General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
"Made avallable under NASA sponsorshia In the interest of early and wide dissemination of Earth Resources Survay

Prooram_uniorne mitmout liandly
for any use made thime"

nECENTD EX MASA STI FACHTT DATE DCAF Na
 PROCESSHE

BY
(1) NASA STI FACHITY
\square ESA - SDS
\square AliA

1. Publication No INEC-2675-ERE/282	2. Version	$\begin{aligned} & \text { 3. Date } \\ & \text { Mar., } 1983 \end{aligned}$	5. Distribution \square Internal 国 External
$\begin{array}{ll}\text { 4. Origin } & \text { Program } \\ \text { DGA } & \text { GEOMAGNETYSMO }\end{array}$			\square Restricted
6. Key words - selected by the author(s) geomignfitic variations STORM-TIME CIIANGES			
7. U.D.C.: 550.3			
8. Title STORM-YIME CHANGES OF GEOMAGNETTC ETELD at magsat alititudes ($325-550 \mathrm{Km}$) AND their Comparison with changes at GROUND LOCATIONS			10. No of pages: 4,1
			11. Last page: 39 .
			12. Revised by
9. Authorship Rajaram Purushottam Kane Nalin Babulat Trivedi			nanbor M. A. Abdu
			13. Authorized by
14. Abstract/Notes The values of H, X, Y, Z at MAGSAT altitudes were first expressed as residuals $\Delta H, \Delta X, \Delta Y, \Delta Z$ after subtracting the model IIMD, XMD, YMD, ZMD. The storm-time variations of H showed that $\triangle H$ (Dusk) was larger (negative) than ΔH (Dawn) and occurred earlier, indicating a sort of hysteresis effect. Effects at MAGSAT altitudes were roughly the same (10% accuracy) as at ground, indicating that thesp effects were mostly of magnetosphexic origin. The ΔY component also showed large storm-time changes. The Zatitudinal distribution of storm-time ΔH showed north-south asymmetries varying in nature as the storm progressed. It seems that the central plane of the storm-time magnetospheric ring current undergoes latitudinal meanderings during the course of the storm.			

> Owhud per res
> Of POOR Qunkity

15. Remarks

This work is being submitted to the Journal of Geophysical Research.

STORM-TIME CHANGES OF GEOMAGNETIC FIELD AT MAGSAT ALTITUDES ($325-550 \mathrm{~km}$) AND THEIR COMPARISON WITH CHANGES AT GROUND LOCATIONS

by

R.P. Kane and N.B. Trivedi

Instituto de Pesquisas Espaciais - INPE Conselho Nacional de Desenvolvimento Cientifico e Tecnolögico - CNPq 12200 - São José dos Campos, SP, Brasil

Abstract

The values of H, X, Y, Z at MAGSAT altitudes were first expressed as residuals $\Delta H, \Delta X, \Delta Y, \Delta Z$ after subtracting the model HMD, $X M D, Y M D, Z M D$. The storm-time variations of ΔH showed that $\triangle H$ (Dusk) was larger (negative) than ΔH (Dawn) and occurred earlier, indicating a sort of hysteresis effect. Effects at MAGSAT altitudes were roughly the same (10% accuracy) as at ground, indicating that these effects were mostly of magnetospheric origin. The ΔY component also showed large storm-time changes. The latitudinal distribution of storm-time ΔH showed north-south asymmetries varying in nature as the storm progressed. It seems that the central plane of the storm-time magnetospheric ring current undergoes latitudinal meanderings during the course of the storm.

STORN-TIME CHANGES OF GEOMAGNETIC FIELD AT MAGSAT A.TITUDES ($325-550 \mathrm{KM}$) AND THEIR CONPARISON WITH CIIANGES AT GROUND LOCATIONS

by

R.P. Kane and N.B. Trivedi

> Instituto do Pesquisas Espaciais - INPE Conselho Nacional de Desenvolvimento Cientiffico e Tecnolögico - CNPq 12200 - São Jose dos Campos, SP, Brasil

1. Introduction

The quiet-day pateterns of geomagnetic field and its periodic variations (e.g. Sq) are occasionally violently disturbed, exhibit what are known as Geomagnetic Storms. The anatomy of such storms and their relationship with solar events have been studied for almost a century and detailed exposition is available in the liturature, specially in the three famous books viz. by Chapman and Bartels (1940), Matisushita and Campbell (1967) and Nkasofu and Chapman (1972). A typical geomagnetic storm is characterised by a sharp initial increase called Storm Sudden Commencement (SSC), which may last for a few minutes (and may be associated sometimes with a Preliminary Reverse lmpulse PRI), followed by a large drop in the H component of a few hundred $n T$ within a few hours, followed later by a slow recovery. These foatures have different magnitudes at different latitudes and longitudes, indianting a UT component called stormmetime variation Dst, and a LT component called disturbance local-time inequality DS. From a detailed analysis of several hundred storms, Sugiura and Chapman (1960)
demonstrated that whereas Dst had a pattern as mentioned above viz. SSC followed by the Main phase and the Recovery, the DS was characterised by a Dawn maximum and a Dusk minimun. Kane (1971) obtained similar results.

The source of these storm-time changes is knowll since long to be far awdy from the earth, in the form of a ring current, several earth radii away in the magnetosphere. The isotropic (symmetric) ring current causes the Dst. The asymmetric part DS was earlier thought to be due to ionospheric return currents from an extended westward electrojet in the auroral region. From spacecraft observations, Cahill (1966) and Langel and Cain (1968) concluded that the DS variations too were of magnetospheric origin. However, whether DS has some ionospheric contribution too is still a debatable question (Kane 1972, 1973, 1974). It would be of great interest if observations were available from spacecrafts above, but not very far from the ionosphere. MAGSAT provides the first such opportunity, as the spacecraft, though confined to the Dawn-Dusk sectors because of its sun-syncronization, was in the altitude range of $325-550 \mathrm{~km}$. In this communication, we report results for storm-time changes, observed by MAGSAT .

2. Data analysis

The present work pertains to the MAGSAT Project M55, entitled "Comparison of storm-time changes of geomagnetic field at ground and at MAGSAT altitudes", for which Reports Nos. 1,2,3 and the Final Report have already been submitted to NASA. Several details and Tables etc., not reproduced here, are available in those reports.

