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Abstract

Observations of large amplitude MHD waves upstream of Jupiter l a bow shock are

analyzed. The waves are found to be right circularly polarized in the solar

wind frame which suggests that they are propagating in the fast magnetosonic

mode. A complete spectral and minimum variance eigenvalue analysis of the

data was performed. The power spectrum of the magnetic fluctuations contains

several peaks. The fluctuations at 2.3 mHz have a direction of minimum

variance along the direction of the average magnetic field. Several harmonics

at 6, 9, and 12 mHz are also present. The direction of minimum variance of

these fluctuations lies at approximately 40° to the magnetic; field and is

parallel to the radial direction (toward the sun). We argue that these

fluctuations are waves excited by protons reflected off the Jovian bow shock.

The inferred speed of the reflected protons is about two times the solar wind

speed in the plasma rest frame. A linear instability analysis is presented

which suggests an explanation for many of the observed features of the

observations. That analysis also predicts that the fluctations contain a

significant fraction of magnetic energy that is linearly polarized and in the

Alfven mode.
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1. Introduction

As Voyager 2 approached Jupiter, the interpla' . ;:tary magnetic field was

oriented out of the ecliptic plane for several days. The orientation was such

that Voyager traversed the foreshock region ±from the downstream side. This

fortuitous geometry resulted in the detection of a series of upstream wave

events reminiscent of the phenomenon studied so intensively at earth. The

general characteristics of these events have been discussed in detail by

Smith, Goldstein, and Mattthaeus (1983) .

The purpose of this paper is to analyze the last of the events encountered

by Voyager. For several reasons this last event appears to be very young in

that it may represent an early stage in the wave-particle interaction between

the interplanetary magnetic field and solar wind protons reflected from the

bow shock. Ibis event was very brief, lasting only 1 1/2 hours. During this

time, the direction of the interplanetary magnetic .field was connected to the

Jovian bow shock and was oriented out of the ecliptic plane at a 45 0 angle.

In this paper we present an analysis of the magnetic .field and plasma data

taken during this interval. We find that the enhanced magnetic fluctuations

are grouped into a ,few frequency bands (four or five), and that in each

frequency band, the fluctuations have nearly circular polarization which is

right-handed in the solar wind frame of reference. At least at the lowest

.frequencies, where the relevant plasma data is available, the waves are

propagating outward from the bow shock. Furthermore, the wavevert„ors tend to

be more field aligned at the lowest frequencies than at higher ones. The

various frequency bands are in ripproximate harmonic relationship to each

other. We conclude that the Laves are probably in the fast magnetosonic
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branch, (but the possiblity of a sizable contribution from linearly polarized

Alfven mode fluctuations at the higher harmonics cannot be ruled out). We

have inferred the velocity of the plasma particles which can resonanate with

these waves. We find that the observations are consistent with excitation by

protons streaming away from the bow shock at about the solar wind speed.

Similar observations of upstream waves have been made at earth [see, for

example, Hoppe et al., 1981], but to our knowledge the harmonic structure

reported here has not as yet been reported in the near earth environment. The

resonant velocity deduced for these reflected protons is consistent with the

recent simulations of oblique shocks by Leroy et al. [1982] and Tanaka et al.

[1983).

in §2 we discuss the observations and the spectral analysis of the

magnetic field and plasma data which motivates the interpretation presented in

Q. In §9 we develop that interpretation further by presenting a linear wave-

particle instability analysis in which we show that a distribution function of

solar wind protons (orginating by reflection from the Jovian bow shock) can,

in principle, generate the fundamental and harmonics observed in the power

spectrum. The direction of maximum growth for the fast magnetosonic mode is

found to be close to the observed minimum variance direction in all cases.

Additional limitations of this analysis and a summary are given in §5.

A

k

f

2. Wave Mode Identification

The time period of interest is the interval from about 9:00 to 10:30 UT on

day 189 of 1979. A plot of the magnetometer data taken by the GSFC experiment

[see Behannon et al., 1977 for a description of the experiment] is shown in

Figure 1. The data have been rotated to the mean field coordinate system with
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the z-axis along the mean field direction. During this time the components of

the average magnetic field (in the usual RTN coordinate system) were (0.229,

0.03132, 0.195) nT, respectively. The x-direction is in the R-T plane. The

fluctuations in all three components and in the magnitude are large, 6Brms

1.31%>J, but appear to be dominated by only a few frequencies.

The quasi-monochromatic appearance of the data is somewhat deceptive. In

Figure 2a we show the power spectrum of this interval. This spectrum is

constructed using the fast Fourier transform technique and has 14 degrees of

freedom. The data, consisting of 1.92 sec averages of the magnetic field, was

digitally filtered with a low pass filter to eliminate aliasing at the highest

frequencies. Because the spectrum is falling so steeply, there is a possibili-

ty that "leakage" from the strong peak near 3 mHz might be distorting the

spectrum above about 12 mHz. This possibility was investigated by "pre-

whitening" the data. We found that above about 12mHz the spectrum is, in

fact, distorted by leakage, but the peaks in the spectrum at 12 mHz and below

are preserved in the prewhitened data.

The spectrum is striking for the presence of several large peaks. The

largest is centered near 2.3 mHz and several smaller peaks are visible at

higher frequencies. The high frequency peaks in the sprectrum out to 9 or 12

mHz appear to be in approximately a harmonic relationship with a fundamental

at 2.3 mHz. The first two peaks in the spectrum are statistically signifir.^,:t

while the significance of the higher "harmonics" is not as certain, and above

12 mHz no statistical significance can be ascribed to the spectrum.

