEW
                            2 BOTTOM OBLIQUE
                            3 TOP OBLIQUE
                2ND DIGIT = 1 HALF CROSS SECTIONS
                        2 WHOLE CROSS SECTIONS
                            3 HALF CROSS SECTIONS WITH CONTROL POINTS
                            4 WHOLE CROSS SECTIONS WITH CONTROL POINTS
                            5 BODY LINES
\begin{tabular}{lll} 
SCALE FACTOR & REAL & SCREEN INCH/MODEL INCH (AUTO IF 0.) \\
\#PTS/SIDE & INTEGER & NUMBER OF POINTS AROUND HALF CROSS SECTIONS ( \(<=180\) ) \\
CONCENTR ANGL & REAL & ANGLE FOR CONCENTRATED POINTS (-90. TO 90.)
\end{tabular}
                            ANGLE FOR CONCENTRATED POINTS (-90. TO 90.)
                            EUEN ANGULAR DISTRIBUTION IF NOT IN RANGE
# OF BL'S NBTEGER NUMBER OF BODY LINES TO PLOT (NBLS<<10)
XMIN REAL BEGIN AT THIS AXIAL STATION
XMAX REAL END AT THIS AXIAL STATION
DELX REAL INCREMENT IN AXIAL STATION
x LOCATION * INTEGER NUMBER FROM LOCATION LIST
    ERROR MESSAGES ON FILE QERROR
```

Figure 4.- Help output from QUIAGA program.

Figure 5.- Simplified flowchart of QUIAGA program. Items in quotes are prompts requiring keyboard response; dashed outlines denote subroutines.

∇

```
36 KEY: X LOCATION * (O TO END)
```


x

Figure 6.- Comparison of QUICK cross-section model including control points with original data digitized from a drawing. Large symbols are control points; small pluses are comparison data.

 $12.000^{\text {TO }} 1212.000$ BYI80.0000

(a) Symmetric front view with all lines shown.

(b) One-sided lower pseudo-oblique view with all lines shown.

(c) Two-sided upper oblique view with hidden-line removal.

Figure 7.- Examples of overall views with many cross sections.

(a) Top view and side view body lines over whole modeled length.

(b) Several top view body lines over shorter range.

Figure 8.- Examples of body-line plots.
*