The MAGSAT Investigator B tapes supplied to us contained data for the equatorial and low latitude region only ($\pm 35^{\circ}$), and hence all the results we report pertain to low latitudes only. Values for the X, Y, Z components were available and from these the H component was computed as $H=\left(X^{2}+Y^{2}\right)^{1 / 2}$. Since a major. part of the observed
values of X (or H) was of internal origin (earth's interior) and the effects we wanted to study were of external origin and quite small (only a few hundred $n T$ as compared to the several tens of thousands of nT of observed X or H), it was necessary to remove first some sort of a gross, background level of internal origin. The tapes contained MGST (4/81) model values XMD, YMD, ZMD which are supposed to contain no external terms. From these, we calculated $H M D=\left(X M D^{2} .+Y M D^{2}\right)^{1 / 2}$ and further, residuals were obtained as $\Delta H=H$ (observed) - HMD, $\Delta X=X$ (observed) $-X M D, \Delta Y=Y$ (observed) $-Y M D$ and $\Delta Z=Z$ (observed) $-Z M D$. All further analysis was conducted by using $\Delta H, \Delta X, \Delta Y$ and ΔZ only.

The MAGSAT spacecraft was launched on October 30, 1979 into a twilight, sun-synchronous orbit, with inclination 96.76°, perigee 352 km and apogee 561 km . Thus, in the low.latitude region, the passes were almost north-south or south-north along the Dawn or Dusk meridians. The equatorial crossings of successive Dawn and Dusk passes were about 0.8 hours apart, while successive Dawn (or Dusk) passes were about 1.6 hours apart.

A. Study of values at equatorial crossings

Values of ΔH etc. at the geographic equatorial crossing, are henceforth designated as ΔH_{0} etc. Fig. 1 shows a plot of ΔH_{0} (Dusk) (crosses) and ΔH_{0} (Dawn) (dots) for the period Nov. 2-7, 1979 in the top frame, Nov. 8-13, 1979 in the middle, and Nov. 14-19, 1979 in the bottow: frame. The conventional Dst (Sugiura and Poros, 1971) is also plotted in each frame and the kp values are indicated by histrograms. The data for Nov. 2 do not seem to be 'rel iable and hence are omitted from the analysis. In the interval Nov. $3-19,1979$ there was one major storm on Nov. 13-15, 1979. The following points may be noted:
a) In general, ΔH_{0} is non-zero and negative. ΔH_{0} (Dusk) is more negative than ΔH_{0} (Dawn). However, both follow the Dst trend at least roughly and hence do seem to represer.t the storm-time changes.
b) During the storm-period (Nov. 11 15, 1979), ΔH_{0} (Dusk) seems to show a behaviour similar to Dst; but, ΔH_{0} (Dawn) shows a different behaviour viz. lesser magnitude of storm-time effects, probably occurring later.

Fig. 2 shows a plot of ΔH_{0} (Dusk) versus ΔH_{0} (Dawn). Fig. 2(a) refers to Nov. 3-5, 1979, a moderately disturbed period. It may be noted that ΔH_{0} (Dusk) and ΔH_{0} (Dawn) were observed always about 0.8 hours apart and simultanecus observations were impossible. Hence, the arithmetic average of two suicessive values of ΔH_{0} (Dawn) is plotted against the corresponding ΔH_{0} (Dusk) value and vice versa. The scatter in Fig. 2(a) is rather large. The correlation coefficient for the 87 pairs of points is only $+0.42 \pm 0.09$ and the two regression lines, one with ΔH_{0} (Dusk) as the indeperdent variable (full line) and the other with ΔH_{0} (Dawn) as the independent variable (dashed line), are wide apart, making different intercepts on the two axes.

Fig. 2(b) shows a similar plot for Nov. 6-10, 1979, again a moderately disturbed period. Here, some points (marked as dots) seem to fall reasonably well on a straight line, giving a good correlation ($+0.91 \pm 0.02$) for 89 pairs of points, and the upper line represents the corresponding regression line. However, there are many other points (marked as crosses) which deviate considerably from the above group. For all pairs taken together (total of 153 values), the correlation is only ($+0.71 \pm 0.04$) and the regression is represented by the lower line.

Fig. 2.(c) shows a similar plot for the storm period Nov. 11-15, 1979. Here, the recovery period Nov. 14-15 is marked as crosses. Two separate regression lines are indicated, one for the main storm (Nov. 11-13) of slope exceeding unity and another for the recovery, period (Nov. 14-15) of slope almost unity. Thus, differences in the storm-time evolution in the Dusk and Dawn sector are indicated.

Fig. 2(d) refers to Nov. 16-20, 1979, a moderately disturbed period. Here too, the scatter is large, just like in Fig. 2(a) and (b).

Thus, whereas Fig. 2(c) shows marked differences in the evolution of ΔH_{0} (Dawn) and ΔH_{0} (Dusk), the scatter in Fig. 2(a), (b) and (d) makes it difficult to draw any reliable conclusions. It is obvious that the ΔH_{0} values are polluted by some other factors unconnected with storims.

What could be the causes for this scatter and, in genera! for the non-zero values of ΔH_{0} even in quiet period and here again dissimilar for Dawn and Dusk? Firstly, the MAGSAT (4/81) model used for base subtraction may not be fully adequate for this purpose. If so, there is nothing one can do about it except wait for a better model. Secondly, it may be that Sq effects are not negligible even at Dusk and Dawn and may even be dissimilar for Dusk and Dawn. Sugiura and Hagan (1979) have already indicated such a possibility. Thirdly, the quiet-time ring current may not be negligible and may have dissimilar effects for Dusk and Dawn. In practice, this effect will be mixed up sith the possible Sq dissimiliarity. Fourthly, since every successive pass (Dawn or Dusk) is about 1.6 hours apart, the earth would have turned under the satellite by about 24° in longitude. Thus, every pass would be covering a different ground terrain and hence perhaps a different kind of ground anomaly. Thus, a variety of effects could be involved and all these need to be estimated and corrected either individually or collectively. We acheived this in the following way.