During this period the solar wind velocity, kindly provided to us by the

Voy-iger PLS team [see Bridge et al., 1977 for a description of the experi-

ment), was in the radial direction with a magnitude of 420 km/s. At the end

of this interval it dropped to 400 km/s. 	 The proton density fluctuated
.F
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between 0.1 - C.4 protons/cm' with an average of 0.2. The electron tempera-

ture was approximately 2-3 eV (E. Sittler, private communication).

Smith et al. [1983] have shown that for MHD fluctuations in a super

Alfvenic flow, the sense of polarization in the plasma frame can be obtained

from a determination of the magnetic helicity [see Moffatt, 1978; Matthaeus

and Goldstein, 1982a]. In Figure 3 we have plotted the normalized magnetic

helicity spectrum am (f) as defined in Matthaeus and Goldstein [1982a] and

Smith et al: [1983]. The first thing to note about the helicity spectrum is

that in the vicinity of the spectral peaks it is nearly positive definite and

attains nearly 80% of its maximally allowed value of ±1, implying that the

flucutations are nearly circularly polarized. This magnetic helicity spectrum

is distinct from spectra normally seen in interplanetary regions far removed

from planetary bow shocks and the reader is referred to Matthaeus and Gold-

stein [1982x] for comparison spectra taken in the ambient solar wind. For

this interval <BR> > 0 and the fluctuations therefore have right-handed

polarization in the plasma frame.

From an eigenvalue analysis of this time interval, the degree of polariza-

tion and ellipticity of these fluctuations can be determined. At each Fourier

mode the spectral matrix is rotated into an eigenvalue coordinate system in

which the smallest eigenvalue is associated with the direction of the minimum

variance of the fluctuations. In Figure 4 we show some of the results of this

calculation. The degree of polarization D, the ellipticity e, and the angle e

between Bo and k, the direction of minimum variance, are plotted versus

frequency. We will assume that the direction of minimum variance corresponds,

within a sign, to the physical direction of propagation of the wave phase

velocity. It is clear that the normalized helicity and degree of polarization

track each other very well and that the ellipticity is large when a m is large.

r
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This confirms that the fluctuations are nearly circularly polarized. 	 Subject

to the constraint that the fluctuations have phase speeds less than the solar

wind speed, then the waves are right circularly polarized in the plasma frame.

Note that a is 100 at the lower frequencies (= 2.5 mHz) but increases to about+

40° at the higher harmonic peaks (= 6, 9, and 12 mHz) .	 Although not obvious

in	 the power	 spectra	 (Fig.	 2),	 the plots of	 am ,	 D and	 a suggest that the A

harmonic structure may also extend	 to	 15 or 18 mHz	 (cf.	 Figs.	 3	 and	 4).
t

Because	 the	 spectrum	 in	 this	 range	 in	 not	 statistically	 significant,	 we

confine our attention in the following discussion to the spectrum below 15 mHz.

Because a is significantly smaller at frequencies near 3 mHz than it is at

the higher frequences, one might expect that the low frequency modes are less 1S

"compressive" than are the higher frequency ones. 	 This would be particularly
{

true if the fluctuations were fast mode waves as is suggested by the fact that

the	 rest	 frame polarization	 is	 right-handed.	 Fast mode waves should show#

significant power in the spectrum of the magnitude of B,	 except for propa-

,s

gation nearly parallel 	 to	 the mean field when they become degenerate with

Alfven waves	 (if the Alfven speed exceeds the sound speed).	 Thus we might
w

expect that the power spectrum of the magnitude of B would have suppressed

power near 2.5 mHz, but would still contain the large peaks in the spectrum

seen in Figure 2a.	 This is confirmed in Figure 2b where the power in JBI	 is

plotted.	 Note that the spectrum has no peak at 2.5 mHz, but does contain the

higher frequency harmonics seen in the spectrum of the components (2a).

The degree of compression in these fluctuations can also be examined using

the proton density measurements. Fast mode waves normally show a strong

correlation between JBI and p. However, in this case, where we suspect that

the fundamental is propagating nearly parallel to Bo , the correlation should
u ,

be weak because of the degeneracy with the Alfven branch. The higher harmon-,
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ics are propagating at larger angles and should show stronger -correlations

between (8I and P. Because of the sampling limitations of the plasma !1stru-

ment (one sample every 96s), only the correlation near the fundamenta, can be

	

	 i
i

examined. In Figure 5a we have plotted the correlation between (BI and p

defined following Smith et al. [1983]. As expected, the correlation is weak

near 2.5 mHz and is consistent with being zero. In this case, in contrast to

the work of Gary et al. [1981], the waves, although apparently in the fast

magnetosonic mode, are noncompressive and are propagating parallel to <B> at

these lower frequencies. We return to this point below when discussing the

excitation of such waves by wave-particle resonances.

The directions of propagation cannot be resolved solely from an eigenvalue

analysis. However, at the low frequency end of the spectrum, the cross

helicity [cf. Matthaeus and Goldstein, 1982a] can be used to resolve the

ambiguity in the sign of the propagation direction. In Figure 5b, we have

plotted the normalized cross helicity ac , as defined by Matthaeus and Gold-

stein. Although very few degrees of freedom are available for such a short

data set, the cross helicity spectrum is positive and quite large near 2.5

mHz. The positive sign of ac indicates that "Alfvenic" fluctuations (includ-

ing fast mode waves) are propagating antiparallel to the mean field direction,

i. e. outward, away from Jupiter (recall that <B R> > 0). Furthermore, the

fact that there is significant cross helicity in this frequency range is

further evidence that the fluctuations are MIM and not whistlers. 	 (The

velocity determination in this analysis includes only ion data.)

The Alfven ratio rA, which is the ratio of the spectrum of kinetic energy

to that of magnetic energy, is plotted in Figure 5c. For MHD fluctuations, r 

is expected to be close 'Co one, while for whistler waves, r  would be nearly

zero. Note that near 3 mHz r  is close to unity, providing further evidence
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that these fluctuations are MHD.

Another consistency check on the fast mode identification is to compute i

I

the ratio of the Alfven to sound speeds during this time. The large ampli-

tudes of the magnetic fluctuations and the relatively large value of the cross

helicity together with the nearly field aligned direction of minimum variance,

suggest that the fast mode is nearly degenerate with the Alfven branch. 	 This

can occur if a is nearly zero and if VA > Cs , where VA and Cs are the Alfven

and sound speeds, respectively.	 E. Sittler has kindly provided us with the

electron temperature for this interval so that Cs can be estimated. If we !'	 i

assume that the electrons are isothermal (y = 1), then C s and VA are approxi-

mately given by

and
^t

i

q

VA = Bo/./ (4,r p ) (2)
4

;j where Te is the electron temperature in eV, mi is the proton mass, p is the

ion mass density, and Bo is the mean magnetic field strength. 	 Using Te = 2

eV, Cs is 1 . 38 x 10 6 km/s while VA = 1.44 x 10 6 km/s.	 The difference between
k

y
l

these numbers is not significant because of experimental uncertainties and the
Y

K approximations made in writing	 (1) and	 (2).	 These results, while not proving
pp4CCC

r
thatVA > Cs ,	 is at least not inconsistent with the assertion that we• are

observing fast mode waves.

We now feel justified in concluding that the portion of these fluctuations

that	 is elliptically polarized	 is	 right-handed	 in the plasma frame and	 is
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propagating away from the Jovian bow shock in the fast magnetosonic mode. The
t

remainder of this analysis is based on this conclusion.

3. Source of the Waves

From the eigenvalue analysis we know both the direction of k with respect

to Bo as well as ¢, the direction of k with respect to Vs w. Thus the plasma

frame frequency of these waves can be computed. in Table 1 we have listed the

angle between k and	 Bo , k and Vsw ,	 and the	 rest frame frequency for the

Fourier modes contained in the pvimr spectrum (Figure 2a).

We are now in a position to examine the possibility that these waves are

amplified by wave particle resonances. The linear, or even quasilinear,

theory of wave-particle resonances is a small wave amplitude theory and, as

discussed above, these fluctuations clearly have rather large amplitudes.

Thus we are probably in a nonlinear regime and no theory of the dispersion

characteristics of nonlinear compressive MHD modes exists [see Barnes, 1979

for a review]. Nonetheless, we will show below that if R;>ne proceeds on the

assumption that linear theory sometimes yields valuable information even in

parameter regimes where its use is probably not formally justified, some

insights can be gleaned about the possible origin of these fluctuations.

To continue, we make several basic assumptions. In the next section, we

impose additional approximations and treat the problem in the context of

linearized Vlasov-Maxwell theory. First we assume that the relationship

between w, the rest frame frequency (in radians/s), and k will be given

approximately by the linear dispersion relation for the magnetosonic fast

mode. (We will see in the next section that even this assumption almost

certainly requires modification at the lowest frequencies in the spectrum.)
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One can then solve for the resonant velocity. Since the dispersion relation

cannot be independently determined from single point measurements, the most

that can be obtained from such a procedure is a internally consistent picture

of the interaction.

From the Doppler shift calculation made in §2 (see Table 1) , we see that

the rest frame frequencies are well below the proton cyclotron frequency of 6
zGM

	

mi tz, as expected for r1HD waves. Even the 4th harmonic at 12 mHz has a rest 	 s

frame frequency of only 0.6 mHz.

The fast mode dispersion relation can be written as (Boyd and Sanderson,

1969, p. 1881

(w/k) s = (1/2){ (C  s^ + UAL ) + ( (Cs^ + VA= }	 4CS Z VA2cos ,9) 1/2 }	 (3}

Using (3) , k can be calculated. Since both a and ^ are known from the eigen-

value analysis, the wave-particle resonance condition

v„ _ (w - nnp) /kcose	 (4)

can be solved for v„ (si p = eB/mpc is the proton Larmor frequency and a is the

	

magnitude of the electron charge). For frequencies near 2 - 3 mHz, we let n = 	 u

1 with the result that v„ = -2Vsw (Table 1), where we have assumed that the

resonant particles are protons. For frequencies corresponding to the second

harmonic in the spectrum at 6 mHz (Fig. 2), we set n = 2; again, v„ = -2Vsw'

Similary, for the third and fourth harmonics near 9 and 12 mHz, we let n = 3

and 4, respectively. Again, v„ = -2V sw (Table 1). Note that ions heavier

	

than protons resonate with lower frequencies and have even slower resonant 	 {}'

velocities. Thus.it appears unlikely that these fluctuations could be excited
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by heavy ions of magnetospheric origin. We think our conclusion that the

	

observed fluctuations are excited by reflected protons is strongly suppor f o-a	 i

by this simple analysis. The linear instability analysis described below is

predicated on this assumption.