We used data for about 1200 Dawn and 1200 Dusk passes which occurred during Nov. 2, 1979 and Jan. 18, 1980. The passes were separated first into 72 longitude groups (longitude of equatoria) crossing) viz. -180° to $-175^{\circ}, \ldots-5^{\circ}$ to $0^{\circ}, 0^{\circ}$ to $+5^{\circ}, \ldots+175^{\circ}$ to $+180^{\circ}$. For each one of these longitude groups, ΔH_{0} (Dusk) and ΔH_{0} (Dawn) were plotted separately against the corresponding geomagnetic Dst. Fi.g. 3(a) left half shows ΔH_{0} (Dawn) versus Dst, and the right half shows ΔH_{0} (Dusk) versus Dst, for the longitude belt 0^{0} to $+5^{\circ}$. There were about 15 passes involved, of each type. The correlation coefficients are reasonably high, (about +0.80 or more) and the regression lines drawn are for ΔH_{0} (Dawn or Dusk) as the independent

parameter and Dst as the dependent parameter. In each case, the intercept on the ΔH_{0} axis (ordinate) corresponds to Dst $=0$ and hence gives us an estimate of the quiet-time base level of ΔH_{0} (Dawn or Dusk). For example, for the longitude belt 0° to r°, the base value of ΔH_{0} (Dawn) is -26 nT and for H_{0} (Dusk), it is -40 nT .

Fig. 3(b) shows similar plots for the longitude belt $+5^{0}$ to $+10^{\circ}$. The base level.s are now -31 nT for $\Delta \mathrm{H}_{\mathrm{o}}$ (Dawn) and -41 nT for ΔH_{0} (Dusk).

Similar plots were made for all the other longitude belts. Fig. 4 shows a plot of the base values $\left(\Delta \bar{H}_{0}, \Delta \bar{Y}_{0}, \Delta \bar{Z}_{0}\right)$ versus longitude, for $A H_{0}$ (Dusk) in the first row and ΔH_{0} (Dawn) in the second row. Considerable longitude variation is noticed, probably due to varying ground anomaly effects, which are brought out clearly in the third row depicting the average of Dawn and Dusk. The Bangui anomaly at iongitudes 0° to $+20^{\circ}$ can be seen. The fourth row depicts the difference (Dusk minus Dawn) and represents Dusk-Dawn asymmetries due to Sq effects (Sugiura and Hagan, 1979), quiet-time ring currents etc. These too seen to be longitude dependent. The other rows in Fig. 4 show similar base levels for the Y and Z components.

Irrespective of the nature of these base levels viz. whether due to Sq effects, ring current effects, ground anomalies etc., it should be enough for our purpose to. subtract these from the actual values of ΔH_{c} (Dusk) and ΔH_{0} (Dawn) of every pass (with due consideration for the longitude belt), so that the residuals so obtained couid be considered as depicting true storm effects. Fig. 5 is a reproduction of some parts of Fig .2 , after such a correction (base level subtraction) is applied. Fig. 5(a) refers to Nov. 3-5, 1979 and a comparison with Fig. 2(a) shows that the scatter has reduced considerably and values are now clustered mostly near zero. Fig. 5(b) refers to the storm period Nov. 11-15, 1979 and a comparison with Fig. 2(c) shows a clear-cut hysteresis loop in contrast to the earlier confusion of points. Thus, in the main phase of the storm (Nov.11-13)
(full dots and lines), ΔH_{0} (Dusk) seems to attain negative values numerically almost double of those of ΔH_{0} (Dawn). Somewhere near the end of the main phase, ΔH_{0} (Dusk) saturates. The ΔH_{0}^{\prime} (Dawn) continues to increase (negative) but nevej* catches up with ΔH_{0} (Dusk). Only after a partial recovery of ΔH_{0} (Dusk), the ΔH_{0} (Dawn) catches up with the same and, thereafter, the two recover together.

In. the interval of 78 days (Nov. 2, 1979 - Jan. 18, 1980) that we studied, there were two major storms, one during Nov. 11-16, 1979 and another during Jan. 1-3, 1980, besides several minor storms as during Nov. 7-8, Nov. 24-25, Dec. 3-5, Dec. 28-30, 1979 and Jan. 13-14, 1980. In Fig. 5(c) we show a plot of ΔH_{0} (Dusk; versus ΔH_{0} (Dawn) for the 0 ther major storm of Dec. 31, 1979 - Jari, 3, 1980. There is a hysteresis loop clearly visible, remarkably similar to the loop of Fig. 5(b).

Fig. 6 shows a plot of ΔH_{0} (Dusk) and ΔH_{0} Dawn) for the storm of Nov. 11-15, 1979. The top curves (row 1) and the Dst (second row) are the same as those shown in Fig. 1. Rows 3 and 4 show ΔY_{0} and ΔZ_{0}. All these are uncorrected for base levels. When the base level corrections are applied, the plots look as shown in rows 5, 6 and 7. Considerable modifications s em to have occurred because of the base level corrections. Fig. 7 shows the plots of base-level-corrected values of $\Delta H_{0}, \Delta Y_{0}, \Delta Z_{0}$ for Dawn and Dusk for the storm of Dec. 31, 1979 - Jan. 2, 1980.

The main features of these storms may be summarised as follows:
a) When values corrected for base level are used, both ΔH_{o} (Dusk) and ΔH_{0} (Dawn) show values near zero during quiet periods, as expected.
b) When a storm commences as seen by the Dst attaining negarive values, the ΔH_{0} (Dusk) responds first and attains values similar to Dst. The ΔH_{0} (Dawn) does not seem to respond to
small Dst changes. For large Dst (negative) values, ΔH_{0} (Dusk) seems to follow suit while ΔH_{0} (Dawn) lags behind and never reaches the highest ΔH_{0} (Dusk) level'. After Dst and ΔH_{0} (Dusk) have recovered partially, ΔH_{0} (Dawn) catiches up with ΔH_{0} (Dusk) and thereafter, the two recover together. A plot of ΔH_{0} (Dusk) versus ΔH_{0} (Dawn) shows a hysteresis type loop, indicating larger and earlier storm effects in the Dusk sector as compared to Dawn sector.
c) During the storm main phase, ΔY_{0} (Dusk) and ΔY_{0} (Dawn) also show large variations (several $n T$) and often reverse to each other. Thus,meridional currents are indicated, which could also be due to nonparallelism between the central plane of the ring current and the geographical equatorial plane.

B. Comparison of MAGSAT and ground data

So far, we studied the storm-time variation characteristics
at the MAGSAT altitudes only. We now compare these with grourd observations. Form WDC-A, Boulder, Colorado, we obtained the houriy values of the H component for several low and mid-latitude locations, as listed in Table 1 according to geographical longitudes. Some of these could be considered as in the same longitude belt. For example, Tsumeb, Bangui and Hermanus have roughly the same longitude (about $\left.15^{\circ} \mathrm{E}\right)$. For these locations, there would be one Dawn pass and one Dusk pass per day which could be compared with ground ΔH values at Dawn and Dusk, choosing the proper geographical latitudes on the passes to match with the geographical latitudes of the ground stations as given in Table 1. Since only hourly values near Dusk or Dawn will be used, a possible error of half an hour in time is involved. Also, a pass may not have occurred exactly at a particular ground location longitude; but there will generally exist a pass within $\pm 12^{\circ}$ of the longitude of the location. Thus, inaccuracies of about $1 / 2$ hour in time and about 12° in longitude may be involved. During quiet periods,
successive hourly yalues at Dawn and Dusk do not change by more than a few nT. During disturbed periods, inaccuracies of about $\pm 5 \mathrm{nT}$ could occur.