4. Linear Analysis

In this section we treat the excitation of these upstream waves as arising

from an electromagnetic ion beam instability. This instability has been

considered previously in an astrophysical context by Tademaru [1969] and as an

explanation of double ion beams in the solar wind by Montgomery et al. [1975;

1976], Abraham-Schrauner et al. [1979] and Gary [1978], among others. The

instk-if * ,q ty has als., been invoked to explain excitation of MHD waves upstream

of the terrestrial bow shock by Barnes [1970] and most recently by Gary et al.

[1981] and Lee [1981], to name a few. Previous analyses of near earth

phenomena have been confined to examining excitation of the n = 1 resonance.

Harmonics have not as yet been investigated in terrestrial studies. The work

of Tademaru [1969] contains the complete formalism including all harmonics,
i

but is replete with both typographical and algebraic errors. We have rederiv-

ed the growth rate following Tademaru's approach and use our results in this a

section.
•	 6

	The first problem is that of deciding on the form of the ion distribution. 	 r

Based on our preliminary analysis in §3, we assume that the ions are low

energy protons detectable only by the PLS instrument on Voyager. Their anergy

{ would be only a few keV in the spacecraft frame. The viewing geometry for

detecting such a particle population is very unfavorable. The four Faraday

cups which comprise the PLS instrument were pointed toward earth while the
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reflected particlez were coming from the opposite hemisphere. Nonetheless, we

have searched the PLS data for evidence of these reflected protons. During

virtually the entire period the angle between the instantaneous magnetic field
M

(in spacecraft coordinates) and the look directions of the four cups was such

4 that it was extremely improbable that these particles could be seen. The

density of these reflected particles is expected from similar observations at

earth to t,e only a small fraction (of order 1%) of the solar wind density

[Bonifazi and Moreno, 1981; Paschmann, et al., 1980; 1981], which would reduce

the sign-al to noise ratio. An additional consideration is that the pitch

angle of the reflected beam and the width of that distribution are unknown.

Therefore it is not altogether surprising that our search through the plasma

data did not reveal any unequivocal evidence of reflected protons.

Finally, the possibility should be kept in mind that the particles

exciting the waves were in fact not present during this time. The waves could

have been created somewhat earlier in a different region of space so that we

were observing only the waves. The damping of Alfvenic fluctuations would be

weak and even the higher harmonic magnetcsonic modes might survive long enough

to be observed because we find that Landau damping of these waves is not very

significant at the inferred angles of propagation. 	
K

We have, therefore, postulated a distribution function which we believe is

both consistent with our conclusions in §3 and with observations and computer

simulations of the similar phenomenon seen near earth. We take the streaming

proton distribution to be a two-temperature streaming Maxwellian of the form

f (v o.v,,) _ (nb/no) ('ff3/2V, 2V,.) -1 eXP(-v,z/'V^ 2) exp-[ (V., _VS) 
2 /V1.

2 ]	 (5)

where V , and V„ are the perpendicular and parallel (with respect to <B>)
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thermal spread of the streaming protons and Vs is the streaming velocity which

we take to be 1.8 sw based on examination of Table 1. Tanaka et al. [1983]

concluded that their simulations and the observations of Bonifazi and Moreno

[1981] and Paschmann et al. (1981) were most consistent with (n b/no) = 0.01,

V„ of order 0.2 Vsw and V1 of order 2 - 3 V,,.

We will not present results of a complete parameter search for our

analysis, but will show our conclusions only for that choice of parameters

that seeme6 to best match the observations. The greatest discrepancy we found

between parameters that seemed to work at earth and those that gave the best

results in our linear analysis was that V, needed to be as much as W il to

produce maximum growth in the observed direction. All other parameters were

chosen to be the ones mentioned above from Tanaka et al. [1982] and Paschmann

et al. [1981]. The much higher ratio of T,/T„ in our analysis may arise from

the fact that the solar wind is cooler at Jupiter than at 1 AU but the

streaming speed is about the same. The perpendicular thermal velocity of the

reflected ions is acquired by transforming the streaming speed into large

pitch angle gyromotion which is then thermalized, whereas the parallel thermal

velocity essentially arises from the thermal velocity of the solar wind. Thus

the necessity of using a larger value of T,/T„ is not too unexpected.

We also included Landau damping by both thermal solar wind protons and

electrons. We used a solar wind temperature of 2 eV for both cc'mPonents and

the measured density of 0.207 particles/cm 3 . The thermal protons were

generally unimportant, but Landau damping by electrons is significant at large

propagation angles at the higher harmonics. The expression for the growth

rate y is given in Appendix A.

For the parameters given above, the proton distribution (5) is very

4

i

unstable. For the fundamental we found that y/ap exceeded unity, violating
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the Taylor series expansion used in deriving (Al). However, because maximum

growth is along Bo , an expression for Y valid for parallel propagation can be

easily derived in which both w and y are solved for simultaneously [see, for

example, Lee 1981). When using this expression, the real part of the fre-

quency is significantly modified, and the phase speed is now up to twenty

times the Alfven speed (cf. Table 2) for the parameters we have used. This

behavior of the linear analysis arises from the very large growth rates which

result from our choice of parameters. For example, choosing a smaller value

for nb/no would lessen this effect.

At the higher harmonics, Y/np is less than one, and equations (Al) and

(A2) can be used. The results of the calculations are summarized in Table 2.

The first thing to note is that the growth rates for the fundamental, second

and third harmonics are all large which is consistent with the observed large

amplitude of these fluctuations and with the fact that the power spectral

peaks for the; fundamental and second peaks are of comparable magnitude. The

maximum growth rate of the fundamental occurs at e = 0, consistent with the

minimum variance result of e = 10°. (As noted by Gary et al. (19811, and also

found in our own calculations, the growth rate is still substantial at larger

angles, up to 20 0 or more and is actually quite flat out to about 5°. This

may be related to the fact that the minimum variance direction is not quite

0.) Finally, note that the higher harmonics all have maximum growth close to

e = 40°, again consistent with the minimum variance analysis summarized in

Table 1.

At propagation angles different from zero, it becomes possible to excite

the Alfven branch in addition to the fast mode. In the context of the formula

for the growth rate, (A2),	 this entails changing the sign of n and w while

leaving the sign of k„ unchanged. With n = +1, the growth rate of the Alfven

i
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mode is less than that of the fast mode for all propagation angles of inter-

est.	 However, for n > 1, the maximum growth rate of the Alfven mode (maximiz-

ed with respect to k), actually exceeds the growth rate of the fast mode wave.

Maximum growth occurs at a larger angle, close to 50° 	 (see Table 2).	 This
x

large growth is perhaps surprising, but one should keep in mind that these

waves are nearly linearly polarized 	 (cf.	 Table 2), which enables resonance

with streaming protons to occur, and, unlike the fast mode waves, the Alfven

waves are essentially unaffected by Landau damping.

At this point we must question of the relationship of this analysis to the

minimum variance results.	 In using the miniumum variance technique we have

assumed that the direction of minimum variance is parallel to k.	 However, for

linearly polarized fluctuations, there is no direction of minimum variance.

Hence,	 because	 fast mode waves are also excited and are right elliptically

polarized, the minimum variance direction found will be associated with the

fast mode fluctuations.	 The power spectrum, however, will contain contribu-

tions from both modes since the parallel components of k are approximately

equal	 in both cases.	 The larger growth rates of the Alfven mode may then

account for the relatively large spectral peaks at 9 and 12 mHz.

Having said all this, we must interject the caveat that the observed fluc-

tuations almost certainly represent the	 result of nonlinear processes,	 and

arguments based on linear theory should be accepted only with some caution.

For example, the degree of polarization deduced from the eigenvalue analysis

is much greater	 than would	 be expected	 for linear cold plasma fast modes
E,

propagating in the direction of minimum variance (cf. Table 2). 	 Another limi-
f

tation to keep in mind is that we have used the cold plasma dispersion rela-

tions in §4.	 This ignores any effects due to the non-zero sound speed, which 7

as we have seen has approximately the same magnitude as the Alfven speed.

qj]

qi
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That the ion beam instability can, in principle, excite both the Alfven

and fast mode branches is apparently not well known. Recently, F-appe and

Russell (1983) have reported evidence from TSEE 1 and 2 data for P^lfven mode

fluctuations in the earth's foreshock. They concluded that these fluctuations

must be excited by a diffuse distribution of upstreaming protons because the

Alfven mode could not be amplified by an ion beam. As we have seen, this is

not correct, and while the fluctuations analyzed by Hoppe and Russell may have

beEn produced by a diffuse ion population, the possiblity that they originated

from a reflected ion distribution should not be ignored. The more evolved the

interaction is, the greater is the probability that Landau damping will have

preferentially removed the fast mode component leaving only the linearly

polarized Alfven mode fluctuation.

Considering the limitations of linear theory the success of this analysis

in explaining the observations suggests that although the waves are observed

with large fluctuation amplitudes, the initial excitation may well have been

via the electromagnetic ion bear, instability. Subsequent evolution has

apparently preserved the directions of maximum growth of the fast mode

component and also reflects the comparable growth rates for the first several

harmonics.

5. Discussion

The analysis we described in M and 4 make use of the assumption,

fundamental to the use of any resonance condition at all, that the particle

distributions are gyrotropic, i. e.. uniform in phase about the mean field, Bo.

The wave spectra excited by such distributions must themselves be gyrotropic.

For the higher harmonics, this means that the k-vectors are distributed in a
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cone about the mean field. In realistic cases, resonance broadening will

reduce the sharpness of the spectrum of excited waves. However, even in the

case of a perfectly sharp wave-particle coupling mechanism there appear to be

several effects which might spread the observed wave spectrum.

First, the mean field direction may not be a very well determined statisti-

cal quantity. Loosely speaking, waves in different subintervals may be

resonant at different angles with respect to a fixed reference direction. To

the extent that this is so, the data is neither time stationary nor spatially

homogeneous, which would indicate a breakdown of the basic assumptions

underlying the simple wave-particle theory used above. To estimate the

magnitude of this effect we utilized a 'stationarity test' of the type

described by Matthaeus and Goldstein (1982b]. This affords an estimate of the

stability of estimates of the mean field from a finite data set. The correla-

tion length for this data set is quite small, = 4.3 x 10' cm, and the data

interval includes _80 correlation lengths. Thus, not surprisingly, the

stationarity test indicated that the mean field direction is, in fact, rather

well determined during this data interval.

A second point is that the spectra we have used in characterizing the data

are reduced wavenumber spectra depending only on heliocentric radial wave-

number, while _ the cylindrically symmetric spectra expected from a sharp

resonance effect are two dimensional. Unless the mean field is strictly

radial, a sharp spectrum of waves produced by wave particle couplings will

appear spread over radial wavenumbers.