For Nov. 1979, we omitted data for Nov. 2, as these seemed douptful. For the 28 days Nov. 3-30, 1979, Fig. 8 shows a plot of ΔH at ground for Bangui ($4.6^{\circ} \mathrm{N}, 18.6^{\circ}$) versus $\triangle H$ at MAGSAT for passes near $18.6 .{ }^{\circ}$ E longitude (${ }_{\sim} 12^{\circ}$), for Dawn passes in the left half and Dusk passes in the right half. Each graph has 28 points. For ground values, the base is arbitrary. Also, for satellite values, the ΔH is original and no base-level correction is applied; because, for a given longitude, the correction is the same for all values. The purpose of this plot is not to study the intercepts on the axes but to see whether the points lie on a straight line and, if so, to estimate the slopes. For this, a correlation analysis was carried out between the 28 values of ΔH at satellite (for geographical longitude $5^{\circ} \mathrm{N}$, appropriate for Bangui) and ΔH at Bangui. The correlation coefficient was high (exceeding +0.9) and the two regression lines ($Y=m X+c$), one with ΔH at satellite as the independent variable and ΔH at ground as the dependent variable and the other vice versa, were very close to each other as can be seen in Fig. 8. Similar analysis was carried out using ΔH at ground for all the other locations. Table 1 lists the values of the correlation coefficients and the slopes. As can be seen, all the correlation coefficients are high (exceeding r0.80). Also, all the slopes are near unity. Since the 28 day interval Nov. $3-30$, 1979 had one major storm (Nov. 11-15) and a few minor storms, the range of values was quite large (about 100 nT). In this range, the ground values and satellite values tailied with an accuracy of about 10 nT . Thus, with a probable inaccuracy of about 10%, the storm effects at ground and at MAGSAT altitude seem to be identical and hence mostly of magnetospheric origin. Ionospheric contributions, if any, would be about 10\% or less.

At the bottom of Table 1, we give the average values of the slopes. These seem to be slightly higher when ΔH (satellite) is
the independent variable. Thus, storm effects at the satellite may be $\sim 3 \%$ larger than those at ground.

It may be noted that the analysis in Table 1 referred to variations observed at ground and at MAGSAT altitudes. Now, it is known that for any external current system, there is a coresponding induction effect in the conducting earth. A number of investigations using Sq and Dst variations (e.g. Eckhardt et al., 1963; Banks, 1969) suggest a highly conducting layer at depths between 400-600 Km. Hermance (1982) mentions that for MAGSAT altitudes, the effect of a conducting mantle at a depth of 400 Km would be an induced contribution of about 35% of the external field. At the surface of the earth, it would be about 40%. Thus, if the external ring current has an effective field of say 100 nT , the MAGSAT will record it as $100+35=135 \mathrm{nT}$ while the ground locations would record it as $100+40=140 \mathrm{nT}$. Thus, MAGSAT response is expected to he about $3-4 \%$ lesser than the ground respmatis, if the source tield is in the magnetosphere. If, however, eve: a part of the source is in the ionosphere, the effect would be a partial cancelling of the external and internal field for MAGSAT altitudes. Thus, the response at MAGSAT would be much lesser than that at ground. Thus, in both these cases, one expects the MAGSAT response at least a few percent lesser than at ground. Now, in Table 1, the average slopes when the Satellite values form the independent variable are 0.95 for Dawn and 0.97 for Dusk. This slight reduction from unity (about $3-5 \%$) could be interpreted as an indication of a lesser response at MAGSAT as compared to ground. However, in that case, the result of the reverse correlation analysis, when the ground values are the independent variable, should show slopes greater than unity. This did not turn out to be the case, as the average slopes for this case seem to be 0.91 for Dawn and 0.93 for Dusk (see Table 1). Now, in a correlation analysis, the general tendency is for the slopes to be lesser, in favour of the abscissa, unless the correlation coefficient is unity. Thus, all these values could be interpreted as being almost unity. But, amongst these, there is certainly no indication that the satellite values are smaller than ground values. If anything, comparison
of the numbers $0.95,0.97$ on one side and $0.91,0.93$ on the other, makes one conclude that the first group is larger by about $3-5 \%$ and thus, the satellite values are larger by about this amount.

Taken on its face value, we do not understand this result. However, the scatter of points in Fig. 8 is rather large and we bel ieve that the accuracy of this analysis is not good enough to judge differences of the order of a few percent. Hence, all that we claim is that ground and MAGSAT responses are the same within an accuracy of about 10%. In any case, tine evidence for ionospheric effects is almost nonexistent, for Dawn and Dusk hours.

It is interesting to note that Araki et al. (1982), who studied the occurrence of SSC at MAGSAT, found that for one event, the SSC at 0738 UT on Nov. 30, 1979 (only a minor storm) did have some contribution from ionospheric sources. Thus, ionospheric contributions at Dusk \& Dawn may be occurring either very infrequently, or probably are too small to be detected in an analysis of hourly values.

C. Latitudinial variation of storm effects

During storm periods, ΔH_{0} is large negative. We now explore the latitudinal variation of ΔH during storms.

Figure 9(a) shows the latitudinal variation of ΔH for the Dusk pass No. 184 which occurred on Nov. 13, 1979 at about 2300 UT at an equatorial longitude of about -79° i.e. $79^{\circ} \mathrm{W}$: On its face value, there seems to be a significant latitude dependence, with the largest storm effects ($\Delta H=-140 \mathrm{nT}$) at about $15^{\circ} \mathrm{S}$ latitude. However, it is necessary to check that such a minimum at -15° is not a permanent feature in this longitude zone. For studying this, the average latitudinal variation of ΔH for six quiet day Dusk passes (Dst within $\pm 10 \mathrm{nT}$), which occurred in the longitude belt $75^{\circ}-80^{\circ} \mathrm{W}$ during the period Nov. 1979 - Jan. 1980, was evaluated. Figure 9(b) shows this average. As can be seen, the minimum at $15^{\circ} \mathrm{S}$ is an average quiet-day feature
for this longitude zone, probably due to ground anomaly effects. The real storm-time latitude dependence of ΔH would be obtaiņed by subtracting 9(b) from 9(a). The difference is ihown in Figure 9(c). Now, the latitudinal distribution is almost flat.

It was obvious, therefore, that, to study the correct latitudinal distribution, it was necessary first to establ'ish quiet time patterns like Figure 9(b). This was done for 72 . longitude belts, each of 5^{0} width. Figure 10 shows the latitudinal variation of ΔH for longitude belts 0 to $+5^{\circ},+5^{\circ}$ to $+10^{\circ}, \ldots+85^{\circ}$ to $+90^{\circ}$. As can be seen, considerable variations are observed, many of which are common to Dusk and Dawn and hence must be due to ground anomalies. However, there are some differences too, indicating that the Sq effects at Dusk and Dawn are not alike. Figure 11 shows similar plots for the Y component. Here, a curious fact is noticed. The Dawn plots show very little latitudinal variations but the Dusk plots show large variations. The vertical arrows indicate the position of the dip equator. As can be seen, ΔY (Dusk) shows a clear transition symmetric about the dip equator. Maeda et a1. (1982) have showed this effect from the MAGSAT data and have commented that the $D(i . e . Y$) variation appears everyday on the low-latitude dusk side and is antisymmetric about the dip equator. They have interpreted this as irdicative of meridional current systems in the equatorial ionosphere and associate these with the equatorial electrojet as envisaged in the Untiedt (1967) and Sugiura and Poros (1969) models. We have noticed, however, that these changes are very large in the Y component only and hence, probably indicate the usual Sq pattern of roughly circular currents which, in low latitudes near midday, are mostly east-west but which, at dawn or dusk, are mostly north-south. In the equatorial region, longitudinal differences could arise from the excursions of the Sq currents of one hemisphere into the other (Hutton $1967 \mathrm{a}, \mathrm{b}$) and/or due to solsticial Sq currents through the magnetosphere (Van Sabben, 1970). Since the present investigation is not directly related to the quiet-time variations (Sq or quiet-time ring current), we will not discuss this matter any furthur here but we will use these quiet-time patterns as
base levels for subtracting from the disturbed day patterns. The actual values of these base levels are available in tabular form in the MAGSAT reports.

As shown in Figure 1, the period Nov. 11-15, 1979 was a storm period. On Nov. 13, the Dusk pass 170 at about 0100 UT was only moderately disturbed (Dst $=-17$). However, the successive passes 171, 172 etc. were highly disturbed. All these occurred at different longitudes. From each of these passes, we subtracted the iuitet-time latitudinal pattern appropriate to its longitude. The residual patterns - so corrected are shown in Figure 12. The dets and full lines refer to ΔH and the crosses and dashes refer to ΔX. The left half shows consecutive Dusk passes $170-181$. In the right half, the upper half shows Dusk passes 182-188. The vertical arrows indicate the position of the dip equator. The pass number, Dst and longitude of equatorial crossing are marked for each pass.

It seems fromFigure 12 that the ΔH and ΔX variations are very similar to each other, and these are not always symmetric about the geographical or dip equator. In the early stage of the storm (passes 170-177), the northern hemisphere shows larger storm effects. By about pass 178 , the pattern is roughly symmetrical. For later passes, the southern hemisphere has larger storm effects. Thus, during the course of the storm, there was a considerable north-south asymmetry of a variable nature. In the case of the present storm, the early part of the storm exhibited stronger storm effects in the northern hemisphere. However, as shown i: the lower right half of Figure 12 for the successive disturbed day Dusk passes 936-939, which occurred on Jan. 1, 1980 at about 1800-2200 UT, the storm effect seems to be stronger in the southern hemisphere.

In the middle of the right half of Figure 12, we show a similar plot for the disturbed day Dawn pass 184. In contrast to the Dusk pass 184, the Dawn pass shows a very erratic latitudinal distribution. There is no semblance of a maximum storm effect either
at geographic or at dip equator. Instead, one notices maximum storm effects at about $\pm 15^{0}$ geographical latitudes. We examined some other disturbed-day Dawn passes and noticed largely variable patterns, different for different passes.

Figure 13 shows similar plots for the Y component. Here, symmetry about the geographic or the dip equator (vertical arrows) seems to be more an exception than a rule. In general, the Y variation is erratic, with no systematic variation from one pass to the next. To us, it seems that these variable patterns of ΔX and ΔY storm-time variations may be related to latitudinal meanderings of the central plane of the magnetospheric storm-time ring current and/or complications due to field-aligned currents, different in different local time zones (Dawn or Dusk).

Figure 14 shows the latitudinal patterns of ΔX and ΔY averaged for all the storm-time passes 170-188. The upper half has geographic latitude as abscissa. ΔX shows a maximum storm effect (largest negative values) near the geographic equator (at about $5^{\circ} \mathrm{S}$) with roughly a cos 0 dependence on either side. However, AY does not show any such effect clearly. Instead, one observes a minimum storm effect (smallest negative values) at about -10° i.e. $10^{\circ} \mathrm{S}$. Thus, on the average, the central plane of the storm-time ring current is almost coincident with the geographic equatorial plane, with a probable shift slightly southwards.

The lower half of Figure 14 shows similar average latitudinal patterns for ΔX and ΔY with dip latitude as ábscissa. No clear latitude dependence is noticed, for either ΔX or ΔY^{\prime}. Thus, the storm-time ring current does not seem to be influenced by the dip equator.

These results are in general agreement with our earlier published results (Kane and Trivedi, 1981), about the central plane of the ring current.