It might, therefore, seem surprising that the power spectrum shown in

Figure 2 is made up of well resolved peaks that have not been completely

obliterated by the Doppler shift into the spacecraft frame. This problem was

first brought to our attention by M. Lee (private communication). 	 The
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essential fact is that the power spectra determined in the super-Alfver.ic

solar wind are reduced spectra [see, Batchelor 1970]. They are integra:^ed

over the two directions perpendicular to the solar wind flow velocity. In

Appendix S we show that when a co • ,ical distribution of k-vectors is integrated

over these two directions, the resulting reduced spectrum is peaked at two

wavenumbers; one at very small k,,, the second close to the resonance wave

number.

The general picture we have is that during this time the interplanetary

magnetic field was connected to the Jovian bow shock in such a way that solar

wind protons reflected from the shock were able to propagate upstream. This

can only happen for oblique or quasi-parallel geometries. From the work of

Barnes [970], Gary et al. [1981] and Lee [1981], it is known that such

reflected particle distributions can excite fast magnetosonic mode waves. Our

analysis of the magnetic field and plasma data has shown that the observed

fluctuations are quite probably of this variety, but with an additional

contribution of linearly polarized Alfven mode waves which cannot be detected

in the eigenvalue analysis. The observation of three or more harmonics in the

power spectrum has not been commonly observed before, but the customary

explanation in terms of excitation by the electromagnetic ion beam instability

does seem to generalize in a straightforward way to include the existence and

propagation direction of these higher harmonics.

The phenomenon analyzed here closely resembles similar observations at

earth. The alternative possibility, that these waves are related to those

observed by the Pioneer spacecraft enroute to Jupiter [Smith et al., 1976]

does not, in our view, fit the observations. Smith et al. concluded that the

MHD fluctuations that they observed were excited by relativistic electrons via

the electron cyclotron instability [Dawson and Bernstein, 1958]. Such cannot

i
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r^ be the case here, because the electron instability excites the Alfven branch

and would therefore be left-hand polarized in the 2.3 mHz fundamental,

contrary to our observations (cf. Figs. 3, 4, and 5b).

The scenario we have described strikes us as being a rather suggestive

one, but, of course, does not constitute a complete description of the

phenomenon. For one thing, the particle distribution we used is at best an

educated guess based on terrestrial observations and simulations of the

earth's bow shock. Observation and analysis of a similar harmonic structure

In front of the earth's bow shock will probably go a long way in furthering

our understanding of such waves.
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Boyd, T. J. M, and J. J. Sanderson, PlasmaIonics, Barnes & Noble, Inc., New

York, 1969.

Bridge, H. 5., J. W. Belcher, R. J. Butler, A. J. Lazarus, A. M. Mauretic, J.

D. Sullivan, G. L. Siscoe, and V. M. Vasyliunas, 'The plasm experiment on

the 1977 Wyager mission, Space Sol. Rev., 21, 259, 1977.

Dawson, J., and I. Be Bernstein, Hydromanetic instabilities caused by runaway

electrons, Controlled thermonuclear Conference, Rep. AEn-7ID-7558, p. 360,

Dep. of Commer., Washington, D. C., 1958.

Gary, S o P., 'The electromagnetic ion beam instability and energy loss of fast

alpha particles, Nucl. Fusion, 18, 327, 1978.

B



I

r,, g I

—22	 OF
Q 1,dL^1 ii i^^

Gary,	 S.	 P., J.	 T. Gosling, and D. W. Forslund, The electromagnetic ion beam

instability upstream of the earth ' s bow shock, J. Geophys. Res., 86, 6691,

1981.

Hoppe, M. M., and C. T. Russell, Plasma rest frame frequencies and polariza-

tions of the low-frequency upstream waves: ISEE 1 and 2 Observations, J.

Geophys. Res., 88, 2021, 1983.

Hoppe, M. M., C. T. Russell, L. A. Frank, T. E. Eastman, and E. W. Greenstadt,

Upstream hydromagnetic waves and their association with backstreaming ion

populations: ISEE 1 and 2 observations, J. Geophys. Res., 86, 4471, 1981.

Kennel, C. F., and H. V. Wong, Resonant particle instabilities in a unifrom

magnetic field, Plasma Phys., 1, 75, 1967.

Lee, M., Coupled hydromagnetic wave excitation and ion acceleration upstream

of the earth 's bow shock, J. Geophys. Res., 87, 5063, 1982.

Leroy, M. M., D. Winske, C. C. Goodrich, C. S. Wu, and K. Papadopoulos, The

structure of perpendicular bow shocks, J. Geophys. Res., 87, 5081, 1982.

Matthaeus, W. H., and M. L. Goldstein, Measurement of the rugged invariants of

magnetohydrodynamic turbulence in the solar wind, J. Geophys. Res., 87,

6011, 1982a.

Matthaeus, W. H., and M. L. Goldstein, Stationarity of magnetohydrodynamic

fluctuations in the solar wind, J. Geophys. Res., 87, 10347, 1982b.

Moffatt, H. K., Magnetic Field Generation in Electrically Conducting Fluids,

Cambirdge Univ. Press, 1978.

Montgomery, M. D., S. P. Gary, D. W. Forslund, and W. C. Feldman, Electro-

magnetic ion-beam instabilities in the solar wind, Phys. Rev. Lett., 35,

667, 1975.

Montgomery, M. D., S. P. Gary, W. C. Feldman, and D. W. Forslund, Electro-

magnetic instabilities driven by unequal proton beams in the solar wind, J.



I

Geophys. Res., 81, 2743, 1976.

Paschmann, G., N. Sckopke, I. Papamastorakis, J. R. Asbridge, S. J. Bame, and

J. T. Gosling, Characteristics of reflected and diffuse ions upstream from

the earth's bow shock, J. Geophys. Res., 86, 4355, 1981.

Paschmann, G., N. Sckopke, J. R. Asbridge, S. J. Bame, and J. T. Gosling,

Energization of solar wind ions by relection from the earth's bow shock, J.

Geophys. Res., a5, 4689, 1980.

Smith, C. W., M. L. Goldstein, and W. H. Mattheaus, Turbulence analysis of the

Jovian upstream "wave" phenomenon, J. Geophys. Res., in press, 1983.

Smith, E. J., B. T. Tsurutani, D. L. Chenette, T. F. Conlon, and J. A.

Simpson, Jovian electron bursts: Correlation with the interplanetary field

direction and hydromagnetic waves, J. Geophys. Res., 81, 65, 1976.

Stix, T. H., The Theory of Plasma Waves, McGraw-Hill, New York, 1962.

Tademaru, E., Plasma instabilities of streaming cosmic rays, The Astrophys.

J., 185, 959, 1969.

Tanaka, M., C. C. Goodrich, D. Winske, and K. Papadopoulos, A source of the

backstreaming ion beams in the foreshock region, J. Geophys. Res., in

press, 1983.



-24-	 Ct Q.pY

Table 1

Proton Density = 0.25/cm', Ele,Yrron Temperature = 2 eV, Isothermal Approxima-

tion (Y = 1), <B >(nT) = 0.33, Cs (cm/s) 1.39 x 10`, VA (cm/s) = 1.44 x 10`,
Vsw (cm/s) = 4AV x 107

n Freq	 SW Freq	 e	 V (Fast)	 V„ SW

(mHz)	 (mHz)	 (deg)	 (deg)

	 V,,,-,(Fast)

1	 1.52 6.32 x 10-2 .1 35.0 14.9 -2.8

1	 1.71 6.97 x 10_2 10.6 30.4 15.4 -2.8
1	 1.89 7.71 x 10-2 12.2 28.7 15.6 -2.5

1	 2.08 8.51 x 10 10.5 30.3 15.4 -2.2

1	 2.27 9.33 x 10
-2

10.6 30.7 15.4 -2.0

1	 2.46 0.10 10.8 30.3 15.4 -1.8
1	 2.65 0.11 11.6 29.2 15.5 -1.7

1	 2.84 0.1i 16.7 24.4 16.1 -1.7

1	 3.03 0.12 18.4 22.7 16.2 -1.6

1	 3.22 0.13 17.5 23.5 16.1 -1.5

2	 4.74 0.20 32.7 16.9 17.6 -2.5

2	 4.92 0.21 35.8 12.2 17.8 -2.5
2	 5.11 0:21 37.2 6.3 17.9 -2.6

2	 5.30 0.22 37.4 5.9 17.9 -204

2	 5.49 0.23 37.7 5.7 18.0 -2.4
2	 5.68 0.24 39.1 5.3 18.1 -2.3
2	 5.87 0.24 39.4 6.0 18.1 -2.3

2	 6.06 0.25 39.8 5.5 18.1 -2.2
2	 6.25 0.26 42.0 18.3 -2.2
2	 6.44 0.27 42.2 7.8 18.3 -2.1
2	 6.63 0.28 43.4 8.1 18.4 -2.1

2	 6.82 0.29 41.4 4.9 18.2 -2.0

2	 7.01 0.29 42.7 3.3 18.3 -2.0
2	 7.20 0.30 39.4 2.0 18.1 -1.8

2	 7.39 0.30 36.8 4.4 17.9 -1.7
2	 7.58 0.31 36.8 7.9 17.9 -1.7

3	 8.52 0.34 27.0 . 14.9 17.1 -2.0

3	 8.71 0.35 30.3 10.6 17.4 -2.0

3	 8.90 0.36 34.2 6.9 17.7 -2.1

3	 9.09 0.37 36.9 3.9 17.9 -2.1

3	 9.28 0.38 38.6 2.4 18.0 -2.1

3	 9.47 0.39 37.5 3.6 17.9 -2.0

4	 11.74 0.49 36.0 11.4 17.8 -2.1

4	 11.93 0.50 36.3 12.0 17.8 -2.1

4	 12.12 0.50 35.1 12.2 17.7 -2.0
4	 12.31 0.51 35.5 11.6 17.8 -2.0
4	 12.50 0.52 36.9 12.5 17.9 -2.0

4	 12.69 0.53 34.7 12.7 17.7 -1.9

4	 12.88 0.54 34.1 14.0 17.7 -1.9

4	 13.07 0.55 29.8 19.3 17.3 -1.7
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Table 2

Growth Rate calculations for the fast magnetosonic and Alfven mxdes

Elertramagnetic ion beam instability

The computed growth rater have been maximized with respect to both IkI and

propagation direction 9. Landes damping by thermal protons and electrons is

included.

Proton Density = 0.25/ams , Solar Wind Electrot and Proton 71airperatures = 2 eV,
(used in Landau damping calculation), <B-0>(rM = 0.33, VA (aff3s) = 1.44 x 106,
Vs (cm,/s) = 4.2 x 107

Fast Node

n(Y/s^)	 94Freq	 9	 V^/VA Deg.-Pblar z^ation - °F
(mliz) 	 (deg)

1* 0.428 1.96* 0 20.2 1.0
2 0.473 0.24 31 1.0 0.18
3 0.148 0.38 35 1.0 0.23
4 0.060 0.50 34 1.0 0.30

* Calculated by solving simultaneously for the real and imaginary parts of the
frequency [cf. Lee, 1982]. The large value of the plasma frame frequency
suggests that the ratio nb/no should be chosen to be less than 0.01.