4. Sumbary and Conclusions

The results of the present investigation may be summarized as follows:
(i) From the values of X, Y, Z as given in the Investigator B tapes, II was calculated as $11=\left(x^{2}+y^{2}\right)^{2 / 2}$. The topes also gave model values of $X, Y, \%$ viz. XND YMD, ZMD for MAGSAT

 A2 $-7-2 \mathrm{ND}$ were obtained and used for anolysis.
(ii) Allo, i.e. the value of all at equatorial erossing, showed that Allo (Dusk) and ill (Dawn) were always non-zoro, mostly negative, In genoral, illo (Dusk) was more negative thath illo (Dawn), even on quiotioday passes.
(iii) From a correlation analysis of Nl_{0} (Dusk) and . H_{o} (Dawn) versus Dst, the quict-time (Dst a base levels of AH (Dusk) and allo (Dawn) were estimated for b° longitude belts. These basemevels were subtracted from the original values. The rosiduals or iH (Dusk), AH (Dawn), iy (Dusk), Ay (Dawn) 17. (Dusk), id (Dawn) so obtafned showed that:
(a) On quiet days, ill (Dusk) and ill (Dawn) residuals were now almost sero, as expocted.
(b) During the storm of Nov. 11-15, 1979, Dst started inereastigg (negative) at about 0roo UT on Nov. 13. NH. (Dusk) started incrensing (nogative) too and followed Dst almost faithfully. However, ith (Dawn) started inereasing (negative) somewhat. later and never reached the highest level attained by Alt $_{0}$ (Dusk). When ill (Dusk) stanted recovering, $A H_{0}$ (Dawn) caughts up with the same. Thus, AH_{o} (Dusk) showed more intense storm offects, oceurring earlier than illo (Dawn). A sort of hysteresis loop was notieed. Another storm of Dec. 31, 1979 - Jan. 2, 1980 showed a similar behaviour.
(c) During the storm main phase, ΔY_{0} (Dawn) and ΔY_{0} (Dusk) showed large variations. Thus, some meridional currents were indicated. Noncoincidence of the central plane of the ring current with the geographic equatorial plane is also a possibility.
(d) Δz_{0} changes were small.
(iv) Using the hourly values of 16 ground locations, at different latitudes and longitudes in the low and mid-latitude region, a comparison was made of AH at ground near Dawn and Dusk (separately) and AH at MGASAT altitudes, for the latitude and longitude appropriate for the ground location. Excellent correlations were obtained with slopes almost unity. Thus, within a possible error of about 10%, the stormeffects at MAGSAT altitudes were found to be the same as at ground, indicating predominantly a magnetospheric origin. Ionospheric effects, if any, should be 10% or less, both for Dawn as well as Dusk. However, ionospheric effects may be there at other local times (e.g. midday) which are not possible of investigation with MAGSAT data. Also, small ionospheric effect:s could probably be detected by studying data finer than the hourly values used by us.
(v) To study the latitude dependence of $\Delta H, \Delta X, \Delta Y$ during storms, the quiet.-day latitudinal patterns of these parameters were obtained by averaging for all quiet-day (Dst within *10 nT) passes which occurred during Nov. 2, 1979 - Jan. 18, 1930, separately for Dawn and Dusk, separately, for 72 longitude belts of 5° width. These quiet-day average patterns were subtracted from the individual storm-time passes with - due regard to the appropriate longitudes. The storm-time passes so corrected indicated the following:
(a) For the storm of Nov. 13-14, 1979, the latitudinal distribution of NH (which was the same as for ΔX), was not symmetrical either about the geographic equator or the dip
equator. Instead, in the initial part of the storm main phase, the storm effect was larger in the southern hemisphere and later, it became larger in the northern hemisphere. In the storm of Dec. 31, 1979 - Jan. 2, 1980, the pattern was probably reverse. Thus, variable north--south asymmetry seems to be a prominent feature of the storm-time ring current.
(b) When the average for several consecutive storm-time passes was obtained, the latitudinal distribution looked roughly symuluetric about the geographic equator with a possible $\cos 0$ dependence. No such relationship with dip equator was obtained.
(c) The Y component did not show any symmetry about the geographic or dip equator nor any consistent latitudinal distribution from pass to pass. Variations were large but erratic cuuring the main phase of the storm.
(vi) From these variations, it seems that the central plane of the storm-time ring current does not remain steady during the course of the storm,but shows latitudinal meanderings, variable north-south asymmetries and probably non-confinement to the geographic equatorial plane. Complications like field-aligned currents connecting equatorial magnetosphere to auroral ionosphere seem to be present, different for Dawn and Dusk sectors. However, in the low latitude region for both Dusk as well as Dawn hours, the storm effect seems to be mostly (about 90%) above the MAGSAT altitudes and hence not in the ionosphere.

The average characteristics of storm-time geomagnetic variations were studied in detail by Sugiura and Chapman (1960), who showed that, superimposed upon the isotropic, world-wide Dst, there was a disturbance local-time inequality $D S$ which has a sinusoidal variation with a max:num in the morning (dawn) sector and a minimum
in the evening (dusk) sector. Thus, the net effect would be to hamper the negative Dst change in the morning and to accentuate Dst in the evening. In our analysis, ΔH_{0} (Dusk) is always greater ('negative) than ΔH_{0} (Dawn), which seems to agree with the above average picture. However, the hysteresis effect we observed indicates more complexities in the Dusk-Dawn asymmetry, probably due to field-aligned currents as envisaged in the model of Kamide and Fukushima (1972). The MAGSAT data are restricted to the Dawn and Dusk sectors and hence give only a glimpse of the local time DS effect. It is hoped that future programs would yield a more comprehensive look at this problem. What MAGSAT has yielded is certainly enough to warrant an attempt at a more elaborate program.

Acknowledgements

Thanks are due to the MAGSAT teams for the successful mission and for supplying us the data for carrying out the MAGSAT Project M55, and to Dr. Lanqel for useful discussions. Thanks are due to WDC-A, Boulder, Colorado for the ground magnetic data. Thanks are due to Dr. Nelson de Jesus Parada, INPE Generai Director for support. This work was partially supported by FNDCT, Brazil under contract FINEP-537/CT.

Captions for Figures .

Figure 1 - Plots of ΔH_{0} i.e. $\Delta H=H^{\prime}$ (observed) minus H (Mode1) for equatorial crossings, for DUSK (crosses and dashes) and DANN (dots and full lines) as also of Dst, for Nov. 2-7, 1979 (top), Nov. 8-13, 1979 (middle) and Nov. 14-19, 1979 (bottom). Kp is also indicated as histograms.

Figure 2 - ΔH_{0} (Dusk) vèrsus ΔH_{0} (Dawn) for:
(a) Nov. 3-5, 1979,
(b) Nov. 7-10, 1979 (crosses show doubčful Dusk values),
(c) Nov. 11-15, 1979 (storm period, crosses represent recovery period Nov. 14-15, 1979),.
(d) Nov. 16-20, 1979.

Regression lines and correlation coefficients γ are indicated.

Figure 3 - ΔH_{0} (Dawn) versus Dst (left half) and ΔH_{0} (Dusk) versus Dst (right half) for the 5^{0} longitude belts (a) Longitude 0^{0} to $+5^{\circ}$ and (b) Longitude $+5^{\circ}$ to $+10^{\circ}$. The correlation coefficients γ and the regression lines are indicated. circled numbers indicate values ($n T$) of intercepts on the ΔH_{0} axis and represent the base values for these two longitude groups.