Alfven Node

n	 (/	 )
Y	

max
Deg. -Polarization ----SW Freq e V NA

(MM) (deg)

1**
2	 0.82 0.20 48 0.67 -0.035
3	 0.38 0.30 48 0.67 -0.052
4	 0.22 0.40 48 0.66 -0.069

** Fbr the Alfven mode, ( Y/Q	 0 at e = 0, but reaches a maximum value
greater than 1 (but still lesps ion the off-angle maximum for the fast mode)
at 32°.
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Nix A

In the limit Y << a , the growth rate of low frequency MD waves as

computed from the linearized Vlasov-,Maxwell equations is given by [Stix, 1952;

Kennel and Wong, 1967; Tademaru, 1969]

Y = -R1/( aRr/8w)	 (Al)

where Rr is the real part of the determinant of the dispersion tensor, in this

case computed in the cold plasma approximation (cf. Stix, 19621, and R' is the

imaginary part of the determinant of the dispersion tensor, which includes the

suprathermal streaming proton component. The caponents comprising Rz can be

found in, for example, Stix [1962]. Men substituted into (Al) the result is

[Kennel and Wong, 1967; Tademaru, 1969]

- -21T 2 [ (Rr11Rr33 (Rr13^ 2) ( aR
r/aw) -1 k" 

^ (kit)

afa 	k„	 afa 	afa

x a^'a2 o dv ' v, 2 [av, + w N, 6v - V'. aV ) ]

" ^r3
E
	 3Rr12 (n/' )Jn ( ^ ) - Rr12Rr13(v"/vl)Jn(x) -

(Rr11Rr33 - (Rr13)2)Jn'(^)]z

v„'-(w-naa)AII

(A2)

E

r

where w. 2 = 4mhe 2/ma is the square of the plasma frequency of species a, a =

v,k,/na, is the argument of the Bessel functions in (' denotes differentiation
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with respect to A) f n
a 
= teBAV is the Earwr frequency of species a (c = +1

for ions and -1 for electrons ) , the sum over n ranges from — to 4-- and the

sun over a includes both protons and electrons. R is the deteminant of Rr 
ij-

7he components of Rr 
ij. 

used in (A2) are

w =w:
R'	 wk, zc l - wl +

w waw E
Rr	 a12	 w

w 1wa

Rr22 k'c' - 0 + E

Rr
13 

-k,k.cl

Rr	 k
1 2C I w I + EW 2

33	 a

(M)

vbere the summation is over the cold plasm population (protons and elec-

trons)

1AA`
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When a conical distribution of wave numbers is integrated to form the

reduced spectrum, the magnitude of the spread in the spectral peaks can be

estimated in a fairly straightforward way. We have considered a model wave

spectrum of the form

E (J = (%/27rK,) 6 ( k l-K,) d (k ,l-K„)	 (BI)

where the resonant ww7evectors are the set k = (k,,k„). The reduced spectrum

Er (kR) is obtained by integrating the spectrum over all wavevectors with a

fixed radial projection kR, that is,

Er (kR) = fE	 L•R - kR) d' K .	 (B2)

The integral can be easily performed by changing variables. After a little

algebra we find

Er (k R)= (E6/1r) 1/3 [k, 2sin 2e - (kR - k„tee ) 2 )	 (B3a)

for IkR-4c„cosel < k,sine, and

Er (k R) = 0	 (B31o)

otherwise. In (B3), a is the angle between the axis of the cone and the

magnetic field.

k	 The reduced spectrum consists of two peaks, symmetrically spaced about kR

b

a
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= k„rose. The upper peak occurs at kR = k„cose + k,sine and the lower at kR =

k„nose - k,sine. In the special case of k, = k„ and e = 45°, the lower peak

is at zero wavenumber and does not contribute to the fluctuation spectrum

while the upper peak is at kR = k = 3(k,'+k„ =) which is the exact resonant

waverxmber. It appears that the spectral smoothing obtained from a reduced

spectrum still retains, at the approximate resonant waver pmbers, tha spectral

peaks of the three dimensional spectrum.
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Figure 1. Magnetometer data fran the GSFC experiment on Wyager 2. The time

span shown is from about 9:00 - 10:30 Ur on day 184 of 1979. The data are 9.6

sec averages and have been rotated into a field aligned coordinate system in

which z is in the direction of the mean field and x is in the original R-2

plane. The y-component then completes the right-handed coordinate system.

Figure 2. a. The trace of the magnetic power spectral matrix for this

interval. The power is in (nT)	 The spectrum was obtained

using the fast Fourier transform technique with 14 degrees of

freedom. The data consisted of 1.92 sec averages of the field.

It was digitally filtered using a low-pass filter which removed

aliasing at the highest frequencies.

b. The power in the magnitude of the magnetic field. This

spectrum was obtained as descsribed for Fig. 2a.

Figure 3. The normalized magnetic helicity spectrum, m(f) after Matthaeus

and Goldstein [1982a].

Figure 4. The results of an eigenvalue analysis of this interval. Plotted in

panels a through c are the degree of polarization D the ellipticity E, and

the angle 0 between B and k, respectively.
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Figure 5. a. Zhe correlation between IB(f)) and p(f) [see Smith et al.,

19831.

b. 4he normalized cross helicity spectrum, a c (f) after Matthaeus

and Goldstein [1962x].

c. the Alfven ratio rA = EV(f)/EB (f) where EV(f) and.EB (f) are the

spectra of kinetic and magnetic energy, respectively.
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