Figure 4 - Longitude distribution of the base values $\Delta \bar{H}_{0}, \Delta \bar{Y}_{0}, \Delta \bar{Z}_{0}$ for Dawn and Dusk, the average AVER=(Dusk + Dawn)/2 and, the difference DIFF = (Dusk - Dawn). Negative values are shown sháded.

Figure 5 - ΔH_{0} (Dusk) versus ΔH_{0} (Dawn) using base-corrected values for,
(a) Nov. 3-5, 1979,
(b) Nov. 11-15, 1979 (storm period, crosses refer to recovery Nov. 14-1:j,
(c) Dec.31, 1979-Jan. 3, 1980 (storm period,crosses refer to recovery Jan. 2-3)

Figure 6 - Plots for the storm period Nov, 11-15, 1979 for Dawn (dots and full lines) and Dusk (dashes and crosses)

Row 1 - Al 0 (Dusk) and $A H_{0}$ (Dawn) uncorrected
Row 2 - Geomagnetic Dst
Row 3-AY (Dusk) and $A Y_{0}$ (Dawn) uncorrected Row $4-\Delta Z_{0}$ (Dusk) and $A Z_{0}$ (Dawn) uncorrected Row 5 - $n H_{0}$ (Dusk and Dawn) corrected for base levels Row 6 - AY (Dusk and Dawn) corrected for base levels Row 7 - $A 7_{0}$ (Dusk and Dawn) corrected for base levels.

Figure 7 - Plots of Dst and tho base-level-corrected values of iH_{0}, $\Delta Y_{0}, N Z_{0}$ for Dawn (dots and full lines) and Dusk (dashes and crosses), for the storm period Dec.31, 1979 - Jan. 2, 1980.

Figure 8 - All at Bangui ($5^{\circ} \mathrm{N}, 10^{\circ} \mathrm{C}$) versus MAGSAT dll values at; $5^{\circ} \mathrm{N}$ for Dawn and Dusk passes near $19^{\circ} \mathrm{E}$ longitude, for Nov. 3-30, 1979. Excellent correlations with regression 1 ines of slope almost unity are indicated, implying very good parallelism between ground variations and MAGSAT variations.

Figure 9 - Latitudinal variation of stl for:
(a) The specific disturbed day Dusk Pass No. 181 at a longitude of about. -79°.
(b) Quiet-day base level obtained as average of six quiet day passes in the longitude bett $75^{\circ}-80^{\circ} \mathrm{W}$.
(c) The difference (a) minus (b).

Figure 10 - Average latitudinal variations for NH (Dusk) (left half) and All(Dawn) (right half) for successive 5° longitude belts in the longitude range 0° to $+90^{\circ},+=$ East, $-=$ West.

Figure 11 - Average latitudinal variations for ay (Dusk) (left half) and ΔY (Dawn) (right half) for successive 5° longitude belts in the longitude range 0 to $+90^{\circ}$. Vertical arrows indicate the position of the dip equator.

Figure 12 - Latitudinal variation of $\triangle H$ (dots and full lines) and ΔX (crosses and dashes), both corrected for base levels, for the Dusk passes Nos. 170-188, during the storm of Nov.11-15, 1979, as also for the Dawn Pass No. 184 and for the Dusk passes Nos. 936-939 in Jan. 1980. The pass number, longitude and Dst are indicated for each pass. Vertical arrows indicate the position of the dip equator.

Figure 13 - Sane as Fig. 12, but for â.

Figure 14 - Average latitudinal distribution of ΔX and $A Y$ for the storm-time Dusk passes Nos. 170-188 on Nov. 13-14, 1979. Upper half: For geographical latitudes. Lower half: For dip latitudes.

Captions Table

Table 1 - List and details of stations and results (correlation coefficients and slopes with errors) of a correlation analysis for a linear fit $Y=m X+c$, where $Y=$ Independent variable, $X=$ Dependent variable, $m=$ slope.

References

Akasofu S.I. and Chapman S., "Solar-Terrestrial Physics", Clarendon Press, Oxford (1972).

Araki T., Iyemori T., Tsunomura S., Kamei T. and Maeda H., Detection of an ionospheric current for the preliminary impulse of the geomagnetic sudden commencement. Geophys. Res. Letters, 9, 341-344 (1982).

Banks R.J. Geomagnetic variations and the electrical conductivity of the Upper mantle, Geophys. J., 17, 457-487 (1969)

Cahill l.J. Inflation of the inner magnetosphere during a magnetic storm. ․ Geophys. Res., 71, 4505-4519 (1966).

Chapman S. and Bartels J. "Geomagnetism" Vol. I and II Oxford Univ. Press, Oxford (1940).

Eckhardt, D.H., Larner K. and Madden T.R., Long period magnetic fluctuations and mantle conductivity estimates. J. Geophys. Res., 63, 6279-6286 (1963)

Hermance J.F. fifodel simulations of possible electromagnetic induction effects at MAGSAT activities. Geophys Res: Letters, 9, 373-376 (1982)

Hutton R. Sq currents in the American equatorial zone during the IGY-I. Seasonal effects. J. Atmos. Terr. Phys., 29, 1411-1427 (1967a).

Hutton R. Sq currents in the American equatorial zone during the IGY-II. Day-to-day Variability. J. ntmos. Terr. Phys., 29, 1429-1442 (1967b).

Kamide Y. and Fukushina N., Positive gemagnetic bays in evening high latitudes and their possible connection with partial current. Rep. Iono. Space Res. (Japan). $26,79-101$ (1972).

Kane R.P. Characteristics of storn-time geomagnetic daily variation J. Atmos. Terr. Phys., 33, 1585-1595 (1971).

Kane R.P. Dependence of the daily ranges of geomagnetic variations on Ap. J. Atmos. Terr. Phys., 34, 1105-1117 (1972)

Kane R.P. Global evolution of the DS component during geomagnetic storims. J. Geophys. Res., 78, 5585-5595 (1973).

Kane R.P. Evolution of disturbance daily variation DS and interplanetary plasma parameters. Proc. Ind. Acad. Sci. 80A, 124-139 (1974)

Kane R.P. and Trived N.B. Central plane of the ring current responsible for geomagnetic disturbance in the Scuth-American region. Annals de Geophys., 37, 271-280 (1981).
l.angel R.A. and Cain J.C. OGO-2 magnetic field observations during. the magnetic storm of March 13-15, 1966. Annals Geophys., 24, 857-869 (1968).

Maeda H., Iyemori T., Araki T. and Kamei T., New evidence of a meridional current system in the equatorial ionosphere. Geophys. Res. Letters., 9, 337-340 (1982).

Matsushita S. and Campbell W.H. "Physics of the Geomagnetic Phenomena" Vots I and II, Academic Press. New York and London (1967).

Sugiura M. and Chapman S. The average morphology of geomagnetic storms with súdden commencement. Abh. Akad. Wiss. Gottingen Maths-Phys. Klasse. Sonderhaft, Nr. 4. 1-53 (1960).

Sugiura M. and Hagan M.P. Geomagnetic Sq variation at satellite altitudes: Is Sq correction important in MAGSAT data analysis? Geophys. Res. Letters., 6, 397-400 (1978).

Sugiura M. and Poros D.J. An improved model equatorial electrojet with a meridional current systen. J. Geophys. Res. 74 , 4025-4034 (1969).

Sugiura M. and Poros D.J. Hourly values of equatorial Dst for the years 1957 to 1970. GSFC Publi. X-645-71-278, July (1971).

Untiedt J. A model of the equatorial electrojet involving meridional currents. J. Geophys. Res., 72, 5799-5810 (1967).

Van Sabben D. Solstitial Sq-currents through the magnetosphere. J. Atmos. Terr. Phys., 32, 1331-1336 (1970).

0
OF Fent cour

Fig. 1

Fig. 2
of Fobir cheny

Fig. 3

Fig. 4

ORICHML PROE IS of por Qublty

Fig. 5

Fig. 6

OHEWNR FREE IS
OF POOR QUALITY

Fig. 7

ORICNNAL PREE G OF POOR QUALITY

Fig. 9

- 34 - ontemaramer

Fig. 10

GEOG. LAT.

Fig: 11

Fig. 12

- 37- OF FQuecter

GEOG. LAT.

Fig. 13

Fig. 14

	6egarajnic		Sinin prises（csuo）				CUSK PRSSES（i800）			
					$\begin{aligned} & y^{0}=\varepsilon \text {-sray } \\ & x=\text { Sasinite } \end{aligned}$		$\begin{aligned} & y=\text { Sateisite } \\ & x=G r a n d \end{aligned}$		$\begin{aligned} & Y=\text { Sat } \\ & \underset{x}{ }=\text { SEiellite } \end{aligned}$	
Staごon	tat．	Leng．	Corr．	$55^{5} 5=[51$	Ese	SToperat	©str． Cesef．	Sicasem	corr．	Sicjefil
750	12．2：5	17．7＊E	－0．93	$1.155=2.53$	1－0．33	0.32 ± 5.007	－c． 5	$0.57=0.03$	＋ 0.59	$1.05=5.03$
3\％：503	4．5：\％	18．505	－ 0.93	18.07 ± 2.63	1－0．03	$0.85=0.85$	$1+0.57$	$0.50=0.65$	$\div 0.97$	1．85 $=0.55$
\％	34.505	$19.2^{2}=$	$\div 0.72$	1－E5＝ 0.15	－0．20	$0.71=0.87$	1 +0.57	$1.10=0.55$	＋ 3.97	2． $25=0.65$
20：3\％	31．2＝5	15E．2ミ	$\div 0.85$	2．25＝ 2.10	$1+0.55$	$0.37=0.11$	$1+2.62$	$0.57=0.14$	－ 0.82	$0.67=0.10$
5\％inemen	14．5\％	12：．03E	＋ 0.53	7．67 $\pm .07$	－ 2.55	$0.6{ }^{\prime} 4=0.55$		$0.64=0.53$	－ 0.52	$0.91=0.57$
L0．${ }^{\text {chs }}$	25．2゙：	221．20E	－ 0.57	$0.59=2.55$	＋ 6.57	$0.95 \leq 0.65$.	－0．97	0.50 ± 0.55	－ 3.57	$3.65=0.05$
6480	135%	こん，g：E	$\div 0.67$	2． $55=2.65$	$+0.97$	10．59 $=0.05$	＋ 0.53	$1.65=0.04$	＋ 0.53	$0.55=0.64$
\％0？ycaesey	$9.4=5$	：47． \％$^{\text {E }}$	－ 0.55	8．65 $=0.55$	$1+c .55$	$0.52=0.65$	－ 0.97	$0.52=0.55$	＋ 0.97	1．62 $=0.65$
\％OCLicy	$21.35: 1$	$1 \pm 3.10 \times 0$	＋0．30	$0.50=0.63$	－ 0.50	$0.62=0.63^{\circ}$	－0．5s	$3.23=0.56$	＋ 0.54	0． $85=0.65$
Iminti	17．7：5	750． $3 \mathrm{\%}$ \％	＋ 0.65	¢．E5 $=0.05$	1－0．93	$1.25=0.67$	＋0．55	$0.59=0.55$	＋ 6.55	$0.95=0.65$
Etishit	32．05\％	12：8．5\％\％	＋ 0.35	0.32 ± 0.55	$1+8.54$	$1-3.53=0.57$	＋ 0.55	$0.55=0.07$	＋ 0.55	$2.57 \cdot 0.53$
\％	12．3：s	75.38 m	＋ 0.32	1．02 5.5 .58	＋ 3.32	$0.23=0.07$	－ 0.52	$0.54=0.63$	＋ 0.52	$0.52=0.53$
Fuctere	5．5\％\％	73．3\％	＋ 0.5%	$1.33=0.33$	＋0．9s	$3.85=0.65$	＋ 0.52	0.59 ± 0.33	＋0．92	$0.27=0.07$
5R：3 د	18．95：	E5．2\％${ }^{2}$	$+0.55$	$0.27 \pm 0.35^{\circ}$	＋0．55	1.70 ± 0.50	＋ 2.55	$0.53=0.65$	＋0．55	0.97 ± 0.67
Yis503jes	22．4：5	43．E゙ら	＋¢． 28	0.73 ± 0.63	＋0．28	17．55 $=0.11$	＋ 0.55	$0.65=0.05$	＋ 0.55	$1.03 \leq 0.05$
YSEC？	14．4\％	17．0\％	＋ 0.97	－ 0.55 ± 0.55	＋ 0.97	$0.53=0.55$	＋ 6.52	$0.59=0.64$	＋0．53	$0.57=0 . C 5$
iverage		\cdots		0.655 ± 0.005		$0.912=0.015$		$0.557=0.615$		$0.935=0.005$

